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Abstract

Using tools such as periodic orbits and invariant manifolds, the global dynamics around equilibrium points (EPs) in a
rotating second-order and degree gravitational field are studied. For EPs on the long axis, planar and vertical periodic
families are computed, and their stability properties are investigated. Invariant manifolds are also computed, and their
relation to the first-order resonances is briefly discussed. For EPs on the short axis, planar and vertical periodic families
are studied, with special emphasis on the genealogy of the planar periodic families. Our studies show that the global
dynamics around EPs are highly similar to those around libration points in the circular restricted three-body problem,
such as spatial halo orbits, invariant manifolds, and the genealogy of planar periodic families.
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1. Introduction

In recent years, there has been a growing interest in space
missions targeting small bodies in the solar system, as these
bodies not only provide us with clues on the formation and
evolution of our solar system but are also of potential economic
value. For example, the Hayabusa spacecraft touched down on
the asteroid Itokawa and, for the first time, returned samples of
regolith to Earth (Fujiwara et al. 2006). After visiting Vesta,
the Dawn spacecraft is now orbiting Ceres, exploring its
surface geology and interior structure (Russell et al. 2012).
Recently, the Rosetta spacecraft ended its mission with an
impact on the surface of its target body: the comet 67P, from
which a huge amount of scientific information about comets
was uncovered (Sierks et al. 2015). For missions to these small
bodies, one challenge is their weak and irregular gravitational
fields due to their small sizes and irregular shapes. For an
asteroid with a relatively large size and an orbit close to its
surface (within several radii of the asteroid), the asteroid’s
gravity usually dominates. For an asteroid of small size or
orbital motions far away from it, the solar radiation pressure
may be stronger (Scheeres 2012; Broschart et al. 2014).

To model the irregularity of the gravitational field, several
ideas have been proposed, such as the mascon model (Geissler
et al. 1996) and the polyhedron model (Werner & Scheeres
1997). But even if we can accurately compute the gravitational
field with these models, along with the precise orbits around
them (Yu & Baoyin 2012), an orbit found in the vicinity of one
asteroid generally cannot be directly applied to another one due
to the specific shape of each individual asteroid. To gain some
general insights on the dynamics around an irregular body, a
simplified shape model is usually applied to represent the
gravitational field, also with less computation cost, such as the
gravitational field of a bar (Elipe & Lara 2004), contact binaries
(Feng et al. 2015), and several spheres or ellipsoids with
different configurations (Zeng et al. 2015). Among these
simplified shapes, a uniform triaxial ellipsoid is applied in
many studies due to its simplicity and closed form (Chauvineau
et al. 1993). With this model, Scheeres (1994) investigated the
orbital dynamics, with special emphasis on the equilibrium
points (EPs) in the frame rotating with the ellipsoid. Assuming

a uniform rotation for the ellipsoid, there are four EPs, two of
which lie on the long axis (LEPs) and two of which lie on the
short axis (SEPs). The LEPs are always unstable, while the
stability of the SEPs depends on the ellipsoid’s shape and
rotation speed.

Another traditional approach to representing nonspherical
gravitational fields is the spherical harmonics expansion. It has
been widely applied to studying the orbital dynamics around
asteroids (Scheeres et al. 2000; Hu & Scheeres 2002; Tricarico
& Sykes 2010; Delsate 2011; Ceccaroni & Biggs 2013; Feng
et al. 2017) due to its simplicity and the fact that it can be
explicitly associated with changes of orbital elements analyti-
cally (Kaula 1966). In this work, we use the gravitational field
truncated at the second order and second degree (20D), which
captures the dominant part of the nonspherical terms and is
capable of studying the qualitative behaviors of orbits
(Scheeres 1999; Scheeres & Hu 2001; Hu & Scheeres 2004).
However, for some odd-shaped asteroids or orbits very close to
the asteroids’ surface (Magri et al. 2007; Wang et al. 2014),
high-order terms may need to be considered. For asteroids of
small sizes, solar radiation pressure is also important and
should be taken into consideration (Xin et al. 2016); this
is outside the scope of this paper.

This work is devoted to the dynamics around EPs in a rotating
20D gravitational field, with asteroids as the research targets.
Compared with previous studies (Scheeres 1994; Vasilkova 2005;
Jiang et al. 2014), which mainly focus on the linear stability of the
EPs and the motions in their vicinity, the global dynamics around
the EPs are studied in this work by computing periodic orbits
(POs) and the invariant manifolds associated with them, with
special focus on the genealogy and stability of the periodic
families. Since the orbits around the EPs are also resonance orbits,
which are in 1:1 resonance with the asteroid’s rotation in the
inertial frame rather than the EPs themselves, this work can be
treated as a study of the 1:1 resonance orbits but carried out in a
rotating frame with the tools of dynamical systems.

The contents of this work are as follows. Section 2 lays the
foundations for the current study, including equations of
motion (EOMs) in the 20D gravity, the Jacobi constant, EPs,
and the methodology for computing periodic families.
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In Section 3, the dynamics around the LEPs are investigated.
The following results are found. (1) For slowly rotating asteroids,
stable planar Lyapunov orbits that do not collide with the
asteroid’s surface exist. They are generally of large amplitudes
and are actually highly eccentric 1:1 resonance orbits in the
asteroid’s equatorial plane, with the periapse and apoapse aligning
along the asteroid’s long axis. (2) For highly irregular asteroids,
spatial POs generated from the planar Lyapunov family around
the LEP also exist, similar to the circular restricted three-body
problem (CRTBP), where halo orbits are generated from the
planar Lyapunov family around the collinear libration points. (3)
The reachable region of the invariant manifolds associated with
the LEP is closely connected with the inner and outer resonances,
a phenomenon also similar to the CRTBP. (4) Members of the
vertical Lyapunov family are generally unstable, which means that
inclined 1:1 resonance orbits with the ascending node along the
long axis are unstable.

