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Multiple-copy state discrimination is a fundamental task in quantum information processing. If
there are two, pure, non-orthogonal states then both local and collective schemes are known to reach
the Helstrom bound, the maximum probability of successful discrimination allowed by quantum
theory. For mixed states, it is known that only collective schemes can perform optimally, so it might
be expected that these schemes are more resilient to preparation noise. We calculate the probability
of success for two schemes, a local scheme based on Bayesian updating and quantum data gathering,
the simplest possible collective measurement, and consider imperfect preparation fidelity. We find
two surprising results. Firstly, both schemes converge upon the same many-copy limit, which is less
than unity. Secondly, the local scheme performs better in all cases. This highlights the point that
one should take into account noise when designing state discrimination schemes.

I. INTRODUCTION

In many quantum information processing tasks, one
needs to identify, by measurement, the state of a sys-
tem given that the finite and discrete set of states from
which it is taken is known. This task is called state dis-
crimination [1–5]. Unless the set of possible states is an
orthogonal basis for some space they cannot be perfectly
discriminated and instead the user usually seeks to min-
imise one of two figures of merit, either the probability
of incorrectly identifying or failing to identify the state.
The measurement which minimises the former of these
is the Helstrom, or minimum-error, measurement [6]. If
there are two possible states, the optimal measurement
has a simple analytic form. In more complex cases, such
as three-or-more pure states [7] or mixed states [8, 9],
only limited results are known.

Our above comments relate to single-copy state dis-
crimination. Given a resource of multiple systems, all
prepared in the same state, it might be expected that
the correlations can be used to improve the probability
of success. This intuition is correct and the Helstrom
bound, the optimal value of this probability, is known
for discriminating two states. However, in this case a
physical implementation of the measurement is typically
hard to find. Furthermore, the issue of locality versus
collectivity arises: can the bound be achieved with local
measurements, those on individual systems, only or must
the discriminator use collective measurements, which are
more difficult to perform? It is known that the best mea-
surement to discriminate multi-partite states is often a
collective measurement, even for product states. Famous
examples of this are the double trine ensemble [10–13]
and the domino states [14–16].

For two-pure-state discrimination, it is known that a
local scheme can reach the Helstrom bound [17–19]. In
other scenarios, very few analytic results have been ac-
quired and most knowledge comes from numerical sim-
ulations [20, 21]. Here, some counterintuitive results
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emerge. One example is that the distinction between lo-
cal and global optimality emerges. In some cases, among
local schemes, the best overall measurement involves a
fixed measurement on each qubit, which succeeds locally
with a suboptimal probability [20]. For a small number
of copies, adaptive schemes perform better than fixed
schemes [22], but in the limit of large numbers of copies,
this advantage disappears, even for mixed states [20, 22–
25]. Further, it is for almost pure, but strictly speaking
mixed, states that the gap in performance between collec-
tive stratgies and local strategies is most pronounced in
the many-copy limit. Such unexpected results signal the
need for further analytical work in this area. Whether
collective measurements, which require a quantum mem-
ory, are required to reach the Helstrom bound is consid-
ered an important open question in state discrimination
[26, 27].

The work presented in this paper investigates a sep-
arate, but related question. How resilient are multiple-
copy state discrimination schemes to preparation noise?
No real preparation is ever perfect, but for high enough
fidelity we may consider the states to be pure. Further,
decoherence properties of even state-of-the-art qubits can
demonstrate significant variability [28, 29], resulting in a
corresponding variability in the rate at which a prepa-
ration characterised as very high fidelity degrades over
time. Finally, in a real-world physical communications
system, instabilities in noise properties of a channel can
lead to uncharacterised noise in the received states. How
sensitive are schemes designed for pure states to a small
amount of uncharacterized preparation noise? As the
truly optimal scheme for noisy qubits will be collective,
it might be expected that such schemes will be more
resilient to preparation noise than the equivalent local
scheme. Our approach is to compare two equivalent
schemes, one local [17] and one collective [30], both of
which reach the Helstrom bound for discriminating two
pure states. We apply each scheme, optimised for a spe-
cific pair of pure states, to the corresponding mixed states
and relate the probability of success to the preparation
fidelity. Our results show that, surprisingly, the local
scheme consistently performs better than the collective
scheme. Neither, however, approaches unit success prob-
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ability as the number of copies, N , grows. Rather, they
approach the same fixed bound. We discuss how to use
information which would otherwise be thrown away in
the local adaptive scheme to improve on this bound. This
recovers asymptotic behaviour which, as the number of
qubits approaches infinity, tends towards perfect discrim-
ination.

II. PRELIMINARIES

Two pure states of a qubit occupy a single great circle
on the Bloch sphere. For this reason, they can be char-
acterised in relation to each other by real numbers only
and written in the form

|ψk〉 = cos(θ)|0〉+ (−1)k sin(θ)|1〉 k = 0, 1. (1)

The overlap of these two states is 〈ψ0|ψ1〉 = cos(2θ) and,
without loss of generality, 0 ≤ θ ≤ π/4. If a single system
is prepared in either of these states with probabilities pk,
the highest possible probability of successful discrimina-
tion is given by the Helstrom bound,

PH
1 =

1

2

(
1 +

√
1− 4p0p1 cos2(2θ)

)
. (2)

If θ = π/4 the two states are orthogonal. In such a case,
PH
1 = 1 and they can be perfectly discriminated. Oth-

erwise, this quantity is less than one. The measurement
which achieves this bound is a projective measurement
onto the eigenvectors of p0|ψ0〉〈ψ0| − p1|ψ1〉〈ψ1|.

