
On the Use of Neural Text Generation for the Task
of Optical Character Recognition

Mahnaz Mohammadi1, Sardar Jaf 2, Andrew Stephen McGough3, Toby P. Breckon1, Peter Matthews1,
Georgios Theodoropoulos4, Boguslaw Obara1

1Dept. of Computer Science, Durham University, UK
2School of Computer Science, Sunderland University, UK

3School of Computing, Newcastle University, UK
4Dept. of Computer Science and Eng., Southern University of Science and Technology, China

1 mahnaz.mohammadi,toby.breckon,p.c.matthews, boguslaw.obara@durham.ac.uk
2 sardar.jaf@sunderland.ac.uk

3 stephen.mcgough@newcastle.ac.uk
4 georgios@sustc.edu.cn

Abstract—Optical Character Recognition (OCR), is extrac-
tion of textual data from scanned text documents to facilitate
their indexing, searching, editing and to reduce storage space.
Although OCR systems have improved significantly in recent
years, they still suffer in situations where the OCR output does
not match the text in the original document. Deep learning
models have contributed positively to many problems but their
full potential to many other problems are yet to be explored.
In this paper we propose a post-processing approach based on
the application deep learning to improve the accuracy of OCR
system (minimizing the error rate). We report on the use of neural
network language models to accomplish the task of correcting
incorrectly predicted characters/words by OCR systems. We
applied our approach to the IAM handwriting database. Our
proposed approach delivers significant accuracy improvement of
20.41% in F-score, 10.86% in character level comparison using
Levenshtein distance and 20.69% in document level comparison
over previously reported context based OCR empirical results of
IAM handwriting database.

Index Terms—Neural text generation, Optical character recog-
nition, OCR, OCR post-processing, language models, neural
language model, text generation, text prediction, IAM database,
handwritten character recognition

I. INTRODUCTION

Optical Character Recognition (OCR) has facilitated the
conversion of large quantities of scanned text documents,
where manual conversion is not practical. Unfortunately OCR
applications produce incorrect text that do not match the
original text in a given document. OCR errors are due to
shortcomings of OCR engines, bad physical condition (e.g.
poor photocopies of the original page), poor printing quality
[1] and/or existence of large amount of handwritten text
in the scanned document that are not easily readable. The
accuracy of OCR output depends significantly on the quality
of the input image (scanned document). Pre-processing steps,
such as image re-scaling; skew correction; binarization and
noise removal, are some techniques to improve the qual-
ity of the input image. However, pre-processing approach

may not tackle acceptable accuracy thus we propose post-
processing techniques to significantly improve the accuracy
of ORC. Our proposed post-processing approach utilizes deep
learning model for neural text generation, which helps pre-
dicting correct output for OCR system. We have evaluated
our approach on a widely used database (IAM handwriting
database) and measured the performance of our solution using
F-score, Levenshtein distance and document level comparison.
We have consistently improved the OCR accuracy. We have
achieved significant accuracy improvement of 20.41% in F-
score, 10.86% in character level comparison using Levenshtein
distance and 20.69% in document level comparison over
previously reported context based OCR empirical results of
IAM handwriting database.

The rest of this paper is organized as follows. Section II
covers some of the related work. Our language models for
OCR post-processing are discussed in Section III. We evaluate
the performance of the language models using different length
of input sequences (n-grams) for regenerating the input text
and for improving the OCR results on the transcriptions of
IAM handwriting database in Section IV. We conclude the
paper in Section V.

II. RELATED WORK

Different techniques have been proposed for OCR post-
processing such as manual error correction, dictionary (or
lexical) based error correction and context-based error cor-
rection [2]–[7]. Manual error correction of OCR output is
time-consuming and error-prone. lexical based post-processing
[8]–[10] verify the OCR results using lexical knowledge and
generates a ranked list of possible word candidates. However,
lexical post-processing techniques can become computation-
ally inefficient if a large vocabulary is used.

Neural Networks have contributed to many challenging
natural language processing problems, such as machine trans-
lation; speech recognition; syntax/semantic parsing and infor-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sunderland University Institutional Repository

https://core.ac.uk/display/227455631?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


mation retrieval. They can be used for automatic text gener-
ation, where new sequences of characters/words with shared
statistical properties as the source text could be generated. Lan-
guage modelling involves predicting the next character/word
in a sequence given the sequence of characters/words already
present.

