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Abstract. The study of combined task and path planning has mainly
focused on feasibility planning for high-dimensional, complex manipu-
lation problems. Yet the integration of symbolic reasoning capabilities
with geometric knowledge can address optimal planning in lower dimen-
sional problems. This paper presents a dynamic, anytime task and path
planning approach that enables mobile robots to autonomously adapt
to changes in the environment. The planner consists of a path planning
layer that adopts a multi-tree extension of the optimal Transition-based
Rapidly-Exploring Random Tree algorithm to simultaneously find op-
timal paths for all movement actions. The corresponding path costs,
derived from a cost space function, are incorporated into the symbolic
representation of the problem to guide the task planning layer. Any-
time planning provides continuous path quality improvements, which
subsequently updates the high-level plan. Geometric knowledge of the
environment is preserved to efficiently re-plan both at the task and path
planning level. The planner is evaluated against existing methods for
static planning problems, showing that it is able to find higher quality
plans without compromising planning time. Simulated deployment of the
planner in a partially-known environment demonstrates the effectiveness
of the dynamic, anytime components.

Keywords: Robotics · Autonomous systems · Task planning · Path
planning · Combined task and motion planning · Dynamic planning.

1 Introduction

Many practical applications for robots to date still rely on human-in-the-loop
control [1], which is costly and inefficient for remote operation or long-duration
missions. Embedding intelligence into robotic systems can provide robots with
the required autonomy to plan their actions to achieve the desired goals. How-
ever, this remains an ongoing challenge due to the existence of uncertainty in
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the real-world. Robots must be capable of dynamically adapting to changes and
recovering from failures to operate reliably and safely without human interven-
tion. The study of dynamic task planning and path planning is therefore an
important aspect in the development of autonomous robotics.

Task planning is the process of finding a sequence of high-level actions to ac-
complish defined objectives. Generally, the task planning domain is represented
using symbolic language and solved by searching a finite set of discrete states.
Geometric relationships of objects are abstracted to reduce the size of the state
space. In contrast, path planning (a purely geometric motion planning problem
[2]) solves for a low-level motion path in Rd space to move a robot from a start
configuration to a goal configuration. Extensive work exist in literature for task
planning and path planning, but they have mostly been conducted in isolation.
While various problems such as fruit harvesting [3] and component disassembly
[4] can be solved using a decoupled approach to planning, solving more complex
or larger scale problems often demands a more seamlessly coupled approach. Ap-
plying a decoupled approach in these cases may produce sub-optimal plans or, in
the worst case, lead to an intractable problem. Various authors have begun to ad-
dress complex manipulation problems by integrating task and motion planning.
Notable examples include FFRob [5], an integrated planner that extends the
FastForward heuristics used in symbolic planning to consider geometric details
in the task planner, and the TM-Kit [6], a probabilistically complete, general-
purpose framework for combined task and motion planning. However, these work
focused on feasibility planning due to the high dimensionality of manipulation
planning problems. When applied to robotic navigation, a coupled planning ap-
proach can improve the optimality of long mission plans, or adapt task plans in
response to observable failures or perceived changes in the world.

Several authors have explored this avenue in the context of mobile robots.
For example, the UP2TA framework [7] provides optimal plans for exploration
mission planning. However, the authors did not consider general cost spaces or
aspects of re-planning. The authors in [8] addressed multi-robot planning for
partially-known environments and considered minimisation of robot resources.
Their approach enables adaptation of the plan as new obstacles are detected, but
possesses a number of limiting characteristics, such as being unable to consider
task dependencies, requiring several hundred seconds to plan for single robot
problems, and performing a needless number of re-planning instances as each
update to a planned path triggers an instance of task planning. Motivated by
these ongoing challenges, the contributions of this work is two-fold: (i) we present
a base planner that integrates task and path planning to enable optimal task
planning in continuous cost spaces using a multi-tree T-RRT* (Transition-based
Rapidly-exploring Random Tree) algorithm [9] and compare it to existing meth-
ods, and (ii) we extend the base planner with dynamic, anytime capabilities to
enable efficient high and low level re-planning in partially known or dynamic
environments. We collectively refer to the proposed planner as the Dynamic,
Anytime Task and Path Planner (DA-TPP)3.

