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Diamond hosts optically active color centers with great promise in quantum computation,

networking, and sensing. Realization of such applications is contingent upon the integration of

color centers into photonic circuits. However, current diamond quantum optics experiments

are restricted to single devices and few quantum emitters because fabrication constraints

limit device functionalities, thus precluding color center integrated photonic circuits. In this

work, we utilize inverse design methods to overcome constraints of cutting-edge diamond

nanofabrication methods and fabricate compact and robust diamond devices with unique

specifications. Our design method leverages advanced optimization techniques to search the

full parameter space for fabricable device designs. We experimentally demonstrate inverse-

designed photonic free-space interfaces as well as their scalable integration with two vastly

different devices: classical photonic crystal cavities and inverse-designed waveguide-splitters.

The multi-device integration capability and performance of our inverse-designed diamond

platform represents a critical advancement toward integrated diamond quantum optical

circuits.
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D iamond has excellent material properties for quantum
optics1,2, optomechanics3,4, and nonlinear optics5. Of
particular interest is the variety of color centers that

diamond hosts, some of which exhibit very long coherence
times1,6. The development of diamond photonic circuits7

has emerged as a promising route for implementing optical
quantum networks8–18, quantum computers19–21, and quantum
sensors22,23. However, a major challenge in diamond quantum
photonics is the lack of high-quality thin films of diamond, as the
production of electronic grade diamond can be achieved only in
homoepitaxy, and thinning processes are not repeatable enough
for photonic crystal cavity fabrication24. As a result, state-of-the-
art diamond cavity quantum photonics relies on angled-etching
of bulk diamond24. This technique naturally leads to triangular
cross-sections with strongly constrained geometries, which limit
device design and functionality. Recent developments in diamond
processing based on quasi-isotropic etching25–28 (see Supple-
mentary Note 1 and Supplementary Figs. 1 and 2) allow the
production of diamond membranes with rectangular cross-
sections and variable dimensions from bulk diamond. Although
rectangular cross-sections are a major step toward diamond
integrated circuits, this fabrication technique comes with its own
geometric constraints, such as limitations on the range of fab-
ricable feature sizes, which originate from a strong correlation of
the initial etch depth and undercut thin-film area. Traditional
photonic designs that do not account for fabrication constraints
are thus unable to take full advantage of this new fabrication
technique.

In this work, we overcome these fabrication and design
challenges by employing inverse design methods. In silicon
nanophotonics these methods have recently attracted consider-
able attention for their efficient design of devices with superior
performance over conventional designs29. This optimization
technique searches through the full parameter space of fabricable
devices, thereby arriving at solutions previously inaccessible to
traditional design techniques30. We showcase the potential of
inverse design techniques for diamond integrated circuits by
designing and fabricating several devices: a compact vertical

coupler, an essential component for large-scale quantum photo-
nic systems, and a small circuit consisting of inverse-designed
vertical couplers and waveguide-splitters acting as interfaces for
two nanoresonators. Our inverse-designed vertical coupler
adheres to the diamond fabrication constraints and outperforms
commonly used free-space interfaces. The fabricated devices
show excellent agreement with simulations in terms of both
performance and yield. In the second example, we illustrate the
integration of such a vertical coupler into a diamond photonic
circuit consisting of two nanobeam resonators connected via
inverse-designed waveguide-splitters—a configuration that could
be used to entangle two quantum emitters embedded inside such
resonators.

Results
Inverse design of diamond nanophotonic devices. In photonics,
grating couplers are frequently used as optical free-space inter-
faces31–36. To achieve high coupling efficiencies, such designs
typically use asymmetry along the z-axis, e.g., through partial
etches31,32,36 or material stacks with varying refractive indices32.
In diamond quantum photonics many of these approaches can-
not be employed because current thin-film diamond on silica
substrate platforms33–35 do not support state-of-the-art quantum
optics experiments20,21,24. Similar approaches with hybrid struc-
tures, such as gallium phosphide (GaP) membranes on diamond,
offer a platform for efficient grating couplers37. However, the
optical field is confined in the GaP membrane and consequently
emitters in diamond couple only evanescently to the field.

