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Abstract 

Lameness is a major health, welfare and production-limiting condition for the livestock industries. The 

current “gold-standard” method of assessing lameness by visual locomotion scoring is subjective and 

time-consuming, whereas recent technological advancements have enabled the development of 

alternative and more objective methods for its detection. This study evaluated a novel lameness 

detection method using micro-Doppler radar signatures to categorize animals as lame or non-lame. 

Animals were visually scored by veterinarian and radar data were collected for the same animals. A 

machine learning algorithm was developed to interpret the radar signatures and provide automatic 

classification of the animals. Using veterinary scoring as a standard method, the classification by radar 

signature provided 85% sensitivity and 81% specificity for cattle and 96% sensitivity and 94% specificity 



for sheep. This radar sensing method shows promise for the development of a highly functional, rapid, 

and reliable recognition tool of lame animals, which could be integrated into automatic, on-farm 

systems for sheep and cattle. 

Introduction 

Lameness is an important health, welfare and production-limiting problem for the sheep and cattle 

industries in the UK. The overall mean prevalence of lameness in ewes has been estimated at 4.9%,1 

whilst a recent review of the current state of lameness in UK dairy cows reports an expected herd level 

prevalence of lameness that lies between 25 and 37%,2 which represents a substantial cost to both 

industries3, 4 and a significant welfare concern.5 

The prompt identification of affected sheep and cattle is essential to provide effective treatment of 

individual animals6-8 and improve animal welfare. However, rapid and reliable recognition of lame 

animals is not always achievable. Farmers may consider the identification and handling of affected 

animals to be a considerable barrier to lameness control.9, 10 Moreover, previous studies suggest that 

many dairy farmers cannot effectively detect lameness in their cattle.11 More worryingly, one study 

suggested that some farmers may not perceive lameness to be a problem, even when as many as one 

in three cows was determined to be lame on their farm12. The current “gold-standard” method to 

quantify the occurrence of lameness is by whole herd/flock visual locomotion, or mobility scoring, 

which, in both species, is subjective, requiring training to be sufficiently reliable,13, 14 and is labour-

intensive. 9, 12  

Recent technological advancements15, 16 have, with varying degrees of success, enabled the 

development of objective methods for detection of lameness,17 such as infra-red technologies,18, 19 

intra-ruminal boluses,20 force-plate systems,21 3D-accelerometers and tracking combined with 

modelling from vision-based and optoelectronic systems.22 Although providing alternative detection 



methods, they require the individual provision of potentially costly devices or for animals to be 

restrained. 

We have previously shown the potential of micro-Doppler radar signatures for lameness detection in 

a small number of animals.23 Radar sensing has the advantages of providing contactless and automatic 

detection of lameness, with no requirement for additional on-animal sensors, and its sensors are 

suitable for outdoor, farm environments. The working principle of radar is to send electromagnetic 

pulses in free space (air) and to measure the time required by the pulses to return from scatterers (or 

targets, in this case, the moving animals). Since we know electromagnetic waves travel at the speed 

of light, the time for the signal to travel between the radar and the scatterers can be used to calculate 

the range separating them, or in practice the distance of the targets.24 Observing the evolution of 

ranges over time allows the extrapolation of the speed of the scatterers (radar signatures), as their 

distance changes over time.  Lameness is abnormal motility, so it is reasonable to expect that lame 

animals will have a different pattern of movement from normal animals and that the different 

movement patterns of their limbs will be reflected in distinct radar signatures.   

This study aimed to take the micro-Doppler radar sensing method for which there was previously 

established technical proof of concept and quantify its performance for lameness detection in dairy 

cows and sheep on farm. 

Materials and methods 

Dairy cows 

54 Holstein Friesian dairy cows from a farm in Central Scotland were assessed. The cows were 

observed walking individually along a 30 m long and 1 m wide corridor at the exit of the milking 

parlour, following afternoon milking. They were mobility scored as they moved along a corridor away 

from the observer using a modified ordinal scale based on Whay and others: 25 

 score 0 = non-lame 



 score 1 = steps uneven or strides shortened with affected limb(s) not immediately identifiable  

 score 2 = uneven weight bearing on a limb that is immediately identifiable and/or obviously 

shortened strides  

 score 3 = severely lame, unable to walk as fast as a brisk human pace and lame leg easy to identify  

The mobility score was carried out by the same observer (the same qualified veterinary surgeon, 

experienced in cattle mobility scoring). The radar recordings were collected simultaneously. 