3 This paper is an invited extension to the work presented in [10].
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Fig. 1. Base planner architecture

2 Problem Definition

This paper addresses Task and Path Planning (TPP) problems consisting of a
robot in R2 space and a set of landmarks L. L represents locations in space where
a robot must perform a set of domain-specific actions. The robot navigates the
environment by performing movement actions corresponding to motions between
any pair of landmarks la, lb ∈ L. A valid planning problem contains an initial
landmark linit, where the robot starts from, and a set of goals describing the
tasks that must be performed at each landmark. A goal landmark lgoal for which
the robot must be located at the end of the plan may optionally be specified. In
our experiments we assume that for any initial planning problem the robot must
begin and end at a root landmark linit = lgoal = l0 (the robot base) and there
exist tasks that must be completed at every landmark (note, however, that our
approach is equally applicable when these are not true). As re-planning takes
place during execution, linit is updated to reflect the new robot location. A valid
TPP solution then consists of a sequence of movement actions and corresponding
motion paths that guide the robot from linit to lgoal through a route that enables
the completion of all tasks while accumulating the lowest cost.

3 The DA-TPP Approach

The base planner of the DA-TPP (Fig. 1) employs a path planning layer to find
an optimal path for all valid movement actions. The corresponding path costs
are then linked to the discrete movement action costs for optimal task planning
through an interface layer such that true path plans are used to guide the task
planner. Given a continuous cost space mapping function, c, from which a cost
value can be derived for all robot configurations, we define the path cost function,
cp, of a path σ as a weighted sum of integral cost and path length:

cp(σ) = f(σ)

(
wa

n

n∑
k=1

c

(
σ

(
k

n

))
+ wb

)
(1)
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Where n is the number of subdivisions of σ, f() is the path length, wa and wb

are weight factors for c and f(σ), respectively, and k represents the point along
σ. This formulation enables consolidation of both the cost function and path
length as a weighted sum multi-objective optimisation problem.

When a termination criteria is met, the planner returns the best set of paths
found for each of these movement actions (cp = ∞ if no solution is found). A
satisfactory TPP solution exists when all landmarks associated with the task
objectives are connected in a reachability graph containing linit, where each
vertex represents a landmark and each edge is a valid motion path. That is,
the robot can reach and return from any landmark by traversing through the
vertices of the graph. The task planning layer employs PDDL representation [11],
and is solved using Local Planning Graphs (LPG-td) [12]. We chose to represent
the planning problem in PDDL due to its wide acceptance as a standard for
representing classical symbolic planning problems. This enables interchangeable
use of other heuristic planners (such as Metric-FF [13]) and provides generality
to the planner to include new actions and treat task dependencies etc.

3.1 Anytime Extension

Anytime planning supports a request for an initial solution after a fixed allotted
time, which minimises idle time at the start of a task. During execution of an
existing plan, the planner continues to iterate the path planning algorithm to
improve the solution at subsequent requests. Suppose that the path cost for an
action a is cp. Like the work in [14], an upper cost bound C+

s is defined as

C+
s = (1− ηa) · cp(σ). (2)

Where ηa is a constant. When the path planning layer finds a new path σ′ for
a with cp(σ′) < C+

s , a new instance of task planning is called. This mechanism
guarantees that the task planning layer is called only when a guaranteed im-
provement to an action cost is found. During execution, it is also necessary to
consider the goals that have been met thus far. This is addressed by updating
the initial state of the planning problem at each planning instance to reflect the
next state of the world after executing the current action of the latest plan.

3.2 Dynamic Anytime Extension

The complete DA-TPP architecture is shown in Fig. 2. The key extensions are a
local path correction modeul and a global re-planner. Each time an obstruction to
a currently executed path is detected, the local path correction algorithm finds
a new optimal path to the goal configuration. The DA-TPP then determines
whether an instance of global re-planning should be called using a heuristically-
defined lower cost bound C−s shown in (3). Letting c′p be the path cost of the
remaining segments of the original path, C−s is given by

C−s = (1 + ηd) · c′p(σ). (3)
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Fig. 2. Dynamic anytime planner architecture

Where ηd is a constant. When cp(σ′) > C−s , global re-planning takes place. This
permanently updates all planning trees with the detected obstruction and a new
optimal sequence of movement actions is generated.

