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ABSTRACT
Synthetic aperture radar (SAR) data are becoming more and
more accessible and have been widely used in many ap-
plications. To effectively and efficiently represent multiple
SAR images, we propose the mixture of Itakura-Saito (IS)
divergence for non-negative matrix factorization (NMF) to
perform the dimension reduction. Our proposed method in-
corporates the unit-mean Gamma mixture model into the
NMF to model the multiplicative noise. To obtain the closed-
form update equations as much as possible, we approximate
the log-likelihood function with its lower bound. Finally, we
apply Expectation-Maximization (EM) algorithm to estimate
the parameters, resulting in the closed-form multiplicative
update rules for the two matrix factors. Experimental re-
sults on real SAR dataset demonstrate the effectiveness of
the proposed method and its applicability to post-applications
(e.g., classification) with improved performances over the
conventional dimension reduction methods.

Index Terms— Non-negative matrix factorization (NMF),
synthetic aperture radar (SAR), dimension reduction, Itakura-
Saito divergence, mixture model.

1. INTRODUCTION

Synthetic aperture radar (SAR) is an active imaging system,
which possess the capability of penetration and can operate
all-day and under all-weather condition. It has been widely
used in many applications such as urban planning, object de-
tection and ocean surveillance. Recent advances in SAR tech-
nology have led to an increased availability of the multitem-
poral and multi-resolution SAR data, providing much richer
information for Earth observation. However, representing and
interpreting huge amount of SAR data remains challenging.

Many efforts have been devoted to dimension reduction
and feature extraction of multiple SAR images. The imple-
mentations of the Laplacian eigenmaps and principle compo-
nent analysis (PCA) are respectively reported in the classifi-
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cation and change detection of SAR data to relax the com-
putational burden and better represent the SAR data [1, 2].
Non-negative matrix factorization (NMF) [3] is an alterna-
tive technique for dimension reduction and data analysis, and
found to be effective in the SAR data representation and fea-
ture extraction [4, 5]. Unlike PCA or independent component
analysis (ICA), the elements in the resulting matrices by NMF
are all guaranteed to be positive, which can provide intuitive
and visual interpretation. Among the divergence measures
used in NMF, the Itakura-Saito (IS) divergence [6, 7] is one
of the most popular and appropriate methods for dimension
reduction of SAR data, as the IS divergence and many suc-
cessful distributions for SAR data are both derived with the
help of multiplicative model [8]. However, the NMF with a
single IS divergence is not sufficient to cope multiplicative
noise (speckle) of multiple SAR images from homogeneous,
heterogeneous and extremely heterogeneous areas.

In this paper, we propose a generalized IS divergence
for NMF to represent multiple SAR images in a feature
space. Our proposed method exploits the mixture of the IS
divergence (MoIS), which is based on mixture of unit-mean
Gamma distribution. In particular, the commonly used IS di-
vergence is a special case of our proposed MoIS divergence.
By considering multiplicative noise, our proposed method
can better represent the multiple SAR images, and enables
better performances for post-applications (e.g., classification)
than conventional dimension reduction methods.

2. PRELIMINARIES

2.1. Non-negative Matrix Factorization

NMF, which is a popular technique for dimension reduction
and data analysis, can approximate an observation matrix
with the product of two matrix factors. Specifically, given a
non-negative matrix X = [xnm]N×M ∈ RN×M

+ , NMF seeks
to find the non-negative matrices W = [wnr]N×R ∈ RN×R

+

and H = [hrm]R×M ∈ RR×M
+ , such that X ≈ WH = X̂,

where X̂ = [x̂nm]N×M is the approximated matrix. Gener-
ally, the rankR is selected such that (M+N)×R�M×N .
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Under some divergence measures, the matrix factors W
and H can be obtained by minimizing the divergence between
the observation matrix X and the approximated matrix X̂ [3].
The resulting optimization problem turns out to be

min
W,H

D(X|WH) =
∑
n,m

d(xnm|x̂nm)

s.t. W ≥ 0,H ≥ 0,

(1)

where d(xnm|x̂nm) is the scalar divergence measure between
two elements. The commonly used divergence includes Eu-
clid (EUC) distance, Kullback-Leibler (KL) [3] and Itakura-
Saito (IS) [6] divergences, which are respectively given by
dEUC(x|y) = (x − y)2, dKL(x|y) = x ln(xy ) − x + y and
dIS(x|y) = x

y − ln x
y − 1. The NMFs based on these di-

vergences are denoted as EUC-NMF, KL-NMF and IS-NMF,
respectively.