Sheep 

80 Easycare sheep from a farm in Central Scotland were assessed as per routine lameness detection 

and treatment. The sheep were gathered in an outdoor prebuilt handling area. After gathering within 

the collecting pens, each sheep was admitted to a race 7 m long and 0.4 m wide via a lifting gate and 

made to walk through. Mobility was scored by observing the animal moving along the race to the 

collecting yard at the end. Visual mobility scoring for sheep was based on an ordinall scale  adapted 

from Angell and others: 26  

 score 0 = non-lame 

 score 1 = mild lameness with uneven gait but weight bearing 

 score 2 = moderate lameness with occasional non-weight bearing 

 score 3 = severe lameness with constant non-weight bearing 

The mobility score was carried out by the same observer (the same qualified veterinarian surgeon, 

experienced in sheep mobility scoring). The radar recordings were collected simultaneously. 

Radar sensing and processing 

The measurements were performed with a commercial off-the-shelf radar sensor, Ancortek SDR 580-

B, operating at 5.8 GHz in C-band. The radar transmits approximately 100 mW of power, a harmless 

exposure of non-ionizing electromagnetic radiation, with an operating frequency similar to those used 

by common Wi-Fi routers. The system operates with two antennas (Yagi antennas, similar to scaled 



versions of television antennas), one for the transmitter and one for the receiver, placed close to each 

other at approximately 30-50 cm distance. The antennas were placed on tripods and directed towards 

the areas where the animals were moving (Figure 1). 

The data collected by the radar were processed to extract spectrograms (velocity-time 

representations), which display the velocity of the animal (body) and moving parts (i.e. limbs, head) 

at different instants in time in a continuum (Figure 2). This is done assuming lameness can be detected 

by identifying abnormal patterns of movements in comparison with normal, non-lame animals. The 

processing steps of the proposed algorithm include: 

 Collection of raw radar data (Figure 2A), which appear as complex In-phase and Quadrature (I&Q) 

numbers. 

 Transformation into Range-Time domain using a Fast Fourier Transform (FFT) algorithm (Figure 

2A-B), which is the standard algorithm used in this type of radar systems.27 The output of this stage 

is a series of range profiles (Figure 2B top) that display the distance of a possible target, in this 

case, the animal under test.  By stacking multiple range profiles, one next to each other, a range-

time-intensity (RTI) bi-dimensional plot can be generated (Figure 2B bottom), which can display 

the temporal evolution of the distance of all targets during a radar recording.  

 A further FFT algorithm is applied to the RTI plot to form range-Doppler plots (Figure 2C), which 

display the ranges (distances from the radar) at which movement was recorded, i.e. ranges at 

which there was a moving target. It should be noted that radar systems measure velocities 

through the Doppler effect, essentially a change in phase of the electromagnetic waves similar to 

what also happens for sound waves; hence, range-velocity plots can also be denoted as range-

Doppler plots. 

 Finally, range-Doppler plots are summed together to generate spectrograms (Figure 2D), which, 

as mentioned above, display the temporal evolution of the velocity of body and limbs and can be 

used to detect lameness. Essentially, a range-Doppler plot displays if and where something is 



moving but not how, whereas a spectrogram display how something is moving over time, which 

is the required information for lameness detection. Spectrograms are the representation in 

images of the radar micro-Doppler signatures. 

After generation, each spectrogram was divided into segments of a given duration, namely 1.5 

seconds, 3 seconds, and 5 seconds, from which features are extracted. Features are statistical 

numerical parameters (e.g. the mean and the variance) that can represent the relevant information in 

the micro-Doppler signature, as shown in the sketch of Figure 2E. The values of these features were 

then used as samples in a supervised learning framework to train a classification algorithm able to 

automatically distinguish between the signatures of healthy and lame animals.28  

It should be noted that the radar signal processing steps prior to feature extraction are rather common 

in research on micro-Doppler signatures. The innovative content of the proposed work is in the 

extraction and selection of suitable features (i.e. the most appropriate information derived from the 

radar micro-Doppler signatures) that can distinguish between lame and healthy (not-lame) animals. 

In this work, 20 features (Table 1) were selected, based on their good performance as identified in 

previous research for applications to micro-Doppler signatures of human mobility.29 These feature 

samples are labelled as belonging to one of the classes of interest, “lame” or “healthy”, depending on 

the lameness score assigned by the observer during the data collection. 

