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Abstract –Aiming to improve maritime safety, there is a 
need for a practical method that is capable of identifying 
the importance weightings for each contributing factor 
involved in accidents. Hence, Marine Accident Learning 
with Fuzzy Cognitive Maps (MALFCM) incorporated with 
Bayesian networks is suggested and applied in this study. 
MALFCM approach is based on the concept and 
principles of Fuzzy Cognitive Maps (FCMs) to represent 
the interrelations amongst accident contributor factors. 
Hence, in this study, grounding/stranding accidents were 
investigated with the proposed MALFCM approach. As a 
result, inadequate leadership and supervision, lack of 
training and unprofessional behavior were identified as 
the most probable causes of grounding accident. In 
addition, in the accident scenario analysis, it was 
observed that the lack of safety culture contributed most 
to the system failure based on the posterior to prior 
failures ratio. 
 
Keywords: Maritime accidents; Maritime safety; Maritime 
Accident Learning with Fuzzy Cognitive Maps 
(MALFCMs); Human factors; Bayesian Networks (BNs). 
 

1. INTRODUCTION 
 

The analysis of historical accident data has revealed 
that maritime accidents have been traditionally a concern 
for the shipping industry, as they incur into significant 
economic consequences, social, and environmental impact 
(Eliopoulou, Papanikolaou, & Voulgarellis, 2016). 
Therefore, aiming to reduce the accident rate, maritime 
organizations are directing efforts into the continuous 
development and implementation of safety measures, 
which overall aim to improve maritime safety 
significantly. Nevertheless, despite all the efforts, 
maritime accidents are still happening and they remain a 
major concern when around 90% of world trading is still 
carried out by shipping companies (Chauvin, Lardjane, 
Morel, Clostermann, & Langard, 2013). 

Moreover, due to inconsistent methods followed during 
accident investigations, and the additional complexity of 
identifying all the variables involved into a particular 
accident scenario, it is extremely challenging to integrate 
lessons learnt from past accidents into safety assessments. 
According to Kristiansen (2013) there is no a clear answer 
to why accidents happen, as they are complex processes, 
in which there is no a single factor solely responsible for 
the accident outcome. However, if it is possible to identify 
and cleverly measure aforementioned accident 
contributing factors, efforts can be focused on addressing 
these factors in order to reduce the accidents rate and 
therefore improve safety. 

When analyzing the literature, regardless of the 
industry in scope, it becomes evident that humans have a 
significant role into past accidents. For instance, human 
errors are responsible for at least 66% of the accidents in 
strategic sectors as nuclear or aerospace. In addition, they 
count for more than 80% of accidents within the maritime 
industry (Graziano, Teixeira, & Guedes Soares, 2016; 
Kurt et al., 2016; Turan et al., 2016). 

Hence, this paper aims to identify and weight the 
importance of each human factor that contributes to the 
development of past maritime accidents. Thus, this paper 
applies a new FCM based technique, Marine Accident 
Learning with Fuzzy Cognitive Maps (MALFCMs), and 
demonstrates it through a case study. By applying 
aforementioned MALFCM method, it will be possible to 
weight the individual importance of each human factor by 
also taking into account its interrelation with each human 
factor from the system under study. Furthermore, this 
paper proposes to use the information provided by 
MALFCM as an input to create a Bayesian Network (BN) 
model. By creating above-mentioned model, it would be 
possible to study how the accident probabilities might 
change by addressing some specific human factors (i.e. it 
would allow to study the system from a “what-if” 
perspective). 
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Under this approach, it will be possible to understand 
the importance of each human factor in maritime 
accidents, which would allow researchers to incorporate 
these factors in risk assessments more effectively. Thus, 
by studying the model from a what-if perspective, it would 
be possible to inform risk assessments and predict the 
effectiveness of risk control options. 

This paper is structured as follows: First, a literature 
review is provided regarding the FCM method, 
comprising mainly its mathematical representation, main 
areas of application and its main limitation, which is 
overcome by applying MALFCM method. Thus, this 
section also provides a complete review of the BN 
method. In addition, in Section 2 a detailed description of 
the methodology is provided. Moreover, in Section 3 the 
results and discussion are shared. Finally, the conclusions, 
limitations and recommendations for further work are 
included in Section 4. 
 