In Section 4, the dynamics around the SEPs are investigated.
Studies show several points. (1) The planar long-period family
terminates onto a planar short-period orbit traveling N times,
where the value of N depends on the two basic frequencies in the
linearized model of the planar motions around the SEPs. From this
same N-bifurcation, a short-period orbit generates another periodic
family, connecting it with an (N4-1)-bifurcation short-period orbit.
From this (N+1)-bifurcation short-period orbit, yet another
periodic family bifurcates, connecting it with an (N+-2)-bifurcation
short-period orbit. This genealogy is exactly the same as that of
the planar long- and short-period families around the triangular
libration points in the CRTBP (Hou & Liu 2009). (2) With the
rotation speed increasing, the stability of the SEPs changes from
“stable” to “unstable.” Meanwhile, the planar long- and short-
period families merge to form a single family. In this case, even
though the SEPs are unstable, stable POs of finite sizes still exist
around them. This is also similar to the case of the triangular
libration points of the CRTBP (Hou & Liu 2009). (3) The stability
of the vertical Lyapunov family depends on the specific values of
Cyo and C»; in the 20D gravitational field.

Finally, two remarks are made. (1) Hovering above an asteroid
is an important approach to exploring it, which is different from
the approach of cycling it. The EPs are ideal places for probes to
hover above asteroids, so it is useful to carry out studies on the
global dynamics around the EPs. (2) To gain some general
insights and conclusions on the global dynamics around the EPs
of uniformly rotating asteroids, we carry out the work in the 20D
gravitational field and neglect higher-order nonspherical terms
for specific asteroids. Nevertheless, it would be interesting to
carry out similar work for specific asteroids and compare the
results with the general conclusions in this work. The comparison
may show some differences for orbital motions close to the
asteroid’s surface. The results in the current work can be used as
good initial guesses about POs in the true gravitational fields of
specific asteroids.

2. Dynamical Modeling
2.1. Equations of Motion

In the body-fixed frame of the asteroid, the EOMs of a
massless body are

f+2wa><i~+wa><(wa><r):8—v, (1)

or
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where w, is the asteroid’s rotation rate and V is minus the
gravity potential. As mentioned in Section 1, we take the
approach of spherical harmonics to express the asteroid’s
gravitational potential. It takes the following form
(Kaula 1966):

GM

V=22
,
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in which GM is the gravitational constant of the asteroid, (A, 8)
are the longitude and latitude, C,,, and S,, are the Stokes
coefficients, P,,, is the associated Legendre function, and R, is
the reference radius of the asteroid. In our work, we choose

Re = Fyn = (GM/WZ)1/37 (3)

which is the radius of the synchronous orbit by taking the
asteroid as a particle. The mass and time units are chosen as the
mass of the asteroid and 1/w,, respectively. After normal-
ization of units, Equation (1) becomes
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and Equation (2) becomes
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One remark is made here. Usually, the reference radius R, is
fixed for an asteroid and is chosen as a value that is associated
with the asteroid’s size, such as its equatorial axis. The
associated Stokes coefficients are constants independent of
the asteroid’s rotation. In this sense, our choice of R, by
Equation (3) is extraordinary, and the associated Stokes
coefficients vary with the asteroid’s rotation period. The
advantages are twofold: (1) we have a minimum set of
parameters, Cyo and Cy,, thus excluding other parameters such
as size, mass, and rotation period of the asteroid; and (2)
the same set of values of C,g and C,, corresponds to different
physical systems (see Equation (9)). Thus, changes in the
values of C,9 and C,, can be interpreted as changes in
either the asteroid’s shape and size or its rotation period. This
makes the current study with a fixed set of values of Cyy and
C,, applicable to a group of asteroids instead of just one. The
disadvantage is that it is difficult to identify whether or not the
orbit collides with the asteroid based only on the Cyy and Cp;
values, due to the exclusion of the asteroid’s physical size. As a
result, in the following, if we have to consider the physical
space (i.e., whether or not the orbit collides with the asteroid),
we have to attribute another two parameters: the asteroid’s
rotation period and physical size.
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Figure 1. Left: ZVCs and positions of four EPs (red crosses) of a 20D gravitational field in the x—y plane. Right: stability region of a SEP in the C,y—C5; plane.

Equation (4) admits an integral in the form of

-2 52 52 2 2
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2
which we also call the Jacobi integral because it has the same
form as that of the CRTBP. Here C is the Jacobi constant and
V' is the effective potential in the rotating frame. Truncated at
the second order, we have (we can always choose the
coordinates of the body-fixed frame to make S, = 0)
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To attribute physical meaning to the values of C,q and C»,, we
assume a triaxial model for the asteroid with three semiaxes as
a>b>c and a constant density of 2.5gcm>. We have

(Balmino 1994)
1
> C =
) 27 20R2

1
Cyp= —|c* -
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Denoting o = b: a, § = c: a and substituting Equation (3)
into Equation (8), we have
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where p is the density. From Equation (9), we know that C,, and
C,, are up to the asteroid’s rotation speed (and density) and shape.
Ignoring the density, there are two ways to change the values of

Cyo and Cy,. One is to change the asteroid’s rotation speed, and
the other is to change its shape. The two ways are equivalent to
each other, as long as they have the same values of C,; and Cs,.
One special remark is made. Although we use the triaxial ellipsoid
shape model for the asteroid, we only consider the 20D
gravitational potential of the ellipsoid, not the full gravitational
potential. The aim of the current study is to get some general
insights on the orbital motion in the 20D gravitational potential.
The only purpose of employing the ellipsoid shape model here is
to help us easily calculate the values of C,, and C,, and visualize
the relative size of the orbits with respect to the asteroid (i.e.,
whether or not they collide with it). As mentioned at the end of
Section 1, further studies are necessary if we want to deal with
true orbital motions around specific asteroids, even if they are
really in the shapes of ellipsoids. In this case, results in the 20D
gravitational potential can serve as good initial guesses as to the
orbital motions in the asteroid’s real gravitational field.

