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Abstract 

A passive machine learning based technique to estimate the 

impedance of the power grid at the point of common coupling 

of a converter interfaced distributed generation source is 

proposed. The proposed method is based on supervised 

learning and provides a fast and accurate estimation of the grid 

impedance without adversely impacting the power quality of 

the system. This method does not need an injection of 

additional signals to the grid and provides an accurate 

estimation of the grid impedance. Multi-objective NSGA-II 

algorithm is used for optimisation and tuning the random forest 

model for accurate estimation of both R and X The resistive 

and inductive reactance of grid is estimated using Random 

Forest model due to its capability in the prediction of multiple 

output values simultaneously. 

1 Introduction 

The increasing penetration of power electronic converter 

interfaced distributed energy sources into the power grid, 

introduced new challenges to the monitoring, protection and 

control of the system[1]. The high amount of converter 

interfaced sources impacts the stability of the system, 

especially in a weak grid with high inductive impedance [2-6]. 

The knowledge of the grid impedance at the connection point 

of the converter to the grid (PCC) is essential for improving 

the control strategy and overall grid stability by either 

changing the control action or re-tuning the controller [7].   

In micro-grids, a variation of impedance is an indication for 

islanding or grid connection mode operations [8].  The 

islanding mode can occur intentionally or forced by grid 

conditions. In either case, the impedance value is the indicative 

factor to operate the micro-grid in the islanding mode. 

Furthermore, the knowledge of grid impedance will be useful 

to improve the power quality, detection of the fault location, 

ground faults and grim unbalanced operation [1, 8, 9].  

Various methods are proposed to estimate impedance of power 

network, though all of the methods can be classified into 

passive and active methods [1, 2, 7, 9-15] or combination of 

these two [16].  The passive methods are known to be ‘non-

invasive’ and active methods are ‘invasive’. 

Generally, the active methods are invasive as a disturbance 

signal is injected to the grid. Then the signal processing 

techniques are used to estimate the impedance of the grid.  

However, passive methods do not need any disturbance 

injection, and the available information of the non-

characteristic current and voltage at the PCC is used to 

estimate the grid impedance [1, 13-17]. Hence, the 

performance of the power system is not degraded using passive 

methods.  

In passive methods, either local signals or neighbouring bus 

and wide-area measurements can be used to estimate the 

impedance. However, the local signals lead to more accurate 

estimation as the wide-area measurement based methods are 

sensitive to frequency variations [16]. Local measurement 

based methods estimate the impedance by analysing and 

filtering the signals and information that are present, e.g. 

background voltage and current distortion [8].  

Different implementations of the passive methods are 

presented in the literature, e.g. extended Kalman filters [2], 

excitation of LCL filters[12], recursive least square [10], etc. 

In all the passive methods as the distortion in voltage and 

current signals are very weak and is not repeating 

continuously. Therefore, the signal noise ratio (SNR) is low, 

which leads to an inaccurate estimate of the impedance. 

Active methods estimate the grid impedance more 

accurately.The disturbance in the active methods can be 

injected to the grid by using either hardware or software 

methods [14]. In hardware methods, the disturbance is injected 

to the grid by external hardware connected to the PCC. 

However, the software-based methods do not use an external 

device, and the disturbance is injected to the grid by utilising 

the grid-connected converter controller [14].   

Implementation of the active methods is divided into two 

groups, namely, transient and steady-state [10, 15].  In 

transient methods, a non-characteristic signal is injected to the 
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PCC as a voltage distortion or a current spike over a wide range 

of the frequencies [15]. Then, signal processing methods are 

used to estimate the parameters in the power system. These 

methods generate a lot of unnecessary information about the 

power system parameters,  that might lead to over-loading of 

the real-time controller [15].  In steady state methods, the 

impedance is estimated by analysing the response of the 

system to injection of a periodic inter-harmonic signal. 

Number of implementation for active methods are presented in 

the relevant literature, e.g. variation of active and reactive 

power [9, 11, 18], discrete Fourier transform (DFT) based 

methods [1, 19], continuous wavelet transform based [17], 

discrete wavelet packet transform based[15], and particle 

swarm optimisation based [14]. 

In recent years, machine learning (ML) models have received 

great attention in many fields due to their ability in modelling 

complex systems using historical data. The use of data-driven 

models have been successfully demonstrated in applications 

demanding for real-time estimation of the targets values. These 

applications include building energy management systems 

[20], human and robot integration [21],  monitoring an electric 

power grid [22], etc. ML models discover relationships 

between input variables and outputs of interest from the system 

being studied, learn from measured or simulated data that 

represents the physical problem. 

Both the passive and active impedance estimation methods 

have shortcomings for power system applications. The passive 

methods can become inaccurate, and the active methods 

impact power quality. In this paper, the application of 

machines learning algorithms for impedance estimation is 

investigated to avoid the shortcomings of the other estimation 

methods. 

Following this introduction, the methodology used for the 

proposed impedance estimation method is thoroughly 

presented. in section 3, the learning method results are shown 

and discussed. Finally, section 4 draws the conclusion of this 

paper. 

2. Methodology 

In modern distributed renewable energy resources (DG), the 

voltage source converters (VSC) are used for grid integration. 

Fig. 1 shows the schematic block diagram of the DG system 

used in this paper for developing and verification of the 

machine algorithm. This DG system comprises a converter 

interfaced distributed energy source, converter reactor and the 

grid.  

