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 9 

Abstract 10 

 11 

Clinical isolates of influenza virus produce pleiomorphic virions, ranging from small spheres to 12 

elongated filaments. The filaments are seemingly adaptive in natural infections, but their basic 13 

functional properties are poorly understood and functional studies of filaments often report 14 

contradictory results. This may be due to artefactual damage from routine laboratory handling, an 15 

issue which has been noted several times without being explored in detail. To determine whether 16 

standard laboratory techniques could damage filaments, we used immunofluorescence microscopy 17 

to rapidly and reproducibly quantify and characterise the dimensions of filaments. Most of the 18 

techniques we tested had minimal impact on filaments, but freezing to -70°C, a standard storage 19 

step before carrying out functional studies on influenza viruses, severely reduced their 20 

concentration, median length and the infectivity of the whole virion population. We noted that 21 

damage from freezing is likely to have affected most of the functional studies of filaments 22 

performed to date, and to address this we show that it can be mitigated by snap-freezing or 23 

incorporating the cryoprotectant DMSO. We recommend that functional studies of filaments 24 

characterise virion populations prior to analysis to ensure reproducibility, and that they use unfrozen 25 

samples if possible and cryoprotectants if not. These basic measures will support the robust 26 

functional characterisations of filaments that are required to understand their roles in natural 27 

influenza virus infections. 28 
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Introduction 32 

 33 

While the virions produced by laboratory-adapted strains of influenza virus are commonly spherical, 34 

those produced by clinical isolates have varied morphologies (reviewed in (1) and (2)). They include 35 

spheres with diameters of 120 nm, bacilli with lengths of 200 nm, and filaments with lengths ranging 36 

to over 30,000 nm (1,3). Influenza viruses have been intensely studied due to their significant health 37 

impacts (4), but the role of filaments has been understudied and remains poorly understood (1). 38 

At first glance, filament formation appears maladaptive; elongated filaments require more structural 39 

resources than spherical virions, and an equivalent mass of spheres would presumably be able to 40 

enter more cells. However, several studies suggest that filament formation is adaptive in natural 41 

influenza infections. First, clinical and veterinary isolates of influenza virus routinely form filaments 42 

when grown in cell culture. When these clinical strains are passaged in chicken eggs or cell culture 43 

they often lose the filament-forming phenotype, but when spherical laboratory strains are passaged 44 

in guinea pigs they gain it (5,6). Second, filament formation correlates with mutations conferring 45 

increased pathogenicity in the 2009 pandemic influenza virus, although it is challenging to separate 46 

filament formation from other effects on viral replication (7,8). Third, filament formation is common 47 

to several classes of enveloped respiratory viruses, including respiratory syncytial virus (9), 48 

parainfluenza virus type 2 (10), human metapneumovirus (11), and mumps virus (12), which 49 

suggests that filament formation is advantageous in the respiratory tract. Together, these findings 50 

suggest that filaments play a role in natural influenza infections that is dispensable or even 51 

maladaptive in cell culture. Identifying this role could reveal novel therapeutic strategies that would 52 

not be apparent from studying spherical laboratory strains alone. 53 

Several suggestions have been made regarding the role of filaments. It has been suggested that 54 

filaments could traverse mucus better than spheres (13,14), that filaments could allow direct cell-cell 55 

spread in infection (15), or that filaments could initiate infections more robustly than spherical 56 

virions (16,17). None of these proposed roles have been shown to be clinically relevant. A major 57 

issue in identifying a role for filaments is that studies which focus specifically on filament properties 58 

often contradict one another. For example, some reports suggest that filaments are more infectious 59 

than spheres (16–18), while others suggest the opposite (3,19–21). Such discrepancies must be 60 

resolved if the function of filaments is to be understood. 61 

It has been suggested that discrepancies between filament studies could arise from artefactual 62 

damage to the potentially fragile filaments during standard handling procedures (18). Concerns 63 

about such damage have been raised several times, with electron microscopy studies in particular 64 



 

 

often observing filaments that appeared to have been damaged from shear forces 65 