A practical solution to these fabrication and design challenges
are notches (Fig. 1a), which are a perturbation to a waveguide
with ≈1% scattering efficiency20. In our work, we develop an
inverse-designed vertical coupler (Fig. 1b) and use the notch
for a baseline comparison. The couplers have a footprint of
1.0 × 1.0 μm2 and couple directly to a 400 nm wide waveguide
without a tapering section, assuring compactness. As shown in
Fig. 1c, the simulated peak efficiencies of the coupler (red) and
the notch (green) are ≈25% and ≈1%20, respectively. Further-
more, we optimize the vertical coupler to couple the light between
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Fig. 1 Inverse design of efficient nanophotonic interfaces. Scanning electron micrograph of a a notch and b an inverse-designed vertical coupler with
simulated fields superimposed in red. c Simulated performance of the vertical coupler (red) and the notch (green). d Design set-up, where the gray area
indicates the design area. e In-coupling efficiency during design optimization; insets illustrate different optimization phases. The small performance drop
beyond 200 iterations of optimization occurs when fabrication constraints are imposed. f Final device design after optimization
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the fundamental free-space mode TEM00 and the TE fundamental
mode of the waveguide. Even for conventional grating couplers in
mature photonics platforms the selective coupling to the TEM00

mode is a formidable challenge31,32. The theoretical maximum
coupling efficiency of our couplers is 50%, because of the
symmetry along the z-axis of our devices (i.e., the structure will
couple light in +/− z-direction equally).

Inverse design problems in photonics are defined by an
electromagnetic simulation, a design region and a figure of merit
to optimize. The starting conditions of the simulation for
vertical couplers are shown in Fig. 1d. A vertically incident
Gaussian beam forms the radiative source and is centered above
the 1.0 × 1.0 μm2 design region shown in gray. To the left of the
design region are two black support bars to suspend the design,
and to the right is a black output waveguide. The fraction of
incident light coupled into the fundamental TE mode of the
waveguide serves as the figure of merit and is maximized during
our optimization process (detailed in ref. 38). The coupling
efficiency during the optimization is shown in Fig. 1e. At the start
of the optimization, any permittivity value between that of air and
diamond is allowed, which results in a continuous structure
shown in the leftmost inset. After several iterations, this structure
is discretized, in which case the permittivity is that of either air or
diamond. This discrete structure is further optimized while also
gradually imposing a penalty on infabricable features39,40. As a
result, the coupling efficiency at a wavelength of 737 nm (silicon-
vacancy color center zero-phonon line) peaks at a value of
≈27.5%, which then decreases to ≈25% to comply with fabrication
constraints40.

Characterization of diamond vertical couplers. To characterize
the coupling efficiency of the vertical couplers, we measure
the device shown in Fig. 2a, b, in top-down and sideview,
respectively. An optical microscope image of the same structure,
presented in Fig. 2c, qualitatively shows the high performance of

the vertical couplers. We characterize the polarization depen-
dence of the vertical couplers by sweeping the polarization of the
input laser beam (Fig. 2d). The observed fivefold reduction in
the transmitted power when rotating the polarization by π

2
corresponds well to our simulated results (blue line in Fig. 2d)
and is experimental evidence for excellent coupling to a linearly
polarized TEM00 mode. In Fig. 2e, we present experimentally
determined efficiencies of the vertical couplers, which we acquire
by coupling a tunable continuous-wave Ti:Sapphire laser to
the structures in a cryostat using a 0.9 NA objective. We then
collect the out-coupled beam with a single-mode polarization-
maintaining fiber (PMF, black data points) and a multimode fiber
(MMF, red data points). The experimental results show peak
efficiencies of ≈21% for PMF and ≈26.5% for MMF, with
broadband performance of >70 nm (PMF) and >90 nm (MMF).
The small discrepancy between the measurements with PMF and
MMF suggests that we couple very efficiently from the waveguide
mode back into the fundamental free-space mode TEM00.
Moreover, the numerical simulation (blue line) agrees well with
the experimental results.

