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Abstract
Addressing safety is considered a priority starting from the design stage of any vessel until end-of-life. However, despite all safety
measures developed, accidents are still occurring. This is a consequence of the complex nature of shipping accidents where too
many factors are involved including human factors. Therefore, there is a need for a practical method, which can identify the
importance weightings for each contributing factor involved in accidents. As a result, by identifying the importance weightings
for each factor, risk assessments can be informed, and risk control options can be developed and implemented more effectively.
To this end, Marine Accident Learning with Fuzzy Cognitive Maps (MALFCM) approach incorporated with Bayesian networks
(BNs) is suggested and applied in this study. The MALFCM approach is based on the concept and principles of fuzzy cognitive
maps (FCMs) to represent the interrelations amongst accident contributor factors. Thus, MALFCM allows identifying the
importance weightings for each factor involved in an accident, which can serve as prior failure probabilities within BNs.
Hence, in this study, a specific accident will be investigated with the proposed MALFCM approach.

Keywords Maritime accidents . Maritime safety . Maritime accident learning with fuzzy cognitive maps (MALFCMs) . Human
factors . Bayesian networks (BNs)

Introduction

The analysis of historical accident data has revealed that mar-
itime accidents have been traditionally a concern for the ship-
ping industry, as they incur into significant economic conse-
quences, social, and environmental impact (Eliopoulou et al.
2016). Therefore, aiming to reduce the accident rate, maritime
organizations are directing efforts into the continuous devel-
opment and implementation of safety measures, which overall
aim to improve maritime safety significantly. Nevertheless,
despite all the efforts, maritime accidents are still happening
and they remain a major concern when around 90% of world
trading is still carried out by shipping companies (Chauvin
et al. 2013).

Moreover, due to inconsistent methods followed during
accident investigations, and the additional complexity of
identifying all the variables involved into an accident

scenario, it is extremely challenging to integrate lessons
learnt from past accidents into safety assessments.
According to Kristiansen (2013) there is no clear answer to
why accidents happen., as they are complex processes, in
which there is no a single factor solely responsible for the
accident outcome. However, if it is possible to identify and
cleverly measure accident-contributing factors, efforts can be
focused on addressing these factors to reduce the accidents
rate and therefore improve safety.

When analyzing the literature, regardless of the industry in
scope, it becomes evident that humans have a significant role
into past accidents. For instance, human errors are responsible
for at least 66% of the accidents in strategic sectors such as
nuclear and aerospace. In addition, they account for more than
80% of accidents within the maritime industry (Graziano et al.
2016; Islam et al. 2018; Kurt et al. 2016; Turan et al. 2016).

Hence, this paper aims to identify and weight the impor-
tance of each human factor that contributes to the develop-
ment of past maritime accidents. Thus, this paper applies a
new Fuzzy Cognitive Map (FCM)-based technique, Marine
Accident Learning with Fuzzy CognitiveMaps (MALFCMs),
incorporates BNs to reassess the accident model, and demon-
strates it through a case study. By applying MALFCM
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method, it will be possible to weight the individual importance
of each human factor from the system under study.
Furthermore, this paper proposes to use the information pro-
vided by MALFCM as an input to create a Bayesian Network
(BN) model. By creating above-mentioned model, it would be
possible to study how the accident probabilities might change
by addressing some specific human factors (i.e. it would allow
to study the system from a “what-if” perspective).

By following the proposed approach, it will be possible to
understand the importance of each human factor in maritime
accidents, which would allow researchers to incorporate these
factors into risk assessments in a more effective way. Thus, by
studying the model from a what-if perspective, it would be
possible to inform risk assessments and predict the effective-
ness of risk control options. TheMALFCM results can then be
feed into a Bayesian network (BN), which can update and
adapt the failure model response as the knowledge of the
entire human factor risks become apparent and available.
The BN has a robust computation engine that can provide
real-time information about the MALFCM results.