Recently, the use of neural networks in the development
of language models has become very popular [11], [12].
Neural network approaches have often demonstrated better
results than statistical or rule-based approaches both on stand
alone language models and embedded models into larger
applications for challenging tasks like speech recognition and
machine translation. Using neural network language models
to assist OCR systems in improving the recognition accuracy
rate, has interested many researchers [13], [14].

In [14] a simple language model approach is used for
grammatical error correction with minimal annotated data
and it was shown that this approach is competitive with the
latest neural and machine learning approaches that rely on
large quantities of annotated data. Kissos and Dershowitz [13]
have examined the use of machine learning techniques for
improving OCR accuracy by using the combination of features
to enhance an image for OCR and to correct misspelled
OCR words. The relative independence of the features, issues
from the language model, OCR model and document context,
enables a reliable spelling model that can be trained for many
languages and domains.

In this paper we present two neural network language
models to improve the accuracy of OCR for scanned text
documents containing a mixture of handwritten and machine
printed texts. our models predict the probability of the next
character/word in a sequence based on previous charac-
ters/words already observed in the sequence. To the best of our
knowledge, this is the first work reported on applying neural
network model on mixed text recognition. We apply our post-
processing approach to the output of the pipeline proposed by
[15] for mixed text recognition over IAM handwriting database
[25] to show the effectiveness of neural network based natural
language generation on the improvement of OCR accuracy.

III. METHODOLOGY

A statistical language model is a probability distribution
over sequences of words. For example, for a sequence of
words of length n as w1w2...wn, language models assigns a
probability P (w1, w2, ..., wn) to the whole sequence. Neural
language models use continuous representations, or embed-
dings of words, to make their predictions [17]. Embeddings
help to alleviate the curse of dimensionality in language
modelling. Training a language model on large text generally
increases the number of unique words. Consequently, this
leads to the exponential increase of the number of possible
sequences of words, especially since the vocabulary size is
often increased in large text. This exponential increase in the
number of sequences causes a data sparsity problem. Thus,
statistics are needed to properly estimate probabilities.

Typically, neural network language models are constructed
and trained as probabilistic classifiers that learn to predict a
probability distribution of work given the context of that work,
as in P (wt|context)∀t ∈ V . The network is trained to predict
a probability distribution for a word wt over the vocabulary
V , given some linguistic context context. The context can be
a fixed-size window of previous k words, so that the network
predicts P (wt|wt−k, ..., wt−1).

A word level language model predicts the next word in
the sequence based on the specific words proceeding it in the
sequence. It is also possible to develop language models at
the character level using neural networks. In this section we
present word level and character level language models for
text generation and also OCR post-processing on the IAM
handwriting database.

A. Word Level Language Model for OCR Post-Processing

A language model can predict the probability of the next
word in the sequence, based on the words already observed in
the sequence. Neural network models are preferred methods
for developing statistical language models because they can
use a distributed representation where different words with
similar meanings have similar representation and because they
can use a large context of recently observed words when
making predictions. Fig. 1 shows the architecture of the
word level language model we used for training over IAM
handwriting database [25].

The required general steps for the development of our neural
network based language model are:

• Preparing the text for a word level language model by
converting it to embedding format.

• Designing and fitting a neural language model with
a learned embedding and Long Short-Term Memory
(LSTM) [18] hidden layers.

• Using the learned language model to predict a word given
its previous context.

We prepare the training data by cleaning (removing punctu-
ation), formalizing it to lower case to reduce the vocabulary
size, tokenizing the text, building sequences of context and
target words (n-grams) using NLTK [19] and encoding the
sequences to integer values as the embedding layer expects
input sequences to be comprised of integers [20].

Next we fit a neural language model on the prepared
data. The model uses a distributed representation of words
so that different words with similar meanings have a similar
representation. It learns to predict the probability of the next
word using the context of the last n preceding words.

To make predictions, we pre-process the testing data in
same was we as we did for the training data. At each testing
iteration a context sequence preceding the word which has
been transcribed incorrectly by OCR will be given to the
trained model as input and a word is generated by the model,
which is the target word and is used for replacing the incorrect
word.



