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Photonic neural network implementation has been gaining considerable attention as a potentially disruptive
future technology. Demonstrating learning in large-scale neural networks is essential to establish photonic machine
learning substrates as viable information processing systems. Realizing photonic neural networks with numerous
nonlinear nodes in a fully parallel and efficient learning hardware has been lacking so far. We demonstrate a network
of up to 2025 diffractively coupled photonic nodes, forming a large-scale recurrent neural network. Using a
digital micro mirror device, we realize reinforcement learning. Our scheme is fully parallel, and the passive weights
maximize energy efficiency and bandwidth. The computational output efficiently converges, and we achieve very good
performance. © 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. INTRODUCTION

Multiple concepts of neural networks (NNs) have initiated a rev-
olution in the way we process information. Deep NNs outper-
form humans in challenges previously deemed unsolvable by
computers [1]. Among others, these systems are now capable
of solving non-trivial computational problems in optics [2]. At
the same time, reservoir computing (RC) emerged as a recurrent
NN (RNN) concept [3]. Initially, RC received substantial atten-
tion due to excellent prediction performance achieved with min-
imal optimization effort. However, quickly it was realized that RC
is highly attractive for analog hardware implementations [4,5].

As employed by the machine learning community, NNs con-
sist of a large number of nonlinear nodes interacting with each
other. Evolving the NNs’ state requires performing vector-matrix
products with possibly millions of entries. NN concepts therefore
fundamentally benefit from parallelism. Consequently, photonics
was identified as an attractive alternative to electronic implemen-
tation [6,7]. Early implementations were bulky and suffered from
lack of adequate technology and NN concepts. This recently
started to change, first because RC enabled a tremendous com-
plexity reduction of analog electronic and photonic RNNs
[5,8–11]. In addition, integrated photonic platforms have ma-
tured and integrated photonic NNs are now feasible [12].
Various demonstrations of how a particular network of neurons
can be implemented have been realized in hardware. Yet, NNs
consisting of numerous photonic nonlinear nodes combined with
photonically implemented learning so far have been demonstrated
only in delay systems controlled by a field programmable gate

array [13]. Due to the time multiplexing, delay system NNs fun-
damentally require such auxiliary infrastructure, and computa-
tional speed suffers due to their serial nature.

While networks with multiple nodes are more challenging to
implement, they offer key advantages in terms of parallelism and
speed, and for realizing the essential vector-matrix products.
Here, we demonstrate a network of up to 2025 nonlinear network
nodes, where each node is a pixel of a spatial light modulator (SLM).
Recurrent and complex network connections are implemented us-
ing a diffractive optical element (DOE), an intrinsically parallel and
passive device [14]. Simulations based on the angular spectrum of
plane waves show that the concept is scalable to well over 90.000
nodes. In a photonic RNN with N � 900 nodes, we implement
learning using a digital micro-mirror device (DMD). The DMD is
intrinsically parallel as well and, once weights have been trained,
passive and energy efficient. The coupling and learning concepts’
bandwidth and power consumption are in practice not impacted by
the system’s size, offering attractive scaling properties. Here, we ap-
ply such a passive and parallel readout layer to an analog hardware
RNN, and introduce learning strategies improving performance of
such systems. Using reinforcement learning, we implement time
series prediction with excellent performance. Our findings open the
door to novel and versatile photonic NN concepts.

2. NONLINEAR NODES AND DIFFRACTIVE
NETWORK

Figure 1(a) conceptually illustrates our RNN. Information enters
the system via a single input node, from where it is injected into a
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recurrently connected network of nonlinear nodes. The computa-
tional result is provided at the single output node after summing
the network’s state according to weight matrixWDMD. Following
the RC concept, one can choose the input and recurrent internal
weights randomly [3]. Here, we create a complex and recurrently
connected network using imaging that is spatially structured via a
DOE, resulting in the internal connectivity matrix WDOE [14].

In Fig. 1(b), we schematically illustrate our experimental
setup. A laser illumination field (Thorlabs LP660-SF20,
λ � 661.2 nm, Ibias � 89.69 mA, T � 23°C) is adjusted to s
polarization. A consecutive 50/50 beam splitter (BS) reflects
the illumination beam towards the polarizing beam splitter cube
(PBS), from where it reflects further towards the SLM
(Hamamatsu X13267-01). The BS’s transmission creates the out-
put port for our photonic RNN, and for the 50/50 splitting ratio,
the output power is maximized. By focusing the illumination laser
onto the first microscope objective’s (MO1, Nikon CFI Plan
Achro 10×) back focal plane, SLM pixel i is illuminated by a plane
wave of amplitude E0

i . The
λ
2 -plate between PBS and MO1 is

adjusted such that the SLMoperates in intensity modulation mode.
Consequently, the p-polarized optical field transmitted through the
PBS for pixel i � 1…N and at integer time n is given by

Ei�n� � E0
i cos

�
2π

κSLM
�xSLMi �n� � θ0i �

�
, (1)

where xSLMi �n� ∈ f0, 1,…, 255g is the SLM pixel’s gray scale
value and κSLM � 244.6� 1.6 the conversion between pixel gray
scale and polarization angle in radians. Finally, gray scale offset
θ0i � 11.1� 1.1 is a device related constant. Uncertainties given
for κSLM and θ0i correspond to the standard deviations measured
across the 900 pixels of our network.