(3,7,16,18,20,22,23). However, this phenomenon has never been studied in detail and so uncertainty 66 

about the suitability of laboratory handling techniques persists. Characterising how filaments 67 

respond to routine handling is therefore necessary to remove this uncertainty and allow robust 68 

future investigations into their functional properties. 69 

In this study, we aimed to determine whether common laboratory handling techniques could 70 

damage filaments. Using immunofluorescence microscopy and semi-automated image analysis, we 71 

measured the concentration and median lengths of high numbers of filaments and used these to 72 

assess the physical damage caused to filaments by a panel of common laboratory techniques. Most 73 

of the techniques we assessed did not cause substantial damage. A notable exception was the 74 

routine storage method of freezing, which significantly reduced the concentration and median 75 

length of filaments as well as inducing apparent capsid damage to the remaining virions. We show 76 

that the reduction in concentration and apparent capsid damage can be mitigated by snap freezing 77 

or freezing the samples in the presence of 10% DMSO, but the reduction in median length cannot. 78 

Together, our data suggest that most handling techniques are suitable for manipulating filaments 79 

but storing them using standard freezing procedures damages filaments and could skew functional 80 

assays into their properties.  81 

 82 

Materials and methods 83 

 84 

Viruses and cells 85 

Madin-Darby Canine Kidney cells (MDCKs) were cultured in Dulbecco’s Modified Eagle Medium 86 

(DMEM) (Gibco) supplemented with L-glutamine and 10% Fetal Calf Serum. Influenza 87 

A/Udorn/307/72(H3N2) virus (Udorn) was a kind gift from Prof David Bhella (MRC-University of 88 

Glasgow Centre for Virus Research) (3). To produce filament-containing stocks for analysis, confluent 89 

MDCK cells were infected at a multiplicity of infection of ~1 and incubated in serum-free DMEM 90 

supplemented with 1 μg/ml TPCK-treated trypsin (Sigma) for 24 h. Supernatants were harvested and 91 

clarified at 1800 g at room temperature for five minutes unless otherwise specified. 92 

Plaque assays were performed in MDCKs essentially as described by Gaush and Smith (24), with the 93 

agarose removed and cells stained with Coomassie blue to facilitate plaque counting. 94 

Virion manipulations 95 



 

 

10 μl of Udorn-containing supernatant was added to 990 μl of PBS in a 1.5 ml microfuge tube before 96 

applying the mechanical manipulations of pipetting, vortexing, and sonicating. For pipetting, the 97 

entire sample was manually pipetted at 30 bpm using a Starlab 1000 μl pipette tip touching the 98 

bottom of the microfuge tube. Vortexing was performed at 2500 rpm using a Starlab Vortex. 99 

Sonication was performed at 50 Hz in a Kerry KC2 ultrasonic bath. For freeze-thawing, 1 ml of 100 

undiluted sample in a 1.5 ml microfuge tube (Greiner) was stored in a consistent position within a 101 

polypropylene cryobox (VWR), which was placed towards the centre of a C760 Innova – 70 °C freezer 102 

(New England Biolabs) for 1 h before being thawed in a 37 °C waterbath for approximately two min. 103 

For snap freezing, 1 ml of undiluted sample in a 1.5 ml microfuge tube (Greiner) was placed in a 104 

mixture of dry ice and ethanol for approximately 90 s before being stored at -70 °C and thawed as 105 

described above. To incubate unfrozen virus, a sample was divided into 100 µl aliquots in 1.5 ml 106 

microfuge tubes (Greiner), and separate tubes for each time point were stored in a LCexv 4010 107 

laboratory fridge (Liebherr) at 5 °C, or in the dark at room temperature (approximately 20 °C). 108 

Imaging 109 

For confocal microscopy, samples were overlaid onto 1.3 cm coverslips, centrifuged at 1000 g at 4 °C 110 

for 30 minutes and fixed in 4% formaldehyde for 15 min before staining. Virions were labelled with 111 

the mouse anti-HA primary antibody Hc83x (a kind gift from Stephen Wharton, Francis Crick 112 

Institute) and goat anti-mouse Alexa-Fluor 555 secondary antibody (ThermoFisher). Coverslips were 113 

mounted using Prolong Diamond Antifade Mountant (ThermoFisher). 12 images from randomly 114 

selected sections of the coverslip were taken as single confocal slices using the 63x oil immersion 115 

objective of a Zeiss 710 confocal microscope. 116 

Image analysis was performed using FIJI (25). Images were auto-thresholded using the algorithm 117 

ImageJ Default. Particles with a circularity between 0.5 and 1 were removed using Particle Remover 118 