If instead there is a resource of N copies of the state,
we are seeking to distinguish |ψ0〉⊗N from |ψ1〉⊗N . As
these can be considered as two single pure states on the
total Hilbert space, the multiple-copy Helstrom bound is

PH
N =

1

2

(
1 +

√
1− 4p0p1 cos2N (2θ)

)
. (3)

In this case, the measurement which achieves this is again
a von Neumann measurement, one that projects onto
the eigenstates of p0|ψ0〉〈ψ0|⊗N − p1|ψ1〉〈ψ1|⊗N . To find
these we must find the eigenvalues of a 2N dimensional
matrix, a task which is much simplified by the symmetry
in the multiple-copy case. For pure states in particular,
there are just two dimensions that are important, and a
number of optimal schemes are known. We consider two.

In this article we are concerned with systems in which
the resource qubits are prepared imperfectly. This is rep-
resented by a parameter δθi which characterises the dis-
placement of the ith qubit’s state from the ideal case such
that

|ψ̃i
k〉 = cos(θ + δθi)|0〉+ (−1)k sin(θ + δθi)|1〉

= cos(δθi)|ψk〉 − sin(δθi)|ψk⊥〉. (4)

In the second line we relate the noisy form of the state to
the ideal case, Eq. 1 and introduce |ψk⊥〉 to indicate the
state orthogonal to |ψk〉. The fidelity F is the standard

way to parameterise the noise on a system. It can be
understood operationally as the probability that a mea-
surement of the prepared state will identify it as the ideal
state [4]. For pure states, it is defined as the overlap of
the prepared and ideal states, averaged over the noise’s
probability distribution which we assume is symmetric,
i.e., P(δθi) = P(−δθi). One can consider this a Gaussian
distribution however that level of detail is not required in
what follows. The two noise parameters are then related
by

〈cos2(δθi)〉 =

∫
|〈ψ̃i

k|ψk〉|2P(δθi) = F, (5)

where 1/2 ≤ F ≤ 1. From this we also have

〈sin2(δθi)〉 = 1− F (6)

〈cos(2δθi)〉 = 2F − 1 (7)

〈sin(2δθi)〉 = 0. (8)

The first two of these follows from the definition of the
fidelity while the third uses the symmetry of the prob-
ability distribution. These are the only functions which
are averaged in what follows. We assume that the noise
on each qubit is independent of the others and average
at each stage.

Using these results we express the noisy form of the
state, Eq. 4, as a mixed state. We obtain

ρk = F |ψk〉〈ψk|+ (1− F )|ψk⊥〉〈ψk⊥|, (9)

where we have averaged over the probabilty distribution
of δθi. If F = 1 it is the relevant pure state. If instead
F = 1/2, which is the smallest possible value of the fi-
delity, it is a maximally mixed state, so that maximum
noise erases all information about the state. For other
values of F , the state varies monotically between these
two points. Our interest throughout this paper will be in
systems which are close to perfect fidelity.

III. LOCAL-ADAPTIVE MEASUREMENT

An important result in multiple-copy state discrimina-
tion is that it is possible to reach the Helstrom bound,
Eq. 3, using local measurements only. We follow here
the scheme of Aćın et al [17] but similar results have
been found by others [18, 19]. They examine a local and
adaptive scheme in which the measurement of the nth
copy can depend upon the outcome of measurements on
the previous (n − 1) copies. We first need to introduce
some notation. The sequence of measurement outcomes
is represented by a bit string x as long as the number N of
qubits, with the nth result labelled in. The measurement
onto the nth qubit is a projector onto the basis

|ωn
0 〉 = cos(φx)|0〉+ sin(φx)|1〉
|ωn

1 〉 = sin(φx)|0〉 − cos(φx)|1〉. (10)
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Here, we use x for the bit string of the first (n − 1) re-
sults and adopt a different notation when it is required.
In the local-adaptive measurement scheme, the measure-
ment at each point depends on the previous outcomes
in the scheme however the overall result is determined
by the final measurement outcome alone. The optimal
scheme of this kind turns out to be Bayesian updating
[17]. On the first qubit, one projects onto the eigenvec-
tors of p0|ψ0〉〈ψ0| − p1|ψ1〉〈ψ1|. On the rest, the relevant
eigenbasis is instead P(0|x)|ψ0〉〈ψ0| − P(1|x)|ψ1〉〈ψ1|, in
which P(k|x) is the probability, calculated from Bayes’
theorem, that the state |ψk〉 was prepared given that bit
string x is the measurement record. The φx for which
this measurement satisifies the Helstrom bound is found
to be

cos(2φx) = (−1)iN−1

√
1− 4p0p1 cos2N−2(2θ)

1− 4p0p1 cos2N (2θ)
. (11)

The only appearance of the bit string x here is in the sin-
gle index iN−1, which is the value of the prior measure-
ment. Thus the scheme does not use the entire measure-
ment and is in this sense Markovian as well as Bayesian.

Here we apply the local-adaptive scheme, in the form
optimised for pure states, to the mixed states relevant
to imperfect preparation. A true Bayesian scheme, one
that uses the entire measurement record, would be the
best way to generalise the scheme to mixed states. We
return to this point later. For now, we are interested
in a direct comparison of the pure state schemes and so
proceed with the Markovian form.