Ignoring for now the DOE’s effect for explanatory purposes,
the transmitted field is imaged (MO2, same as MO1) on a mirror.

A double-pass through the λ
4 -plate results in an s-polarized field,

which is fully reflected by the PBS and consecutively imaged
(MO3, Nikon CFI Plan Fluor 4×) on the camera (CAM,
Thorlabs DCC1545M), creating camera state xCi �n� � αjEij2
with α � GS

I sat ·ND and xCi �n� ∈ f0, 1,…, 255g. GS � 255 is
the 8-bit camera gray scale, I sat its saturation intensity, and
ND the transmission through a neutral density filter (ND) se-
lected such that the dynamical range of the camera is best ex-
ploited and over-exposure is avoided. xCi �n� is linearly rescaled
in size to match the number of active SLM pixels, which is nec-
essary due to (i) an optical imaging magnification of 2.5, and
(ii) different pixel sizes of SLM (12.5 μm) and camera (5.2 μm).
After multiplication of the rescaled state x̃Ci �n� with scalar feed-
back gain β, we add phase offset θ̃i and send xSLMi �n� 1� �
βx̃Ci �n� � θ̃i back to the SLM. Defining the network’s new state
x�n� 1� as the intensity transmitted through the PBS, our
system’s dynamical evolution is therefore governed by uncoupled
Ikeda maps:

xi�n� 1� � αjE0
i j2 cos2

�
2π

κSLM
�βx̃Ci �n� � θ̃i�

�
: (2)

Illumination wavelength, DOE (HOLOOR MS-443-650
-Y-X), as well as MO1 were chosen such that the spacing between
diffractive orders matches the pixel spacing of the SLM [14].
Therefore, upon adding the DOE to the beam path, the optical
field on the camera becomes EC

i � PN
j W DOE

i,j E j, where WDOE

is the network’s coupling matrix created by the DOE. As the
DOE of 3 × 3 diffractive orders is operated in double pass, the
final diffraction is a convolution of the diffraction pattern with
itself, on average resulting in a 5 × 5 diffraction pattern.
Figure 1(c) shows the experimentally obtained W DOE for a net-
work of 900 nodes, clearly revealing the 5 × 5 structure. Upon
inspection of the inset, one can see that local connectivity
strengths vary significantly. This is due to each pixel illuminating
a DOE area comparable to the DOE’s lowest spatial frequency. As
this area shifts slightly from pixel to pixel, the intensity distribu-
tion between diffractive orders varies. This intended effect inher-
ently creates the heterogeneous photonic network topology
needed for computation [3]. Besides the reservoir internal cou-
pling between photonic neurons, we also couple the system to
external information via injection matrix W inj, whose entries
are uniformly drawn from [0,1]. The resulting photonic
RNN’s state x�n� 1� is given by

xi�n� 1� � αjE0
i j2cos2

�
β · α

����
XN
j

W DOE
i,j E j�n�

����
2

� γW inj
i u�n� 1� � θi

�
: (3)

Information to be injected into the RNN corresponds to
u�n� 1�, and γ is the injection gain. MATLAB is used to control
all instruments and to update the network state by combining the
network’s internal state with the external input information. The
overall update rate of the entire system is ∼5 Hz, limited by
MATLAB controlling the SLM. Currently, the maximum size
of networks we can realize consists of ∼2500 nodes, which is lim-
ited by the imaging setup’s field of view and not by the concept
itself. Numerically, we have investigated the scalability of pho-
tonic networks based on diffractive coupling. Optical fields were
propagated using the spectrum of planar waves, importantly not

(a)

(b)

(c)

Fig. 1. (a) Schematic illustration of a recurrent neural network.
(b) Experimental setup. The NN state encoded on the SLM is imaged
onto the camera (CAM) through a polarizing beam splitter (PBS) and a
diffractive optical element (DOE). In this way, we realize a recurrently
coupled network of Ikeda maps. A digital micromirror device (DMD)
creates a spatially modulated image of the SLM’s state. The integrated
state, obtained via superimposing the modulated intensities, is detected,
creating the photonic RNN’s output. (c) RNN’s coupling matrix estab-
lished by the DOE, with the inset showing a zoom into a smaller region.
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using the paraxial approximation [15]. The microscope objectives
were implemented based on the vectorial Debye integral represen-
tation [16]. For networks covering an area in excess of 3 mm2, all
optical fields relevant for coupling had a high degree of spatial
overlap in the image plane. Assuming an emitter spacing of
∼10 μm, a network of this size would consist of 90.000 photonic
nodes coupled in parallel, which demonstrates the excellent
scalability of our concept.