Lameness classification 

After extracting samples for all 20 considered features from each spectrogram segment, each feature 

was ranked using the T-test27 to identify the most significant feature samples in relation to lameness 

detection. The T-test considers the intra-class and the inter-class variability of the samples for each 

feature, accounting for both healthy and lame animals, and provides a metric of quality for each that 

is independent of specific classification algorithms. Feature selection is commonly applied in micro-

Doppler based classification problems to reduce the dimensionality of the feature space, with the 

primary aim of removing features that may provide redundant or confusing information.30 



Furthermore, feature selection reduces the computer data loading, which can be beneficial in case of 

a portable, low computational in-field device (“on-the-edge” processing). 

Animals were labelled as “lame” if they were scored 1, 2, or 3 and labelled as “healthy” if scored with 

0. Although in the dairy industry it is common to refer to animals as lame if they score 2 or 3, we 

selected 1 as the most appropriate threshold for our work for two reasons. Firstly, only 9 cattle scored 

greater than 1, so setting the threshold at 1 provided considerably greater statistical power. Secondly, 

there is a distinct difference between the roles of an automated lameness detection system and of a 

veterinary examination. Assuming that close examination and treatment after initial automated 

detection is the goal of the system, then the system has a screening function, ideally with the capacity 

to detect early cases, enabling early veterinary examination and treatment. The classification was 

performed using a “leave-one-out-cross-validation” approach. Data from each individual animal were 

removed from the rest of the dataset and used only to test the classification algorithm, and not used 

in the supervised learning framework for the training of the algorithm. This process was repeated for 

all available animals, allowing to test the classifiers’ performances in the presence of unseen data, i.e. 

data related to an animal that was not part of the training pool, where this training pool contained 

data for all other animals, lame or not-lame. 

The two classifiers used are a Naïve Bayesian classifier (NB) and a Nearest Neighbour (KNN) with three 

neighbours.30 The NB classifier assumes that feature samples for each class of interest (lame and 

healthy in this case) can be represented by a multivariate Gaussian distribution, with mean and 

variance estimated at the training phase; at the testing phase, a sample is assigned to one of the 

classes based on minimisation of a cost function calculated on the basis of those Gaussian 

distributions. The KNN classifier considers the distance of each testing sample in the feature space 

from the three closest neighbours; the sample is assigned to the class of the majority of the neighbours 

(in our case to lame if there are 2 or 3 neighbours belonging to the lame class, or the opposite for the 

healthy class).   



Radar sensing performances 

Sensitivity and specificity of the radar sensing in classifying animals as “lame” or “healthy” were 

calculated by comparing the visual lameness scoring with the classification given by the analysis of the 

radar data. They were calculated independently for each species (dairy cows and sheep) and each 

combination of the algorithm (NB and KNN) and time segment duration (1.5s, 3s, and 5s), using the 

veterinary diagnosis as the true status. Sensitivity was the proportion of all true lameness cases that 

were predicted by the micro-Doppler sensor system. Specificity was the proportion of all animals 

considered to be normal by the veterinarian that was predicted to be normal by the micro-Doppler 

sensor system. 

Results 

Based on the T-test, eight out of the 20 features were selected for each scenario in terms of animal 

species considered, along with the duration of the segment of radar data and type of classifier. This 

enabled the optimisation of the selection of features and the adaptation of the processing algorithm 

to the specific scenario under test. 

A total of 51 dairy cows (31 “lame” and 20 “healthy”) were included in the evaluation. The total time 

to collect the lameness records at the farm was approximately 2 hours. A total of 75 sheep (25 “lame” 

and 50 “healthy”) were included in the evaluation. The total time to collect the lameness records at 

the farm was approximately 1.30 hours. Three cows and five sheep were not included because of 

inconclusive or incomplete visual assessment of lameness by the veterinarian.  

Sensitivity and specificity of the radar sensing in classifying animals as “lame” or “healthy” are 

reported in Table 2.  For each cow, the analysis included five segments of 5 seconds duration, seven 

segments of 3 seconds duration and 14 segments of 1.5 seconds duration. For each sheep, there were 

two segments of 5 seconds, three segments of 3 seconds and six segments of 1.5 seconds. 



The highest performances of the novel method for evaluation of lameness were Naïve Bayes at 3 

seconds for cattle, which gave 85% sensitivity and 81% specificity and Naïve Bayes at 1.5 s for sheep, 

which gave 96% sensitivity and 94% specificity. The full classification results for cows and sheep are 

available as supplementary material.  

Discussion 

We have demonstrated that this novel lameness detection method using radar has the potential for 

automatic discrimination between non-lame animals and lame animals, even of mild degree (score 1). 