(26) to minimise the chances of circular cell debris being inaccurately scored as filaments. The 119 

number and lengths of the remaining particles were extracted using Ridge Detection (27,28), 120 

implemented using the custom ImageJ macro Batch Filament Analysis (using custom scripts available 121 

at github.com/jackhirst/influenza_filament_analysis). To assess particle distortion, the major axis 122 

and minor axes of the minimal fitted ellipse for each particle were calculated using Analyse Particles. 123 

Estimated distributions of lengths within the population were calculated using a custom Python 124 

script. Graphs were plotted with ggplot2 (29,30) or matplotlib (31) and edited in Inkscape. All scripts 125 

used are available at github.com/jackhirst/influenza_filament_analysis, and raw image data can be 126 

downloaded from Enlighten at the University of Glasgow (URL: XXXX). The total number of detected 127 



 

 

filaments for each condition, and the infectious titre where appropriate, are listed in Supplementary 128 

Tables S1 – S12. 129 

 130 

Results 131 

 132 

Concentration and median length of filaments can be reproducibly measured by confocal 133 

microscopy 134 

We aimed to assess damage to filaments by measuring the concentration and median length of 135 

filament populations before and after applying routine laboratory handling techniques. A procedure 136 

that entirely removed filaments should reduce the concentration, whereas a procedure that 137 

fragmented them should increase the concentration while reducing the median length. As assessing 138 

large numbers of filaments by electron microscopy is intensely laborious, we followed the example 139 

of previous studies which used immunofluorescence microscopy techniques to analyse influenza and 140 

RSV filaments (21,32,33). We centrifuged virus-containing supernatant on to untreated glass 141 

coverslips, taking advantage of the fact that filaments are known to adhere to glass (19). We then 142 

labelled haemagglutinin (HA) via indirect immunofluorescence, enabling us to visualise filamentous 143 

structures (Fig 1a). Objective definitions of filaments by size are challenging, as influenza virion sizes 144 

span a continuous spectrum without clear boundaries between different morphologies (3). For the 145 

purposes of this study, we defined a filament as a curvilinear structure whose length was at least 146 

three times greater than its width. As the minimum width that could be resolved in our confocal 147 

micrographs was approximately 0.45 µm, the filaments included in our analysis had a minimum 148 

length of approximately 1.5 µm. To detect these filaments in a semi-automated fashion, we applied 149 

a line detection algorithm described by Steger (1998; (27)), implemented as the ImageJ plugin Ridge 150 

Detection (28), with a minimum line length corresponding to 1.5 µm (Fig 1b). Detecting filaments in 151 

this way allowed us to determine the length of filaments and the number of filaments in each 152 

micrograph, which we used as a proxy for their concentration.  153 

To determine the reproducibility of the method, we assessed samples from the same stock of virus 154 

in every well of a 24-well plate. We calculated the average concentration and median length of each 155 

well in the plate across three repeats and normalised these values to the average of the whole plate. 156 

The concentration of filaments had a standard deviation of 0.1 as a proportion of the mean (Fig 1c) 157 

and the lengths of filaments had a standard deviation of 0.05 as a proportion of the mean (Fig 1d), 158 

confirming that this approach gave reproducible results.  159 



 

 

To assess the sensitivity of the method, we altered the filament concentration by diluting samples in 160 

PBS. We found that the measured change in filament concentration matched the expected change 161 

(Fig 1e). Dilution should only affect concentration and not length, and indeed in both cases, the 162 

distribution of lengths in the filament population remained unchanged (Fig 1f). We concluded that 163 

immunofluorescence could detect changes in the concentration of a filament population over at 164 

least a four-fold range. 165 

Common laboratory manipulations do not substantially damage filaments 166 

Having established a method to readily analyse the dimensions of filament populations, we could 167 

then compare the effects of various common laboratory manipulations on the stability of filaments. 168 

There are several plausible ways in which filaments could be destroyed or otherwise removed from a 169 

population. First, purification processes such as low-speed centrifugation to clarify virions from cell 170 

debris could inadvertently remove filaments. Second, mechanical manipulations of virions such as 171 

pipetting or vortexing could damage filaments through mechanical stresses or shear forces. Third, 172 

storing virions by freezing could cause damage due to changes in the chemical properties of the 173 

sample as it freezes or from ice crystals physically rupturing the membrane or capsid (34,35). In each 174 

of these cases, the elongated structure of filaments could make them more vulnerable than spheres 175 

and so more likely to be removed from the sample. We therefore tested routine handling techniques 176 

that could damage filaments in these ways. 177 

First, we investigated clarification by low-speed centrifugation, which is commonly used to remove 178 

cell debris from virus samples. When we compared untreated samples and samples clarified at 1800 179 

g for 5 min, we found no difference in filament concentration (Fig 2a) or median filament length (Fig 180 