This paper is structured as follows: First, a literature review
is provided regarding the FCMmethod, comprising mainly its
mathematical representation, main areas of application and its
practical limitation, which is overcome by applying
MALFCM method. Thus, this section also provides a com-
prehensive review of the BN method. In addition, in "Fuzzy
cognitive maps (FCMs) theory" a detailed description of the
methodology is provided. Moreover, in "Bayesian network
(BN)" the results and discussion are shared. Finally, the con-
clusions, limitations and recommendations for further work
are included in "Methodology".

Fuzzy cognitive maps (FCMs) theory

When analyzing a complex accident scenario, one of the main
challenges lays in the process of classifying the factors in-
volved in it (Wolpert 1992). From the extensive list of avail-
able classificationmethods, FCMs present a set of advantages.
First, FCMs allow to model causal relationships between ac-
cident variables (Kardaras and Karakostas 1999; M. Khan
et al. 2001). Second, an FCM is a suitable technique to repre-
sent hazy degrees of causality relations between components
(S. Lee and Han 2000). Third, they are considered tradition-
ally as a powerful tool for modelling systems that cannot be
explained entirely mathematically (Stylios and Groumpos
1999). In addition, vector-matrix operations allow an FCM
model to become a dynamic system (M. Khan et al. 2001; B
Kosko 1994) by allowing the system to evolve with time.

By definition FCMs are extension of cognitive maps, in
which the main difference with traditional cognitive maps is
that the concepts represented in an FCM are weighted (Bart
Kosko 1986). Thus, FCMs aim to model complex chains of
casual relationships and they have become a potential tool for

modelling and analyzing dynamic interactions between con-
cepts or systems in the past years (K. Lee et al. 1996).

For the construction of an FCMmodel, experts of a specific
area of knowledge develop a model based on their experience
in a process composed by three stages. First, key concepts are
identified within a determined area. Second, interrelationships
are proposed between these concepts, identifying if these re-
lations are positive or negative, while in the last step experts
estimate the causal relationship strength (Papageorgiou 2010;
Zare Ravasan and Mansouri 2016). In terms of decision sup-
port, there are two methods to analyze an FCMmodel. Firstly,
a static analysis can be carried out in order to establish the
relative importance of concepts and the causal effects between
nodes (Axelrod 1976; M. S. Khan and Quaddus 2004).
Nevertheless, only a dynamic analysis allow to study and
explore the impact in the decision process with time (M. S.
Khan and Quaddus 2004).

An FCM is mainly characterized by three elements: the
characteristics of the system and signed and weighted arcs
representing the interrelations within the different elements.
The main target in an FCM is to define the relationships be-
tween the different concepts represented in the map, under-
standing the global structure and the dynamics of the system
(Azadeh et al. 2014). Figure 1 shows the structure of a tradi-
tional FCM.

Moreover, within an FCM, each of the concepts is repre-
sented by a number, Ai, that represents its value within the
interval [0,1] (León et al. 2010). It is possible to identify three
types of connections between the concepts described in the
FCM that represents the nature of their respective influence
(Azadeh et al. 2014; León et al. 2010):

(i) The weights between the concepts Ci and Cj is positive
(Wij > 0), which means that an increase in the first con-
cept will lead to an increase in the second concept and
vice versa.

(ii) The weights between the concepts Ci and Cj is negative
(Wij < 0), which means that an increase in the first
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Fig. 1 A simple representation of an FCM, where C represents a concept
and W denotes the interrelation between each pair of concepts (Navas de
Maya et al. 2018)
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concept will lead to a decrease in the second concept and
vice versa.

(iii) There is no relation between the concepts Ci and Cj

(Wij = 0).

According to (Bart Kosko 1986), a traditional formula to
calculate the values of concepts in an FCM is represented in
Eq. 1, in which Ai represents the value of Ci; f is the threshold
function; Wji represents the weight between concepts Ci and
Cj; and Aj is the value of the concept Cj.