Imposing fabrication constraints, such as minimum feature
sizes, on the design optimization guarantees not only high
fabrication yield but also robust performance, as we demonstrate
in Fig. 2f. Here, we overlay transmission spectra of 15 different
devices acquired with a supercontinuum source. During the
experiments we purposely constrained ourselves to coarse
alignment to confirm the robustness to alignment imperfections.
The result of our analysis is shown in Fig. 2f, where the solid
black line is the mean value of all couplers and the red shaded
area indicates the standard deviation (SD) at a given wavelength.
Moreover, the average efficiency of 30 devices fabricated with
various doses is 24.2%.

Diamond quantum optical interfaces. The vertical coupler
presented in this work provides a compact, robust, and efficient
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Fig. 2 Inverse-designed vertical couplers. a Scanning electron micrograph of two vertical couplers connected by a waveguide. This device is used to
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solution for free-space interfaces in cavity quantum electro-
dynamics. In particular, our design is optimized to be compatible
with simultaneous fabrication of high-Q/V resonators for quan-
tum optics experiments, as we avoid additional fabrication
steps31,32 that could impact the resonator performance. In this
section, we therefore investigate coupling to the modes of
nanophotonic resonators, which are used in quantum optics to
enhance light-matter interactions41 and to facilitate efficient
integration of quantum emitters into optical circuits. We study
nanobeam photonic crystal (PhC) cavities, which host a TE mode
as shown in Fig. 3a, b. With a supercontinuum light source we
acquire the transmission spectra shown in Fig. 3c by coupling a
free-space laser beam into the TE fundamental mode of the
nanobeam and subsequently into PhC modes. The data in red
correspond to the device with vertical couplers, while the black
spectrum corresponds to a cavity with notches as the free-space
interface for the same input power and integration time. The
count rates of the device with notches as an interface are more
than two orders of magnitude smaller, for which we compensate
by integrating ten times longer (data in green). When comparing
the cavity resonances (blue arrows), we find a >550-fold increase
in counts of the vertical coupler over the notch device for com-
parable quality factors (Q ≈ 4000). This result matches well with
the 625-fold enhancement that we expect from simulations. This
improvement in coupling efficiencies allows for dramatically
decreased experimental times (in some cases from weeks to
minutes of photon integration), thereby opening opportunities
for larger-scale experiments. In Fig. 3d we present spectra, where
we couple the laser light directly to the cavity and optimize the
alignment to collect maximum counts from the vertical coupler
(red) and the notch (green). From this measurement, we can
conclude that the extraction efficiency of light coupling from the
cavity mode to the waveguide is ≈24 times greater for a vertical

coupler than that for a notch, which corresponds well to the
transmission experiment.