2.2. Itakura-Saito Divergence NMF

IS divergence is first proposed in 1968 by Itakura and Saito
and has been widely used in speech and music signal pro-
cessing [6,7]. Under the assumption of multiplicative Gamma
noise, IS divergence can be derived from a generative model,
which is used to estimate W and H [7]. Specifically, the ob-
servation matrix is modeled by the product of its NMF and
noise matrix, which can be written as

X = E� (WH), (2)

where the elements [enm]N×M in E are independently identi-
cal distributed (i.i.d) noises and the operator� is the element-
wise product. The unit-mean noise is always assumed so that
E[xnm] =

∑
r wnrhrm = x̂nm. Let every enm follow the

unit-mean Gamma distribution defined by

Gam(x, α) =
αα

Γ(α)
xα−1 exp{−αx}, (3)

we have the log-likelihood function

L =
∑
n,m

ln

(
1

x̂nm
·Gam(xnm/x̂nm, α)

)
. (4)

On this basis, the IS divergence is the negative log-likelihood
function when α is a constant and the constant terms are omit-
ted.

3. PROPOSED MIXTURE OF IS DIVERGENCE NMF
AND ALGORITHM

Mixture models can be interpreted as a weighted summation
of distributions, which allows for great flexibility to model
various signals. It has found wide applications such as image
classification, segmentation and blind source separation. In
view of its flexibility, we exploit the use of the mixture model
in NMF for dimension reduction of multiple SAR images.

3.1. MoIS-NMF Model

In IS-NMF, the i.i.d noise is assumed to follow the unit-mean
Gamma distribution. To improve the flexibility to model the
i.i.d noise, we propose to use the unit-mean Gamma mixture
model. Thus, in conjunction with equation (2), an observation
follows the distribution of

f(xnm|Π,α,W,H) =

K∑
k=1

πk
x̂nm

·Gam(
xnm
x̂nm

, αk), (5)

whereK is the number of components and Π = {π1, · · · , πK}
is the set of the positive mixing coefficients for the compo-
nents, which ensures

∑K
k=1 πk = 1. α = {α1, · · · , αK} is

the parameter set for the component distributions.
To formulate the generative model, the binary vector

znm = [znm1, · · · , znmK ] for each element in the obser-
vation matrix is introduced. There is only one element in
znm that is equal to 1 (i.e. znmk = 1 and znmj = 0 for
j 6= k), which reveals that the element (n,m) belongs to
the k-th component. The binary vector follows the multino-
mial distribution conditioned on Π. Thus, the log-likelihood
function can be obtained. However, in view of the terms
− ln(

∑
l wnrhrm) and − 1∑

r wnrhrm
, the update equations

for wnr and hrm can not be obtained in closed form.
Since− ln(x) is convex and− 1

x concave, the lower bound
of the log-likelihood function can be obtained by implement-
ing the 1st-order Taylor approximation and Jesen’s inequality,
respectively. Thus, we find the approximated log-likelihood
function L̃(β,λ,Π,α,W,H) as

L ≥ L̃(β,λ,Π,α,W,H)

=
∑
n,m,k

znm

{
lnπk + αk lnαk − ln Γ(αk)

+ (αk − 1) lnxnm − αkxnm(
∑
r

λ2nrm
wnrhrm

)

− αk
[

lnβnm + (
∑
r

wnrhrm − βnm)/βnm

]}
.

(6)

In the following, L̃(β,λ,Π,α,W,H) is denoted by L̃ to
keep the notation uncluttered. With the help of this approxi-
mation, our goal is to maximize the lower bound L̃ with re-
spect to (w.r.t.) all πk, αk, βnm, λnrm, wnr and hrm, which
can lead to the tractable solutions for wnr and hrm.

3.2. Parameter Estimation

With the hidden variables znm being introduced in the gen-
erative model, we apply Expectation-Maximization (EM) al-
gorithm [9] for the parameter estimation. In the E-step, the
expectation of znmk is given by

γnmk =
πkGam(xnm

x̂nm
, αk)∑

k πkGam(xnm

x̂nm
, αk)

. (7)



In the subsequent M-step, the approximated lower bound
L̃ will be successively increased by alternatively finding the
solutions to the parameters in L̃. According to the property
of 1st-order Taylor approximation and the Jesen’s inequality,
the approximated lower bound can be tightened w.r.t. β and
λ by the following update rules

β(t+1)
nm =

∑
r

w(t)
nrh

(t)
rm, (8)

λ(t+1)
nrm =

w
(t)
nrh

(t)
rm∑

r w
(t)
nrh

(t)
rm

. (9)

The update equations of the mixing coefficients in Π can be
obtained in element-wised form by the Lagrange multiplier
method, which leads to

π
(t+1)
k =

∑
n,m γnmk

N ×M
. (10)

As for the update of α, we can found the equation by setting
the 1st-order derivative of L̃ w.r.t. each αk to zero and substi-
tuting the obtained β(t+1) and λ(t+1). Subsequently, by im-
plementing numerical methods such as bisection method, the
update rule for each αk can be found. Similarly, by solving
the corresponding 1st-derivative equations, the update equa-
tions for the matrix factors W and H in the proposed NMF
are given in element-wise form by

w(t+1)
nr = w(t)

nr

(∑
m ηnm · h

(t)
rmxnm/q

2
nm∑

m ηnm · h
(t)
rm/qnm

)1/2

, (11)

h(t+1)
rm = h(t)rm

(∑
n ηnm · w

(t+1)
nr xnm/q

2
nm∑

n ηnm · w
(t+1)
nr /qnm

)1/2

, (12)

where ηnm =
∑
k γnmk · α

(t+1)
k and qnm =

∑
r w

(t)
nr · h(t)rm.