Fig. 1. The Proposed Word Level Language Model Architecture for OCR
Post-Processing

1) Word Level Language Model Configuration: Our word
level language model is configured as following:

• Embedding layer: An embedding layer is used to learn
the representations of the words in the input sequences.
We have used dimension equal to 100 for each word in
the input sequence.(i.e. the embedding dimension for the
model with input sequence length equal to 4 words is
4× 100 = 400).

• Hidden layer: Long Short Term Memory (LSTM) recur-
rent neural network learns to predict words based on their
context. We are using two LSTM layers. Each layer has
equal number of units to the embedding dimension.

• Dropout layer: We apply dropout as a regularization
technique to avoid over-fitting the model on the training
data. We use a dropout layer with rate 0.5 after each
LSTM layer.

• Dense layer: A dense fully connected layer with (ReLU)
activation function connects to the LSTM hidden layer to
interpret the features extracted from the sequence.

• Output layer: The output layer is a dense layer which
predicts the next word as a single vector of the size of
the vocabulary with a probability for each word in the
vocabulary. A (softmax) activation function is used to
ensure the outputs have the characteristics of normalized

probabilities.
• Optimizer: The model is optimized with the Adam op-

timizer which need relatively low memory and works
well with little tuning of hyper-parameters and we use the
categorical cross entropy loss as the metric for computing
the model’s error rate.

• Epoch and batch size: Finally, we fit the model on the
training data for a set of specified training epochs with
different batch sizes. The ultimate hyper-parameters are
decided based on the best model with lowest validation
loss obtained. The validation is computed by supply a set
of validation data (which is a subset of training data) to
the model during training.

• The model was fit to the data with with modest number
of 200 epochs and batch size of 500 patterns.

B. Character Level Language Model for OCR Post-Processing

It is possible to develop language models at character level
using neural networks. The benefit of character based language
models is their small vocabulary and flexibility in handling any
words, punctuation, and other document structure. Building a
character level language model requires converting the input
sequences (characters) into a form that the model can learn
from, as required in word level language model. Longer
sequences offer more context for the model to learn the next
output character, but the model could take longer to train.
Fig.2 shows the architecture of our language model: Data
preparation is the first step in developing the language model.
We clean the data, normalize the case to lowercase and remove
punctuation to reduce the final vocabulary size and develop
a small leaning model. We build the input-output sequences
of specific character lengths. The output will be the last
character of each sequence. The sequences of characters are
encoded as integers. Each unique character will be assigned a
specific integer value and each sequence of characters will be
encoded as a sequence of integers. We can create the mapping
given a sorted set of unique characters in the raw input data.
The mapping is a dictionary of character values to integer
values. Next, we need to one hot encode each character to a
vector with the size of the vocabulary. The output patterns are
converted (single characters converted to integers) into a one
hot encoding [20].

1) Character Level Language Model Configuration: Our
character level language model is configured as following:

• Input layer: Input layer accepts the encoded input se-
quences.

• Hidden layers: The model has two LSTM hidden layers.
Each LSTM layer has 1000 neurons (i.e. This number is
finalized based on trail and error) followed by a dropout
layer with rate 0.2 to avoid over-fitting the model during
training.

• Output layer: The output layer is a Dense layer using
the (softmax) activation function to output a probability
prediction for each of the characters in the vocabulary
between 0 and 1.



Fig. 2. The Proposed Character Level Language Model Architecture for OCR
Post Processing

• Optimizer: The model is compiled specifying the cate-
gorical cross entropy loss and Adam optimizer with a
relatively low learning rate of 0.001.

• We fit the model to the data with modest number of 100
epochs and a large batch size of 1000 patterns.

Finally we use the trained model to predict the next character
given a sequence of characters from testing data as the input
to the model.

IV. EXPERIMENTS

We use several metrics to measure the performance of the
proposed language models over different transcription levels:
character level, word level and document level.

• Character Level Evaluation: The character level evalua-
tion uses the Levenshtein distance [21], to measure the
number of deletions, insertions, or substitutions required
to transform the predicted document to the target docu-
ment.