Inverse-designed diamond photonic circuit. For applications in
quantum technologies, many nodes need to be connected to scale
from single qubits to large, interconnected qubit arrays8,10,18.
This requires the excitation of emitters in multiple cavities, the
interference of their emission on beamsplitters, and subsequently
the efficient collection and detection of photons. However, up
until now elements such as waveguide-splitters have posed a
major challenge in suspended diamond photonics, as state-of-the-
art fabrication using angled etch is not conducive to variations in
the device geometry. In contrast, as shown in Fig. 4a, we can
fabricate a conceptual circuit comprised of three components
with completely different geometries: vertical couplers, wave-
guide-splitters, and nanobeam PhC cavities. The device is
designed to interfere the transmission of two nanobeam PhC
cavities at an inverse-designed waveguide-splitter with a
50:50 splitting ratio and simulated efficiencies of 95%. We address
the cavities separately or simultaneously by top-down excitation
with a supercontinuum source focused on the cavities directly, as
presented in Fig. 4b. The resonances of the two beams are
detuned by <1 nm because of fabrication imperfections. We tune
the two cavities into and out of resonance via gas condensation, as
shown in Fig. 4c. Comparing the amplitudes of the cavity on and
off resonance suggests constructive interference, indicating that
the cavities are approximately in phase and have the same
polarization. With this concept circuit, we show that inverse
design can overcome limitations of classical photonics and
enables large-scale on-chip quantum optics experiments.
Extending this work, we can increase compactness by combining
several functionalities into a single device, design circuits for
arbitrary emitter locations, assure phase-matching across
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different paths of the circuits, and optimize for specific
bandwidths. Such a platform can then utilize the scalability that
diamond color centers offer: site-controlled implantation of high-
quality color centers42,43 and small inhomogeneous broadening44,
which can be overcome by cavity-enhanced Raman emission17,20

or strain tuning45–48.

Highly efficient free-space-waveguide interfaces. Ultimately the
implementation of scalable quantum networks requires effi-
ciencies of building blocks close to unity. Efficiencies of >90% can
be achieved with fiber tapers49, which have the drawback of
significantly larger footprints. To achieve comparable efficiencies,

we reduce the fabrication constraints to 60 nm feature sizes,
increase the laser spot size, device footprint, and waveguide
width. This allows us to improve the simulated efficiency to
44.7%. However, vertically symmetric devices, such as shown in
Fig. 5a cannot exceed 50% efficiency. For further improvements,
we tilt the incident laser beam by 10° and break the symmetry
along the z-axis of the couplers via a partial etch32. In Fig. 5b, we
show diamond devices on SiO2 with efficiencies of 51.0%. Such
devices could be achieved through diamond thin-film on SiO2

production5 or pick and place techniques50 and are a promising
route for a range of applications, including long-distance entan-
glement schemes, and nonlinear optics. Devices suspended in air
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(Fig. 5c) have a larger refractive index contrast and show effi-
ciencies of up to 67.9%. Additionally employing back-reflectors31

as shown in Fig. 5d, e results in efficiencies of 72.4% and 86.6%,
for diamond on SiO2 and suspended structures, respectively. The
back-reflector distance to the coupler (400 nm and 650 nm) is
significantly shorter than the photon wave-packet and optimized
to match the phase between reflected and directly coupled pho-
tons. These findings are encouraging for the development of
highly efficient and compact photonic free-space interfaces as an
alternative to fiber tapers for quantum photonic applications at
the single-photon level. Moreover, many experiments will require
optical driving of individual emitters to compensate for their
spectral broadening via Raman processes17,20. This individual
addressing is easier to implement in free-space coupling config-
urations than with many tapered fibers inside a cryostat. High
efficiencies and compactness will be crucial in these experiments,
as losses will be the limiting factor. Thus, inverse design is likely
to play a major role in the development of such photonic
circuits30.

Discussion
In summary, we employ optimization-based inverse design
methods to overcome the constraints of cutting-edge diamond
nanofabrication and to develop efficient building blocks for dia-
mond nanophotonic circuits51. In optical free-space couplers and
a small diamond photonic circuit we attain the crucial properties
of high efficiency, compactness, and robustness. This work now
enables more complex quantum circuits, where compact solu-
tions for a variety of device components such as pulse shapers,
splitter trees, phase delays52, and mode converters53 are critical.
Thus, this progress lays the foundation for scaling to larger
quantum networks8,10,54 with spins6 embedded in quantum
nodes. In addition, inverse design methods can be applied to
other promising material platforms that host quantum emitters
and have challenging fabrication protocols, such as silicon car-
bide55 and yttrium orthovanadate56.

Data availability
The data sets generated during and/or analyzed during this study are available from the
corresponding authors on request.
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