3. NETWORK READOUT WEIGHTS

The final step to information processing is to adjust the system
such that it performs the desired computation, typically achieved
by modifying connection weights according to some learning rou-
tine. Inspired by the RC concept [3], we constrain learning-
induced weight adjustment to the readout layer. Our 900 RNN
nodes are spatially distributed, and we therefore can use a simple
lens (Thorlabs AC254-400-B) to image a version of the RNN’s
state onto an array of micro mirrors (DLi4120 XGA, pitch
13.68 μm). Micro mirrors can be flipped between�12°, and only
for −12°, the optical signal contributes to the RNN’s output at the
detector (DET, Thorlabs PM100A, S150C). Our physically
implemented readout weights are therefore strictly Boolean.
Using the orthogonality of polarization between the field imaged
on the camera and the DMD, the RNN output becomes

yout�n� 1� ∝
����
XN
i
W DMD

i,k �E0
i − Ei�n� 1��

����
2

: (4)

Here, k is the current learning iteration or learning epoch. In the
experiment, weight vectorW DMD

i�1…N ,k corresponds to a square ma-
trix, which can be seen in Fig. 1(b). Weights are not temporal
modulations as in delay system implementations of RC [13],
and therefore can be implemented by passive attenuations in re-
flection or transmission. Such passive weights are ultimately en-
ergy efficient and typically do not result in a bandwidth
limitation. In this specific implementation, once trained, mirrors
could simply remain in their position, and, if mechanically
clamped, would not further consume energy. Finally, readout
Eq. (4) is optically performed for all elements in parallel.

4. PHOTONIC LEARNING

The task is now to tailorW DMD
i�1…N ,k during k � 1, 2,…,K learn-

ing iterations such that output yout�n� 1� produces the desired
response to the input u�n� 1� at k � K . Two hundred points of
the chaotic Mackey–Glass (MG) sequence [3] are used as the in-
jected training signal u�n� 1�. From the RNNÂ’s output we re-
moved the first 30 data points due to their transient nature. The
remaining output was inverted, its mean subtracted and normal-
ized by its standard deviation, creating ỹoutk �n� 1�. At each iter-
ation we modify the RNN’s output weights and determine the
normalized mean square error (NMSE) εk between ỹoutk �n� 1�
and u�n� 2�. A modification at k is rewarded if it resulted in
εk < εk−1. We therefore teach our photonic RNN to perform
one-step-ahead prediction via a form of reinforcement learning.
Parameters of the MG sequence were identical to [17], using an
integration step size of 0.1.

Starting at k � 1, the N readout weights W DMD
i�1…N ,1 ∈ �0, 1�

are randomly initialized, the 170 points of ỹ out1 are measured, and
ε1 is determined. For the next (k � 1) and all following learning

iterations, we select position l k of the readout weight to be
modified according to

Wselect
k � rand�N � ·Wbias, (5)

�l k,W select,max
k � � max�Wselect

k �, (6)

W DMD
l k , k

� ¬ �W DMD
l k , k−1

�: (7)

Here, rand�N � creates a random vector with N entries, and
Wbias ∈ �0, 1� is randomly initialized if k � 2. Entry
W DMD

i�l k , k�k is therefore inverted [Eq. (7)] at the position of the
largest entry in Wselect

k . Wbias is updated according to

Wbias � 1

N
�Wbias, W bias

l k
� 0: (8)

Its values are therefore increased by 1
N each learning iteration,

with the most recently updated set to zero. Consequently,
Wbias biases learning away from modifying weights that have re-
cently been optimized, which in simulations showed significantly
faster learning convergence. Technically, our exploration strategy
resembles a stochastic gradient descent.

After the readout weight has been inverted, we record the new
error signal εk and calculate

r�k� �
�
1 if εk < εk−1
0 if εk ≥ εk−1

, (9)

W DMD
l k , k

� r�k�W DMD
l k , k

� �r�k� − 1�W DMD
l k , k−1

, (10)

where r�k� is the reward for the recent modification. On the basis
of this reward, the current DMD configuration is kept if perfor-
mance is improved; otherwise, we revert back to the previous,
better configuration at k − 1. Equations (9) and (10) therefore
reinforce modifications that were found beneficial.