• Word Level Evaluation: Word level evaluation uses Bag-
of-Word (BoW) [22] representation, which involves com-
paring the frequency of words occurrences in either

the predicted or the target transcription disregarding the
syntax structure.

• Document Level Comparison: Document similarity, in-
volves generating an embedding vector [23] for the
complete document of the predicted and the target tran-
scription, and we measure the similarity rate between the
generated embeddings.

A. Data Set and Analysis

The IAM handwriting database [16] is composed of 1539
different forms of English text written by 600 writers. A
single page of the IAM database is split into two sections,
machine-printed text in the upper section and the bottom
section of the page is the repetition of the same machine-
printed text written by the writers. The different writing style
of the writers has been the reason for some missing parts in
the handwritten section of files. The database is released with
tokenized transcription for each text line of the handwriting
section. Paragraph-level transcription for the machine-printed
section of the page is also provided along with the database.
Natural Language Processing Toolkit (NLTK) [19] is used to
tokenize the machine printed section and merged both sections
into a single transcription in [24].

To understand the type of the data and its complexity we
have conducted the following analysis on the IAM handwriting
database. Table I shows total number of characters/tokens
before and after cleaning the data and also total number of
unique characters/tokens after cleaning data for both train files
and test files (i.e. result of applying TMIXT [15] on IAM
handwriting database for text recognition). The Vocabulary
size, bolded in table I, shows the number of cleaned and
unique characters/tokens (words) for character level and word
level language models. In the case of the word level language
model the number of unique tokens for testing data is much
more than the unique tokens in training data. This is due
to gibberish words which have been generated during the
recognition process. The model is trained on the cleaned data.
Table II shows the number of handwritten and printed charac-

TABLE I
ANALYSIS OF TRAIN AND TESTING DATA OF IAM HANDWRITING

DATABASE

Training Data Testing Data
Total characters 1167066 1167066
Total Cleaned characters 922120 922120
Total Unique characters 82 83
Total Cleaned Unique characters 28 28
Total Tokens 203618 188973
Total Cleaned Tokens 200983 174542
Total Unique Tokens 19422 45910
Total Cleaned Unique Tokens 12213 28464

ters/tokens before and after cleaning data in the training files.
The number of files with the same number of handwritten and
printed characters/tokens and with more or less handwritten
characters/tokens are also shown in this table. As presented
in table II, there are quite a large number of handwritten files



with missing characters/tokens. We found that 174 files out
of 1539 (11.3%) have missing handwritten tokens in them.
A total of 3 files contained missing handwritten characters.
The number of missing handwritten tokens in those files were
95, 59 and 56 tokens. The maximum characters missing in
the files are 11832. Some handwritten files also contained an
extra number of tokens compared to the printed files. These

TABLE II
ANALYSIS OF PRINTED AND HANDWRITTEN FILES IN IAM

HANDWRITING DATABASE

Before After Cleaning
Cleaning Cleaning

Printed characters 714096 466976
Handwritten characters 650997 455144
Complete Files 5 3
Files with Missing Handwritten Chars 413 1536
Files with More Handwritten Chars 1121 0
Printed Tokens 143127 101690
Handwritten Tokens 109296 99293
Complete Files 1012 1053
Files with Missing Handwritten Tokens 216 174
Files with More Handwritten Tokens 311 312

analyses describe that the type of data is quite complex for a
language modelling task due to missing characters/tokens in
files. The most frequent words are the stop words and there
are also large numbers of words which are not frequent words
(i.e. repeated less than 10 times). The total number of unique
and cleaned tokens in the training data is 12213 tokens which
is less than the total unique and cleaned tokens in test files
(28464 tokens).

B. Experiments with Word-level Language Model

Table III shows the performance of word level language
model over training data with different input sequence lengths
(n-grams). The comparison has been done between the training
data and the predicted data based on characters using Leven-
shtein distance [21], word level using F-score and document
level using document similarity [23] to see how model per-
forms in case of regenerating the training data. The obtained
results, show that training model with inputs sequences of
7 words for regenerating the training data, result in higher
train accuracy and consequently higher similarity rate between
the training data and the data generated by the language
model. For OCR post-processing using a word level language
model, the input sequences from the testing data, preceding
the words that are not recognized correctly via OCR will be
given as inputs to the trained model. The word level language
model generates a target word for each input sequence as the
replacement for the word which has been recognized wrongly
by the OCR. Table IV shows performance evaluation of the
word level language model for OCR post-processing over the
testing data (i.e. the results of applying TMIXT [15] on IAM
handwritten pages).