We begin by showing that this scheme reaches the Hel-
strom bound in the case of perfect preparation. We use
a different approach to that in Ref. [17] as it does not
straightforwardly generalise to include noise. This cal-
culation gives a form for the success probability with N
qubits in terms of that for (N − 1) qubits, an inductive
formula which is solved by the Helstrom bound. We then
modify the calculation to include noise. This leads to a
different inductive formula, which is then solved to give
the overall success probability. In thse calculations, we
make repeated use of the result

P(iN |x, k) =
1

2
[1 + (−1)iN cos(2θ) cos(2φx) (12)

+(−1)iN+k sin(2θ) sin(2φx)
]

for the probability that the Nth outcome is iN given that
the state |ψk〉 was sent and that the initial (N−1) results
were x. This is calculated using Eqs. 1 and 10.

In the local-adaptive scheme, the identification of the
prepared state is made with the final outcome. For this
reason, the probability of success is

Pad
N =

∑
x,k

pkP(k|x, k)P(x|k). (13)

This is a sum over both signal states k = 0, 1 and over all
bit strings x of length (N − 1), none of which contribute

directly to the state identification. We first substitute
Eq. 12, with iN = k, into this result to give

Pad
N =

1

2
[1 +

∑
x,k

(sin(2θ) sin(2φx)pkP(x|k) (14)

+ cos(2θ) cos(2φx)(−1)iN−1+kpkP(x|k)
)]
.

Then next step is to use Eq. 11 for the optimal value of
2φx in this equation:

Pad
N =

1

2

1 +
sin2(2θ)√

1− cos2N (2θ)

∑
x,k

pkP(x|k) (15)

+ cos2(2θ)

√
1− cos2N−2(2θ)

1− cos2N (2θ)

∑
x,k

(−1)iN−1+kpkP(x|k)

 .
The first sum in this expression is straightforward to eval-
ulate. It is simply a sum over a complete set of possible
scenarios and we have

∑
x,k pkP(x|k) = 1. The other se-

ries is a little more complicated. We use the usual rules
of conditional probability to write

P(x|k) = P(iN−1ẋ|k) = P(iN−1|ẋ, k)P(ẋ|k), (16)

where we introduce the notation ẋ for the bit string of
the first (N − 2) results. We use also Eq. 12, with x
replaced by ẋ and iN replaced by iN−1, for the probabil-
ities P(iN−1|ẋ, k) in this equation. Bringing together all
of these results, a short calculation reveals∑

x,k

(−1)iN−1+kpkP(x|k) (17)

=
∑
ẋ,k

(sin(2θ) sin(2φẋ)pkP(ẋ|k)

+ cos(2θ) cos(2φẋ)(−1)iN−2+kpkP(ẋ|k)
)
.

This should be compared with Eq. 14, in which the same
expression occurs but over the final rather than penulti-
mate outcome. This can be used to write the expression
as ∑

x,k

(−1)iN−1+kpkP(x|k) = 2P ad
N−1 − 1. (18)

After subsituting this into Eq. 15, we are left with the
inductive expression

Pad
N =

1

2

[
1 +

sin2(2θ)√
1− cos2N (2θ)

(19)

+ cos2(2θ)

√
1− cos2N−2(2θ)

1− cos2N (2θ)
(2Pad

N−1 − 1)

]
.

The general solution to this equation is the multiple-copy
Helstrom bound, Eq. 3, which can be verified by direct
substitution. The N = 1 case corresponds to single-copy
state discrimination and that bound is derived in the
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usual manner. That the probability expression has this
inductive form follows as the measurement strategy is
Markovian. We have followed others in showing that the
Helstrom bound can be reached with local measurements
only [17–19]. Our main result in this section is a gener-
alisation of this expression to the regime of imperfect
preparation fidelity.

The calculation proceeds in the same manner as that
without noise. The difference is in the probability of a
specific result iN given that the state |ψk〉 was prepared,
which changes when the latter is replaced with a noisy
state. To take this into account, Eq. 12 is replaced by
an equivalent expression calculated using Eqs. 9 and 10.
The new probability is

P(iN |x, k)

=
1

2

[
1 + (2F − 1)(−1)iN cos(2θ) cos(2φx) (20)

+(2F − 1)(−1)iN+k sin(2θ) sin(2φx)
]

so that the only change in the noisy case is the appear-
ance of the factor (2F −1) here. We use this to derive, in
exactly the same manner as in the perfect-fidelity case,
the probability of success. The result of this, as might
be expected based on the change to the individual prob-
abilities, is simply

Pad
N =

1

2

[
1 + (2F − 1)

sin2(2θ)√
1− cos2N (2θ)

(21)

+(2F − 1) cos2(2θ)

√
1− cos2N−2(2θ)

1− cos2N (2θ)
(2Pad

N−1 − 1)

]
.

This relation is hardly more complicated than the noisless
case, Eq. 19, but its solution is much more complicated.
By recursive application of this formula using the N = 1
case, which can be evaluated analytically, we establish
that the solution is

Pad
N =

1

2

(
1 + (2F − 1)N

√
1− cos2N (2θ) (22)

+
sin2(2θ)√

1− cos2N (2θ)
SN

)
,

where we introduce the notation

SN =

N∑
i=1

(2F − 1)N+1−i(1− (2F − 1)i−1) cos2N−2i(2θ).