A tþ1ð Þ
i ¼ f A tð Þ

i þ ∑n
j¼1; j≠iWjiA

tð Þ
j

� �
ð1Þ

In order to create successfully an FCM, it is necessary to
define three main components. First, an interaction matrix
with dimension n x n where n indicates the number of con-
cepts modelled within the FCM. Thus, a value of zero in the
matrix indicates that a relation does not exist between those
two particular elements, while non-zero elements show not
only that there is a relation between two elements but also
the strength or weight of that relation. Second, an initial state
vector, which shows the initial value of the concepts in the
scenario being modelled at any point in time (t). Finally, a
threshold function which aims to reduce unbounded inputs
to a strict range, to maintain the stability of the qualitative
model (Mohr 1997). Although there are plenty threshold func-
tions available, the Sigmoid function gives any possible value
within the interval [0,1] (Azadeh et al. 2014; Xiao et al. 2012)
and it has been proved that using this function provides greater
benefits (Bueno and Salmeron 2009).

Regarding the dynamic process of an FCM model, once the
process starts, the values of the concepts at each time step (i.e.
step 1, step 2 etc.) will be obtained by following Eq. 2, until the
process stops. The process might stops at any of the following
scenarios (M.Khan et al. 2001; BKosko 1994; Xiao et al. 2012):

(i) The FCM reaches equilibrium, which occurs when after
two consecutive steps repeating the process; both state
vectors obtained are identical. In this situation, the simu-
lation stops and the FCM is considered steady.

(ii) The FCM does not produce a stable state vector. as it
keeps cycling between a certain number of values, (e.g.
0, 0.3, 0.5, 0, 0.3, 0.5, …, 0, 0.3, 0.5). This situation is
known as the “limit cycle”, and it results from a certain
combination of weight values when applying an FCM,
which drive the map away from reaching equilibrium
(Wierzchon 1995). Nevertheless, an alternative solution
to avoid aforementioned limit cycle is to apply an hybrid
system comprising both, FCMs and genetic algorithms
(Mateou and Andreou 2006).

(iii) The FCM does not reach identical values, producing
different state vectors for each step. This possibility is
known as “chaos” and it can appear in complex

scenarios, in which a re-definition of the model would
be required to overcome a chaos situation.

Despite of the fact that FCM is not as well-known as other
methods (Papakostas et al. 2008; Papakostas et al. 2012), it has
been proved to be very promising and worth of further investi-
gation and development (Vergini and Groumpos 2016). Several
studies have addressed the application of FCMs as a classifica-
tion tool in different fields for the past years, proving that FCM is
not only a well-validated classification tool but also its effective-
ness. Thus, FCMs have been widely used in terms of planning
and decision making (Dodurka et al. 2017). Moreover, the inter-
est from both researcher and industry is increasing, and FCMhas
been successfully apply to the areas of medicine (Papageorgiou
and Froelich 2012), control (Papageorgiou et al. 2006), business
(Glykas 2013), robotics (Motlagh et al. 2012), environmental
science (Kok 2009), education (Yesil et al. 2013), energy effi-
ciency (Mpelogianni et al. 2015) and information technology
(Büyüközkan and Vardaloğlu 2012).

Although it has been proved in these studies that an FCM is
an alternative and powerful method to model and analyse dy-
namic interactions between concepts or systems, it has an impor-
tant limitation. As FCMs are designed to transcribe experts’
opinion, its weaknesses lay on the uncertainty related with each
expert’s response. As a result, an FCM can equally encode the
experts’ lack of knowledge. Therefore, the reliability of a tradi-
tional FCM is linked to the experts’ knowledge, background and
familiarity with the topic that is being addressed. In order to
overcome this limitation, a method for Marine Accident
Learning with Fuzzy Cognitive Maps (MALFCMs), which dif-
fers from the traditional FCM approach, is proposed and applied
in this paper, with the aim to establish weights for human factors
involved in maritime accidents successfully. Within this new
method, each FCM is developed through establishing relation-
ships between factors from past accident experiences. Therefore,
the results from the technique followed in this paper might be
considered more objective, as this new approach overcomes the
main disadvantage of fuzzy cognitive maps (i.e. the subjective
results and knowledge deficiencies between experts). Thus,
MALFCM method will be fully explained in the next section
of this paper.