As the results of these evaluations describe, the sequences
of 5 and 6 words input lengths give higher accuracy rate for
testing data. The notable difference between performance of

TABLE III
PERFORMANCE EVALUATION OVER TRAINING DATA USING PROPOSED

WORD LEVEL LANGUAGE MODEL

XXXXXXXXInput
Metric Training F-score Levenshtein Document

Accuracy Distance Similarity
(%) (%) (%) (%)

2 Words 62.41 20.02 29.89 30.66
3 Words 88.59 41.90 45.28 60.05
4 Words 96.09 76.86 77.75 85.07
5 Words 97.42 90.53 90.92 94.52
6 Words 97.38 92.93 93.36 96.12
7 Words 97.06 94.73 95.03 97.27
8 Words 95.96 93.62 94.00 96.66

TABLE IV
PERFORMANCE EVALUATION OVER TESTING DATA USING PROPOSED

WORD LEVEL LANGUAGE MODEL FOR OCR POST-PROCESSING

XXXXXXXXInput
Metric F-score Levenshtein Document

Distance Similarity
(%) (%) (%)

2 Words 41.71 48.03 54.88
3 Words 56.24 58.74 71.24
4 Words 72.32 74.05 82.88
5 Words 77.79 79.36 85.03
6 Words 77.35 79.42 85.20
7 Words 76.83 78.67 84.31
8 Words 74.16 76.37 82.47

the model over training data and testing data is an evidence of
the problems associated with this data such as missing words
in handwritten files, gibberish words created via OCR and its
complexity for language models.

C. Experiments with Character-level Language Model

Tables V and VI show performance evaluation of the
character level language model over training and testing data
of IAM handwriting database with different input sequence
lengths. The input to the character based language model is
the n-grams of characters with different lengths. As the results
depict, longer input sequences result in improved performance
of the model for regenerating the training data and OCR post-
processing. In the case of IAM handwriting database, input
sequences of length 50 characters result in higher similarity
between the training data and the generated data by the model.

TABLE V
PERFORMANCE EVALUATION OVER TRAINING DATA USING PROPOSED

CHARACTER LEVEL LANGUAGE MODEL

XXXXXXXXInput
Metric Training F-score Levenshtein Document

Accuracy Distance Similarity
(%) (%) (%) (%)

15 Chars 98.36 70.59 75.32 84.47
20 Chars 98.76 88.14 89.87 94.22
25 Chars 98.73 90.00 91.54 95.19
30 Chars 98.38 91.01 92.43 95.81
40 Chars 98.23 86.19 88.66 93.60
50 Chars 98.91 91.79 93.18 96.52



TABLE VI
PERFORMANCE EVALUATION OVER TESTING DATA USING PROPOSED
CHARACTER LEVEL LANGUAGE MODEL FOR OCR POST-PROCESSING

XXXXXXXXInput
Metric F-score Levenshtein Document

Similarity Similarity
(%) (%) (%)

15 Chars 72.34 77.26 89.18
20 Chars 82.80 90.00 93.66
25 Chars 84.01 85.99 94.25
30 Chars 85.62 87.18 95.17
40 Chars 82.52 84.92 94.03
50 Chars 86.87 88.03 95.75

D. Distribution of Documents Across Different Accuracy
Ranges

Tables VII and VIII show the distribution of the documents
across different accuracy ranges using the Levenshtein distance
and document similarity metrics for comparing the training
data and generated data via the word level language model.
These distributions have been reported for evaluating the
model with both training and testing data using different
input sequence lengths. Decreasing or increasing the sequences
length beyond 6 or 7 words result in degrading the perfor-
mance of the language model in predicting the correct word.