1.1 Fuzzy Cognitive Maps (FCMs) Theory 
 

When analyzing a complex accident scenario, one of 
the main challenges lays in the process of classifying the 
factors involved in it (Wolpert, 1992). From the extensive 
list of available classification methods, FCMs present a 
set of advantages. First, FCMs allow to model causal 
relationships between accident variables (Kardaras & 
Karakostas, 1999; M. Khan, Quaddus, & Intrapairot, 
2001). Second, an FCM is a suitable technique to 
represent hazy degrees of causality relations between 
components (S. Lee & Han, 2000). Third, they are 
considered traditionally as a powerful tool for modelling 
systems that cannot be explained entirely mathematically 
(Stylios & Groumpos, 1999). In addition, vector-matrix 
operations allow an FCM model to become a dynamic 
system (M. Khan et al., 2001; B Kosko, 1994) by 
allowing the system to evolve with time.  

By definition FCMs are extension of cognitive maps, in 
which the main difference with traditional cognitive maps 
is that the concepts represented in an FCM are weighted 
(Bart Kosko, 1986). Thus, FCMs aim to model complex 
chains of casual relationships and they have become a 
potential tool for modelling and analyzing dynamic 
interactions between concepts or systems in the past years 
(K. Lee, Kim, & Sakawa, 1996). 

For the construction of an FCM model, experts of a 
specific area of knowledge develop a model based on their 
experience in a process composed by three stages. First, 
key concepts are identified within a determined area. 
Second, interrelationships are proposed between these 
concepts, identifying if these relations are positive or 
negative, while in the last step experts estimate the causal 
relationship strength (Papageorgiou, 2010; Zare Ravasan 
& Mansouri, 2016). In terms of decision support, there are 
two methods to analyze a FCM model. Firstly, a static 

analysis can be carried out in order to establish the 
relative importance of concepts and the causal effects 
between nodes (Axelrod, 1976; M. S. Khan & Quaddus, 
2004). Nevertheless, only a dynamic analysis allow to 
study and explore the impact in the decision process with 
time (M. S. Khan & Quaddus, 2004). 

An FCM is mainly characterized by three elements: the 
characteristics of the system, and signed and weighted 
arcs representing the interrelations within the different 
elements. The main target in an FCM is to define the 
relationships between the different concepts represented in 
the map, understanding the global structure and the 
dynamics of the system (Azadeh, Salehi, Arvan, & 
Dolatkhah, 2014). Figure 1 shows the structure of a 
traditional FCM. 

 

 
Fig. 1. A simple representation of an FCM (Navas de 

Maya, Kurt, & Turan, 2018). 
 

Moreover, within an FCM, each of the concepts is 
represented by a number, Ai, that represents its value 
within the interval [0,1] (León, Rodriguez, García, Bello, 
& Vanhoof, 2010). It is possible to identify three types of 
connections between the concepts described in the FCM 
that represents the nature of their respective influence 
(Azadeh et al., 2014; León et al., 2010): 

(i) The weights between the concepts Ci and Cj is 
positive (Wij>0), which means that an increase in 
the first concept will lead to an increase in the 
second concept and vice versa. 

(ii) The weights between the concepts Ci and Cj is 
negative (Wij<0), which means that an increase in 
the first concept will lead to a decrease in the 
second concept and vice versa.  

(iii) There is no relation between the concepts Ci and 
Cj (Wij=0). 

According with (Bart Kosko, 1986), a traditional 
formula to calculate the values of concepts in an FCM is 
represented in Fig. 2, in which Ai represents the value of 
Ci; f is the threshold function; Wji represents the weight 
between concepts Ci and Cj; and Aj is the value of the 
concept Cj. 
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Fig. 2. Formula to calculate the values of concepts in 

an FCM. 
 