By applying the heuristic cost bound defined in (3), the DA-TPP provides
the following behaviours in dynamic environments. When minor obstructions are
encountered, only local adjustments are made to the currently executed path.
This, in general, does not affect the optimality of the task plan from a high-level
perspective. It is sufficient then to correct paths locally each time the same ob-
struction is encountered without initiating a global re-planning procedure, thus
limiting the number of task-level re-planning instances. However, in situations
where an obstruction causes significant diversion for a particular traverse (e.g.
from road blockages), the likelihood of the obstruction affecting the optimality
of the task plan is high. This is due to the increased cost of the current path and
possible extended effects on other planned paths. In these situations the planner
updates the entire plan (including all motion paths) to maintain optimality.

4 Path Planning

The path planning layer of the base planner is implemented following the multi-
T-RRT* approach described in [9], which simultaneously searches for all optimal
paths between landmarks by iteratively growing trees rooted at each landmark
to explore the configuration space. Readers are directed to this initial work for
a detailed description of the algorithm.

4.1 Local Path Correction

The local path re-planner corrects any single path according to procedures based
on elements of the RRTX algorithm [15]. At the start of any movement action, a
new tree Tnew is generated from two trees T0 and Tg corresponding to the start
and goal landmarks l0 and lg, respectively (Fig. 3). Tnew is rooted at the goal
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(a) (b)

Fig. 3. (a) Trees T0 (red), rooted at qrob, and Tg (blue), rooted at qgoal, grown across
the configuration space. (b) The resulting tree Tnew (green) resulting from the merge
function applied on T0 and Tg.

Algorithm 1 localPathCorrection
Input: Merged tree Tnew, current path σ and robot configuration qrob
Output: Updated path σ′

1: Onew ← getObstacles()
2: if collision(σ,Onew) then
3: invalidNodes(Tnew, Onew)
4: updateOrphans(Tnew)
5: rewireTree(Tnew)
6: σ′ ← updatePath(Tnew, qrob)
7: end if

configuration qg and consists of all the vertices of T0 and Tg rewired to minimise
path cost according to the new tree root. This speeds up dynamic re-planning
later tree root does not need to be updated as the robot advances along the
path. As new obstacles are detected during execution, the remaining segments
of a traversed path are checked for collision. If these obstacles invalidate any
part of this path, Algorithm 1 is called to update the path.

The algorithm invalidates vertices that lie in the collision region of new ob-
stacles. All valid descendant vertices are then updated as orphans. This closely
resembles the propagateDescendants function in [15]. The algorithm then updates
the branches of the tree by iterating through a queue of vertices consisting ini-
tially of the neighbours of orphans (see reduceInconsistency function in [15]). For
each of these vertices, the algorithm updates its parent, and then runs a rewiring
procedure on its neighbouring vertices. Any vertices that are rewired at this step
are then added to the queue. This continues until no further improvements can
be made. Finally, a new path from the tree root to the robot configuration qrob
is found by attempting to connect qrob to neighbouring vertices.
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Algorithm 2 globalReplanning
Input: Set of all planning trees T , new obstacles Onew and robot configuration qrob
Output: Set of updated planning trees T and set of path solutions Σbest

1: for all Tk ∈ T do
2: invalidNodes(Tk, Onew)
3: updateOrphans(Tk)
4: rewireTree(Tk)
5: end for
6: Σbest ← updatePaths(T )
7: Σbest ← pathsFromRobotToLandmarks(Σbest, T, qrob)

Fig. 4. Example planning problems used to compare planners. Blue markers represent
the robot base and black stars represent all other landmarks.