Similar to the CRTBP, C = V' also defines a zero-velocity
surface that divides the phase space into accessible regions
(Tinetic = 0) and forbidden regions (Tiineic < 0). When the
motion is restricted in the x—y plane (i.e., z = 0), we have zero-
velocity curves (ZVCs). Taking the asteroid with a =1km,
b=0.6km, ¢c=0.4km, and a rotation period of 12 hr as an
example, Figure 1 shows the ZVCs at different Jacobi
constants.

2.2. Equilibrium Points

EPs appear as fixed points in the asteroid’s body-fixed frame.
They can be interpreted as exact 1:1 resonance orbits around
the asteroid in the inertial frame. Truncated at the 20D
gravitational potential, there are four EPs outside the asteroid.
Two of them lie on the x-axis (LEPs), and the other two lie on
the y-axis (SEPs). Their positions can be obtained by setting
X=X%X=y=3y=7=%=0 in Equation (4). Denoting the
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Figure 2. Example orbits of the planar Lyapunov family.

distance of the EPs from the origin as rj, we have

1 3G 9Cx»

1—7+ 5 S = (0, for LEP,

I 27, 7

f 3C0 9C0 (10)
- =+ =2+ —=2=0, for SEP.
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The crosses in Figure 1 indicate the four EPs of the example.
Denoting the deviations from the EPs as p = (£, 1, ¢) and
linearizing Equation (4) around the EPs, we have

E-27—(1+VHE=0
+26— 1+ V=0, (11)
{—V2(=0=0
where VY, is the second derivative of V with respect to the
coordinates taking values at the EPs. Obviously, the planar
motion is decoupled from the vertical motion in the linearized

model of Equation (11). For both the LEPs and the SEPs,
VZQZ < 0, and thus motion along the z-axis is a simple oscillation

with the basic frequency asv = /— VZOZ. For the planar motion,
denoting the eigenvalues as )\, they satisfy

Nt @@-Vi—VDOXR+A+ VU +VH=0 (12
For the LEPs, the eigenvalues are of the following form:
/\1‘2 = :|:S, )\3,4 = j:iw,

which means that the LEPs are unstable. The solution to
Equation (11) can be written as
E=Ge* + Cre ™ + acos(wt + @)
n=kGe" + k,Cre™ + kzasin (wt + ¢)), (13)
= Beos(vi + by
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where G, C;, o, 3, ¢;, ¢ are constants that are determined by
the initial conditions, and

2717‘/0 1 Vof 2
= = kzz—+ o 7
2s 2s
14 V9 +w?
ky=— —F——,
2w

If we choose the initial conditions such that G, = C, = 0, we
get conditionally stable orbits around the LEPs. Then, « and
can be taken as the size parameters of the in-plane and out-of-
plane motions, respectively.

For the SEPs, the case is a little bit tricky. The right panel
of Figure 1 shows how the stability changes with respect to the
C5p and C5, values. Judging from the figure, for small values of
Cyo and Cy; (i.e., values below the solid line in Figure 1), the
eigenvalues are of the following form (w; < wy):

Alp = Fiwy, A4 = Fiwy,

which means that the motions are stable. The solution to
Equation (11) is

§ = agcos (wit + ¢)) + ascos(wst + ¢,)
1N = kjoysin(wit + @) + ksa, sin(wgt + ¢,), (14)
¢ = Bcos(vt + ¢3)

where oy, a5, 8, ¢, ¢,, @5 are constants that are determined
by the initial conditions;
1+ V3 + wf 1+ V3 + w?
[ A A 4
2w; 2w

oy, and o can be taken as the size parameter of each component
of the planar motion; and ( can be taken the size parameter of
the out-of-plane motion. Similar to the CRTBP, we call the
components of the planar motion in Equation (13) the long-
period (with the basic frequency w;) component and the short-
period (with the basic frequency wy) component. For specific
combinations of Cq and Cy; (i.e., values on the curve in the right
panel of Figure 1), w; = w, and

M2 = Ay = Fiw, = Fiwy.

For larger C,o and Cy, terms (i.e., values above the curve in the
right panel of Figure 1), the eigenvalues become

AMp =7 % iw, Ma=—7=iw,

and the motions become spirally unstable. The stability-
changing process with the increase of C,y and C,, described
above are discussed in Scheeres (1994). This process is similar
to the stability change process around the triangular libration
points of the CRTBP with the increase of the mass parameter p
(Szebehely 1967).

2.3. Periodic Orbits

According to the Lyapunov theorem, there are two families
of POs for the LEPs: the planar family and the vertical family,
with the orbital period approaching 27/w and 2m/v,
respectively, as their orbital sizes approach zero. For the SEPs,
there are three families of POs. Two of them are restricted
within the x—y plane: the long-period family and the short-
period family. Their orbital periods approach 27/w; and
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Figure 3. Planar stability curves of the planar Lyapunov families around the LEP for asteroids with different shapes (left) and rotations (right). The dashed horizontal
lines indicate the critical value of 2 for the planar stability parameter; at values larger than this, the periodic orbit becomes unstable.

27/ w, respectively, as the orbital size approaches zero. The
third family is a spatial periodic family, namely, the vertical
Lyapunov family, with an orbital period approaching 27 /v as
the orbital size approaches zero.