Bayesian network (BN)

Bayesian networks (BNs) are directed acyclic graphs that rely
on the strength of Bayes’ theorem for assessing accident cau-
sations where the causations and their dependencies are all
variables of uncertainty. The BNs consist of random variables
represented by nodes with causations dependencies depicted
by directed arcs linking the nodes. Typically, the BN tend to
satisfy the Markov condition where each node is conditionally
independent of the collection of all its non-descendant nodes
(Du et al. 2015; Neapolitan 2004). The transformation of any
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accident model into BN has been covered in many literature
(Abimbola and Khan 2019; Babaleye and Kurt 2019;
Babaleye et al. 2019; Islam et al. 2018).

Methodology

Data selection

In this study, grounding and stranding accidents involving
general cargo vessels between 2011 and 2016 are examined.
General cargo vessels, which are usually defined as merchant
ships carrying goods and materials from one port to another,
were selected for this study due to the higher number of data
entries when compared with other vessel categories. The dis-
tribution of accident data points regarding the vessel type is
outlined in Table 1, in which cargo ships are the vessels with a
higher number of accidents registered. Thus, Table 2 provides
a further insight into general cargo accidents’ outcome, where
grounding and stranding accidents were identified as the most
common accident type. Therefore, sixteen accidents were ex-
amined and analyzed within this study. Thus, MALFCM
method was applied to these maritime accidents.

Maritime accident learning with fuzzy cognitive maps
(MALFCMs)

MALFCMs method is a Fuzzy Cognitive Map-based tech-
nique, which has been designed to combine expert knowledge
with lesson learnt from past accident experiences, aiming to
provide more reliable weightings, as the input for the scenario
being modelled are partially obtained from real maritime ac-
cidents (i.e. the subjective results and knowledge deficiencies
between experts might be overcome within this method).
Thus, MALFCM method could be described in four main
stages:

(i) Historical data analysis stage
(ii) Expert opinions stage
(iii) FCM stage
(iv) Consolidation of results stage

In the historical data analysis stage, historical data is ob-
tained for the scenario being modelled (e.g. a specific vessel
category or an accident outcome), in order to identify which
human factors leaded into those accidents. Once all the factors
have been identified, each pair of factors is statistically com-
pared to create the interaction matrix described in the previous
section. Furthermore, analysis is also performed to establish
the initial state vector. To create the interaction matrix for the
historical data analysis stage, a comparison between each pair
of factors is performed by following two main steps as
follows:

(i) First, to determinate the relation between Factor ‘a’ and
Factor ‘b’, the historical accident data is filtered to iden-
tify those accidents caused by each of the previous fac-
tors. Thus, a second filter is applied to identify those
accidents that share both factors as a common accident
cause.

(ii) Second, the weight of Factor ‘a’ over Factor ‘b’ is cal-
culated as the relation between the number of accidents
with both factors in common, and the number of acci-
dents which have registered Factor ‘a’ as an accident
contributing factor. Equation 2 provides a better picture
of the process being described.

WFa−Fb ¼ WFa∩Fb

WFa
ð2Þ

Above described steps are repeated in order to obtain
the relations and weights of each pair of factors.
Moreover, the initial stage vector for each human factor
is defined as the relation between the number of acci-
dents, which contains that accident-contributing factor,
and the total number of accidents considered for the
case study.