This solution can be verified by substitution into the in-
ductive relationship. The series SN can be evaluated us-
ing the usual formulae for geometric progressions. After
some algebraic manipulation we find

SN =(2F − 1)
1− (2F − 1)N cos2N (2θ)

1− (2F − 1) cos2(2θ)

− (2F − 1)N
1− cos2N (2θ)

1− cos2(2θ)
. (23)

Between Eqs. 22 and 23, the probability that the local-
adpative scheme successfully identifies the state is defined
in terms of the preparation fidelity F . In the perfect-
fidelity case F = 1, substitution shows that SN = 0,
and we have that the usual Helstrom bound is achieved.
If instead F = 1/2, the prepared state is by definition a
completely mixed state for both |ψ0〉 and |ψ1〉, so that the
states are indistinguishable. For this value of the fidelity,
the probability becomes one-half which corresponds to
guessing. The other interesting limit is the behaviour of
the scheme if there are many copies of the state. We look
at this in a later section where we also plot the success
probability.

IV. QUANTUM DATA GATHERING

The previous measurement scheme is purely local. It
produces a classical bit value for each of the resource
qubits. It is known that schemes of this type are in
general not able to perform optimal state discrimination
when the possible states are mixed. One requires collec-
tive measurements. Here, we are interested in the ability
of these schemes to function in the presence of prepara-
tion noise. As an example of one scheme which measures
collectively, we consider quantum data gathering [30]. A
collective measurement does not need to explore the en-
tirety of H⊗N as the two product states |ψk〉 occupy a
subspace with two dimensions. A single qubit, therefore,
has enough capacity to store the information which is re-
quired for state discrimination. Quantum data gathering
is an algorithm which transfers the information from the
multiple-copy product state to a further qubit. The latter
is then individually measured, which identifies the signal
state with a probability equal to the Helstrom bound.

This scheme requires a quantum memory, a qubit
which does not decohere between interactions. This
probe is initialised in the state |0〉. When required, we
label this space HA. The interaction with the first qubit
is a SWAP gate. The remaining interactions leave the
resource qubits, labelled Si (where i = 1, 2, ..., N), each
in the state |0〉 and, if there is no preparation noise, leave
the probe in one of two states

|ψ(n)
k 〉 = cos(θn)|0〉+ (−1)k sin(θn)|1〉, k = 0, 1 (24)

in which

cos(θn) =

√
1

2
(1 + cosn(2θ)). (25)

These two states have an overlap 〈ψ(n)
0 |ψ

(n)
1 〉 = cosn(2θ),

where n is the number of qubits which the probe has
interacted with until that point in the scheme. Thus,
the probability of success is the Helstrom bound. The
protocol works as the product state of the N systems ex-
ists in a two-dimensional subspace of the overall Hilbert
space. This, of course, no longer holds for mixed states,
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for which some information about the states will be re-
tained in the resource qubits. The interactions between
the probe and resource qubits are unitary operations
which map this subspace onto the two dimensions of the
probe’s space through the index k, which is the only piece
of information needed to characterise each state. The
unitary operator Un that performs such an operation has

the property Un|ψk〉Sn
|ψ(n−1)

k 〉A = |0〉Sn
|ψ(n)

k 〉A. Alone,
this does not span the Hilbert space and we need to in-
clude also the state’s components which appear only if
the preparation is imperfect. The choice we make is

Un|ψk⊥〉Sn
|ψ(n−1)

k⊥ 〉A = |1〉Sn
|ψ(n)

k⊥ 〉. The unitary oper-
ator, written in the computational basis for both qubits,
is

Un|0Sn0A〉 =
cos(θ) cos(θn−1)

cos(θn)
|0Sn0A〉

+
sin(θ) sin(θn−1)

cos(θn)
|1Sn

0A〉

Un|1Sn1A〉 =
sin(θ) sin(θn−1)

cos(θn)
|0Sn0A〉

− cos(θ) cos(θn−1)

cos(θn)
|1Sn

0A〉

Un|1Sn
0A〉 =

sin(θ) cos(θn−1)

sin(θn)
|0Sn

1A〉

+
cos(θ) sin(θn−1)

sin(θn)
|1Sn1A〉

Un|0Sn
1A〉 =

cos(θ) sin(θn−1)

sin(θn)
|0Sn

1A〉

− sin(θ) cos(θn−1)

sin(θn)
|1Sn

0A〉. (26)

After all of the resource qubits have been processed, the
qubit is measured with a Helstrom measurement which

corresponds to distinguishing |ψ(N)
0 〉 from |ψ(N)

1 〉. Again,
the quantity we calculate is the probability that this mea-
surement is successful if the prepared qubits are instead
mixed states.

