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ABSTRACT

The coupling between ion-acoustic waves (IAWs) and a neutrino beam undergoing flavor oscillations

in a dense, relativistically degenerate plasma is analyzed. The neutrino-driven streaming instability of
the IAWs is investigated with relevance to plasma conditions at the last stage of stellar evolution in a

massive supernova progenitor. The influence of neutrino beam parameters such as the energy of the

incident neutrino beam and eigen-frequency of the neutrino flavor oscillations on the instability growth

rate is obtained numerically. It is observed that the neutrino flavor oscillations significantly affect the
neutrino-driven instability of the IAWs. Our results also indicate that the time period for the onset

of the streaming neutrino-driven instability is shorter than the typical time period of a core-collapse

supernova explosion. The findings of this investigation may shed new light on the understanding of

underlying physical mechanism responsible for the core-collapse supernova.
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1. INTRODUCTION

The mechanism of a core-collapse supernova due to the gravitational death of a massive star is considered to be

one of the most complex and physically rich astrophysical phenomenon (Jankaa et al. 2007). The investigation of

a supernova comprises the study of plasma dynamics in a strong gravitational field while considering the transport

of intense neutrino beams from the core to the outer layers of the supernova progenitor. At the advanced stages
of stellar evolution, the electron-positron pair annihilation is the main process responsible for the production of

neutrinos. However, during the collapsing stage, electron capture by the Fe-peak elements becomes the dominant

neutrino emission process. If the mean-free path of these neutrinos is much shorter than the size of the dense core of

the star, the neutrinos interact with the core a number of times before diffusing out of the core (Mezzacappaa & Messer

1999). The interaction of neutrinos with the core plasma may lead to different kinds of hydrodynamic instabilities
in the supernova core during the first few seconds of the explosion. These instabilities are of potential importance as

they may trigger the explosion, or create the seed for the ejecta asymmetries observed later on.

Due to their critical role in the energy and momentum transfer that causes the Type II supernova, several authors

have over the past few decades investigated the nonlinear interaction of intense neutrino beams with plasmas (Chiueh
1993; Bingham et al. 1994, 1996; Serbeto 1999; Shukla et al. 1999; Silva et al. 1999, 2000; Serbeto et al. 2002).

Quantum mechanically, it is proposed that a neutrino spends some of its time as a combination of two virtual particles,

one of which is an electron and the other a W+-boson. The motion of neutrinos through the plasma tends to influence

these virtual charged particles, which leads to a form of inhomogeneous Debye shielding of the particles, thus giving

rise to a net electric charge and the induced electromagnetic properties of the neutrinos in plasma. The small neutrino
charge in plasma is given by Gjν =

√
2GF (δjeδννe + (Ij − 2Qjsin

2 θw)), where j denotes the electron (e) and proton

(p) species of plasma, GF is the Fermi’s coupling constant of weak interaction, θw is the Weinberg mixing angle
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(sin2 θw ≈ 0.23), Ij is the weak isotopic spin of the particle of species j (equals −1/2 for electrons and +1/2 for protons)

and Qj = qj/e is the particle normalized electric charge. A weakly charged neutrino beam propagating through a

dense plasma interacts with the plasma electrons via electro-weak interaction and may give rise to a neutrino-driven

instability.
Bingham et al. (1994) studied the collective interactions between dense plasmas and neutrinos emitted in the core

of a supernova. They showed that an intense neutrino beam couples nonlinearly with collective plasma oscillations

which leads to the transfer of neutrino energy to Langmuir waves which further heat the plasma electrons through

collisional damping. Another analysis by Chiueh (1993) showed that the interaction of neutrinos with ion sound waves

gives rise to a neutrino-driven instability and the instability growth rate scales as ≈ GF . The instability growth rate
dominates over the viscous damping of the sound waves and leads to a net growth of the instability. The detailed

physics of collective interactions between neutrinos and plasmas has been highlighted (Shukla et al. 1999) and it has

been shown that an intense neutrino beam may lead to two-stream instabilities, inhomogeneities and magnetic fields in

plasmas. Serbeto et al. (2002) used a hydrodynamic description to analyze the ion-sound wave excitation by intense
neutrino beams. They obtained a neutrino-modified dispersion relation for the ion-sound waves and proposed that the

generated ion waves may be responsible for the energy-momentum transfer from neutrinos to the plasma environment

of Type-II supernova which can enhance the stalled supernova shocks.