In the expert opinion stage, experts are requested to provide
their knowledge by comparing each pair of factors that were
identified within the previous stage. This rating process might

Table 1 Total number of accidents per vessel type

Vessel type Number of accidents

Cargo ship 50

Fishing vessel 34

Passenger ship 19

Service ship 19

Recreational craft 9

Inland waterway vessel 3

Navy ship 1

Table 2 Total number of accidents’ outcome within cargo ships

Cargo ship Number of accidents

Grounding/stranding 16

NA 12

Collision 10

Contact 4

Capsizing/Listing 2

Flooding/Foundering 2

Damage to ship or equipment 1

Fire/Explosion 1

Hull failure 1

Loss of control 1
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be accomplished through numeric values. However, as it is
extremely challenging for some expert to assign a number
value in specific scenarios, an alternative solution is to apply
linguistic variables. The seven variables that are used fre-
quently depending on the problem characteristics are: very
very low < very low < low < medium < high < very high <
very very high (Markinos et al. 2007). The above-mentioned
information is used to define the interaction matrix for the
expert opinion stage. Moreover, experts are asked to indicate
at which level (within the interval [0,1]) a factor needs to be
active in order to have a minimum contribution into an acci-
dent. This information allows to define an initial state vector
for the expert opinion stage. In addition, as expertise is
established with experience, some experts may be more cred-
ible. Hence, it is possible to weight each expert’s opinion in
order to increase or reduce the importance of their feedback
(Kandasamy and Smarandache 2003).

In the FCM stage, the selected threshold function is
applied to two sets of data, creating two different
FCMs. The first FCM is performed by incorporating
the results obtained from the historical data stage, while
the second FCM integrates the findings from the expert
analysis. For both FCMs, the results are analysed, and
the obtained weightings are ranked.

Lastly, in the consolidation of result stage, final weightings
for each accident-contributing factor are obtained by
performing a sensitivity analysis, which combines the results
from both FCMs created in the previous stage.

Although MALFCM is conceptually designed to incorpo-
rate together the findings from historical data and expert opin-
ion, it can be perfectly applied exclusively to both, historical
data and expert opinion. Therefore, due to the additional dif-
ficulty in finding reliable experts with a specific background
in human contributing factors into maritime accidents, it was
decided that for the purpose of this paper, MALFCM would
be only applied to historical accident data. Therefore, expert
opinion will not be incorporated into the equation, and the
findings from this case study will be purely dependent on
the historic data analysis stage.

Human-contributing factors into grounding
and stranding accident in general cargo vessels

As it was indicated previously, within this paper sixteen
maritime accidents were scrutinized and analysed,
aiming to identify those human factors that had a con-
tribution into grounding and stranding accidents in gen-
eral cargo vessels. Information regarding aforementioned
maritime accidents was obtained from the Marine
Accident Investigation Branch (MAIB), and identified
human factors were grouped into nine categories based
on expert judgement, as shown in Table 3.

Application of MALFCM method

Once all human-contributing factors were identified, an in-
teraction matrix was created. In order to determine the re-
lationship between each pair of factors to fill the interaction
matrix, the two steps described in the previous section were
followed. For instance, to determinate the relation between
HF2 and HF3, the database was first filtered, resulting in
five accidents sharing both human factors as a common
cause. In addition, eleven accidents recorded HF2, while
eight accidents included HF3. Thus, the interrelation be-
tween HF2 and HF3 (i.e. W2,3 in the interaction matrix)
would be calculated as the relation between the number of
accidents that recorded both human factors in the same
accident (five accidents), and the number of accidents that
included HF2 (W2,3 = 0.455). Similarly, the relation be-
tween HF3 and HF2 would be calculated as the relation
between the number of accidents in common and the num-
ber of accidents that included HF3 (W3,2 = 0.625). Table 4
shows a representation of the interaction matrix for
grounding/stranding accidents in general cargo vessels for
the period 2011–2016. In addition, for this case study, the
state vector was stablished as the statistical occurrence of
each factor within the historical accident database. Thus,
Table 5 provides the initial state vector (St.0). In addition,
Table 5 also provides the dynamic evolution of the FCM
until equilibrium is reached, which occurs before step 8
(St.8).

Figure 2 shows the iterative process followed inMALFCM
method until equilibrium is reached. In addition, Table 6
shows the final weightings obtained for all human-
contributing factors, after the iteration reaches equilibrium
and the simulation stops. The weightings provided by
MALFCM are constrained to the interval [0,1]. Additionally,
these results have been normalized, and the final weightings
are also displayed on Table 6, to show the contribution of each
human factor into accidents in terms of percentage.