In order to create successfully an FCM, it is necessary 
to define three main components. First, an interaction 
matrix with dimension n x n where n indicates the number 
of concepts modelled within the FCM. Thus, a value of 
zero in the matrix indicates that a relation does not exist 
between those two particular elements, while non-zero 
elements show not only that there is a relation between 
two elements but also the strength or weight of that 
relation. Second, an initial state vector, which shows the 
initial value of the concepts in the scenario being 
modelled at any point in time (t). Finally, a threshold 
function to reduce unbounded inputs to a strict range, to 
maintain the stability of the qualitative model (Mohr, 
1997). Although there are plenty threshold functions 
available, the Sigmoid function gives any possible value 
within the interval [0,1] (Azadeh et al., 2014; Xiao, Chen, 
& Li, 2012) and it has been proved that using this function 
provides greater benefits (Bueno & Salmeron, 2009). 

Regarding the dynamic process of an FCM model, 
once the process starts, the values of the concepts at each 
time step (i.e. step 1, step 2 etc.) will be obtained by 
following the equation provided in Fig. 2, until the 
process stops. The process might stops at any of the 
following scenarios (M. Khan et al., 2001; B Kosko, 
1994; Xiao et al., 2012): 

(i) The FCM reaches equilibrium, which occurs 
when after two consecutive steps repeating the 
process; both state vectors obtained are identical. 
In this situation, the simulation stops and the 
FCM is considered steady. 

(ii) The FCM does not produce a stable state vector. 
as it keeps cycling between a certain number of 
values, (e.g. 0, 0.3, 0.5, 0, 0.3, 0.5, …, 0, 0.3, 
0.5). This situation is known as the “limit cycle”, 
and it results from a certain combination of 
weight values when applying an FCM, which 
drive the map away from reaching equilibrium 
(Wierzchon, 1995). Nevertheless, an alternative 
solution to avoid aforementioned limit cycle is to 
apply an hybrid system comprising both, FCMs 
and genetic algorithms (Mateou & Andreou, 
2006). 

(iii) The FCM does not reach identical values, 
producing different state vectors for each step. 
This possibility is known as “chaos” and it can 
appear in complex scenarios, in which a re-
definition of the model would be required to 
overcome a chaos situation. 

Despite of the fact that FCM is not as well-known as 
other methods (Papakostas, Boutalis, Koulouriotis, & 

Mertzios, 2008; Papakostas, Koulouriotis, Polydoros, & 
Tourassis, 2012), it has been proved to be very promising 
and worth of further investigation and development 
(Vergini & Groumpos, 2016). Several studies have 
addressed the application of FCMs as a classification tool 
in different fields for the past years, proving that FCM is 
not only a well-validated classification tool but also its 
effectiveness. Thus, FCMs have been widely used in terms 
of planning and decision making (Dodurka, Yesil, & 
Urbas, 2017). Moreover, the interest from both researcher 
and industry is increasing, and FCM has been successfully 
apply to the areas of medicine (Papageorgiou & Froelich, 
2012), control (Papageorgiou, Stylios, & Groumpos, 
2006), business (Glykas, 2013), robotics (Motlagh, Tang, 
Ismail, & Ramli, 2012), environmental science (Kok, 
2009), education (Yesil, Ozturk, Dodurka, & Sahin, 
2013), energy efficiency (Mpelogianni, Marnetta, & 
Groumpos, 2015) and information technology 
(Büyüközkan & Vardaloğlu, 2012). 

However, although it has been proved in 
aforementioned studies that an FCM is an alternative and 
powerful method to model and analyze dynamic 
interactions between concepts or systems, it has an 
important limitation. As FCMs are designed to transcribe 
experts’ opinion, its weaknesses lay on the uncertainty 
related with each expert’s response. As a result, an FCM 
can equally encode the experts’ lack of knowledge. 
Therefore, the reliability of a traditional FCM is linked to 
the experts’ knowledge, background and familiarity with 
the topic that is being addressed. In order to overcome this 
limitation, a method for Marine Accident Learning with 
Fuzzy Cognitive Maps (MALFCMs), which differs from 
the traditional FCM approach, is proposed and applied in 
this paper, with the aim to establish weights for human 
factors involved in maritime accidents successfully. 
Within this new method, each FCM is developed through 
establishing relationships between factors from past 
accident experiences. Therefore, the results from the 
technique followed in this paper might be considered 
more objective, as this new approach overcomes the main 
disadvantage of fuzzy cognitive maps (i.e. the subjective 
results and knowledge deficiencies between experts). 
Thus, MALFCM method will be fully explained in the 
next section of this paper. 
 