Depending upon the properties of medium through which neutrinos propagate, there occurs a two-way periodic trans-

formation of one type of neutrino into another (Mikheev & Smirnov 1986, 1987; Smirnov 2005). This phenomenon
referred to as neutrino flavor oscillations was found to be responsible for the solar-neutrino deficit problem (Bethe

1986). When the neutrinos interact with plasma, it causes a resonant coupling between different flavor states. Recently,

researchers have investigated the interaction of a neutrino beam with plasma while considering the effect of neutrino

flavor oscillations (Mendonça & Haas 2013; Mendonça et al. 2014; Haas et al. 2017a,b). Mendonça & Haas (2013)
introduced a new model for the joint neutrino-flavor and plasma oscillations by formulating a neutrino flavor polar-

ization vector in a plasma. Mendonça et al. (2014) found that the electron plasma waves excited by the intense

neutrino beams are linked with the flavor oscillations of neutrinos, and that the dispersion relation and growth rates

of neutrino-driven instabilities are directly influenced by the flavor oscillations.

The plasmas present in the core of a star at the last stages of stellar evolution as well as in white dwarf interiors,
neutron stars, etc., are dense with electron number densities greater than 1030cm−3. At such high number densities,

the Fermi energy of electrons is greater than the thermal energy, i. e., EFe > KBTe and the electrons are degenerate.

Hence, it becomes important to incorporate the quantum effects such as electron degeneracy pressure while analysing

the instability phenomenon in a dense astrophysical plasma. On the other hand, relativistic effects depend upon
the relative magnitudes of the Fermi energy of the electron fluid and the rest mass energy of electrons. In other

words, if EFe > mec
2, the charged species are considered to be relativistic. In a classic paper, Chandrasekhar

(1935) specified the form of the degeneracy pressure in a dense plasma ranging from the non-relativistic to the ultra-

relativistic limits. Haas (2016) presented a detailed theoretical description of the model equations suitable for an

ultra-relativistic degenerate plasma by comparing the expressions for the dispersion relation of ion acoustic waves using
both fluid and kinetic approaches. In the prolific plasma literature, various authors have analysed the ion acoustic

waves in dense astrophysical plasmas while taking into account the relativistic and degenerate character of the electrons

(Eliasson and Shukla 2012; Masud and Mamun 2013; Rahman 2017; Haas 2016; Sharma 2018; Iqbal et al. 2018).

Haas and Eliasson (2015) presented a study of two-stream instability mode in a magnetized plasma while considering
a quantum hydrodynamic model (QHD). The authors reported a new transverse model of streaming instability due to

streaming electron beams having properties of a non-relativistic dense Fermi gas and immobile ions in the presence of

an external magnetic field. An investigation of ion acoustic waves was reported by Khan et al. (2016) in an extremely

dense, magnetized, astrophysical plasma containing non-relativistic ions and relativistic degenerate electrons. They

analysed the dispersive effects due to plasma density and magnetic field strength on the triggering of IAWs in very high
density plasmas under extreme conditions. Prajapati (2017) reported the analysis of neutrino-beam driven instability

in a homogenous, self-gravitating, quantum plasma in the presence of a neutrino beam, but where the influence of

neutrino flavor oscillations was not taken into consideration.