As the DC link decouples the dynamics of the distributed 

energy source side’s dynamics from the grid side converter [3], 

the grid side converter of the distributed energy source is only 

presented. Furthermore, for simplicity, it is assumed that the 

rated values of the converter terminal voltage and grid at the 

PCC are similar. Therefore, the transformer is ignored.  

A model of the system shown in Fig. 1 is developed in 

Matlab/Simulink. This model is used to generate the required 

data for the machine learning algorithms. In the development 

of the model per unit (p.u.) values are used. 

The VSC is controlled by a vector current control scheme in 

which the current is controlled by decoupling the d-axis, and 

q-axis currents and outer control loops provide the references 

for the current control.  

In Fig.1, R1 and L1 are the converter’s reactor resistance and 

inductance, respectively, and the power grid is modelled by a 

voltage source behind an impedance (Z). The resistive and 

inductive components of the impedance are then represented 

by R and L (X=jωL), respectively. Parameters for the test 

system and the current control loop are presented in Table 1.  
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Fig. 1. Schematic block diagram of the test system 

ML models operate as a black box, so further information 

about the system is not required. The general scheme of 

supervised learning for modelling building energy is presented 

in [23], and a similar learning model is used in this paper to 

estimate the grid impedance as illustrated in Fig.2. As seen, the 

first step is to select a set of features for representing the 

building energy system. Although data-driven methods build 

models with fewer variables than engineering techniques, it is 

crucial to generate a logical input set for ML models. 

The Simulink model of the system shown in Fig. 1 was run for 

various combination of R and L with different active and 

reactive power values injected to the grid. The parameters 

shown in Table 1 were kept constant for all the simulations. 

Then, for each simulation run, the Dc link current (Idc), 

stationary reference frame (SRF), d-axis and q-axis, values of 

Table 1. Test system and VSC current control loop parameters 

Parameter Value 

R1 0.01 p.u. 

L1 0.15 p.u 

DC link voltage 800 V 

Converter terminal voltage  400 V 

DG rated power 1 MW 

Switching frequency 2.5 kHz 

Current control loop bandwidth 30 Hz 

Current control loop damping  1 
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Fig. 2. General schematic diagram of supervised learning  

PCC voltages (VS_d and Vs_q) and currents (IS_d and Is_q),  active 

power (P) and frequency (Frequency) were monitored and 

captured. Using simulation, almost 20,000 unique records are 

obtained to be used in supervised learning. 

Fig.3 illustrates the distribution of all features as histogram 

graphs. The correlation between each pair of input and target 

variables is demonstrated using a heat-map matrix in Fig. 4. 

 

Fig. 4 Impedance data features correlation map. 

In this study, a Random Forest (RF) model is chosen due to its 

capability in the prediction of multiple output values 

simultaneously. RF is an ensemble of randomised decision 

trees which are non-parametric ML algorithms repeatedly 

divide the given records into smaller and smaller subsets until 

only one record remains in the subset. The inner and final sets 

are known as nodes and leaf nodes.  

RF requires several numbers of hyper-parameters to be set. 

Therefore, these parameters are tuned for the simulated data to 

achieve the highest possible accuracy. The model optimisation 

is performed using an evolutionary multi-objective NSGA-II 

algorithm to tune the RF model for accurate estimation of both 

R and X. In each genome (a selection of hyper-parameters), 

the configured model is trained and tested using 10-fold cross-

validation. The model is implemented using Python 

programming language, and test have been carried out on a PC 

with Intel Core i7-6700 3.4GHz CPU, 32GB RAM. 

Fig. 3 Distribution of features for the simulated system 
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3 Results  

The RF model is tuned, and the best model for the simulated 

data and then the model is trained using 80% of records and 

tested with the rest as unseen data. The result of the prediction 

of four thousand resistance (R) and inductive reactance (X) 

values is demonstrated in Fig. 5 as plot of estimated versus 

actual values.  

 
(a) 

 
(b) 

Fig. 5 Predicted vs actual values for a) resistance and b) 

inductive reactance. 

Root mean square error (RMSE) and R2 are 0.0015 and 0.99 

for resistance and 0.0054 and 0.98 for inductive reactance. The 

unit of RMSE is the same as the targets. Considering these 

measures, the trained model achieves high accuracy for both R 

and X. 

Fig. 6 illustrates the histogram of the error for the test set. As 

it can be observed, the majority of errors are accumulated 

around zero. 

The mean time spent for prediction of one record is calculated 

as 0.3ms which makes it an ideal model to be used for real-

time impedance estimation . 

 

 

(a) 

 

(b) 

Fig. 6 Histogram of error for a) resistance and b) inductive 

reactance. 

4 Conclusion 

In this paper, a supervised learning method to estimate the 

impedance of a power network is presented. The random forest 

model used for estimation of the two components of the 

impedance, namely, resistance and inductive reactance. 

Current and voltage in the stationary reference frame (dq- 

axis), active power, DC link current and the frequency at PCC 

are used as the inputs for the random forest model. The model 

optimisation is performed using an evolutionary multi-

objective NSGA-II algorithm to tune the RF model for 

accurate estimation of both R and X. The proposed method 

does not require any external signal injection; thus, the power 

quality is not compromised. Furthermore, the model results 

show that the estimation accuracy is very high. 
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