The radar signatures were captured with a commercial off-the-shelf radar sensor and two antennas, 

while a supervised machine learning framework was developed to classify the animals. There was 

minimal setting-up time for the technology (radar and antennas), which worked well within normal 

farm settings. Short radar segment duration (3 seconds for cattle and 1.5 seconds for sheep) provided 

the best results, where rapid assessment is an important feature for the application of this technology 

on-farm. The selection of the minimum duration, indeed, could have a substantial operational impact 

because the time available for the radar to observe the animals is limited by the length of the passage 

in which the equipment is installed (milk parlour vs sheep race). 

The overall performance of the proposed method for lameness detection was heavily influenced by 

operational parameters including the temporal duration of the spectrogram segment, and the 

implementation of the classification algorithm, both in terms of feature extraction and selection (e.g. 

what characteristics of the radar signatures are more suitable to capture the presence of lameness), 

as well as the classifier itself (as many different classifiers exist based on the supervised learning 

approach discussed here). Hence, considerable variation is reported in our results for the different 

segment durations, features, and classifier types, evidenced by the high range of performance 

between the best and worst classifier. The selection of the most suitable combination of features and 

classification algorithms to optimise performance across a range of conditions and environments 

remains a research challenge. 



The “leave-one-out-cross-validation” approach was used in the supervised machine learning 

framework for training and testing, to mimic the situation where the algorithm is presented with an 

animal with an unknown status, as is expected to be the case in the field. The two classifiers used (NB 

and KNN) are rather simple classifiers compared to other available in the literature,27, 30 e.g. 

classification trees, support vector machines, random forest, neural networks of various topologies 

(convolutional, recurrent, hybrid). They were selected for their simplicity and the reduced 

computational complexity that they require, in view of the implementation of the algorithm in the 

farm environment, where large computational power may not be easily provided or be too expensive. 

Although the proposed radar sensing method has only been tested in one farm, it has already shown 

considerable flexibility, as the same technology and machine learning training were used successfully 

for two completely different systems (dairy cattle vs sheep).  The field of observation was 30 m for 

cattle and 7 m for sheep, so sheep yielded fewer segments than cattle. Work is in progress to develop 

radar signal processing and machine learning techniques to optimise sensitivity and specificity, with 

the validated pre-trained algorithm deployed in different farming scenarios for sorting lame vs non-

lame animals.  

Sensitivity (85% for cattle and 96% for sheep) and specificity (81% for cattle and 94% for sheep) 

estimates for this novel system are encouraging. When compared to the “gold standard” of 

locomotion scoring, studies in dairy cattle have shown that lameness detection based on a series of 

lameness indicators in tied cows31 or free-stall barns32 can provide a sensitivity of around 50% and 

specificity of 86 to 93%. Similarly, when compared to other automated systems, such as infra-red 

technologies (sensitivity 74% and specificity 68%)19 or force plate system (sensitivity 24-35% and 

specificity 85-95%),21 our proposed method has either comparable or higher analytical performances 

to other potential alternative lameness detection methods. Similarly, in sheep, the performance was 

considerably better than obtained using infra-red technologies (sensitivity of 83% and specificity of 

78%).18 



This method of lameness detection has the potential to be implemented as an automatic diagnostic 

tool for use in “precision farming” applications. Detection of lame animals would be by continuous, 

contactless and labour-free monitoring by placing the radar at strategic places (e.g. gates within 

adjacent fields for grazing animals or passageways for indoor systems). Coupled with electronic 

identification of individual animals, it would enable identification of lame individuals for treatment, 

also enabling the efficient reporting and robotic drafting out of animals for examination and 

treatment. Without individual animal identification, it would enable estimation of lameness 

prevalence within farms, which is increasingly important to livestock producers operating under 

quality-assurance programmes. The radar system would be expected to be cost-effective relative to 

accelerometer-based approaches because it does not require instrumentation of each animal. The 

initial capital cost might be high, but the cost per animal will be reasonable, and integration within 

automatic settings (precision farming) will considerably reduce labour requirements. 

It is possible that the radar-based method of assessment was already an improvement over the visual 

locomotion scoring, which was used as the “gold standard” in this and other studies. The availability 

of well-labelled data for training of the algorithm is crucial at the testing stage and significantly affects 

the final performance of the algorithm. This had proven to be a challenge during our study because 

there were occasions when the veterinary surgeon was unable to confidently assign a lameness score. 

This is not unexpected, as the limitations of visual assessment are well described in the literature, even 

for experienced observers.11, 13 These uncertain classifications can have a significant cascade influence. 