4.2 Global Re-Planning

When the condition in (3) is met, a new action-motion sequence is determined
by updating the costs of all movement actions. This is achieved by updating
the solutions of the path planning layer using Algorithm 2. The algorithm first
updates every tree by invalidating infeasible vertices, updating orphaned ver-
tices and propagating a rewiring cascade, as in Section 4.1. New optimal paths
between landmarks are obtained by finding new connecting vertices between cor-
responding pairs of trees. The set of best paths Σbest are updated accordingly.
A temporary landmark ltemp is then inserted into the TPP problem at qrob. An
attempt to find an optimal path from each original landmark to ltemp is made by
testing connections from neighbouring vertices of each tree to the root of ltemp.
Σbest is then expanded to include these paths.

5 Experimental Evaluation

5.1 Base Planner Comparison

The base planner is benchmarked across a number of randomly generated clut-
tered and structured environments varying between 50 × 50, 100 × 100 and 300
× 300 in dimensions (examples shown in Fig. 4). The cost function c in (1) for
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Fig. 5. Performance comparison between basic task planning, DA-TPP and UP2TA
methods over 100 trials. (a) mean planning time for initial solution, (b) mean plan cost
for initial solution. Simulations were conducted on an IntelR© XeonR© CPU E3-1270 v3.

any configuration q is given by c = 1/δ2 , where δ is the distance to the nearest
obstacle. Thus c describes the ’closeness’ of q to the nearest obstacle. wa and wb

were set to 0.97 and 0.03, respectively.
We compared the performance of the DA-TPP base planner with a decou-

pled planning approach and UP2TA [7]. The decoupled approach solves for an
optimal action sequence by using the Euclidean distances between landmarks
as movement action costs. A single instance of path planning was subsequently
called for each movement action to obtain the TPP solution. For consistency
across the comparison, we used a bi-directional equivalent of the multi-T-RRT*
algorithm for path planning. Our implementation of the UP2TA framework con-
sisted of a greedy search algorithm to approximate the cost metrics for each
possible movement action. The LPG-td planner was then used to solve the task
planning problem (the original authors used the FastForward planner, but for
consistency we applied the same PDDL planner as in our work). Finally, a sec-
ond path planning layer that employs the graph search-based Theta* algorithm
[16] was used to obtain the true paths for each movement action.

The results generated from a PC with an Intel R© Xeon R© CPU E3-1270 v3
(3.50 GHz) are provided in Fig. 5. We observe that the UP2TA fails to consider
cost spaces and consequently performs notably worse than other planners in
terms of path cost. Planning times also highlight a key deficit of grid-based
approaches: as the size of the problem increases, their performance decreases
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Fig. 6. Anytime planning - plan cost steadily decreases as more computation time is
allowed. Step-like cost reductions indicate task-level improvements to the plan.

Fig. 7. Example of anytime plan evolution at selected time instances.

rapidly, as observed for environments of size 300 × 300. The decoupled approach
scales better with the size of the problem and maintains a low computational cost
across all trials. However, this approach finds solutions with overall costs that
are generally greater than the DA-TPP approach, particularly for structured,
maze-like environments. This is an expected observation as the task planning
layer is ill-informed by misleading action costs. Without knowing the geometric
relationships of objects in the world, costly movement actions are unknown to
the symbolic planner. Thus DA-TPP consistently finds the lowest cost plans
in all test cases. Although this sacrifices computational efficiency slightly, the
proposed planner scales well with the size of the problem and indeed finds a
solution faster than UP2TA in almost all cases for 300 × 300 environments.
Finally, the quality of DA-TPP solutions may be further improved over time as
a result of anytime planning, as discussed below.

5.2 Anytime Evaluation

The behavior of the anytime component of DA-TPP was assessed in the following
way. An initial solution was first obtained using the base planner. Starting from
this same initial solution each time, the planner described in Section 3.1 was run
four times with ηa set to 0.2, 0.1, 0.05 and 0.03, respectively. For each run, a
request for the current solution was made at the defined time instances shown
in Fig. 6. Sample plans obtained over the trial durations are provided in Fig. 7.