Denote the state vector of the system as X = (x, y, z, X, ¥, 2)
and the trajectory of Equation (4) with an initial value
Xo = (X0, Yp» 20, X0 Yo» 20) as X (t) = (Xo, t). Periodic orbits
with the orbital period T satisfy

X(Xo, T) — Xo=0. (15)

Due to the symmetry of the POs, Equation (15) can be reduced to
simpler forms. The planar and vertical Lyapunov orbits around
the LEPs are symmetric with respect to the x—z plane. As a result,
if the initial value is chosen as the perpendicular intersection point
of the orbit with the x—z plane, Equation (15) is reduced to

,Y(XO, ZOs )}0, T/2) - O, -x(x09 ZOs }5(), T/2) - 09
Z(XO, 20, y()’ T/2) = O (16)

The planar long- and short-period orbits and the vertical
Lyapunov orbits around the SEPs are symmetric with respect to
the y—z plane. As a result, if the initial value is chosen as the
perpendicular intersection point of the orbit with the y—z plane,
Equation (15) is reduced to

x(x()’ Z09 )}0» T/2) - O’ y(xO» ZO’ y()’ T/z) - O»
2 (xo0, 20, Y. T/2) = 0. A7)

For the planar POs, the third equation in Equations (16) and
(17) and the variable z, are unnecessary. Details on the
numerical approach to these periodic families are not given
here. In this work, we use the well-known predictor—corrector
algorithm (Press 2007). To start this algorithm, an initial guess
for a small-size orbit is necessary, which can be provided by
the linearized results in the above subsection.

One remark is made here. As already mentioned, when
viewing in the inertial frame, the EPs are exact 1:1 resonance
orbits. The POs around the EPs discussed in this section are
also in the 1:1 resonance zone but not in exact 1:1 resonance

with the asteroid’s rotation; i.e., the orbits are periodic in the
asteroid’s body-fixed frame but not in the inertial frame. More
specifically:

(1) The planar Lyapunov orbits around the LEPs are actually
eccentric 1:1 resonance orbits, with the periapse and
apoapse aligning along the asteroid’s long axis. An increase
in the size of the planar Lyapunov orbit can be interpreted as
an increase in the orbital eccentricity in the inertial
frame. The vertical Lyapunov orbits around the LEPs are
actually inclined near-circular 1:1 resonance orbits with the
ascending and descending nodes aligning along the aster-
oid’s long axis. The increase in the size of the vertical
Lyapunov orbit corresponds to the increase in the orbital
inclination in the inertial frame.

(2) For the short-period orbits around the SEPs, the case is
the same as that of the planar Lyapunov orbits around the
LEPs, but the eccentric orbits have the periapse and
apoapse aligning along the asteroid’s short axis. The
long-period orbits around the SEPs are actually planar
near-circular orbits in the inertial frame with a long-
period difference in the semimajor axis from that of the
exact 1:1 resonance orbit. The vertical Lyapunov orbits
around the SEPs are the same as the vertical Lyapunov
orbits around the LEPs but with the ascending and des-
cending nodes aligning along the asteroid’s short axis.

In the following, we will focus on these POs and study their
stability properties with respect to their sizes. Based on the above
argument, the study can also be taken as the study of 1:1 resonance
orbits with different orbital eccentricities or inclinations. Also, we
will study the invariant manifolds associated with the LEPs.

3. Dynamics Around the LEPs
3.1. The Planar Lyapunov Family

As mentioned above, there is a planar periodic family
generated from the LEP that we call the planar Lyapunov
family. Taking the asteroid with a:b:c =1:0.65:0.4km and a
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rotation period of 12 hr as an example, Figure 2 shows some
examples of this family. These orbits are actually in 1:1
resonance with the asteroid’s rotation in the inertial frame, with
the periapse and apoapse aligning along the asteroid’s long axis
in its body-fixed frame.

To observe the effects of the asteroid’s shape and rotation on
the planar family, two sets of simulations are performed. For
both sets, the semiaxes a and ¢ are fixed at values of 1 and
0.4 km. The results are given in Figure 3. The abscissa X is the
x-coordinate of the left perpendicular intersection point of the
planar orbits with the x-axis (black stars in Figure 2). For the
first simulation, the asteroid’s rotation period is fixed at 12 hr,
and the semiaxis b is varied from 0.4 to 0.99 km. Given each
combination of these physical parameters, first the EP is found,
and then the POs around it are numerically obtained and
continued until the PO intersects with the asteroid, for a practical
consideration. The planar stability curves are given in Figure 3
(). In our work, we use the stability parameters given by Howell
& Spencer (1986). An obvious fact from this figure is that the
instability of this family becomes stronger with decreasing b, i.e.,

a larger C5; term. For the second simulation, the asteroid’s shape
is fixed at b =0.65 km, while its rotation period (denoted as T,
in Figure 3(b)) is changed from 4 to 24 hr. From this figure, it
can be seen that the instability of this family also becomes
stronger when the asteroid rotates faster. This similarity is
understandable. As mentioned in Section 2.1, increasing the
asteroid’s rotation speed is equivalent to elongating its shape. As
a result, in the following studies, we change the 20D
gravitational potential by varying either the asteroid’s shape
or its rotation speed, but not both.

Additionally, for small Cy, values (Figure 3), there exists a
small stable region in which the POs are extremely close to the
asteroid’s surface, namely, stable orbits with very large
amplitudes. This indicates that highly eccentric stable 1:1
resonance orbits can exist for a 20D gravitational potential
with small C,, values. Since parts of these orbits are close to
the asteroid’s surface, even when we are dealing with small C;,
values, the higher-order nonspherical terms that we neglect
may also play their roles. It would be interesting to study the
effects of these higher-order nonspherical terms for specific



THE ASTRONOMICAL JOURNAL, 154:21 (14pp), 2017 July

0.075
0.050 [
0.025[

+52 0.000 [
-0.025 -

-0.050

-0.075 ' ' - '

0.925 1.000

0.4

0.2

‘32 00}

Feng & Hou

0.10 - e b)

0.05 -
-3 0.00 -

-0.05 -

-0.10 +

n 1 1 1 L | L 1 n 1 n 1 L
0.81 084 087 090 093 096 099 1.02

X

02 03 04 05 06 07 08 09 10

Figure 6. Poincaré sections for the same asteroid but with different rotation periods. In panels (a) to (d), the rotation period of the asteroid is 36, 30, 24, and 20 hr,
respectively. The Jacobi constant for each plot equals that of the LEP. With the C5o and C,, terms increased by speeding up the asteroid’s rotation, starting from larger
values of p, the inner first-order resonances (p+1):p gradually combine with the 1:1 resonance, and the chaotic region (also the reachable region of the manifolds)

gradually approaches the asteroid.

asteroids and observe their effects on the persistence or
disappearance of these stable orbits.