Table 3 Human factors involved into grounding/stranding accidents in
general cargo vessels

No Human factor

HF1 Improper design, installation and working environment

HF2 Inadequate leadership and supervision

HF3 Inadequate safety management system: Inadequate procedures or
deviation from Standard Operating Procedure (SOP)

HF4 Inadequate safety management system: Substandard monitoring

HF5 Lack of communication and coordination

HF6 Lack of safety culture

HF7 Lack of training

HF8 Lack of, improper or late maintenance

HF9 Unprofessional behavior

Saf. Extreme Environ.



Application of Bayesian networks

Case study

The occurrence or non-occurrence of a grounding or stranding
accident for a ship is driven by many factors. Such factors rely
heavily on human interference to avert or mitigate associated
risks. For instance, Improper design, installation and working
environment can have significant impact on the steering capa-
bility of the ship and on the reliability of on-board equipment.
For the on-board equipment to fail, Inadequate safety manage-
ment system (Substandard monitoring) must have been expe-
rienced. The seakeeping (or mooring) ability of the ship can be
weakened due to equipment failure and lack of, improper or
late maintenance occurring simultaneously. The technical fail-
ure due to the loss of major machinery and redundancies can
be exacerbated by the mooring failure or loss of navigation.
Navigation can be lost if any of SOP (HF3), communication
and coordination (HF5), training (HF7), and professional be-
haviour (HF9) is lacking. The ship is susceptible to grounding
or stranding where either of the technical failure, Inadequate
leadership and supervision (HF2) and the lack of safety cul-
ture (HF6) are a norm rather than exception.

Problem formulation

Following the estimation of the HF weightings from previous
section, first these HF weightings are converted into prior
failure probabilities as shown in Table 7. In addition, the prior
failure probabilities are fed into the causation nodes of the BN.
As can be seen from Fig. 3, the wreck and/or stranding occur-
rence probability can be estimated. In the presence of new
evidence, the interactions of the HFs can be ascertained
through experiential learning. To do this, a forward or back-
ward propagation of the accident model is performed, such
that, the grounding (GND) node is latched at a pre-defined
state to obtain posterior probabilities for the causation nodes,
in the backward propagation analysis. In addition, any or all
the causation nodes may be latched to a given state, say failed
state to obtain new information of the GND occurrence
probability.

Through backward propagation analysis, a new evidence,
‘failed state’ is set for the grounding (GND) occurrence to
obtain new information for the causations. These occurrence
probabilities are the posterior failure for the causation events
(Table 8, column 3). Through the importance measure
depicted in Table 8, the posterior to prior probability ratios
increase considerably with HF2 and HF6 being the most prob-
able causes of grounding/stranding by over 500%. To a lesser
degree, HF7 and HF1 both contributed to the overall failure by
20% and 5%, respectively. However, HF5 and HF8 decrease
by 2% and 3% indicating that their occurrence probabilities
were overestimated during the risk-capturing phase.

Results and discussion

For the case study presented in this paper, human-contributing
factors involved in grounding and stranding accidents in gen-
eral cargo vessels were identified and weighted, aiming to use
them as an input for the BN model. The data that was utilized
within the MALFCMmethod was obtained from an historical

Table 5 State vector and
calculation of steady state for
grounding/stranding accidents in
general cargo vessels. Period
2011–2016