2b), suggesting that filaments were not being lost. To minimise the presence of HA-positive debris in 181 

our micrographs, all further experiments were performed using clarified samples. 182 

We then tested several common mechanical manipulations of virions: pipetting, vortexing and 183 

sonicating. We subjected samples to increasing levels of each treatment and compared the treated 184 

and untreated populations. We found that even after extended treatment, none of these techniques 185 

substantially altered the concentrations of filaments (Fig 2e, c, g) or the average filament length (Fig 186 

2d, f, h). Together, these data suggest that mechanical manipulations do not cause substantial 187 

damage to filaments. 188 

Filaments are severely damaged by freezing 189 

Finally, we investigated whether the routine storage method of freezing virus at – 70 to – 80 °C 190 

would damage filaments. We repeatedly placed virus either in a -70 °C ultrafreezer or a 5 °C fridge 191 

for one hour before thawing the frozen samples in a water bath at 37 °C for approximately 2 min and 192 



 

 

characterising the filament populations. We found that even a single freeze-thaw cycle reduced the 193 

concentration of filaments by almost half (Fig 2i) and the median length of filaments by almost a 194 

third (Fig 2j). We observed further reductions in concentration and length with further freeze-thaw 195 

cycles (Fig 2i, Fig 2j). Freezing in this manner therefore causes severe damage to filaments. 196 

We noted that the virions which had been frozen were often distorted along their length, suggesting 197 

damage to the viral capsid (Fig 3a). As the distortions compacted the filaments, we could quantify 198 

the distortion by fitting an ellipse to each filament and comparing the lengths of the major and 199 

minor axes. These values can be used to calculate the eccentricity of the ellipses, a geometric 200 

measure that approaches 1 for perfectly straight filaments and is lower for more distorted filaments. 201 

After a single freeze-thaw cycle the major to minor axis ratios, and therefore the average 202 

eccentricity, were lower for frozen virions than unfrozen virions (Fig 3b, Fig 3c). This suggests that 203 

even the virions that survived the freeze-thaw process were physically damaged. 204 

Having shown that routine freezing could damage filaments, we sought methods to mitigate that 205 

damage. The simplest method of avoiding freezing damage would be to avoid freezing entirely. To 206 

determine how long filaments could be maintained in this manner, we incubated samples of virus at 207 

5 °C or at room temperature, in the dark, for a total of 120 h, measuring the concentration and 208 

length of filaments and the infectious titre of the sample. At both room temperature and 5 °C, we 209 

observed no substantial changes in the concentration (Fig 4a) or median length (Fig 4b) of filaments 210 

at any point in the time course. Furthermore, we did not detect any distortion of the filaments (Fig 211 

4c, Fig 4d), suggesting the apparent capsid damage we observed after freezing was not occurring. 212 

These data suggested that filaments could remain stable over several days, but infectivity of 213 

influenza virus samples has been reported to degrade over time (36), which could itself skew the 214 

results of assessments into filament properties. To determine whether our samples were affected by 215 

this issue, we assessed the infectious titre of the samples via plaque assay. The infectious titre of 216 

samples incubated at 5 °C appeared to diminish slowly over time, but the decline was not 217 

statistically significant at 120 h (Fig 4e). However, the infectious titre of samples incubated at room 218 

temperature was severely reduced over time, halving after approximately 24 h (Fig 4e). Together, 219 

these data suggest that while unfrozen filaments themselves are physically stable over time, the 220 

infectivity of filament-containing samples does diminish, particularly at room temperature. 221 

While chilling liquid samples was a suitable method for storing filaments for several days, it is often 222 

desirable to store viral samples for longer than this. Long term storage of influenza virus stocks 223 

requires freezing, and so we sought alternative freezing methods that would minimise the damage 224 

this causes. First, we assessed the effect of standard freezing on infectious titre, as the infectivity of 225 



 