Due to the slow nature of both the neutrino flavor oscillations and the IAWs, it is interesting to investigate the res-
onance between ion-acoustic waves and neutrino flavor oscillations. Haas et al. (2017a) studied the coupling between

ion-acoustic waves and neutrino oscillations in a non-relativistic electron-ion plasma in context with the observations of

supernova 1987A (Hirata et al. 1987). They concluded that the neutrino flavor oscillations excite a new fast unstable
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mode by transfer of energy to the plasma in extreme astrophysical scenarios. Further, it has been reported that the

coupling between neutrino flavor oscillations and the IAWs in a completely ionized plasma is not influenced by the

collisional effects (Haas et al. 2017b). It is a well-established fact that a massive star after exhausting all of its nuclear

fuel, contracts under its own gravitational pull until it reaches a stage when there is an abundance of iron nuclei as
the major trace element and the electrons are relativistic as well as degenerate. Many theoretical and simulation

studies (Connor 2015; Fröhlich et al. 2017; Ott et al. 2018) have investigated the neutrino beam-driven instability

mechanism responsible for a core-collapse supernova in a supernova progenitor.

The motivation of present investigation is to explore the dynamics of supernova explosion via the neutrino-plasma

interaction process in the dense, degenerate core of a supernova progenitor star, including the impact of neutrino-flavor
oscillations on the neutrino-driven instability of the IAWs in a dense astrophysical plasma such as that at the last stage

of stellar evolution comprising ultra-relativistic degenerate electrons and non-degenerate ions. It is expected that if a

supernova explosion occurs at a distance of ∼ 100 parsec, the neutrinos emitted in the process may be detected by

the neutrino detector KamLAND (Yoshida 2016). In the present study, we have investigated an instability regime of
neutrino-driven streaming instability with predicted parameters for a supernova explosion in a progenitor star. We have

highlighted the effects of eigen-frequency of the neutrino-flavor oscillations on the growth rate of the instability and

the influence of different physical parameters that are a characteristic of the streaming neutrino beam and the plasma

environment. Our investigation gives a broader understanding of the instabilities in dense astrophysical environments

such as degenerate cores of massive stars, which may seed or influence the dynamics of the core-collapse in a supernova
progenitor.

The manuscript is structured as follows: Section 2 presents the fluid model equations. A dispersion relation for ion

acoustic waves in a relativistic degenerate plasma in the presence of a neutrino beam with flavor oscillations is derived

in Section 3, which is analyzed in Section 4 with respect to the neutrino beam instability. Finally, concluding remarks
are given in Section 5.

2. FLUID MODEL EQUATIONS OF PLASMA AND NEUTRINO BEAM

Using a neutrino-modified fluid approach, we shall investigate the instability of IAWs in an unmagnetized, dense

plasma containing cold heavy ions and ultra-relativistic degenerate electrons interacting with a neutrino beam under-
going two-flavor oscillations. The continuity and momentum equations for the ions are written in the relativistic form

as,
∂(γini)

∂t
+∇ · (γiniui) = 0, (1)

mini

(

∂

∂t
+ ui · ∇

)

(γiui) = −qini∇φ, (2)

where, ni and ui are, respectively, the proper number density and velocity of the ion fluid, γi = (1 − ui
2/c2)−1/2 is

the relativistic factor for ions, mi depicts the mass of the ion species, φ is the electrostatic potential and qi = Zie is

the ion charge, where Zi is the ion charge number. The electron dynamics is modelled using a relativistic form of the

electron continuity and momentum equations,

∂(γene)

∂t
+∇ · (γeneue) = 0, (3)

meH

(

∂

∂t
+ ue · ∇

)

(γeue) = − γe
ne

(

∇+
ue

c2
∂

∂t

)