HF1 HF2 HF3 HF4 HF5 HF6 HF7 HF8 HF9

St.0 0.12500 0.68750 0.50000 0.06250 0.12500 0.06250 0.68750 0.06250 0.50000

St.1 0.54674 0.79819 0.67918 0.54674 0.56218 0.54674 0.80807 0.51562 0.71859

St.2 0.66349 0.95759 0.70959 0.56272 0.57250 0.55869 0.94889 0.56792 0.93869

St.3 0.68385 0.96814 0.74463 0.57974 0.58580 0.57216 0.96367 0.58218 0.95125

St.4 0.68755 0.97064 0.74737 0.58074 0.58692 0.57310 0.96633 0.58466 0.95456

St.5 0.68822 0.97089 0.74793 0.58100 0.58715 0.57332 0.96665 0.58511 0.95488

St.6 0.68833 0.97094 0.74799 0.58103 0.58717 0.57334 0.96670 0.58519 0.95494

St.7 0.68835 0.97094 0.74800 0.58103 0.58717 0.57335 0.96671 0.58520 0.95495

St.8 0.68836 0.97094 0.74801 0.58103 0.58718 0.57335 0.96671 0.58520 0.95495

Once the interaction matrix and the state vector have been defined, the FCM is created by applying Eq. 1, until
equilibrium is reached (i.e. before St.8)

Table 4 Interaction matrix for grounding/stranding accidents in general
cargo vessels. Period 2011–2016

HF1 HF2 HF3 HF4 HF5 HF6 HF7 HF8 HF9

HF1 – 0.000 0.000 0.000 0.000 0.000 0.500 0.500 0.500

HF2 0.000 – 0.455 0.091 0.182 0.091 0.727 0.000 0.455

HF3 0.000 0.625 – 0.000 0.000 0.000 0.750 0.000 0.125

HF4 0.000 1.000 0.000 – 0.000 0.000 0.000 0.000 1.000

HF5 0.000 1.000 0.000 0.000 – 0.000 1.000 0.000 0.000

HF6 0.000 1.000 0.000 0.000 0.000 – 1.000 0.000 1.000

HF7 0.091 0.727 0.545 0.000 0.182 0.091 – 0.000 0.455

HF8 1.000 0.000 0.000 0.000 0.000 0.000 0.000 – 0.000

HF9 0.125 0.625 0.125 0.250 0.000 0.125 0.625 0.000 –
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accident database for the period 2011–2016. Within this peri-
od, sixteen accidents were selected and further analyzed, as
they reported human factors that lead into those accidents.

After applying MALFCM method, an “inadequate
leadership and supervision” was identified as the most
critical factor. An inadequate supervision has been ex-
tensively identified in the literature as highly related
with maritime accidents. For instance, B. M. Batalden
and Sydnes (2017) applied a modified Human Factor
Analysis and Classification System (HFACS) frame-
work, identifying that the main causal factors leading
to very serious accidents are found in the higher levels
of organization, that is organizational influence and
unsafe supervision. Thus, Batalden and Sydnes (2014)
also performed a study to investigate casualties and in-
cidents, revealing that unsafe supervision emerges as the
biggest challenge, and it is a causal factor leading to
very serious accidents (34.7% of analyzed cases), to
serious accidents (23.1%), and to less serious accidents

(42.1%). Furthermore, a study conducted by Macrae
(2009) on grounding and collision accidents revealed
that a lack of supervision and team communication were
reported as important contributing factors in the study
of grounded vessels.

Moreover, also a “Lack of training” was identified as
an important human factor leading into maritime acci-
dents. This observation is in line with previous studies.
For example, a study performed by Puisa et al. (2018)
revealed that an inadequate training was observable in
numerous past accidents, and it was a frequent causal
factor across all reports analyzed within aforementioned
study. In addition, Graziano et al. (2016) applied the
Technique for Retrospective and Predictive Analysis of
Cognitive Errors (TRACEr), finding that most of the

Fig. 2 Values of MALFCM for grounding/stranding accidents in general cargo vessels until equilibrium is reach. Period 2011–2016

Table 7 Process to estimate HF prior failure probabilities from HF
weightings

HF Weights
normalized
(%)

Wrek/
stranding
frequency
(per ship
year)
(IMO)

Human factor
contribution
into accidents
(estimation
from literature
review)

Wrek/
stranding
frequency
(per ship
year) due
to HF

Wrek/
stranding
frequency
of each HF
(per ship
year)