1.3 Bayesian Network (BN) 
 

Bayesian networks (BNs) are directed acyclic graphs 
that rely on the strength of Bayes’ theorem for assessing 
accident causations where the causations and their 
dependencies are all variables of uncertainty. The BNs 
consist of random variables represented by nodes with 
causations dependencies depicted by directed arcs linking 
the nodes. Typically, the BN tend to satisfy the Markov 
condition where each node is conditionally independent of 
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the collection of all its non-descendant nodes (Du et al., 
2015; Neapolitan, 2004). The transformation of any 
accident model into BN has been covered extensively in 
the literature (Babaleye and Kurt 2019, Babaleye et al., 
2019; Abimbola and Khan, 2019). 
 

2. METHODOLOGY 
 

2.1 Data Selection 
 

In this study, grounding and stranding accidents 
involving general cargo vessels between 2011 and 2016 
are examined. General cargo vessels, which are usually 
defined as merchant ships carrying goods and materials 
from one port to another, were selected for this study due 
to the higher number of data entries when compared with 
other vessel categories. The distribution of accidents 
regarding the vessel type is outlined in Table 1, in which 
cargo ships shows a higher number of accidents 
registered. Thus, Table 2 provides a further insight into 
general cargo accidents’ outcome, where grounding and 
stranding accidents were identified as the most common 
accident type. Therefore, sixteen accidents were examined 
and analyzed within this study. Thus, MALFCM method 
was applied to aforementioned accidents. 
 
Table 1: Total number of accidents per vessel type. 

Vessel type Number of accidents 

Cargo ship 50 
Fishing vessel 34 
Passenger ship 19 
Service ship 19 
Recreational craft 9 
Inland waterway vessel 3 
Navy ship 1 

 
Table 2: Total number of accidents’ outcome within cargo 
ships. 

Cargo ship Number of accidents 

Grounding/stranding 16 
NA 12 
Collision 10 
Contact 4 
Capsizing/Listing 2 
Flooding/Foundering 2 
Damage to ship or equipment 1 
Fire/Explosion 1 
Hull failure 1 
Loss of control 1 

 

2.2 Maritime Accident Learning with Fuzzy 
Cognitive Maps (MALFCMs) 

 
MALFCMs method is a Fuzzy Cognitive Map-based 

technique, which has been designed to combine expert 
knowledge with lesson learnt from past accident 
experiences, aiming to provide more reliable weightings 
as the input for the scenario being modeled are partially 
obtained from real maritime accidents (i.e. the subjective 
results and knowledge deficiencies between experts might 
be overcome within this method). Thus, MALFCM 
method could be described in four main stages: 

(i) Historical data analysis stage 
(ii) Expert opinions stage 
(iii) FCM stage 
(iv) Consolidation of results stage 

In the historical data analysis stage, historical data is 
obtained for the scenario being modelled (e.g. a specific 
vessel category or an accident outcome), in order to 
identify which human factors leaded into those accidents. 
Once all the factors have been identified, each pair of 
factors is statistically compared to create the interaction 
matrix described in the previous section. Furthermore, 
analysis are also performed to establish the initial state 
vector. To create the interaction matrix for the historical 
data analysis stage, a comparison between each pair of 
factors is performed by following two main steps as 
follows: 

(i) First, to determinate the relation between Factor 
a and Factor b, the historical accident data is 
filtered to identify those accidents caused by 
each of the previous factors. Thus, a second filter 
is applied to identify those accidents that share 
both factors as a common accident cause. 

(ii) Second, the weight of Factor a over Factor b is 
calculated as the relation between the number of 
accidents with both factors in common, and the 
number of accidents which have registered 
Factor a as an accident contributing factor. 
Figure 3 provides a better picture of the process 
being described. 

 

 
Fig. 3. Formula to calculate the value of each 

component for the interaction matrix. 
 

Above described steps are repeated in order to obtain 
the relations and weights of each pair of factors. 
Moreover, the initial stage vector for each human factor is 
defined as the relation between the number of accidents 
which contains that accident contributing factor, and the 
total number of accidents considered for the case study. 