 

influenza viruses is known to be reduced by freeze-thaw cycles (34,37). When we compared the 226 

infectious titre of frozen and unfrozen samples, we found a reduction in titre of approximately one 227 

quarter after standard freezing (Fig 5a). Snap freezing and freezing in the presence of DMSO are 228 

commonly used to limit damage when freezing cells or tissue samples (38,39), so we reasoned that 229 

these might also reduce the damage incurred by filaments during freezing. When we compared 230 

these freezing methods with routine freezing, we found that both snap freezing and incorporating 231 

10% DMSO mitigated the reduction in infectious titre (Fig 5a) and also prevented a detectable 232 

reduction in filament concentration (Fig 5b). Measurements of the eccentricity of fitted ellipses 233 

suggested that physical damage to filaments (lower eccentricity) was caused by both routine and 234 

snap freezing, but not by freezing in the presence of DMSO (Fig 5c, Fig 5d). However, the median 235 

filament length was reduced in all freezing conditions, indicating that under all freezing conditions 236 

the longest filaments in the population were lost (Fig 5e). Taken together, these data suggest that 237 

snap freezing and incorporating DMSO can mitigate freezing damage to filaments to varying degrees, 238 

with DMSO offering a greater degree of protection. However, neither of these alternative freezing 239 

methods can entirely prevent freezing from damaging filaments. 240 

Discussion 241 

 242 

To determine whether common laboratory handling techniques could damage influenza virus 243 

filaments, we applied immunofluorescence microscopy to quantify the changes to filamentous 244 

virions caused by laboratory handling. We found that while clarification, sonication, pipetting and 245 

vortexing caused little or no damage, routine freezing substantially reduced the concentration and 246 

median length of filaments and the infectivity of the virus population. We showed that the impact of 247 

freezing on filament concentration, capsid integrity and infectivity can be reduced by snap freezing 248 

or freezing in the presence of DMSO, but no freezing method prevented the loss of long filaments. 249 

As an alternative to freezing, we showed that filaments remain stable at 5 °C for several days. 250 

Our data show that immunofluorescence microscopy can be used to assess changes to filamentous 251 

virion populations. Historically, determining filament numbers and dimensions has been attempted 252 

by manually counting particles using dark field microscopy (40,41), negative stain electron 253 

microscopy (17,42), or cryo-electron microscopy (3). The specific labelling of viral proteins in 254 

immunofluorescence microscopy makes it easier to automate virion detection, and thereby allows 255 

faster characterisation of larger samples than previous methods. Immunofluorescence microscopy 256 

also allows analysis of unconcentrated samples, which is challenging to accomplish with electron 257 

microscopy (14); furthermore it avoids damage or clumping that could be introduced by 258 



 

 

concentration procedures. We note that there are potential drawbacks to this method. Taking only 259 

single confocal slices would underestimate the lengths of any filaments that have not fully adhered 260 

to the glass and lie at an angle to it, and our approach also assumes that any material of interest is 261 

equally likely to adhere to glass. However, we do not consider it likely that these effects would 262 

introduce a particular bias against any of the conditions used in this study. 263 

As well as assessing changes in the filament population, the ability to rapidly assess the 264 

concentration of filaments in a stock also provides a major technical advantage when studying their 265 

functional properties. Even when stocks are prepared under similar conditions, the concentrations of 266 

filaments can vary (see, for example, supplementary tables S1-S9), and studies of filament properties 267 

have not typically controlled for this. Assessing filament concentration prior to performing functional 268 

assays would make experimental investigations of the properties of filaments more robust. 269 

The impact of freezing-induced damage on filaments could have been enough to skew previous 270 

investigations into their properties. Freezing is routinely used to store influenza virus samples (37), 271 

and previous studies on isolated filaments have often used frozen virions (18,42) or not explicitly 272 

stated their storage conditions (7,14,21,23,43,44). When using frozen samples, our data suggest the 273 

filament concentration could be almost half that of unfrozen, potentially reducing their contribution 274 

to a sample’s properties to below the limit of detection. The apparent capsid damage we observed 275 

also suggests that the surviving filaments may have different properties to their unfrozen 276 

counterparts. The possibility of freezing damage affecting results should therefore be considered 277 

when interpreting the current, contradictory literature of filament properties. 278 