The strategy that we use to calculate this probability
is to find, by representing the interactions as Kraus oper-
ators acting on HA, the probe’s state at each stage of the
protocol. These Kraus operators are derived by consid-
ering that the resource qubits are subsequently measured
in the computational basis though we sum over both out-
comes. This strategy gives us the possibility of consider-
ing that such a measurement, which could be used as a
diagnostic for the protocol’s behaviour, does occur. The

Kraus operators are calculated as M
(n)
i,k = 〈i|Sn

Un|ψ̃n
k 〉Sn

,
where i = 0, 1 and we use the noisy form of the state. As
the calculation involves pairs of Kraus operators, at this
point we do not average over the noise. The Kraus oper-

ators are best expressed in the form

M
(n)
0,k |ψ

(n−1)
k 〉 = cos(δθn)|ψ(n)

k 〉 (27)

M
(n)
0,k |ψ

(n−1)
k⊥ 〉 = − sin(2θ) sin(δθn) cos(2θn−1)

sin(2θn)
|ψ(n)

k 〉

+
cos(2θ + δθn) sin(2θn−1)

sin(2θn)
|ψ(n)

k⊥ 〉

M
(n)
1,k |ψ

(n−1)
k 〉 = sin(2θ + δθn)|ψ(n)

k⊥ 〉

M
(n)
1,k |ψ

(n−1)
k⊥ 〉 = − sin(δθn) sin(2θn−1)

sin(2θn)
|ψ(n)

k 〉

+
sin(δθn) cos(2θn−1)− sin(2θ + δθn) cos(2θn)

sin(2θn)
|ψ(n)

k⊥ 〉.

One way to think about these is objects is that the out-

come M
(n)
0,k indicates that the protocol is running well

and conversely for M
(n)
1,k . This is because the former is

the only outcome if the fidelity is perfect. This is seen

in the Kraus representation as the action of M
(n)
0,k is to

map the state |ψ(n−1)
k 〉 onto |ψ(n)

k 〉, thus preserving the
information which is encoded in that basis, whereas the

operator M
(n)
1,k has the opposite effect: by mapping the

state |ψ(n−1)
k 〉 onto |ψ(n)

k⊥ 〉 it deletes all the information
which has been acquired up to that point. This is the
origin of the claim that a subsequent measurement of
the prepared qubit can act as a diagnostic. This point is
later considered in more detail.

We are now in a position to calculate the density ma-
trix of the probe after N interactions. We assume that
all noise is in the state preparation and that the oper-
ations are implemented perfectly. At the first step, the
sample is swapped with the probe, so that the probe is
left in the state

ρ1 = F |ψk〉〈ψk|+ (1− F )|ψk⊥〉〈ψk⊥|, (28)

as was shown earlier (to simplify the notation, we drop
the index k from the density operator ρ). We evaluate
the next step in full detail and the result allows us to
find, by inspection, the form of the density matrix in
general. The full calculation is discussed in Appendix A.
It is a straightforward though rather involved process,
which results in a density matrix

ρN = AN |ψ(N)
k 〉〈ψ(N)

k |+ (1−AN )|ψ(N)
k⊥ 〉〈ψ

(N)
k⊥ |

+BNσ
(N)
x , (29)

in which

AN = 1− (1− F )
1− cos2N (2θ)(2F − 1)N

1− cos2(2θ)(2F − 1)
, (30)
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and

BN = (1− F )
sin2(2θ) cosN−1(2θ)

sin(2θN )
(31)

×
[

1− (2F − 1)N−1

1− (2F − 1)

− cosN+1(2θ)(2F − 1)N−1
1− cos2N−2(2θ)

1− cos2(2θ)

]
.

Between Eqs. 29, 30 and 31, we have characterised the
probe’s density matrix in terms of the fidelity and state
parameters only. If F = 1, which corresponds to the
perfect fidelity case, AN = 1 and BN = 0. This cor-

responds to the probe being in the pure state |ψ(N)
k 〉, as

one would expect. If instead F = 1/2, which corresponds
to maximum infidelity, then again BN = 0 however here
AN = 1/2. This means that the probe is in a maxi-
mally mixed state so that it carries no information about
the prepared state. This corroborates the analysis of the
similar cases in the local-adaptive scheme.

In the quantum data gathering routine, following the
unitary interactions between the probe and all resource
qubits, the probe is left in the density matrix that
we have calculated. If the fidelity is perfect, this will

be one of two possible states, either |ψ(N)
0 〉 or |ψ(N)

1 〉.
At this stage in the protocol, the probe is then mea-
sured with the Helstrom measurement which best distin-
guishes these states. This is the final piece of the cal-

culation, which gives us the probability Pqdg
N that the

scheme succeeds. Helstrom’s conditions tell us that the
best measurement is a projector onto the eigenvalues of

p0|ψ(N)
0 〉〈ψ(N)

0 | − p1|ψ(N)
1 〉〈ψ(N)

1 |. The case p0 6= p1 is
significantly more involved without adding further un-
derstanding. For this reason we restrict our attention to
equiprobable preparation p0 = p1 = 1/2 for this scheme.
The relevant eigenvectors are

|ψ(N)
+ 〉 =

√
1 + sin(2θN )

2
|ψ(N)

k 〉+

√
1− sin(2θN )

2
|ψ(N)

k⊥ 〉

|ψ(N)
− 〉 =

√
1− sin(2θN )

2
|ψ(N)

k 〉 −
√

1 + sin(2θN )

2
|ψ(N)

k⊥ 〉,
(32)

where the subscript ± indicates an associated eigenvalue
of λ = ±1. It is the positive eigenvalue which corresponds
to the correct outcome. The success probability derived
from this

Pqdg
N = 〈ψ(N)

+ |ρN |ψ(N)
+ 〉 (33)

=
1− sin(2θN )

2
+AN sin(2θN )−BN cos(2θN ).

The Helstrom bound is written in a form useful here as
PH
N = (1+sin(2θN ))/2. We see that Pqdg

N is leading order
in the Helstrom bound (once AN and BN are entered),
followed by terms which are linearly and inversely pro-
portional to that object. This structure is similar to the

equivalent expression for the local-adaptive measurement
scheme. Eqs. 30, 31 and 33 together define the probabil-
ity of success for the quantum data gathering.