In the expert opinion stage, experts are requested to 
provide their knowledge by comparing each pair of factors 
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that were identified within the previous stage. This rating 
process might be accomplished through numeric values. 
However, as it is extremely challenging for some expert to 
assign a number value in specific scenarios, an alternative 
solution is to apply linguistic variables. The seven 
variables that are used frequently depending on the 
problem characteristics are: very very low < very low < 
low < medium < high < very high < very very high 
(Markinos, Papageorgiou, Stylios, & Gemtos, 2007). 
Aforementioned information is used to define the 
interaction matrix for the expert opinion stage. Moreover, 
experts are asked to indicate at which level (within the 
interval [0,1]) a factor needs to be active in order to have 
a minimum contribution into an accident. This information 
allows to define an initial state vector for the expert 
opinion stage. In addition, as expertise is established with 
experience, some experts may be more credible. Hence, it 
is possible to weight each expert’s opinion in order to 
increase or reduce the importance of their feedback 
(Kandasamy & Smarandache, 2003).  

In the FCM stage, the selected threshold function is 
applied to two sets of data, creating two different FCMs. 
The first FCM is performed by incorporating the results 
obtained from the historical data stage, while the second 
FCM integrates the findings from the expert analysis. For 
both FCMs, the results are analyzed, and the obtained 
weightings are ranked. 

Lastly, in the consolidation of result stage, final 
weightings for each accident-contributing factor are 
obtained by performing a sensitivity analysis, which 
combines the results from both FCMs created in the 
previous stage. 

Although MALFCM is conceptually designed to 
incorporate together the findings from historical data and 
expert opinion, it can be perfectly applied exclusively to 
both, historical data or expert opinion. Therefore, due to 
the additional difficulty in finding reliable experts with an 
specific background in human contributing factors into 
maritime accidents, it was decided that for the purpose of 
this paper, MALFCM would be only applied to historical 
accident data. Therefore, expert opinion will not be 
incorporated into the equation, and the findings from this 
case study will be purely dependent on the historic data 
analysis stage.  
 
2.3 Human-contributing Factors into Grounding 
and Stranding Accident in General Cargo Vessels 
 

As it was indicated previously, within this paper 
sixteen maritime accidents were scrutinized and analyzed, 
aiming to identify those human factor that had a 
contribution into grounding and stranding accidents in 
general cargo vessels. Thus, nine human factors were 
identified as shown in Table 3. 

Table 3: Human factors involved into grounding/stranding 
accidents in general cargo vessels. 

No Human factor 

HF1  Improper design, installation and working 
environment  

HF2 Inadequate leadership and supervision 

HF3 
Inadequate safety management system: Inadequate 
procedures or deviation from Standard Operating 
Procedure (SOP) 

HF4 Inadequate safety management system: 
Substandard monitoring 

HF5  Lack of communication and coordination  
HF6 Lack of safety culture 
HF7 Lack of training  
HF8 Lack of, improper or late maintenance 
HF9 Unprofessional behaviour 
 
2.4 Application of MALFCM Method 
 

Once all human-contributing factors were identified, an 
interaction matrix was created. In order to determine the 
relation between each pair of factors to fill the interaction 
matrix, the two steps described in the previous section 
were followed. For instance, to determinate the relation 
between HF2 and HF3, the database was first filtered, 
resulting in five accidents sharing both human factors as a 
common cause. In addition, eleven accidents recorded 
HF2, while eight accidents included HF3. Thus, the 
interrelation between HF2 and HF3 (i.e. W2,3 in the 
interaction matrix) would be calculated as the relation 
between the number of accidents that recorded both 
human factors in the same accident (five accidents), and 
the number of accidents that included HF2 (W2,3=0.455). 
Similarly, the relation between HF3 and HF2 would be 
calculated as the relation between the number of accidents 
in common and the number of accidents that included HF3 
(W3,2=0.625). 

Due to the size of the interaction matrix, Table 4 shows 
only a partial representation of the interaction matrix for 
grounding/stranding accidents in general cargo vessels for 
the period 2011-2016. 

In addition, for this case study, the state vector was 
stablished as the statistical occurrence of each factor 
within the historical accident database. Thus, Table 5 
provides a partial representation of the initial state vector 
(St.0). In addition, Table 5 also provides the dynamic 
evolution of the FCM until equilibrium is reached, which 
occurs before step 8 (St.8). 
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Table 4: Partial interaction matrix for grounding/stranding 
accidents in general cargo vessels. Period 2011-2016. 