TABLE VII
NUMBER OF DOCUMENTS IN DIFFERENT ACCURACY RANGES BASED ON
CHARACTER SIMILARITY USING LEVENSHTEIN DISTANCE METRIC FOR

WORD LEVEL LANGUAGE MODEL. WRD=WORDS

XXXXXXXXRange
Input 2 Wrd 3 Wrd 4 Wrd 5 Wrd 6 Wrd 7 Wrd 8 Wrd

90%-100% 5 213 751 979 998 1008 953
80%-90% 6 76 77 49 48 41 47
70%-80% 70 176 109 59 49 50 67
60%-70% 415 323 149 85 62 51 21
50%-60% 213 158 72 35 36 14 10
40%-50% 279 186 64 18 13 13 39
30%-40% 264 132 31 14 25 31 368
20%-30% 287 275 285 300 308 341 1

TABLE VIII
NUMBER OF DOCUMENTS IN DIFFERENT ACCURACY RANGES BASED ON
DOCUMENT SIMILARITY METRIC FOR WORD LEVEL LANGUAGE MODEL.

WRD=WORDS

XXXXXXXXRange
Input 2 Wrd 3 Wrd 4 Wrd 5 Wrd 6 Wrd 7 Wrd 8 Wrd

90%-100% 31 64 247 326 1071 1074 997
80%-90% 240 314 642 742 92 72 97
70%-80% 225 418 190 100 26 9 23
60%-70% 191 190 90 38 16 12 11
50%-60% 182 152 49 17 49 46 59
40%-50% 200 108 39 28 142 162 193
30%-40% 214 156 150 111 126 144 127
20%-30% 173 120 105 153 14 18 28
10%-20% 73 14 20 22 3 2 4
0%-10% 10 3 3 2 0 0 4

Tables IX and X show the distribution of the documents
across different accuracy ranges using the Levenshtein distance

and document similarity metrics for comparing the training
data and generated data via the character level language
model. These distributions have been reported for evaluating
the model with both train and testing data using different
input sequence lengths. Longer contexts as input sequences
improve the performance of the model which results in higher
similarity between the input data and the generated data. As
the results in the tables show, training the models with longer
input sequences result in better performance of the model and
consequently falling more number of generated files in higher
accuracy ranges.

TABLE IX
NUMBER OF DOCUMENTS IN DIFFERENT ACCURACY RANGES BASED ON
LEVENSHTEIN DISTANCE SIMILARITY METRIC FOR CHARACTER LEVEL

LANGUAGE MODEL. CHARS = CHARACTERS

XXXXXXXXRange
Input 15 Chars 20 Chars 25 Chars 30 Chars 40 Chars 50 Chars

90%-100% 730 947 972 992 912 1018
80%-90% 113 147 152 155 136 149
70%-80% 107 101 87 96 105 101
60%-70% 157 105 111 127 178 125
50%-60% 145 82 82 76 101 61
40%-50% 148 71 72 41 53 52
30%-40% 112 72 56 50 50 33
20%-30% 27 14 7 2 4 0

TABLE X
NUMBER OF DOCUMENTS IN DIFFERENT ACCURACY RANGES BASED ON
DOCUMENT SIMILARITY METRIC FOR CHARACTER LEVEL LANGUAGE

MODEL. CHARS = CHARACTERS

XXXXXXXXRange
Input 15 Chars 20 Chars 25 Chars 30 Chars 40 Chars 50 Chars

90%-100% 1005 1245 1263 1309 1215 1322
80%-90% 188 118 116 115 174 109
70%-80% 118 48 59 39 67 54
60%-70% 116 67 49 40 44 34
50%-60% 79 39 38 24 25 16
40%-50% 27 22 11 12 11 3
30%-40% 4 0 3 0 3 1
20%-30% 2 0 0 0 0 0

E. Comparing Results with Previous Work

Comparing the distribution of the documents across differ-
ent accuracy ranges using Levenshtein distance and document
similarity as a distance measure in table XI shows that using
language models are effective in improving the performance
of OCR.

Comparing results of applying language models for OCR
post-processing with context based OCR results in [15] show
that higher number of documents reside in the accuracy range
90%− 100% compared to OCR as shown in bold. Moreover,
the accuracy improvement of the proposed character and word
level language models over OCR is considerable as shown in
bold in table XI.