PFe + e∇φ+
√
2GF (Eν + ue ×Bν), (4)

where, γe = (1 − ue
2/c2)−1/2 is the relativistic factor for electrons and H is the non-dimensional enthalpy density

defined as H =
√

1 + ξ2, where ξ = ~(3π2ne0)
1/3/mec. For the ultra-relativistic degenerate electrons ξ2 ≫ 1, so

that H ≈ ξ. For the slowly evolving IAWs, the electrons are considered to be inertialess, so the terms on the left
hand side of the Equation (4) will be omitted below. The electron Fermi pressure is given by the Chandrasekhar’s

ultra-relativistic equation of state (Chandrasekhar 1935) as PFe = ( 3π )
1/3 hc

8
ne

4/3, where h is Planck’s constant and

c is the speed of light. Here, ne and ue are the proper number density and velocity of the electron fluid. In Equation

(4), GF is the Fermi’s coupling constant of weak-interactions and the neutrino’s effective weak electric and magnetic
field are given by

Eν = −∇Ne −
1

c2
∂

∂t
(Neve) and Bν =

1

c2
∇× (Neve), (5)
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respectively, where Ne is the number density, ve is the fluid velocity of electron neutrinos and c is the speed of light.

It should be noted that the Fermi’s weak force couples the electron neutrinos with the electrons (leptons) only and

not with the ions (hadrons). The system of equations is closed by Poisson’s equation

∇2φ =
e

ǫ0
(γene − Ziγini), (6)

where ǫ0 is the electric permittivity of vacuum. We here consider large scale ion acoustic waves, where the electrons
stream to neutralize the ions, so that Poisson’s Equation (6) can be replaced by the quasi-neutrality condition γiZini =

γene. Also, for IAWs the electron and ion fluid velocities are non-relativistic, and hence the relativistic gamma factors

(γi and γe) are reduced to ≈ 1.

In order to investigate the coupling between plasma and neutrino oscillations, we consider two flavor neutrino

oscillations and hence, represent the continuity equations for the electron and muon-neutrino in terms of the quantum
coherence factor

∂Ne

∂t
+∇ · (Neve)=

1

2
NΩ0P2, (7)

∂Nµ

∂t
+∇ · (Nµvµ)=−1

2
NΩ0P2, (8)

where, N = Ne + Nµ is the total neutrino fluid density, Nµ and vµ is the muon neutrino fluid density and velocity

respectively, and P2 is the quantum coherence factor in flavor polarization vector P = (P1, P2, P3). Also, Ω0 =
ω0 sin 2θ0, where, ω0 = ∆m2c4/2E0, ∆m2 is the squared neutrino mass difference, E0 is the neutrino spinor’s energy in

the fundamental state and θ0 is the neutrino oscillations mixing angle. The terms on the right-hand side of Equations

(7)-(8) with opposite sign depict the contribution from neutrino oscillations to the rate of change in electron and muon

neutrino density flows. The global density of neutrinos is conserved as

d

dt

∫

(Ne +Nµ)dr = −
∫

∇.(Neve +Nµvµ)dr = 0, (9)

where the volume integrals are over all space. The neutrino dynamics is modelled by the relativistic momentum

equations
(

∂

∂t
+ ve.∇

)

pe =
√
2GF

(

−∇ne −
1

c2
∂

∂t
(neue) +

ve

c2
× (∇× neue)

)

, (10)

∂pµ

∂t
+ (vµ · ∇)pµ = 0, (11)

where pe,µ = Ee,µve,µ/c
2 are the relativistic momenta of the electron and muon neutrinos and Ee,µ = mνc

2(1 −
ve,µ

2/c2)−1/2 are the energies of the electron and muon neutrino beams. The time evolution of the flavor polarization

vector in a material medium is given by

∂P1

∂t
= −Ω(ne)P2,

∂P2

∂t
= Ω(ne)P1 − Ω0P3 and

∂P3

∂t
= Ω0P2. (12)

where Ω(ne) = ω0(cos 2θ0 −
√
2GFne/~ω0).