 HF1 HF2 HF3… … HF8 HF9 

HF1 - 0.000 0.000 … 0.500 0.500 
HF2 0.000 - 0.455 … 0.000 0.455 
HF3 0.000 0.625 - … 0.000 0.125 
… … … … … … … 

HF8 1.000 0.000 0.000 … - 0.000 
HF9 0.125 0.625 0.125 … 0.000 - 
 
Table 5: Partial state vector and calculation of steady 
state for grounding/stranding accidents in general cargo 
vessels. Period 2011-2016. 

 HF1 HF2 HF3… … HF8 HF9 

St.0 0.125 0.688 0.500 … 0.063 0.500 
St.1 0.547 0.798 0.679 … 0.516 0.719 
St.2 0.663 0.958 0.710 … 0.568 0.939 
St.3 0.684 0.968 0.745 … 0.582 0.951 
St.4 0.688 0.971 0.747 … 0.585 0.955 
St.5 0.688 0.971 0.748 … 0.585 0.955 
St.6 0.688 0.971 0.748 … 0.585 0.955 
St.7 0.688 0.971 0.748 … 0.585 0.955 
St.8 0.688 0.971 0.748 … 0.585 0.955 
 

Once the interaction matrix and the state vector have 
been defined, the FCM is created by applying the equation 
represented in Fig. 2, until equilibrium is reached (i.e. 
before St.8). 
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Fig. 4. Values of MALFCM for grounding/stranding 

accidents in general cargo vessels until equilibrium is 
reach. Period 2011-2016. 

 
Figure 4 shows the iterative process followed in 

MALFCM method until equilibrium is reached. In 
addition, Table 6 shows the final weightings obtained for 
all human-contributing factors, after the iteration reaches 
equilibrium and the simulation stops. The weightings 
provided by MALFCM are constrained to the interval 
[0,1]. Additionally, these results have been normalized, 
and the final weightings are also displayed on Table 6, to 

show the contribution of each human factor into accidents 
in terms of percentage. 
 
Table 6: Final weight of contributors for grounding 
accidents in general cargo vessels. Period 2011-2016. 

Human factor description 

Weight 
from 

MALFC
M 

Weight 
normalized 

(%) 

HF1: Improper design, 
installation and working 
environment  

0.688 10.342 

HF2: Inadequate leadership 
and supervision 0.971 14.588 

HF3: Inadequate safety 
management system: 
Inadequate procedures or 
deviation from Standard 
Operating Procedure (SOP) 

0.748 11.239 

HF4: Inadequate safety 
management system: 
Substandard monitoring 

0.581 8.730 

HF5: Lack of 
communication and 
coordination  

0.587 8.822 

HF6: Lack of safety culture 0.573 8.614 
HF7: Lack of training  0.967 14.525 
HF8: Lack of, improper or 
late maintenance 0.585 8.793 

HF9: Unprofessional 
behaviour 0.955 14.348 

 
2.5 Application of Bayesian Networks 
 
Following the estimation of the HF weightings from 
previous section, the weighted values are fed into the 
causation nodes of the BN as the prior failure probability. 
As can be seen from Fig. 5, the wreck and/or stranding 
occurrence probability can be estimated. In the presence 
of new evidence, the interactions of the HFs can be 
ascertained through experiential learning. To do this, a 
forward or backward propagation of the accident model is 
performed, such that, the grounding (GND) node is 
latched at a pre-defined state to obtain posterior 
probabilities for the causation nodes, in the backward 
propagation analysis. In addition, any or all the causation 
nodes may be latched to a given state, say failed state to 
obtain new information of the GND occurrence 
probability.  
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Figure 5. BN model for the wreckage/stranding 

accident. 
 

Through backward propagation analysis, a new 
evidence, ‘failed state’ is set for the grounding (GND) 
occurrence to obtain new information for the causations. 
These occurrence probabilities are the posterior failure for 
the causation events. Table 7 shares the posteriors 
occurrence probabilities obtained. 

 
Table 7: Posterior occurrence probabilities for grounding 
accidents in general cargo vessels.  