Table XII shows the accuracy improvement of the word level
and character level language models for OCR post-processing
compared to the results obtained using the pipeline for mixed
text recognition in [15] over IAM handwriting database.



TABLE XI
COMPARISON OF NUMBER OF DOCUMENTS IN DIFFERENT ACCURACY

RANGES FOR OCR POST-PROCESSING, WRD LVL=WORD LEVEL, CHAR
LVL=CHARACTER LEVEL, LEV DST=LEVENSHTEIN DISTANCE, D

SIM=DOCUMENT SIMILARITY

TMIXT [15] Wrd Lvl Char Lvl

Accuracy Lev Dst D Sim Lev Dst D Sim Lev Dst D Sim
Ranges

90%-100% 15 45 998 1071 1018 1322
80%-90% 496 491 48 92 149 109
70%-80% 861 579 49 26 101 54
60%-70% 147 304 62 16 125 34
50%-60% 14 92 36 49 61 16
40%-50% 4 25 13 142 52 3
30%-40% 0 2 25 126 33 1
20%-30% 0 1 308 14 0 0
10%-20% 0 0 0 3 0 0

TABLE XII
ACCURACY IMPROVEMENT OF LANGUAGE MODEL FOR OCR

PRE-PROCESSING OVER IAM HANDWRITING DATABASE. CHAR
LVL=CHARACTER LEVEL, WRD LVL=WORD LEVEL,LSV

D=LEVENSHTEIN DISTANCE, DOC SIM=DOCUMENT SIMILARITY,
PR=PRECISION, IMP=IMPROVEMENT

TMIXT [15] This Work This Work

Wrd Lvl Imp Char Lvl Imp
Metrics (%) (%) (%) (%) (%)

PR 65.97 77.31 11.34 88.78 22.81
Recall 67.31 77.40 10.09 85.42 18.11
F-score 66.46 77.35 10.89 86.87 20.41
Lev Dst 77.17 79.42 2.25 88.03 10.86
Doc Sim 75.06 85.20 7.14 95.75 20.69

V. CONCLUSIONS

The experiments on IAM handwriting database showed
that the word language model have improved the F-score by
10.89% , character level similarity by 2.25% and document
level similarity by 7.14%. The character level language model
outperformed the word level model and improved the F-
score, character level similarity and document level similarity
by 20.41%, 10.86% and 20.69% accordingly. Considering the
complexity of the database used for training and also the tran-
scribed files used text prediction, the obtained improvement in
OCR accuracy is quite notable. Results show that the character
level language model performs better compared to word level
language model for improving OCR post processing accuracy
on IAM handwriting transcriptions. Improving the OCR results
using word level and character level language models also
resulted in increasing the number of files falling in accuracy
range between 90%−100% considerably. The number of files
in this accuracy range has increased by 66 − 67 times using
Levenshtein distance comparison and 23 − 29 times using
document similarity metric for Word level and character level
language models accordingly.

ACKNOWLEDGEMENT

This work was funded by Applications Service Develop-
ment Operations Team, Joint Forces Command - Information
Systems and Services (ISS), UK.

REFERENCES

[1] Cheriet M, Kharma N, Liu CL, Suen C. “Character recognition systems:
a guide for students and practitioners.“ John Wiley and Sons; 2007 Nov
27.

[2] Bassil Y, Alwani M. “Ocr context-sensitive error correction based
on google web 1t 5-gram data set.“ American Journal of Scientific
Research, 2012 Feb 1 (Vol. 50, pp.55-78).

[3] Beaufort R, Mancas-Thillou C. “A weighted finite-state framework for
correcting errors in natural scene OCR.“ International Conference on
Document Analysis and Recognition, 2007 Sep 23 (Vol. 2, pp. 889-
893).

[4] Broder AZ. “On the resemblance and containment of documents.“
Compression and Complexity of SEQUENCES, 1997 Jun 13 (pp. 21-
29).

[5] Broumandnia A, Shanbehzadeh J, Nourani M. “Segmentation of printed
Farsi/Arabic words.“ International Conference on Computer Systems
and Applications, 2007 May 13 (pp. 761-766).