3. SMALL AMPLITUDE WAVE DISPERSION RELATION

We linearize Equations (1)-(12) by considering plane wave perturbations of the form f = f0 + δf exp (ι(k · r− ωt))

with |δf | << f0, where f represents a physical quantity. The equilibrium values of the physical quantities for a

homogenous static equilibrium are (Haas et al. 2017a):

ne0=Zini0, ue0,i0 = 0, φ = 0,

Ne=Ne0, Nµ = Nµ0, ve = vµ = v0. (13)

Also, for the flavor polarization vector, we consider

P01 =
Ω0

Ων
, P02 = 0, P03 =

Ω(ne0)

Ων
=

Ne0 −Nµ0

N0

. (14)



5

Here, we have Ω2
ν = Ω2(ne0) + Ω2

0, where Ων represents the eigen-frequency of two-flavor neutrino oscillations and

N0 = Ne0 +Nµ0 is the total equilibrium number density of the neutrino beam. The equilibrium values for the flavor

polarization are obtained from the properties of neutrino oscillations in a fixed homogenous medium, where it is

considered that ∇ = 0. Also, by using that Ziδni = δne, we substitute the expression for the electrostatic potential φ
from the ion momentum equation in the electron momentum equation. The linearized electron momentum equation

(4) after taking its scalar product with k becomes

(

ω2 − V 2
s k

2
)

δne +

√
2GFZine0

mic2
(

(ωk · v0 − c2k2)δNe + ωNe0k · δve

)

= 0. (15)

where, Vs =
√

Zi~c(3π2ne0)1/3/3mi is the ion-acoustic speed in the ultra-relativistic degenerate plasma. Linearizing

the electron neutrino momentum Equation (10), we obtain

c2(ω − k · v0)δpe=E0(ω − k.v0)δve + E0(ω − k.v0)

(

1− v20
c2

)−1(

v0 · δue

c2

)

=

√
2

c2
GF

(

c2kδne − ωne0δue − ne0(v0 × (k× δue))
)

. (16)

where E0 ≡ Ee0 is the energy of the incident electron neutrino beam. From Equation (16), we obtain the perturbed
electron neutrino beam velocity

δve =

√
2GF

E0(ω − k · v0)

(

c2kδne − ωne0δue −
(

(k · v0)δne −
ωne0

c2
v0 · δue

)

v0 − ne0((v0 · δue)k− (k · v0)δue)

)

. (17)

The linearization of electron continuity equation (3) yields the perturbed electron velocity

δue =
ωkδne

ne0k2
. (18)

Using Equation (18) in Equation(17), we obtain

δve =

√
2GF

E0(ω − k · v0)

(

1− ω2

c2k2

)

(c2k− (k · v0)v0)δne. (19)

Using Equation (19) with Equation (15), we find
(

ω2−Vs
2k2

)

δne+

√
2GFne0Zi

mic2
(ωk ·v0 − c2k2)δNe+

2GF
2Ne0ne0Ziω

mic2E0(ω − k · v0)

(

1− ω2

c2k2

)

(c2k2− (k ·v0)
2)δne = 0. (20)

On the other hand, from the electron neutrino continuity Equation (7), we have

(ω − k · v0)δNe −Ne0k · δve =
ιN0Ω0δP2

2
. (21)

The effect of neutrino oscillations is given by δP2 term in Equation (21), hence, we obtain the expression for the
perturbation of quantum coherence vector from Equation (12) as

δP2 = −ι

√
2Ω0ωGF δne

(ω2 − Ων
2)~Ων

. (22)

By substituting Equations (19), (20) and (22) in Equation (21), we finally obtain the dispersion relation for IAWs in

an ultra-relativistic degenerate plasma in the presence of a neutrino beam with flavor oscillations as

ω2 = V 2
s k

2 +A
Ω0

2ω(c2k2 − ω(k · v0))

~Ων(ω − k · v0)(ω2 − Ων
2)

+B

(

1− v0
2cos2 θ

c2

)

2c2k2(c2k2 − ω2)

E0(ω − k · v0)2
, (23)

where

A =
ZiGF

2Ne0ne0

mic2
and B =

ZiGF
2N0ne0

mic2
. (24)
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Figure 1. The variation of the growth rate of the neutrino-driven instability with the number density N0 of the neutrino beam
for different values of the eigen-frequency Ων of the neutrino flavor oscillations. Red (solid) curve: Ων = 3× 109 rad s−1, Blue
(dashed) curve: Ων = 4× 109 rad s−1, Black (dotted) curve: Ων = 5× 109 rad s−1. The other parameters are: E0 = 1.94 MeV,
θ = 89.72◦, ne0 = 3.23× 1037m−3, Zi = 2, mi = 56 a.m.u.