In particular, for cases labelled as 1, they could have been erroneously misclassified by the observer 

as mildly lame, where the signatures of individual animals within this class would be more similar to 

0-labelled cases or 2-labelled cases, with bias in the training and further result in erroneous 

classification by the algorithm. To overcome this issue, a panel of experts could be recruited to allow 

for uniform classification of lameness and reducing errors in the algorithm training. Once the 

algorithm has been provided with well-labelled and verified data, a more objective, reliable and 

repeatable system would be available. 



In conclusion, there was a high average true classification for all combinations of features and 

algorithms (over 70% for cattle and over 80% for sheep) in the farm under study, which improved 

substantially on random-selection — selecting the best analytical methods for sheep and cattle 

improved on this substantially (85% sensitivity and 81% specificity for cattle; 96% sensitivity and 94% 

specificity for sheep). Additional work is being undertaken to evaluate this method on over farms, to 

develop the algorithms further and to implement this method as an automatic diagnostic tool on-

farm. 
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 Table 1 – Features used to train the classification algorithm; in particular each feature is 

representing a statistical moment (such as mean or standard deviation) of parameters extracted 

from the spectrograms (such as centroid and bandwidth) or their SVD decomposition. *The SVD 

generates three matrices: U, S, and V from the initial matrix with the pixel values of the spectrogram 



segment. U and V contain the eigenvectors of the original matrix, ranked in order of relevance in 

terms of information contained.  



Parameters Features extracted 

Centroid (centre of mass) of the 
signature  
 

mean standard 
deviation 

skewness kurtosis 

Bandwidth (extent of the 
signature around its centroid) of 
the signature 
 

mean standard 
deviation 

skewness kurtosis 

Whole spectrogram segment 
(matrix of pixels) 
 

mean standard 
deviation 

skewness kurtosis 

First right and first left 
eigenvector of the Singular Value  
 
Decomposition (SVD)* of the 
spectrogram segment  

mean standard 
deviation 

sum of pixel 
(for matrices 

U and V) 

mean of the diagonal of the 
left and right matrices, U and 
V, containing eigenvectors of 

the spectrogram segment  

  

Table 2 –Estimation of sensitivity, specificity and accuracy for Naïve Bayesian (NB) and k-Nearest 

Neighbour (KNN) and using three segment durations: 1.5 seconds (1.5 s), 3 seconds (3 s) and 5 

seconds (5 s) for dairy cows and sheep. 

 
Naïve Bayesian algorithm k-nearest neighbour algorithm  
5 s 3 s 1.5 s 5 s 3 s 1.5 s 

Dairy Cows 
      

True Positives 71.6 79.3 82.5 73.6 70.9 69.6 

False Positives 28.4 20.7 17.5 26.4 29.1 30.4 

True Negatives 72 86.4 73.9 43 72.9 72.1 

False Negatives 28 13.6 26.1 57 27.1 27.9 

Sensitivity1 0.72 0.85 0.76 0.56 0.72 0.71 

Specificity2 0.72 0.81 0.81 0.62 0.71 0.70 

Accuracy3 0.72 0.83 0.78 0.58 0.72 0.71        

Sheep 
      

True Positives 84 94.7 94 84 81.3 79.3 

False Positives 16 5.3 6 16 18.7 20.7 

True Negatives 74 92 96.3 86 83.3 79 

False Negatives 26 8 3.7 14 16.7 21 

Sensitivity1 0.76 0.92 0.96 0.86 0.83 0.79 

Specificity2 0.82 0.95 0.94 0.84 0.82 0.79 

Accuracy3 0.79 0.93 0.95 0.85 0.82 0.79 
1 Sensitivity = True Positives/(True Positives + False Negatives) 

2 Specificity = True Negatives/(True Negatives + False Positives)  

3 Accuracy = (True Positives + True Negatives)/Count Of All Observations 



 

Figure 1. Radar sensing system set up at the farm. 1A Dairy cows set up showing the two antennas 

and the corridor at the exit of the milking parlour (1A). Sheep set up showing the radar sensor and 

the two antennas placed at the side of the running race next to the lifting gate (1B). 

 

Figure 2. Radar signal processing chain from raw data to numerical features for classification: radar 

raw data (2A) transformed into range-time data (2B) and range-Doppler data (2C) with two 

consecutive Fast Fourier Transform (FFT) operations, followed by addition over range dimension to 

generate spectrograms (2D) and feature extraction from them (2E). 