By alternatively evaluating update equations (7)-(12) until the
criterion is reached, all the parameters can be estimated.

3.3. Relation to IS Divergence

From the update equations of W and H, we can see that the
IS divergence is a special case of our method. When there is
only one component in the mixture model (i.e. K = 1), both
the πk and γnmk are guaranteed to be one. Further, by setting
each αk to be constant, the resulting ηnm in equations (11)
and (12) are equal and constant. Under this parameter setting,
it is found that the update equations of each wnr and hrm
are exactly the same as that for the IS divergence. Moreover,
by using the mixture model to describe the noise, we extend
the IS divergence to the weighted combination of multiple IS
divergence.

4. EXPERIMENTS AND DISCUSSION

Experiments are conducted based on nine registered C-band
ERS SAR images which were acquired between 1992 and
1995 over Pavia, northern Italy. The terrain types of water,
buildings and vegetation areas are included.

4.1. Estimated Noise
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Fig. 1. The estimated noise distributions by (a) IS-NMF, (b)
one-component MoIS-NMF, (c) two-component MoIS-NMF
and (d) four-component MoIS-NMF.

To verify the effectiveness of the proposed MoIS-NMF,
we will first investigate the estimated noise distribution to
demonstrate the advantage of introducing the mixture model
to the IS divergence. In view of the multiplicative noise
model, the estimated noise for each pixel is evaluated in
element-wise form by enm = xnm/x̂nm. For the NMF with
the rank of two, the estimated noise distributions with differ-
ent number of components are illustrated in Fig. 1. The peak
of the estimated noise distributions of the proposed MoIS-
NMF is higher than IS-NMF. With more components, we
adjust the distribution of the estimated noise, making them
concentrated around the expected unitary mean better.

4.2. Application in Classification

To further validate the proposed MoIS-NMF, we apply the
extracted features for classification. Specifically, the MoIS-
NMF is first performed by setting the rank to one, and the
resulting low rank matrix W is used as the representation
of the nine SAR images. On this basis, 100 labeled data in
each class are randomly selected as the input to train the sup-
port vector machine (SVM) [10]. The classification maps are
demonstrated in Fig. 2 and the classification accuracy for the
terrain types is reported in Table 1.

According to Table 1, we get similar classification re-
sults for IS-NMF and one-component MoIS-NMF (1C-MoIS-
NMF) and this can be explained by the relation between the IS
divergence and the MoIS divergence as discussed in Section
3.3. In Fig 2, the vegetation, the roads, the urban areas and the
water are correctly recognized. Most pixels in the background
are classified as vegetation, which is consistent with the ob-
servation. The two-component MoIS-NMF can provide better
classification result for the terrain types of water and vege-
tation. Although the classification based on the EUC-NMF
performs better for the buildings, there are less miscellaneous



(a) (b) (c) (d)
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Fig. 2. (a) One of the SAR images. (b) The known la-
beled SAR data map, where the red pixels represent the build-
ings/urban areas, the blue ones for the water, the green ones
for the vegetation and the black ones for the background. The
resulting classification maps are respectively presented based
on (c) the PCA, (d) EUC-NMF, (e) KL-NMF, (f) IS-NMF, (g)
one-component MoIS-NMF (1C-MoIS-NMF) and (h) two-
component MoIS-NMF (2C-MoIS-NMF).

pixels in the background for the two-component MoIS-NMF
(2C-MoIS-NMF) by comparing Fig. 2(d) and (h), leading to
better visual interpretation.

Table 1. Classification Accuracy.
Accuracy for terrain types

Methods Buildings Water Vegetation
PCA 0.649 0.821 0.948

EUC-NMF 0.674 0.872 0.958
KL-NMF 0.651 0.871 0.973
IS-NMF 0.660 0.873 0.963

1C-MoIS-NMF 0.660 0.873 0.963
2C-MoIS-NMF 0.661 0.887 0.980

5. CONCLUSION

In this paper, we have proposed the mixture of IS divergence
NMF (MoIS-NMF) for dimension reduction of multiple SAR
images. Our proposed method incorporates the mixture of
unit-mean Gamma distribution into NMF. Thus, the IS di-
vergence is extended to the mixture of IS divergence. The
algorithm of the MoIS-NMF is developed within the frame-
work of the EM algorithm leading to the closed-form multi-
plicative updates for the matrix factors. It is demonstrated in
the experiments that the proposed MoIS-NMF can adjust the
distribution of the estimated noise to be concentrated around
the unitary mean. Furthermore, the proposed MoIS-NMF can
provide an appropriate representation for multiple SAR im-
ages and enables improved performances on post-applications
(e.g., classification).
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