Based on our data, we recommend that future studies of influenza filament properties should avoid 279 

using frozen virus samples where possible. Using recently prepared samples and storing them for 280 

short periods at 5 °C should avoid the damage associated with standard freezing. If freezing cannot 281 

be avoided, snap freezing or freezing with 10% DMSO should reduce the damage, and microscopy 282 

can be used to assess the extent of any damage that has occurred. Avoiding artefactual damage in 283 

this way will make functional characterisation of filaments more robust, and so provide a firmer 284 

foundation for evaluating the role of filaments in infection. 285 

As well as the influenza viruses, filament formation is common to several classes of enveloped 286 

respiratory viruses and our approach would be readily applicable to the study of these. The 287 

artefactual damage we observed with influenza filaments could affect these other viruses and so 288 

similar stability studies would also be relevant when designing functional assays for these viruses. 289 



 

 

Although damage to filaments can cause problems when studying their properties, it may offer 290 

practical advantages in other contexts. Filaments can cause difficulties during influenza vaccine 291 

purification, as they can interfere with the filtration used to clarify allantoic fluid from infected 292 

chicken eggs (45). Simple treatments that remove or compact filaments in unpurified vaccine 293 

material could limit these difficulties. Freeze-thaw cycles could be an appealing approach for this, 294 

though for live-attenuated vaccines any advantages would need to be balanced against a potential 295 

reduction in infectious titre. 296 

As well as being of practical use, our data suggest a possible role for influenza filaments. The effects 297 

of room-temperature incubation, in which the infectious titre falls even when filaments do not show 298 

visible damage (Fig 4a, Fig 4e), suggest that other forms of virus particle – spheres and bacilli – may 299 

account for most of the infectivity. This would be consistent with microscopy studies suggesting that 300 

only a minority of filaments contain genomes (3,21), as well as with studies indicating that the 301 

proportion of filaments in laboratory stocks of filamentous influenza virus, though dependent on 302 

strain and growth conditions (3,15,46), is typically quite low (estimates for Udorn range from 303 

approximately 15% (22) to 31% (3) of the total virion population). However, even if the smaller 304 

virions are more likely to be infectious, our data suggest that filaments may be more physically 305 

robust. We speculate that filaments may make a greater contribution to infectivity in hostile 306 

conditions, explaining at least in part why they are selected for in in natural infections (6). 307 

In conclusion, here we demonstrate a method for rapidly measuring and quantifying filamentous 308 

influenza viruses in unconcentrated stocks. This has intrinsic value in calibrating measures of 309 

filament properties, and by applying it to common laboratory manipulations we have shown that 310 

freezing can damage influenza virus filaments. We have also shown that snap freezing or adding a 311 

cryoprotectant can reduce freezing damage, but not eliminate it. This damage could explain 312 

discrepancies between past studies into filament properties. Our findings therefore remove a source 313 

of uncertainty present in filament research and provide a foundation for robust functional analyses 314 

of filaments in future. Such analyses will be necessary to finally identify the role of the clinically 315 

relevant but poorly understand filamentous influenza virions. 316 
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Figure 1: Concentration and median length of influenza virus filaments can be reproducibly 436 

measured by confocal microscopy. Influenza virus filaments were obtained by collecting 437 

supernatant from MDCK cells infected with the influenza virus A/Udorn/307/72(H3N2) for 24 h and 438 

centrifuging this onto glass coverslips. (a) To count and measure filaments, coverslips were 439 

immunostained for haemagglutinin and images were collected by confocal microscopy (63x 440 

magnification, scale bar 10 µm). (b) Next, a Ridge Detection algorithm was used to identify and 441 

measure filaments, highlighted in red and indicated with arrows. (c,d) To assess reproducibility, 442 

three separate populations of filaments were divided into each well of 24-well plates. 443 

Measurements of length and concentration were taken from each well, and the mean for each of 444 

the 24 positions in the plate were calculated and then normalised to the total. Mean values for each 445 

position are shown of (c) median filament length within a well and (d) filament concentration per 446 

well. (e,f) To assess sensitivity, filaments were diluted in PBS prior to analysis. (e) Means and s.d. of 447 

filament concentration are shown of 3 experiments normalised to undiluted. Concentrations were 448 

compared to undiluted with two-tailed single-sample t-tests, * p <0.05, ** p < 0.01. A polynomial 449 

trend line was fitted by the least squares method. (f) Frequency distributions of filament lengths 450 

were calculated for each sample. Violin plots indicate the mean frequency distribution, with the 95% 451 

CI shaded in grey. The median filament length was also calculated for each repeat; the means and 452 

s.d. of these median positions are indicated by lines and whiskers (n=3). Population medians were 453 

compared to the undiluted sample with two-tailed Student’s t-tests; n.s. = not significant (p > 0.05). 454 