Human 
factors 

Prior 
Probability 

Posterior 
Probability 

Importance 
Measure 
(Pf/Pi) 

HF1 0.688 0.709 1.03 
HF2 0.971 0.991 1.02 
HF3 0.748 0.792 1.06 
HF4 0.581 0.578* 0.99 
HF5 0.587 0.655 1.12 
HF6 0.573 0.834 1.46 
HF7 0.967 0.971 1.00 
HF8 0.585 0.655 1.12 
HF9 0.955 0.958 1.00 

 
3. RESULTS AND DISCUSSION 

 
For the case study presented in this paper, human-

contributing factors involved in grounding and stranding 
accidents in general cargo vessels were identified and 
weighted, aiming to use them as an input for the BN 
model. The data that was utilized within the MALFCM 
method was obtained from an historical accident database 
for the period 2011-2016. Within this period, sixteen 
accidents were selected and further analyzed, as they 
reported human factors that lead into those accidents.  

After applying MALFCM method, an “inadequate 
leadership and supervision” was identified as the most 
critical factor. An inadequate supervision has been 
extensively identify in the literature as highly related with 

maritime accidents. For instance, B. M. Batalden and 
Sydnes (2017) applied a modified Human Factor Analysis 
and Classification System (HFACS) framework, 
identifying that the main causal factors leading to very 
serious accidents are found in the higher levels of 
organization, that is organizational influence and unsafe 
supervision. Thus, B.-M. Batalden and Sydnes (2014) also 
performed a study to investigate casualties and incidents, 
revealing that unsafe supervision emerges as the biggest 
challenge, and it is a causal factor leading to very serious 
accidents (34.7% of analyzed cases), to serious accidents 
(23.1%), and to less serious accidents (42.1%). 
Furthermore, a study conducted by Macrae and 
Management (2009) on grounding and collision accidents 
revealed that a lack of supervision and team 
communication were reported as important contributing 
factors in the study of grounded vessels. 

Moreover, also a "Lack of training” was identified as 
an important human factor leading into maritime 
accidents. This observation is in line with previous 
studies. For example, a study performed by Puisa, Lin, 
Bolbot, and Vassalos (2018) revealed that an inadequate 
training was observable in numerous past accidents, and it 
was a frequent causal factor across all reports analyzed 
within aforementioned study. In addition, Graziano et al. 
(2016) applied the Technique for Retrospective and 
Predictive Analysis of Cognitive Errors (TRACEr), 
finding that most of the failures were associated with 
factors like fatigue or inadequate training/instruction. 
Thus, a study performed by Kum and Sahin (2015) on 
arctic regions revealed that maritime accidents on those 
regions were mainly associated with inadequate quality 
and extension of training. 

Finally, an “Unprofessional behavior” was identified as 
the third main contributing factor within this case study. 
Inadequate behaviors have been previously linked to 
maritime accident in the literature. For example, a study 
performed by Antão, Almeida, Jacinto, and Guedes 
Soares (2008) highlighted that inadequate behaviors are 
identified within particular tasks, leading into 
occupational accidents. 
 

4. CONCLUSIONS 
 
This study investigates the human factors contribution to 
global maritime accidents, with emphasis on stranding 
and/or grounding of ship structures. A new methodology 
is introduced for modelling the potential causations of 
maritime accidents using Marine Accident Learning with 
Fuzzy Cognitive Maps (MALFCM) incorporated with 
Bayesian networks. The weightings of the accident 
contributors are estimated based on the application of 
MALFCM method. These weightings are then fed into the 
causal nodes of the Bayesian network to systematically 
evaluate the stranding/grounding occurrence probability. 
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The Bayesian network model is used as a tool to update 
the occurrence failure probabilities for each human factor 
contribution, given that a new evidence become available 
about the grounding/stranding accident. The developed 
framework was applied to a case study on 
grounding/stranding accidents in general cargo vessels. In 
the accident scenario analysis, it was observed that the 
lack of safety culture (HF6) contributed most to the 
system failure based on the posterior to prior failures 
ratio. Based upon the prior failure probabilities obtained 
from the MALFCM model analysis, it was seen that 
Inadequate leadership and supervision (HF2), lack of 
training (HF7) and unprofessional behavior (HF9) are the 
most probable causes of stranding and/or grounding 
accident. 
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