V. DISCUSSION

In Fig. 1 we plot, as a function of the number N
of resource qubits, the probability of failure for both
local-adaptive measurements and quantum data gath-
ering, alongside a majority voting fixed measurement
scheme, for three values of the angle θ and two values
of the fidelity F . For now we focus on the former two
schemes. In both cases, we have used equiprobable prepa-
ration p0 = p1 = 1/2. Despite the range of parameters,
some broad features emerge. We comment on the many-
copy limit, in which both quantitites converge upon the
same value, below. What is relevant at this point is that,
in all cases, the local scheme approaches this limit with
fewer qubits than the collective scheme. This improve-
ment is small enough, in the fourth or fifth decimal place
for some cases, that it is probably not experimentally
significant. Nonetheless, we have shown that the local
adaptive scheme is more resilient to noise than the quan-
tum data gathering scheme.

The third scheme plotted in Fig. 1 is a majority vot-
ing scheme in which the Helstrom measurement is per-
formed on each qubit and the most common outcome in
the measurement record is the overall outcome. There
is no simple analytic expression for the success proba-
bility but it is straightforward to find numerically [22].
The Helstrom measurement is that for discriminating the
two mixed states, rather than the original pure states,
though this will be the same for equal priors. Thus, this
measurement scheme takes into account both the whole
measurement record and the noise in the preparation. In
general, we find that this simple generalisation is enough
to outperform the other two schemes. In particular, it is
not limited by the same asymptotic behaviour as those
schemes. If there is only a small amount of noise, as can
be seen in the graph with F = 0.999 and θ = π/12, ma-
jority voting no longer outperforms the local adapative
and quantum data gathering schemes. As the fidelity be-
comes closer to one, the two previously analysed schemes
will become closer to the genuine optimal scheme, hence
they perform better for moderate N in the high-fidelity
case.

Asymptotic regime

Special attention should be paid to the many-copy
limit of both quantum data gathering and the local adap-
tive scheme. Interestingly, one finds the same value in
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FIG. 1. The probability of failure for three different multiple-copy state discrimination schemes with imperfect preparation:
local-adaptive measurements (Local, blue), quantum data gathering (Coherent, orange) and voting based on fixed measurements
(Voting, green). The former two schemes do not take into account the preparation noise however the latter scheme does. A
range of parameters for the angle θ and fidelity F are used.

both cases:

lim
N→∞

Pqdg
N = lim

N→∞
Pad
N

= 1− 1− F
1− (2F − 1) cos2(2θ)

. (34)

In the limit F = 1, this equation reaches unity and so
the states can be perfectly discriminated given an infi-
nite number of copies. If instead the two states are the
same θ = 0, then we find a probability of one-half. This

makes sense as it should be impossible to distinguish two
equal states and all that can be done is to guess. These
two limits are non-commuting. This occurs because the
measurement schemes are ill-defined when discriminating
equal states, i.e., the unitary operation for quantum data
gathering would need to map two orthogonal states onto
the same state, which is clearly not possible.

It is intriguing that both the local adaptive and quan-
tum data gathering scheme approach the same asymp-
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FIG. 2. The asymptote of the probability of success varying
with preparation fidelity F for a variety of different angles.

tote, which in general is less than unity, reaching that
value only if F = 1. This behaviour suggests that the
asymptote could be identified with a systematic error
which arises when a state discrimination scheme, one
which is optimised for a particular pair of states, is ap-
plied to a different pair of states. As the preparation
fidelity in some cases may be further from F = 1 than
those we considered above, we plot in Fig. 2 Eq. 34 as
a function of F . This gives an idea of the kind of values
which will be found experimentally.

The specific form of the many-copy limit can be calcu-
lated in a different manner, by understanding the be-
haviour of the local-adaptive measurement scheme in
such a regime. Analysing this behaviour also helps in
improving intuition of that scheme. Inspection of Eq. 11
reveals that the scheme in this case can be understood
as hypothesis checking. If the outcome on one qubit sug-
gests that |ψ0〉 was the prepared state, the next mea-
surement will be onto the basis |ψ0〉, |ψ0⊥〉, with the lat-
ter outcome associated with a preparation of |ψ1〉. This
explains why the strategy cannot perfectly discriminate.
When applied to mixed states, neither measurement out-
come is impossible. This hypothesis-checking scheme can
be used to calculate the probability of success. We as-
sume that the strategy of hypothesis checking is used for
an infinite number of qubits. We find agreement with
the original calculation. Two probabilities are required.
Firstly,

P(a|iN−1 = a, a) = F (35)

is the probability of finding outcome a, given that the
previous outcome was a (so that the measurement at this
stage is |ψa〉, |ψa⊥〉), given that |ψa〉 was sent. We require
also

P(a|iN−1 = a, a) = F − cos2(2θ)(2F − 1), (36)

which is the probability of outcome a (i.e., the state
|ψa⊥〉) given that the previous measurement gave the
outcome a, the other possible state, and that |ψa〉 was
sent. In terms of these objects, the probability of suc-
cess on the (N + 1)th qubit is written in terms of the

probability of success on the Nth qubit:

Pad
N+1 = P(a|iN−1 = a, a)Pad

N (37)

+ P(a|iN−1 = a, a)(1− Pad
N )

= F − cos2(2θ)(2F − 1) + cos2(2θ)(2F − 1)Pad
N .