10 C. Wong et al.

In general, the quality of a plan improves at the path level and task level
as further computation time is allowed. These correspond to small progressive
cost decreases and larger step changes observed in Fig. 6, respectively. Task
level improvements take place only when sufficient improvements to a local path
changes the optimality of the global task plan. These occurred only 3-4 times
over the duration of 200 seconds for all runs. Hence it is often unnecessary
to re-plan an entire action-motion sequence for small local path changes. This
provides motivation for the use of the update criteron defined in (3) for global re-
planning. Finally, we observe that the value of ηa controls the rate of convergence
and optimality of the planner. For larger values of ηa, the planner spends less
time re-planning the task sequence as it is triggered only when more significant
improvements to local paths are found, thus converging faster (60 seconds for
ηa = 0.20 vs 95 seconds for ηa = 0.05). However, this in turn dismisses small,
steady cost reductions that lead to a better quality final solution. On the other
hand, with ηa = 0.03, the solution does not reach convergence after 200 seconds,
yet the planner is able to find the lowest cost solution across the four runs. In
the subsequent experiment we set ηa = 0.05 based on its balanced convergence
and optimality characteristics.

5.3 Dynamic Anytime Evaluation

Finally, the complete DA-TPP approach was assessed through simulations in a
30 × 30 meters partially-known environment shown in Fig. 8. The robot begins
executing a plan after an initial solution is obtained. We simulate real-time
execution on the Gazebo simulator using a Clearpath Husky. Perception of the
environment is achieved using a laser scanner with a range of 30 meters, while
ηd is set to 0.05 (chosen based on an analysis similar to the selection for ηa).

Fig. 8 shows global re-planning instances where actions belonging to a previ-
ously optimal plan (e.g. traversing from landmark 5 to landmark 6) are avoided
on detection of significant blockage, while only local path corrections take place
for smaller obstructions. Furthermore, we draw particular attention to the ob-
servation that the robot visits landmark 7 twice in the executed set of paths,
which showcases the behaviour of the planner when a direct path between two
landmarks do not exist. After running the global re-planning procedures trig-
gered by the detection of obstacles C and D, a feasible path between landmarks
5 and 6 was no longer found. Nevertheless, a multi-segment path consisting of
two movement actions (paths 7 and 8) enabled the robot to reach landmark 6. In
this way the planner is able to identify infeasible actions through the inference
from the path planning layer.

The solutions of DA-TPP may be subject to local minima according to the
limitations of the heuristic planner used in task planning. For example, LPG-
td may provide locally-optimal task plans but is always able to return solutions
quickly. Other planners such as Metric-FF can provide globally-optimal solutions
at the expense of lower efficiency. Conversely, the path planning layer maintains
the asymptotic optimality property of RRT* and thus always converges towards
globally-optimal solutions if sufficient time is allowed.
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(a) (b)

Fig. 8. (a) Initial plan for a mobile robot located at robot base. Motion sequence is in-
dicated by numerical sequence. (b) True executed paths at runtime (detected obstacles
shown in blue).

6 Conclusion

The DA-TPP is an anytime task and path planner for autonomous mobile robots
with re-planning capabilities. The base planner uses the Multi-T-RRT* algo-
rithm to find optimal paths for all movement actions in relation to the contin-
uous cost space. The corresponding path costs are linked to discrete movement
actions in the task planning layer, which is solved using off-the-shelf planners. In
our results, we show that the planner is competitive in terms of scalability and
the quality of solutions obtained. The anytime extension enables a sub-optimal
solution to be found quickly, and any further computation time given to plan-
ning continues to improve the quality of the task plan by a bounded degree of
improvement. A local path correction algorithm updates individual paths dur-
ing execution, while the global re-planner updates the structures of all trees in
the path planning layer to maintain global optimality when large changes are
observed. In this way the DA-TPP possesses the flexibility to adapt both individ-
ual paths and entire plans accordingly depending on the significance of observed
changes in the environment. One of the limiting factors on the computational
performance of the DA-TPP in large planning problems is the population size
of nodes that make up each planning tree in the path planning layer. One im-
provement for future work includes the removals of useless nodes and branches
that provide zero contribution to the search for more optimal paths over existing
ones. This is similar to the branch-and-bound technique applied in [17], but an
admissible heuristic to assess each node against all goals is necessary.
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