Figure 2. The variation of the growth rate of the neutrino-driven instability with energy E0 of the neutrino beam for different
charge states Zi of iron. Red (solid) curve: Zi = 1; Blue (dashed) curve: Zi = 2; Black (dotted) curve: Zi = 3. The other
parameters are: N0 = 1.03× 1034m−3, ne0 = 3.23 × 1037m−3, θ = 89.72◦, mi = 56 a.m.u.

4. ANALYSIS OF NEUTRINO BEAM INSTABILITY

For the neutrino beam mode, it is clear from the dispersion relation (23) that the growth rate is maximum for the

following resonance condition
ω ≈ Vsk = Ων = k · v0. (25)

Let us consider the case when ω = Ων +δω, where δω ≪ Ων . By substituting these conditions in the general dispersion

relation (23), we obtain the following equation

2Ων δω3 − Vosc δω − (Vbeam +ΩνVosc) = 0 (26)

where, Vbeam = 2Bc4k4

E0

(

1− v0
2
cos

2 θ
c2

)

and Vosc = AΩ0
2c2k2

2~Ων

2 are terms contributed by the neutrino beam and the

neutrino flavor oscillations, respectively. We have numerically solved Equation (26) to find the growth rate δωimg of
the neutrino beam driven instability. It is clear that the conditions (25) are met only for perturbation wave number

of the order ∼ Ων/Vs, giving large wavenumber or short wavelength perturbations.

For the numerical analysis, we have used the parameters at the core collapse stages of a massive star such as

Betelgeuse, as given in a study by Yoshida (2016) of time evolution of the neutrinos spectra emitted from supernova
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Figure 3. The variation of the growth rate of the neutrino-driven instability with the electron number density ne0 for different
values of the ion mass mi. Red (solid) curve: mi = 1 a.m.u.; Blue (dashed) curve: mi = 12 a.m.u.; Black (dotted) curve:
mi = 56 a.m.u. The other parameters are: N0 = 1.03 × 1034m−3, E0 = 1.94 MeV, Zi = 1, θ = 89.72◦.

progenitors. The values of various plasma parameters for iron plasma at the core collapse stage of a progenitor star are
considered as : E0 = 1.94 MeV, |v0| = 0.998 c, N0 = 1.013× 1034 m−3, ne0 = 1.23× 1037 m−3, T = 6.5× 109K, mi =

56 a.m.u and Zi = 1, 2, 3 for Fe (I), Fe (II) and Fe (III) ions respectively. Other parameters are: ∆m2c4 = 3×10−5 eV2,

sin(2θ0) = 10−1, GF = 1.45× 10−62 J m3. For these parameters, the electron Fermi energy is much larger than both

the thermal energy (EFe ≫ kBTe) and the rest mass energy of the electrons (EFe ≫ mec
2). Hence, the assumption of

ultra-relativistic and degenerate electrons is justified which is also the case for a dense iron core of a massive star at the
last stage of stellar evolution. It has also been proposed in an earlier study that the neutrino beam driven instability

growth rate is larger for perpendicular propagation of the neutrino beam w.r.t. the plasma waves (Prajapati 2017).