At this stage, we would like to highlight a significant difference
between NNs emulated on digital electronic computers and our
photonic-hardware implementation. In our system, all connec-
tion weights are positive, and WDMD is Boolean. This restricts
the functional space available for approximating the targeted in-
put–output transformation. As a result, first evaluations of the
learning procedure and prediction of the MG series suffered from
minor performance. However, we were able to mitigate this re-
striction by harnessing the non-monotonous slope of the cos2

nonlinearity. We randomly divided the offset phases θiji�1…N ,
resulting in nodes with negative and positive slopes of
their response function. Locally scanning offsets for optimal
performance, we chose θ0 � 42 �̂ 0.34π and θ0 � Δθ �
106 �̂ 0.86π, respectively, with a probability of 1 − μ for
θi � Θ0. Values for θ0 and θ0 � Δθ are given in units of
SLM gray scales and are connected to the angular argument
via Eq. (1). As RNN-states andWDOE entries are exclusively pos-
itive, the nonlinear transformation of nodes with θi � Θ0 is pre-
dominantly along a positive slope, and for θi � Θ0 � ΔΘ, along
a negative slope. This enables the reinforcement learning
procedure to select from nonlinear transformations with positive
and negative slopes. We used feedback β � 0.8 and injection
gain γ � 0.4, and learning curves for various ratios
(μ � �0.25, 0.35, 0.45, 0.5�) are shown in Fig. 2(a). They reveal
a strong impact of this symmetry breaking. Optimum
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performance for each μ is shown in Fig. 2(b). Best performance is
found for a RNN operating around almost equally distributed
operating points at μ � 0.45. This demonstrates that the absence
of negative values in WDMD, WDOE, and x can be partially com-
pensated for by incorporating nonlinear transformations with
positive as well as negative slopes. This result is of high signifi-
cance for optical NNs, which, e.g., motivated by robustness
considerations, renounce making use of the optical phase to
implement negative weights.

We further optimized our system’s performance by scanning
the remaining parameters β and γ. In Fig. 3(a), we show the error
convergence under optimized global conditions for a training
sample size of 500 steps (blue stars). The error efficiently reduces,
and finally stabilizes at ε ≈ 0.013. Considering learning is limited
to Boolean readout weights, this is an excellent result. After train-
ing, the prediction performance is evaluated further on a sequence
of 4500 consecutive data points that were not part of the training
dataset. As indicated by the red line in the same panel, the testing
error matches the training error. We can therefore conclude that
our photonic RNN successfully generalized the underlying target
system’s properties. The excellent prediction performance can be
appreciated in Fig. 3(b). Data belonging to the left y axis (blue
line) shows the recorded output power, while on the right y axis
(red dots), we show the normalized prediction target signal. A
difference between both is hardly visible, and the prediction error
ε (yellow dashed line) is small. Down-sampling the injected

signals by 3 creates conditions identical to [17,18]. Under these
conditions, our error (ε � 0.042) is larger by a factor of 2.2 rel-
ative to a delay RC based on a semiconductor laser [17] and by
6.5 relative to a Mach–Zehnder-modulator-based setup [18].
These comparisons have to be evaluated in light of the signifi-
cantly increased level of hardware implementation in our current
setup. In [17,18], readout weights were applied digitally in an off-
line procedure using weights with double precision. In [18], a
strong impact of digitization resolution on the computational per-
formance was identified, suggesting that ε can be significantly
reduced by increasing the resolution of WDMD.

5. CONCLUSION

We demonstrated a photonic RNN consisting of hundreds of
photonic nonlinear nodes and the implementation of photonic
reinforcement learning. Using a simple Boolean valued readout
implemented with a DMD, we trained our system to predict
the chaotic MG sequence. The resulting prediction error is very
low despite the Boolean readout weights. Recently, a random
weight update for photonic reinforcement learning has been dem-
onstrated based on ultra-fast optical processes [19]. Importantly,
we have realized a fully parallel set of photonic readout weights
based on a DMD, an off-the-shelf technology with a wide range
of commercial and scientific applications [20].

In our work, we demonstrate how symmetry breaking inside
the RNN can partially compensate for exclusively positive inten-
sities in our analog NN system. These results resolve a compli-
cation of general importance to NNs implemented in analog
hardware. Hardware-implemented networks and readout weights
based on physical devices open the door to a new class of experi-
ments, i.e., evaluating the robustness and efficiency of learning
strategies in fully implemented analog NNs. The final step, a
photonic realization of the input, should be straightforward, as
it requires only a complex spatial distribution of the input infor-
mation. An additional development crucial for the relevance
of photonic NNs is the realization of high-dimensional outputs.
In our spatio-temporal RNN, one could employ, individually or
even simultaneously, spatial and spectral multiplexing of the
output. Also, our system is not limited to the reported slow
opto-electronic system. Extremely fast all-optical systems can be
realized employing the same concept, since we intentionally
implemented a 4f architecture to allow for self-coupling [14].
Finally, after our proof of principle, other and more advanced
learning strategies should be investigated.
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