HF1 10.342 0.0075 80% 0.006 6.21E-04

HF2 14.588 8.75E-04

HF3 11.239 6.74E-04

HF4 8.730 5.24E-04

HF5 8.822 5.29E-04

HF6 8.614 5.17E-04

HF7 14.525 8.72E-04

HF8 8.793 5.28E-04

HF9 14.348 8.61E-04

Table 6 Final weights of human contributors for grounding/stranding
accidents in general cargo vessels. Period 2011–2016

Human factors Weight from MALFCM Weight normalized (%)

HF1 0.688 10.342

HF2 0.971 14.588

HF3 0.748 11.239

HF4 0.581 8.730

HF5 0.587 8.822

HF6 0.573 8.614

HF7 0.967 14.525

HF8 0.585 8.793

HF9 0.955 14.348

Saf. Extreme Environ.



failures were associated with factors like fatigue or in-
adequate training/instruction. Thus, a study performed
by Kum and Sahin (2015) on arctic regions revealed
that maritime accidents on those regions were mainly
associated with inadequate quality and extension of
training.

Finally, an “Unprofessional behaviour” was identified as
the third main contributing factor within this case study as
validated by the results obtained from the BN and
MALFCM. Inadequate behaviours have been previously
linked to maritime accident in the literature. For example, a
study performed by Antão et al. (2008) highlighted that inad-
equate behaviors are identified within particular tasks, leading
into occupational accidents.

Conclusions

This study investigates the human factors contribution to
global maritime accidents, with emphasis on stranding and/
or grounding of ship structures. A new methodology is intro-
duced for modelling the potential causations of maritime ac-
cidents using Marine Accident Learning with Fuzzy
Cognitive Maps (MALFCM) incorporated with Bayesian net-
works. The weightings of the accident contributors are esti-
mated based on the application of MALFCM method. These
weightings are then fed into the causal nodes of the Bayesian
network to systematically evaluate the stranding/grounding
occurrence probability. The Bayesian network model is used
as a tool to update the occurrence failure probabilities for each

T0.99913

F0.00088

HF2

T0.99948

F0.00052

HF4

T0.99938

F0.00062

HF1

T0.79989

F0.20011

Equipment

T0.99913

F0.00087

HF7

T0.80432

F0.19568

Mooring

T0.99947

F0.00053

HF8

T0.99933

F0.00067

HF3

T0.92486

F0.07514

Machinery

T0.84251

F0.15749

Steering

T0.99947

F0.00053

HF5

T0.99914

F0.00086

HF9

T0.94996

F0.05004

HF7-9

T0.84001

F0.15999

Navigation

T0.95521

F0.04479

Technical

T0.99948

F0.00052

HF6

T0.97927

F0.02073

GND

Fig. 3 BN model for the wreckage/stranding accident

Table 8 Posterior occurrence
probabilities for grounding
accidents in general cargo vessels

Human factors Prior Probability Posterior Probability Importance Measure (Pf/Pi)

HF1 6.21E-04 6.50E-04 1.05

HF2 8.75E-04 4.86E-03 5.55

HF3 6.74E-04 6.80E-04 1.01

HF4 5.24E-04 5.28E-04 1.01

HF5 5.29E-04 5.20E-04 0.98

HF6 5.17E-04 2.81E-03 5.44

HF7 8.72E-04 1.05E-03 1.20

HF8 5.28E-04 5.13E-04 0.97

HF9 8.61E-04 8.60E-04 1.00

Saf. Extreme Environ.



human factor contribution, given that a new evidence become
available about the grounding/stranding accident. The devel-
oped framework was applied to a case study on grounding/
stranding accidents in general cargo vessels. In the accident
scenario analysis, it was observed that the lack of safety cul-
ture (HF6) contributed most to the system failure based on the
posterior to prior failures ratio. Based upon the prior failure
probabilities obtained from the MALFCM model analysis, it
was seen that Inadequate leadership and supervision (HF2),
lack of training (HF7) and unprofessional behavior (HF9) are
the most probable causes of stranding and/or grounding
accident.
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