For the collinear libration points in the CRTBP, the well-
known halo family bifurcates from a critical member of the
planar Lyapunov family generated from the collinear libration
points. Since the LEPs in this work are dynamically equivalent
to the collinear libration points in the sense that they are both of
the saddle x center x center type (Gémez et al. 2004), a similar
phenomenon is expected. Figure 4(a) shows the vertical
stability curve of the planar Lyapunov family. The rotation
period of the asteroid is fixed at 24 hr. The semiaxes a and c are
fixed at 1 and 0.4 km, while the semiaxis b is varied. From this
figure, we know that the vertical critical orbit can only exist for
highly elongated or fast-rotating asteroids. As a result, the
spatial periodic family (which we also call the halo family) can
only exist for asteroids with large 20D terms. Figure 4(b)
shows an example halo orbit, corresponding to the one denoted
by a cross in Figure 4(a). Again, these spatial periodic orbits
are generally of large amplitudes, with parts of them very close
to the asteroid’s surface, and the higher-order nonspherical
terms that we neglect may also play their roles. In this case,
their effects may be stronger than in the case of Figure 3,

because the higher-order nonspherical terms are usually larger
if the asteroid has larger 20D terms. Anyway, it is interesting
to study the effects of these higher-order nonspherical terms for
specific asteroids and observe the persistence or disappearance
of these spatial orbits with their effects.

3.2. Invariant Manifolds

As pointed out in Section 2, the LEPs are generally unstable.
Since a pair of real eigenvalues exists for the LEPs, there are
stable and unstable invariant manifolds associated with them,
exactly the same as the collinear libration points of the
CRTBP. Taking the asteroid with a shape of a:b:c=
1:0.65:0.4km as an example, Figure 5 shows the inward
branch of the unstable invariant manifolds of the right LEP for
a rotation period of 36hr (a) and 20hr (b). The invariant
manifolds can enter the asteroid’s Brillouin sphere in
Figure 5(b) but cannot in Figure 5(a). The reason we stop
our integration at the Brillouin sphere instead of the asteroid’s
surface is that the gravitational potential field given by
the spherical harmonics usually diverges within this sphere.
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Figure 7. Same as Figure 6 but for the outward branch of the invariant manifold associated with the LEP.

The reason that the invariant manifolds in Figure 5(a) cannot
approach the asteroid is explained as follows. Figure 6 shows
the Poincaré maps with a Jacobi constant equaling that of the
LEP. The map is generated every time the orbits intersect
the positive x-axis. We record the point of the orbit every
time it intersects the x-axis. The abscissa in the maps is the
x-coordinate of the intersection point, and the ordinate is the
corresponding x. We only record the intersection point with
y > 0. The asteroid’s shape is the same as that in Figure 5. The
rotation period of the asteroid, however, is varied, taking values
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of 36, 30, 24, and 20 hr in panels (a) to (d), respectively. In
each panel of Figure 6, the rightmost point on the tip of the
tongue is the LEP, denoted as “LEP.” The chaotic region
containing the LEP can be taken as the reachable region of the
inward branch of the invariant manifolds. Some resonances are
denoted in these maps. For a resonance p:g, the asteroid rotates
g times while the particle circles p orbits around the asteroid in
the inertial frame. Here, |¢ — p| is called the resonance order.
Usually, the strength of higher-order resonances is weak
(Kaula 1966; Murray & Dermott 1999). When g < p (g > p),



THE ASTRONOMICAL JOURNAL, 154:21 (14pp), 2017 July

example vertical orbits

0.5

N LEP

-0.5 4

-1 sl

1.06
0.53

0. 0
y 53,06 105 -0-53 .

Figure 8. Example orbits of the vertical Lyapunov family.

the resonance is inner (outer) resonance. Only first-order
resonances are marked in Figure 6, since they usually dominate
over higher-order resonances.

The resonance overlap process and the accessible region of
the inward manifolds in Figure 6 are described as follows. (1)
In Figure 6(a), where the 1:1 resonance orbit is far away
from the asteroid and the 20D terms are small, the 8:7, 9:8,
and 10:9 resonances overlap with each other. However, there
are regular Kolmogorov—Arnold—-Moser (KAM) curves (Siegel
& Moser 1971) between the 8:7 and 7:6 resonances, preventing
the invariant manifolds from migrating further inward. (2) In
Figure 6(b), the 6:5 resonance overlaps with nearby first-order
resonances, allowing the invariant manifolds to access regions
closer to the asteroid than that of Figure 6(a). Nevertheless, the
regular KAM curves between the 6:5 and 5:4 resonances
prevents the invariant manifolds from reaching regions interior
to the 5:4 resonance. (3) Similarly, the thin area of regular
KAM curves between the 4:3 and 3:2 resonances in Figure 6(c)
prevents the invariant manifolds from reaching regions interior
of the 3:2 resonance. (4) Finally, the 2:1 resonance overlaps
with nearby resonances in Figure 6(d), and the invariant
manifolds can reach regions interior of this resonance, which in
this case already touches the asteroid’s surface. Figure 6 shows
us the following information: starting from large p values, the
first-order resonances (p+1):p overlap with the 1:1 resonance.
With the 20D terms increasing from larger to smaller values of
p, more first-order resonances overlap each other, allowing the
invariant manifolds from the 1:1 resonance to reach the inner
regions until they reach the asteroid’s surface.