 455 

Figure 2: The effects of common laboratory manipulations on filaments. Concentration and length 456 

distributions of filaments in populations treated with clarification by low-speed centrifugation (a, b) 457 

and with increasing exposure to sonication (c,d), pipetting (e,f), vortexing (g,h) and freezing (i,j). (n = 458 

3). Concentration data are normalised to the untreated sample and the means and s.d. are shown; 459 

comparisons to untreated were made by two-tailed single-sample t-test: n.s p > 0.05, * p < 0.05, ** p 460 

< 0.01, *** p < 0.001. Polynomial trend lines were fitted by the least squares method. Filament 461 

length distributions are shown as frequency distributions (mean, with 95% CI in grey) and 462 

distributions of the median filament length (mean position indicated as a line, s.d. as whiskers). 463 

Population medians were compared to the untreated sample by two-tailed Student’s t-tests: * p < 464 

0.05, ** p < 0.01, *** p < 0.001. 465 

 466 

Figure 3: Freezing distorts filaments. (a) Representative images of unfrozen and freeze-thawed 467 

samples, immunostained for haemagglutinin and with insets magnifying an individual filament (63x 468 



 

 

magnification, scale bar 10 µm). (b) Measurements of individual filaments from unfrozen samples 469 

and samples that had undergone a single freeze-thaw cycle, combining data from 3 separate 470 

experiments. Ellipses were fitted to each filament, and the major and minor axes of the ellipses are 471 

plotted. (c) The major and minor axes from (b) were used to calculate the eccentricity of the fitted 472 

ellipses. Mean eccentricities for each repeat are shown (n = 3, mean indicated by a line, s.d. as 473 

whiskers). Conditions were compared by two-tailed Student’s t-test: *** p < 0.001. 474 

 475 

Figure 4: Filaments are physically stable but infectivity declines over time in unfrozen samples. 476 

Samples containing filaments were incubated in the dark, at 5 °C (left-hand panels) or room 477 

temperature (right-hand panels), for up to 120 h. Trend lines show exponential decay curves fitted 478 

by the least squares method. (a) Filament concentrations at different time points, normalised to 0 h. 479 

Means and s.d. of 3 repeats are shown, with comparisons to unfrozen by two-tailed one-sample t-480 

test: n.s. p > 0.05. (b) Filament length distributions, shown as frequency distributions (mean, with 481 

95% CI in grey) and distributions of the median filament length (mean position indicated as a line, 482 

s.d. as whiskers). Population medians were compared to 0 h sample by two-tailed Student’s t-tests: 483 

n.s. p > 0.05. (c) Dimensions of individual filaments following incubation, combining data from 3 484 

separate experiments. Ellipses were fitted to each filament, and the major and minor axes of the 485 

ellipses are plotted. Subtitles of each graph in grey boxes indicate the hours of incubation before 486 

analysis. (d) The major and minor axes from (c) were used to calculate the eccentricity of the fitted 487 

ellipses. Mean eccentricities for each repeat are shown, (n = 3, mean indicated by a line, s.d. as 488 

whiskers). Time points were compared to 0 h by two-tailed Student’s t-tests: n.s p > 0.05.  (e) 489 

Infectious titres, measured by plaque assay in MDCK cells and normalised to 0 h; means and s.d. are 490 

shown (n = 3), with comparisons to 0 h by two-tailed single-sample t-test: n.s. p > 0.05, * p <0.05, ** 491 

p < 0.01, *** p < 0.001. 492 

 493 

Figure 5: Alternative freezing methods can mitigate freezing damage. The effects of different 494 

freezing methods were compared for a single freeze-thaw cycle. (a) Infectious titres, measured by 495 

plaque assay in MDCK cells and normalised to 0 h; means and s.d. are shown (n = 3), with 496 

comparisons to 0 h by two-tailed single-sample t-test: n.s. p > 0.05, * p <0.05, ** p < 0.01, *** p < 497 

0.001. (b) Filament concentrations after treatment, normalised to unfrozen. Means and s.d. of 3 498 

repeats are shown, with comparisons to unfrozen by two-tailed one-sample t-test: * p < 0.05, ** p < 499 

0.01. (c) Individual filament dimensions based on fitted ellipses, combining data from the 500 

experimental repeats described in (b). (d) Eccentricity of the fitted ellipses, calculated from the 501 



