BioMedEng19

Spread Spectrum Based Detection using a Sound Card

Benedetta Sabiu¹, Mario E. Giardini¹

¹ University of Strathclyde, Department of Biomedical Engineering, Graham Hills Building, Glasgow G1 1QE, United Kingdom

Introduction

Lock-in amplifiers (LIA) are currently used for signal recovery in the presence of high noise [1]. They are based on low-pass filtering the product of a sinusoidal signal by a reference sinusoid with the same frequency, effectively calculating the zero-time correlation between sinusoid and signal (Figure 1). To ensure that the frequencies of signal and reference are the same, in a LIA signal and reference are phase-locked.

We note that LIAs can be sensitive to narrowband noise with a frequency closer to the reference frequency than the bandwidth of the low-pass filter. In this respect, generating a signal synchronous with a pseudo-random reference, and detecting it by correlation with the sequence itself, offers promise of a better noise immunity [2].

In this work we investigate a computer sound card as an acquisition system for the extraction of signal by correlation with a pseudorandom sequence.

Methods

Maximum-length pseudorandom sequences [3] are generated with open – source electronic platform Arduino. A signal is simulated through sequence attenuation and noise addition using a Bruel & Kjaer noise generator, and detected through a Behringer U-Phoria UMC404HD sound card. A correlation algorithm has been implemented in Python using the Jupyter platform. Simultaneously, a dedicated hardware platform is currently under development, designed using with the EDA platform KiCad.

Results & Discussion

Figure 1 – Basic principle of a LIA, when S1 is the signal with noise, S2 is the reference signal and D is the detected signal.

The comparison between the Lock –in amplifier and our spread spectrum based detection system will be presented.

The hardware designed is currently under fabrication by a third – party contractor.

Conclusion

Spread spectrum as alternative to Lock – in technology for signal recovery is under evaluation.

Acknowledgments

We thank Damion Corrigan for useful discussions. We acknowledge funding from the University of Strathclyde and from the Engineering and Physical Sciences Research Council (EPSRC) under grant EP/L015595/1 (Centre for Doctoral Training in Medical Devices).

References

- 1. Stanford Research System, About Lock in Amplifiers, Application Note.
- M. E. Giardini, G. Guizzetti, Apparatus and method for the non invasive measurement of parameters relating to biological tissues by spectroscopy, in particular with infra – red light, Patent WO03014714 (A1).
- 3. F. J. MacWilliams, N. J. A. Sloane, Pseudo-Random Sequences and Arrays, Proceedings of the IEEE, Volume: 64, Issue 12, 1976