For the outward branch of the invariant manifolds associated
with the LEPs, a similar phenomenon happens. Figure 7 gives
the Poincaré maps. We record the point of the orbit every
time it intersects the x-axis, but for the point with y < 0. The
asteroid’s shape is the same as that in Figure 6. The rotation
period of the asteroid, however, is different, taking values of
56 hr for panels (a) and (b), 52 hr for panels (c) and (d), and
48 hr for panels (e) and (f). Similar to Figure 6, the chaotic
region containing the LEP can be taken as the accessible region
of the outward branch of the invariant manifolds. The right
panels of Figure 7 are local magnifications of the left panels in
the proximity of the LEP. When the asteroid rotates with a
period of 56 hr, the 20D terms are small. (1) In Figure 7(b), the
outward branch of the invariant manifolds is “blocked” by the

Feng & Hou

KAM curves between the 8:9 and 9:10 resonances. This means
that the outward branch of the invariant manifold of the LEP
cannot go outward beyond the region where the 8:9 resonance
is. In Figure 7(a), the 2:3 resonance is separated from the 3:4
resonance by KAM curves. (2) In Figure 7(d), the chaotic
region containing the LEP incorporates the 8:9 resonance but
is blocked by KAM curves between the 8:9 and 7:8 reso-
nances. In Figure 7(c), the chaotic region containing the 1:2
and 2:3 resonances now incorporates the 3:4 resonance but is
still separated from the chaotic region containing the LEP. (3)
In Figure 7(f), the chaotic region containing the LEP incorpo-
rates the 4:5 resonance. Meanwhile, from Figure 7(e), we know
that the chaotic region containing the 1:2,2:3, and 3:4
resonances also incorporates the 4:5 resonance. This means
that the two chaotic regions finally “meet” with each other in
the phase space, indicating that the outward branch of the
invariant manifold can go beyond the 1:2 resonance and even
further away from the asteroid. Actually, the chaotic region
containing the 1:2 resonance extends to infinity, so there is a
possibility for particles starting from the LEP to escape from
the asteroid’s gravitational potential.

The scenarios described in Figures 6 and 7 are the same as
those of the invariant manifolds associated with the collinear
libration points of the CRTBP (Conley 1968; Llibre et al. 1985;
Koon et al. 2000).

Also similar to the collinear libration point of the CRTBP,
there are invariant manifolds associated with the planar
Lyapunov orbits around the LEPs in the above subsection.
They and the invariant manifolds associated with the LEP
described above can be used for probes to land on or ascend
from the asteroids (Herrera-Sucarrat 2014). Similar to missions
around the collinear libration points in the CRTBP (Howell
et al. 1997; Sweeter et al. 2011), heteroclinic orbits can be used
for probes to travel between the LEPs and SEPs.

3.3. The Vertical Lyapunov Family

Given a:b:c=1:0.65:0.4km and the rotation period of the
asteroid at 12 hr, Figure 8 shows some examples of members of
the vertical Lyapunov family in the rotation frame with increasing
orbital amplitude, which is defined as the z-coordinate of the
perpendicular intersection point of the orbits with the x—z plane.
The black orbit is the stable retrograde orbit in the equatorial plane
on which the vertical family ends. In the inertial frame, these
orbits are actually inclined near-circular 1:1 spin—orbit resonance
orbits, with their ascending or descending nodes along the
asteroid’s long axis.

Figure 9 shows the Z-C curve (left) and 7-C curve (right) of
this family for different asteroids. The shape of the asteroid is
fixed as a:b:c=1:0.65:0.4km. When the asteroid rotates
slowly, the genealogy of the family can be described as
follows. Starting from the LEP, the z-coordinate of the orbits
first increases (meanwhile, in the inertial frame, the orbital
inclination of the 1:1 spin—orbit resonance orbit increases) to a
critical value (around 1, corresponding to a polar orbit in the
inertial frame) and then decreases to zero (meanwhile, in the
inertial frame, the orbital inclination of the 1:1 spin—orbit
resonance orbits further increases from 90° to 180°). When the
asteroid rotates faster, the Z—C curve is obviously distorted
(such as the one for T, = 4 hr in Figure 9(a)) and finally breaks
up and combines with another period family (denoted as
dashed curves in Figure 9) to form two new families (two black
lines for T, =3.4 hr). Additionally, these orbits are generally
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Figure 9. The Z-C and 7-C curves of the vertical Lyapunov family of asteroids with different rotation rates. In the figure, prograde orbits have larger Jacobi constants

than retrograde orbits.

unstable, indicating that the 1:1 spin—orbit resonance orbits
with ascending or descending nodes along the asteroid’s long
axis are generally unstable.

4. Dynamics Around the SEPs

As mentioned in Section 2.2, with the 20D terms increasing,
the SEPs change from stable to spirally unstable. The asteroid’s
shape is a =1km, b =0.6 km, and ¢ = 0.4 km. Assuming its
rotation period is 12 hr, we have

C) = —2.615478 x 1072, C = 8.047625 x 1073,

The true values of C,o and C,, are taken as
C20 = EC200, C22 = EC202,

where € is a parameter. Keeping the asteroid’s shape
unchanged, according to Equation (9), it is easy to know that
the true rotation period of the asteroid is

T, = 12h/e3/4,

Obviously, the larger € is, the faster the asteroid rotates. Our
studies find that there is a critical value €. around 0.80. When
€ < €., the SEPs are stable, and when ¢ > ¢., the SEPs are
unstable. Here, we interpret changes of the parameter ¢ as
changes in the asteroid’s rotation speed, but, according to the
arguments in Section 2.1, we can also interpret them as changes
in the asteroid’s shape.