[6] Chang JJ, Chen SD. “The postprocessing of optical character recognition
based on statistical noisy channel and language model.“ Pacific Asia
Conference on Language, Information and Computation, 1995 Dec (pp.
127-132).

[7] Doush IA, Alkhateeb F, Gharaibeh AH. “ A novel Arabic OCR post-
processing using rule-based and word context techniques.“ International
Journal on Document Analysis and Recognition, 2018 Jun 1, (Vol. 21,
No. 1-2, pp. 77-89).

[8] Perez-Cortes JC, Amengual JC, Arlandis J, Llobet R. “Stochastic error-
correcting parsing for OCR post-processing.“ International Conference
on Pattern Recognition, 2000 Sep 3 (Vol. 4, pp. 405–408).

[9] Strohmaier CM, Ringlstetter C, Schulz KU, Mihov S. “Lexical postcor-
rection of OCR-results: The web as a dynamic secondary dictionary?.“
International Conference on Document Analysis and Recognition, 2003
Aug 6 (pp. 1133-1137).

[10] Zhuang L, Zhu X. “An OCR post-processing approach based on multi-
knowledge.“ International Conference on Knowledge-Based and Intelli-
gent Information and Engineering Systems, 2005 Sep 14 (pp. 346-352).

[11] Mikolov T, Karafit M, Burget L, ernock J, Khudanpur S. “Recurrent
neural network based language model.“ Annual conference of the
international speech communication association 2010.

[12] Kiros R, Salakhutdinov R, Zemel R. “Multimodal neural language
models.“ International Conference on Machine Learning, 2014 Jan 27
(pp. 595-603).

[13] Kissos I, Dershowitz N. “Image and text correction using language mod-
els.“ International Workshop on Arabic Script Analysis and Recognition,
2017 Apr 3 (pp. 158-162).

[14] Bryant C, Briscoe T. “Language model based grammatical error correc-
tion without annotated training data.“ Workshop on Innovative Use of
NLP for Building Educational Applications, 2018 Jun (pp. 247-253).

[15] Medhat F, Mohammadi M, Jaf S, Willcocks CG, Breckon TP, Matthews
P, McGough AS, Theodoropoulos G, Obara B. “TMIXT: A process
flow for Transcribing MIXed handwritten and machine-printed Text.“
International Conference on Big Data, 2018 Dec 10 (pp. 2986-2994).

[16] Marti UV, Bunke H. “The IAM-database: an English sentence database
for offline handwriting recognition.“ International Journal on Document
Analysis and Recognition, 2002 Nov (Vol. 5, No. 1, pp. 39-46).

[17] Karpathy A. “The unreasonable effectiveness of recurrent neural net-
works.“ http://karpathy.github.io/, Accessed: 2019-03-20.

[18] Hochreiter S, Schmidhuber J. “Long short-term memory.“ Neural com-
putation. 1997 Nov 15; (Vol. 9, No. 8, pp. 1735–1780).

[19] Loper E, Bird S. “NLTK: the natural language toolkit.“ Association
for Computational Linguistics on Interactive poster and demonstration
sessions, July 2004, (pp. 69-72).

[20] Brownlee J. “Machine learning mastery.“
https://machinelearningmastery.com/, Accessed: 2019-03-20.

[21] Vladimir I Levenshtein. “Binary codes capable of correcting deletions,
insertions, and reversals.“ Soviet physics doklady, 1966 Feb 10 (Vol. 10,
No. 8, pp. 707-710).

[22] Salton G, Wong A, Yang CS. “A vector space model for automatic
indexing.“ Communications of the ACM. 1975 Nov, (Vol. 18, No. 11,
pp. 613-620).

[23] Pagliardini M, Gupta P, Jaggi M. “Unsupervised learning of sentence
embeddings using compositional n-gram features“, Transactions of the
Association for Computational Linguistics, 2018 , (Vo. 1, pp. 528-540).



[24] Fady Medhat, “mixed-iamdb“ https://bitbucket.org/DBIL/mixed-iamdb,
Accessed: 2019-03-20.

[25] Marti UV, Bunke H. “A full English sentence database for off-line hand-
writing recognition.“ International Conference on Document Analysis
and Recognition, 1999 Sep 22 (pp. 705-708).