This result is then used iteratively to find an expression
for the probability of success after N ′ more measure-
ments:

Pad
N+N ′ =

(
cos2(2θ)(2F − 1)

)N ′
Pad
N (38)

+
(
F − cos2(2θ)(2F − 1)

)N ′−1∑
i=0

cos2i(2θ)(2F − 1)i.

Finally, as N ′ is increased the first term will be sup-
pressed, and in the limit of an infinite number of copies,
the probability of success at a given point makes no con-
tribution to the overall expression. All that remains is to
evaluate the geometric summation and to rearrange for

lim
N ′→∞

Pad
N+N ′ = 1− 1− F

1− (2F − 1) cos2(2θ)
, (39)

the same value which was found previously. Here, it has
been found with a different method to the more general
case. Unfortunately, a similar method for confirming the
calculation does not exist for quantum data gathering,
however inspection of the unitary Eq. 26 reveals simi-
lar behaviour. In the many-copy limit there, the probe
states become the diagonal basis states |+〉, |−〉. One ex-
ample of the behaviour of the unitary in this regime is
UN |ψ0〉SN

|+〉A = |0〉SN
|+〉A, so that all the unitary has

done is to delete the resource qubit’s information condi-
tioned upon it matching what is already known.

Gate noise

We have considered here only preparation noise. In the
quantum data gathering scheme, there will also be noise
in the gates needed to implement the unitary Eq. 26.
This operation takes the form of a rotation controlled
upon binary addition of the register of each individual
qubit, which can be implemented by two CNOT gates
alongside single-qubit gates. Thus, 2N two-qubit gates
are needed to perform quantum data gathering on a re-
source of N qubits. We assume that the contribution to
the noise from single qubit gates is negligible. Because
the diamond norm [31–33], the standard measure of gate
noise, satisfies the triangle inequality, that there are 2N
gates required means that the total gate noise scales lin-
early with N . This will appear as a noisy channel acting
upon the probe’s state, and decrease further the proba-
bility of success. To make further comments, we would
need to understand the form of the noise in more detail
[34].
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Improving the scheme

In the large N limit, any two states are in principle dis-
tinguishable, as with an infinite-qubit resource one could
simply perform tomography to reconstruct the state. It
is clear that the bound Eq. 34 can be improved upon.
With finite N , it is desirable to tailor the scheme to the
states used.

Some obvious methods exist to improve the perfor-
mance of each scheme. The local scheme which we have
considered up to this point is Markovian, so that N−1 of
the previous results are discarded. In the pure state case,
there are symmetries between the probabilities of differ-
ent bit strings such that this does not lessen the over-
all probability of success [17] however when the prepara-
tion is imperfect this no longer holds, and information is
wasted. The whole measurement record could be taken
into account when updating the prior probabilities of the
state, and this would improve the performance of the
scheme.

A full analysis of the modified scheme would be be-
yond the scope of this article. What can be discussed
is the asymptotic behaviour of the scheme, which was
shown earlier to consist of measuring projectively with
|ψ0〉 or |ψ1〉 as one of the outcomes, depending on the
previous measurement result, so that the measurement
record in the many-copy limit can be broken down into
two fixed measurements. Post-selection of either mea-
surement is equivalent to classical sampling of two prob-
ability distributions, a problem which is known to asymp-
totically decay with an exponent determined by the Cher-
noff bound [20, 35], and thus outperforms the Markovian
scheme. This exponent will be determined by the num-
ber of fixed measurements in each set and will give worse
performance than the quantum Chernoff bound which is
found as the optimal bound in asymptotic multiple-copy
state discrimination [36–38].

In quantum data gathering, the scheme can be mod-
ified by measuring the resource qubits at each step and
acting based upon the outcome. As noted, an outcome
of |1〉 indicates that all quantum information gathered
up until that point has been lost. So, one way to modify
the protocol is to restart whenever such an outcome oc-
curs. Some care must be taken as only a finite number
of consecutive |0〉 outcomes can occur before a bad out-
come. In Fig. 1 it is seen that only small number, three
or four, of interactions are required to get very close to
the best-possible probability. However, numerical evalu-
ation of the relevant probabilities reveals that even this
small number is unlikely enough (while still being highly
probably, p ≥ 0.97 typically) to bring the overall proba-
bility of state discrimination below that which occurs if
the qubits are not measured. This is played off against
two things. Firstly, success here is heralded at the ex-
pense of increasing ambiguity in some cases, similar to
unambiguous state discrimination. Secondly, if there are
many resource qubits available, a small run of successes
becomes likely to occur at some point. Thus, in some

scenarios it may be advantageous to post-select based on
the measurement outcomes. A hybrid scheme in which
subsets of systems are measured collectively, followed by
majority voting on the measurement output would give
an improved probability of success, but still less than the
local scheme. Here we chose to evaluate the performance
of a scheme requiring a single qubit of memory as the
quantum probe. A fully general scheme, which would
achieve the optimal Helstrom measurement for arbitrary
many-copy states, would require a processor of size logN
[30]. Our results show that how a collective measurement
is implemented has a considerable effect on its robustness
to noise.