4.1. The Short-period Family

If the SEPs are stable, according to Section 2, there are two
planar Lyapunov families: the short-period family and the
long-period family. Similarly, given a:b:c = 1:0.65:0.4 km and
the rotation period of the asteroid at 12hr, the left panel
of Figure 10 gives some examples of these two families. The
long-period orbits are generally more elongated than the
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short-period ones. As mentioned in Section 2.3, the short-
period orbits are eccentric 1:1 resonance orbits in the inertial
frame with the periapse and apoapse aligning along the
asteroid’s short axis, and the long-period orbits are near-
circular 1:1 resonance orbits in the inertial frame with a long-
period variation of the semimajor axis. In this section, the
short-period family is studied first.

The right panel of Figure 10 shows the stability curve of the
short-period family for different values of ¢ when the SEP is
stable. The abscissa is the y-coordinate of the lower perpendicular
intersection point between the periodic orbit and the y-axis, also
for subsequent figures in this paper. From smaller to larger
orbits (i.e., from larger to smaller values of Y), the family is
continued until the orbit collides with the asteroid’s surface. It can
be seen that most members of the short-period family are stable,
but a small portion of it (with a very large amplitude) is unstable.
Moreover, with an increase of the nonspherical terms (here
interpreted as an increase in the parameter €), there is a tendency
for more members to become unstable due to the stronger
perturbations. Interpreting these results in the inertial frame, the
1:1 spin—orbit resonance orbits with the periapse and apoapse
aligning along the asteroid’s short axis are stable, except for the
ones with a very large orbital eccentricity.

4.2. The Long-period Family

Taking ¢ = 0.3 in Figure 10 as an example, Figure 11 shows
the 7—C curves of the long-period family. It is worth noting that
this family terminates onto a short-period orbit traveling
four times. From this short-period orbit, another periodic family
(which we denote as B(4, 5) in Figure 11) bifurcates, connecting
it with a short-period orbit traveling five times. From this short-
period orbit, yet another periodic family (which we denote as
B(5, 6) in Figure 10) bifurcates, connecting it with a short-period
orbit traveling six times. This genealogy of periodic families is
exactly the same as that between the long- and short-period
families around the triangular libration points in the CRTBP
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Figure 10. Left: example orbits of the long- and short-period families around the SEP. Right: planar stability curves of the short-period family around the SEP before
the orbits collide with the asteroid. Different curves correspond to different values of e.
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Figure 11. Planar stability curve (left) and 7-C curve (right) of the long-period family, along with the curves for the families B(4, 5) and B(5, 6). In the right frame, the
near-vertical black lines indicate the 7—C curves of the short-period family but with the period multiplied four, five, and six times. In the figure, “Ts” indicates the

period of the short-period family.

(Hou & Liu 2009). More specifically, if the ratio between the two
basic frequencies in Equation (14) satisfies w;/w; € (N — 1,
N), the long-period family terminates on an N-bifurcation short-
period orbit.® Starting from this N-bifurcation short-period orbit,
there are a series of periodic families B(N+K, N+K+1), where
k > 0 connecting an (N+K )-bifurcation short-period orbit with
an (N4K+1)-bifurcation short-period orbit. Additionally, from
numerical simulations, it is found that this genealogy holds for
asteroids with different a:b:c values and rotation periods.

3 An N-bifurcation orbit is not a bifurcation orbit itself but becomes one when

it travels N times (Henrard 2002).
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One remark is made here. When computing these periodic
families, we may come across some periodic orbits that collide
with the asteroid. In order to show the genealogy of these
periodic families in the 20D gravitational potential, we neglect
the physical size of the asteroid when producing Figure 11.
Additionally, it would be interesting to study the persistence of
the genealogy between these families with higher-order
nonspherical perturbations for specific asteroids.

With the parameter € increasing, the two basic frequencies w;
and wy approach each other, and N approaches 2. When € grows
from values smaller than to larger than €., the SEP becomes
unstable. In the following, we show how the family genealogy
changes when the SEPs turn from stable to unstable. Studies
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Figure 13. Local details of the planar stability curve of the periodic families in the proximity of the SEP. In the left frame, the long- and short-period
families are separate. In the middle and right frames, the two combine to form a single periodic family.

show that when € is very close to but smaller than €., the long-
and short-period families still separate from each other, and the
former terminates on a two-bifurcation orbit of the latter, as
shown by Figure 12(a) (e=0.79). When ¢ = ¢, the two
families join each other at the SEP. When ¢ increases
to slightly larger than €., the two families combine to form a
single family and detach from the SEP, as shown by
Figure 12(b) (e = 0.8). With e further increasing, the distance
of the family from the SEP in the Y—C curve becomes larger, as
shown by Figure 12(c) (e = 0.81). The whole process (i.e., the
long- and short-period families joining together to form a
single-period family and the SEP becoming unstable) is again
exactly the same as that of the triangular libration point when
the mass parameter p increases from values smaller than the
Routh’s critical value to values larger than it (Hou & Liu 2009).

Figure 13 shows the planar stability curves corresponding to
Figure 11. In Figure 13(a), where € < ¢, the two families are
separated. In the figure, “SEP” indicates that the two families
are generated from infinitesimally small orbits around the SEP.
With e approaching €., the two families join together at the
SEP, and their stability parameter equals 2. With € increasing to
values larger than ¢, the two families join together and
detach from the SEP, as shown in Figures 13(b) and (c). In this
case, although the SEPs become unstable themselves, there
exist stable POs of finite sizes around them. One example is
given in Figure 14. The blue trajectory starting from the SEP
(with a small perturbation of 102 on the y-axis) is unstable,
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Figure 14. One example of a stable-period PO around the SEP (red curve). The
blue line indicates a trajectory starting from the unstable SEP, with an initial
perturbation of 1072 along the y-direction.

while the red trajectory illustrates a stable orbit, which is
integrated for the time of amounts of orbital period.