 

 

major and minor axes from (e). Mean eccentricities for each repeat are shown (repeats as (b), mean 502 

indicated by a line, s.d. as whiskers). Time points were compared to 0 h by two-tailed Student’s t-503 

tests: n.s p > 0.05.  (e) Frequency distributions of filament lengths (mean, with the 95% CI shaded in 504 

grey) as well as the position of the median filament length (mean and s.d.). Population medians were 505 

compared to unfrozen with two-tailed Student’s t-tests: * p <0.05, ** p < 0.01, *** p < 0.001 (n=6 506 

except Snap + DMSO where n=3). 507 
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Table S1: Total number of filaments detected in 12 micrographs  when diluting the original sample

Presented graphically in Figure 1c

Repeat 1x 2x 4x

1 378 163 153

2 571 213 149

3 416 256 106

Table S2: Total number of filaments detected in 12 micrographs  after clarifying the original sample

Presented graphically in Figure 2a

Repeat Unclarified Clarified

1 330 319

2 228 202

3 175 155

Table S3: Total number of filaments detected in 12 micrographs  after sonicating the sample

Presented graphically in Figure 2c

Repeat 0 5 10 30 60

1 202 199 232 205 232

2 155 191 181 207 220

3 165 216 187 174 170

Table S4: Total number of filaments detected in 12 micrographs  after repeatedly pipetting the sample

Presented graphically in Figure 2e

Repeat 0 5 10 30

1 202 201 199 176

2 155 195 166 143

3 205 203 178 165

Table S5: Total number of filaments detected in 12 micrographs  after vortexing the sample

Presented graphically in Figure 2g

Repeat 0 5 10 30 60

1 237 238 216 226 146

2 200 180 155 171 167

3 762 669 780 660 621

Table S6: Total number of filaments detected in 12 micrographs  after freeze-thawing the sample

Presented graphically in Figure 2i

Repeat 0 1 2 3 4

1 658 315 258 98 164

2 325 200 160 75 55

3 303 212 108 115 68

Dilution Factor

Pipette actions

Vortexing time (s)

Sonicating time (s)

Freeze-thaw cycles



Table S7: Total number of filaments detected in 12 micrographs  after incubating the sample at room

temperature

Presented graphically in Figure 4a

Repeat 0 8 24 48 96 120

1 879 786 906 864 837 609

2 432 519 606 497 433 456

3 885 553 580 523 500 542

Table S8: Total number of filaments detected in 12 micrographs  after incubating the sample at 5 °C

Presented graphically in Figure 4a

Repeat 0 8 24 48 96 120

1 879 840 636 750 630 621

2 432 471 412 413 388 346

3 885 664 462 546 541 456

Table S9: Total number of filaments detected in 12 micrographs after freeze-thawing the sample

 in different conditions

Presented graphically in Figure 5b

Repeat Unfrozen Standard Snap DMSO Snap+DMSO

1 453 187 306 401 n.d

2 146 101 119 107 n.d.

3 230 120 127 177 n.d.

4 264 201 ve a 280 352

5 325 162 193 381 380

6 65 62 73 84 86

Table S10: Plaque-forming units per ml after incubating the sample at room temperature

Presented graphically in Figure 4e

Repeat 0 8 24 48 96 120

1 32000000 21500000 9000000 3000000 65000 690000

2 54000000 44000000 17000000 9500000 2650000 90000

3 23500000 32000000 16500000 9000000 700000 305000

Table S11: Plaque-forming units per ml after incubating the sample at 5 °C

Presented graphically in Figure 4e

Repeat 0 8 24 48 96 120

1 32000000 28500000 33500000 30500000 3500000 5500000

2 54000000 38000000 17000000 28500000 36500000 15500000

3 23500000 28000000 12000000 27000000 23000000 21500000

Freezing condition

Incubation time (h)

Incubation time (h)

Incubation time (h)

Incubation time (h)



Table S12: Plaque-forming units per ml after freeze-thawing the sample in different conditions

Presented graphically in Figure 5a

Repeat Unfrozen Standard Snap DMSO Snap + DMSO

1 14750 14000 9750 32500 n.d.

2 26500 18750 30250 27250 n.d.

3 72500 60000 40000 70000 72500

4 75000 42500 27000 n.d. 24500

5 16000000 11000000 12500000 15750000 16750000

Freezing condition
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