VI. CONCLUSION

We have considered the ability of two multiple-copy
state discrimination schemes to perform when the state
preparation is imperfect. We find two surprising results.
Firstly, that for small amounts of uncharacterised noise,
the optimal local adaptive measurement is more robust
than the simple, single qubit collective scheme. We also
find that both schemes have the same many-copy limit,
which is less than unity. Despite the different physical
mechanisms used in each scheme, they have precisely the
same behaviour in this regime. This suggests that the
quantity found is a generic property of applying an in-
correct scheme, and should be investigated further. With
a modification of the local adaptive scheme, we are able
to surpass this limit and recover the desirable exponential
decay with increasing N .

It would be useful to know an optimal state discrimina-
tion scheme for mixed states of the type considered here.
A natural starting point would be to generalise the local-
adaptive scheme to use the entire measurement record
when updating the prior probabilities in a Bayesian man-
ner and to calculate the range, if any, in which this strat-
egy is optimal. In general, more analytic work is required
in multiple-copy state discrimination. Some of the tech-
niques used here may be found to be useful in that task.

Appendix A: State of the probe qubit in quantum
data gathering

In this appendix we evaluate the density matrix of the
probe qubit which is used in the quantum data gathering
scheme.

The denisty matrix of the probe in this scheme after
the first interaction, a SWAP, is given by

ρ1 = F |ψk〉〈ψk|+ (1− F )|ψk⊥〉〈ψk⊥|. (A1)

From this point on the probe and resource qubit interact
according the relevant unitary, defined above. In order to
find the former object’s density matrix after the second
interaction, we multiply by the Kraus operators in Eq.
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27 and then average over δθi in one step here. It is a
straightforward (though longwinded) calculation to find

ρ2 = M
(2)
0,kρ1M

(2)†
0,k +M

(2)
1,kρ1M

(2)†
1,k

=
(
F − (1− F )(2F − 1) cos2(2θ)

)
|ψ(2)

k 〉〈ψ
(2)
k |

+
(
1− F + (1− F )(2F − 1) cos2(2θ)

)
|ψ(2)

k⊥〉〈ψ
(2)
k⊥|

+ (1− F )
cos2(2θ) sin2(2θ)

sin2(2θ2)
σ(2)
x , (A2)

where σ
(2)
x = |ψ(2)

k 〉〈ψ
(2)
k⊥| + |ψ(2)

k⊥〉〈ψ
(2)
k |. We keep the

convention of using a superscript on the Pauli matrix to
indicate the basis in which it is written. This density
matrix can be understood as two pieces: a trace-one, di-
agonal piece consisting of the first two terms and another
consiting of only the σx matrix. We can expect, based on
this, that the same is true of the general density matrix,
which we expect can be written

ρN = AN |ψ(N)
k 〉〈ψ(N)

k |+ (1−AN )|ψ(N)
k⊥ 〉〈ψ

(N)
k⊥ |

+BNσ
(N)
x . (A3)

This is confirmed by the following analysis, in which we
evaluate AN and BN by calculating how each piece (di-
agonal and Pauli) is updated. We again multiply by the
Kraus operators and average over δθi in a single step.
The first result is

AN−1
∑
i

M
(n)
i,k |ψ

(N−1)
k 〉〈ψ(N−1)

k |M (n)†
i,k

+ (1−AN−1)
∑
i

M
(n)
i,k |ψ

(N−1)
k⊥ 〉〈ψ(N−1)

k⊥ |M (n)†
i,k

=
(
F − (1−AN−1)(2F − 1) cos2(2θ)

)
|ψ(N)

k 〉〈ψ(N)
k |

+
(
1− F + (1−AN−1)(2F − 1) cos2(2θ)

)
|ψ(N)

k⊥ 〉〈ψ
(N)
k⊥ |

− (1−AN−1)
(2F − 1) sin2(2θ) cos(2θN )

sin(2θN )
σ(N)
x . (A4)

Notice that again we find the same structure, that of a
diagonal piece and a Pauli matrix. The other update is∑

i

M
(n)
i,k σ

(N−1)
x M

(n)†
i,k

=
(2F − 1) cos(2θ) sin(2θN−1)

sin(2θN )
σ(N)
x . (A5)

It is seen that both terms contribute in the form, written
in the natural basis of the next step, that we have pre-
dicted and the density matrix will always take the form
of Eq. A3. Repeated application of the above two results
allow us to evaluate AN and BN , which are both written
in terms of geometric progressions. We find

AN = F cos2N−2(2θ)(2F − 1)N−1 (A6)

+
(
F − (2F − 1) cos2(2θ)

)N−2∑
i=0

cos2i(2θ)(2F − 1)i

BN = (2F − 1) sin2(2θ) (A7)

×
N−1∑
i=1

cos(2θi+1)

sin(2θi+1)

N∏
j=i+2

(2F − 1) cos(2θ)
sin(2θj−1)

sin(2θj)
.

It is straightforward to evaluate the summation to give

AN = 1− (1− F )
1− cos2N (2θ)(2F − 1)N

1− cos2(2θ)(2F − 1)
, (A8)

which is then used alongside Eq. 25 to evaluate

BN = (1− F )
sin2(2θ) cosN−1(2θ)

sin(2θN )
(A9)

×
[

1− (2F − 1)N−1

1− (2F − 1)

− cosN+1(2θ)(2F − 1)N−1
1− cos2N−2(2θ)

1− cos2(2θ)

]
.

The denominators of the two fractions inside the braces
could each be simplified however we leave them in this
form so that it is clear that there are no convergence
issues in the limit F → 1/2 or θ → 0.
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