The results in this subsection are just an example to show
how the long- and short-period families are organized in the
phase space when the SEP is stable (Figure 11) and how the
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Figure 15. Left: example orbits of the vertical Lyapunov family around the SEP for € = 0.3. Right: 7-C curves for different values of ¢, with open triangles indicating
the unstable orbits. The retrograde orbits have smaller Jacobi constants on the 7-C plane.

two families combine and detach themselves from the SEP
when the SEP is unstable (Figures 12 and 13). Our studies
show that similar phenomena appear when other examples are
chosen (i.e., asteroids with different shape parameters). This
indicates that the global dynamics around the SEP in the 20D
gravitational potential are similar to the global dynamics
around the triangular libration points of the CRTBP.

4.3. The Vertical Lyapunov Family

For the vertical Lyapunov family around the SEP,
Figure 15(a) gives some example orbits with increasing
amplitude. Similar to the vertical Lyapunov family around
the LEP (see Figure 8), this family starts from infinitesimally
small librations around the SEP and ends at the black stable
retrograde orbit on the equatorial plane traveling twice. The
maximum z component first reaches a maximum value
(corresponding to a polar 1:1 spin—orbit resonance orbit in
the inertial frame) and then decreases to zero (in the inertial
frame, the orbital inclination continues to increase from 90° to
180°). The difference from the orbits in Figure 8 is that the
ascending or descending nodes are along the asteroid’s short
axis in the rotating frame in this case.

Figure 15(b) shows T7-C curves for different values of
€, starting from infinitesimal librations around the SEPs (with
larger Jacobi constants) and terminating on a planar retrograde
orbit (with smaller Jacobi constants). The open triangles in
Figure 15(b) indicate the unstable orbits of this family. There
are several features of these 7-C curves. (1) For large € values,
an unstable region appears for orbits close to the SEPs. This is
understandable because, according to the study of Section 4.2,
the SEPs become unstable for large e values. (2) Orbits with
inclinations close to 90° are unstable. Our studies indicate that
this phenomenon is closely connected with the joint effects
of the 1:1 resonance and the well-known frozen orbits. We
have found similar phenomena for other spatial resonance
families. A detailed explanation will be given in a coming
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paper. (3) Retrograde orbits have much better stability
properties and can exist even for very large 20D terms.

5. Conclusion

This work is devoted to describing the global dynamics of
the EPs in the rotating frame of a 20D gravitational
potential by studying the genealogy and stability of the
periodic families generated from them. With asteroids as our
research targets, the 20D terms are much larger than those
for major bodies in the solar system. For the LEPs, invariant
manifolds are also studied. Since the orbits around the EPs in
the rotating frame can also be viewed as orbital motions in the
inertial frame that are in 1:1 resonance with the asteroid’s
rotation, this study can also be taken as a treatment of the 1:1
resonance orbits.

For the LEPs, the following is found. (1) The planar
Lyapunov family is generally unstable; but, for small 20D
terms, stable planar Lyapunov orbits with large amplitudes
exist. They are highly eccentric 1:1 resonance orbits in the
equatorial plane, with the periapse and apoapse aligning along
the long axis of the asteroid. (2) For large 20D terms, spatial
POs generated from the planar Lyapunov family also exist. (3)
The reachable region of invariant manifolds associated with the
LEP is highly constrained by the inner and outer spin—orbit
resonances, a phenomenon similar to the CRTBP. (4) The
vertical Lyapunov family is generally unstable. This family
initiates from the LEP and ends at a planar retrograde orbit
traveling twice. If the 20D terms are large, the genealogy of
this family changes (see Figure 8).

For the SEPs, the following is found. (1) For a stable SEP,
the planar short-period orbit is generally stable and becomes
unstable for a large-amplitude orbit. The planar long-period
family terminates on a planar short-period orbit traveling N
times, where the value of N depends on the two basic
frequencies in the linearized model of the planar motions
around the SEPs. (2) With the 20D terms increasing, the
SEP evolves from stable to unstable. Meanwhile, the planar
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long- and short-period families merge to form a single family.
In this case, even though the SEP itself is unstable, stable
planar POs of finite sizes exist around it. (3) The vertical
Lyapunov family initiates from the SEP and ends at a planar
retrograde orbit traveling twice. The stability of this family is
based on the joint effects of the 1:1 resonance and the frozen
orbits. A detailed explanation is not given here but will be
given in a future paper.

Through these studies, it is found that, in the 20D
gravitational potential, not only are the local dynamics around
the EPs equivalent to the libration points of the CRTBP (for
example, the LEPs are of the saddle x center x center type,
which is the same as the collinear libration points, and the SEPs
are either stable or complex unstable, which is the same as the
triangular libration points), but the global dynamics also
show a similarity to those of the CRTBP (for example, the
spatial halo family bifurcating from the planar periodic family of
the LEPs, the accessible region of the invariant manifolds
associated with the LEPs, and the genealogy between the long-
and short-period families associated with the SEPs). The current
study assumes potential applications for asteroids that usually
have large 20D terms. However, since we neglect higher-order
nonspherical terms of specific asteroids, the results in this work
may have limitations when dealing with orbital motions very
close to an asteroid’s surface. For example, some asteroids may
have more than four EPs outside their bodies (Magri et al. 2007;
Wang et al. 2014), and the global dynamics around them are
expected to be different. It would be interesting to focus on
the global dynamics around the EPs for specific asteroids and
compare the results with ours.

This work was supported by the National Natural Science
Foundation of China (11322330, 11673072) and the National
Basic Research Program of China (2013CB834100).
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