However, for the considered set of parameters in the present study, it is found that the condition (25) is satisfied for

a particular value of angle (θ) between the direction of the IAWs and the neutrino beam, which is θ ≈ 89.72◦ for
ultra-relativistic degenerate electrons and Fe(II) ions. Hence, it is clear that the neutrino-driven instability growth

rate attains a maximum value for a near-perpendicular propagation of the neutrino beam w.r.t the IAWs. For the

considered set of parameters, we obtain the eigen-frequency of the neutrino flavor oscillations as Ων = 6.3×109 rads−1

and the ion acoustic speed as Vs = 1.49× 106 m s−1 ≪ c. The critical wave number for the neutrino-driven instability

is evaluated to be k = 4.2× 103m−1, hence, the neutrino-driven instability shall be significant for large wavenumber or
short wavelength perturbations. The time period of the instability growth for the considered parameters is numerically

determined using MATHEMATICA from the positive imaginary root of Equation (26) and is found to be ≈ 4.5 ms

which is small enough to alter the dynamics of supernova explosion due to core collapse of a progenitor star.

The dependence of the growth rate δωimg of the neutrino beam instability on the different physical parameters is
depicted in Figures 1-3. The influence of neutrino flavor oscillations and the number density of the neutrino beam

on the instability growth rate is presented in Figure 1. It is shown that with an increase in the eigen-frequency of

the neutrino-flavor oscillations and the number density of the neutrinos, the instability growth becomes more rapid.

It is inferred that as the eigen-frequency of the neutrino flavor oscillations resonates with the frequency of IAWs,

the instability growth rate is significantly enhanced which may be due to an increased energy exchange between the
neutrino beam and the ion acoustic waves. It is clear that the neutrino-flavor oscillations have a significant influence

on the neutrino-driven instability phenomenon.

The variation of the neutrino-driven instability growth rate with the neutrino energy for different values of the ion

charge number is depicted in Figure 2. It is seen that the growth rate of the instability decreases with an increase in
energy of the neutrino beam. In other words, the enhanced energy of the neutrino beam has a stabilizing influence

on the neutrino-driven streaming instability. It is also noticeable from Figure 2 that for a higher ion charge state, the

neutrino-driven instability growth rate decreases. Hence, the IAWs become more rapidly unstable if the abundant ion

species are iron with the charge state Fe (I) compared to Fe (II) and Fe (III).

The influence of the number density of ultra-relativistic, degenerate electrons on the instability of IAWs in the
presence of neutrinos is illustrated in Figure 3. It is seen that an enhancement in the number density of ultra-
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relativistic degenerate electrons tends to an increase of the growth rate of the neutrino-driven instability (δωimg). In

other words, the dense, degenerate core of a progenitor star gets destabilized in a much shorter time if the electron

gas interacting with the streaming neutrino beam is denser. The effect of different ion species on the neutrino beam

instability is also seen in Figure 3. It is remarked that the ion species play a prominent role for the instability criterion
of the IAWs in the present case. As the ion species become more massive, for example as the concentration of the

dense core-plasma and its surrounding layers is changed when carbon gets converted into iron, the neutrino instability

growth is significantly increased. It is concluded that the neutrino beam instability is most prominent if a dense

neutrino beam having minimal energy interacts with an electron dense progenitor core containing iron as a major

trace element.

5. CONCLUSIONS

We have investigated the neutrino-driven instability mechanism by considering neutrino-flavor oscillations in a plasma

containing cold, heavy ions and electrons that are relativistic and degenerate. The instability phenomenon is studied

with its relevance to the core-collapse supernova explosion by considering physical parameters of the advanced stages

of a progenitor star. It is observed that the neutrino parameters such as the energy and number density of neutrinos
and the eigen-frequency of neutrino-flavor oscillations, have a profound influence on the neutrino-driven instability

growth rate. The time period of the neutrino-driven instability process is of the order of a few milliseconds and hence

the instability is fast enough to alter the dynamics of a core-collapse supernova explosion which occurs at the time

scale of few seconds. The findings of this study of plasma wave instability due to a neutrino beam carrying out flavor

oscillations gives new insights into understanding the process of core-collapse supernova and in predicting the dominant
mechanism for the collapse.
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