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Abstract
We exhibit new examples of double quasi-Poisson brackets, based on some classification
results and the method of fusion. This method was introduced by Van den Bergh for a large
class of double quasi-Poisson brackets which are said differential, and our main result is that
it can be extended to arbitrary double quasi-Poisson brackets. We also provide an alternative
construction for the double quasi-Poisson brackets of Van den Bergh associated to quivers,
and of Massuyeau–Turaev associated to the fundamental groups of surfaces.

Keywords Double bracket · Quasi-Hamiltonian algebra · Non-commutative geometry

Mathematics Subject Classification (2010) 16S38 · 17B63 · 53D17

1 Introduction

We fix a finitely generated associative unital algebra A over a field k of characteristic 0,
and we write ⊗ = ⊗k for brevity. Following Van den Bergh’s initial construction [20], we
define on A a double bracket {{−,−}} : A × A → A ⊗ A as a k-bilinear map satisfying for
any a, b, c ∈ A

{{a, b}} = − {{b, a}}◦ (cyclic antisymmetry), (1.1)

where (−)◦ denotes the permutation of factors in A ⊗ A, together with

{{a, bc}} = {{a, b}} c + b {{a, c}} (right derivation rule). (1.2)

Here, the multiplication refers to the outer A-bimodule structure on A ⊗ A, that is a d b =
(ad ′) ⊗ (d ′′b) under Sweedler’s notation d = d ′ ⊗ d ′′ ∈ A ⊗ A, which we use throughout
this text. Assuming that Eq. 1.1 holds, one can easily check that Eq. 1.2 is equivalent to

{{bc, a}} = {{b, a}} ∗ c + b ∗ {{c, a}} (left derivation rule), (1.3)
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where this time ∗ denotes the innerA-bimodule structure onA⊗A given by a∗(d ′⊗d ′′)∗b =
(d ′b) ⊗ (ad ′′). From these derivation rules, it is easily seen that it suffices to define double
brackets on generators ofA. Associated to such a double bracket, we can define an operation
A×3 → A⊗3 by setting

{{a, b, c}} = {{
a, {{b, c}}′}} ⊗ {{b, c}}′′ + τ(123)

{{
b, {{c, a}}′}} ⊗ {{c, a}}′′ + τ 2(123)

{{
c, {{a, b}}′}} ⊗ {{a, b}}′′ . (1.4)

(Here, we define τ(123) : A⊗3 → A⊗3 by τ(123)(a1 ⊗ a2 ⊗ a3) = a3 ⊗ a1 ⊗ a2.) This
map is an instance of triple bracket : a k-trilinear map, which is also a derivation in its last
argument for the outer bimodule structure of A⊗3, and which satisfies a generalisation of
the cyclic antisymmetry Eq. 1.1 :

τ(123) ◦ {{−, −, −}} ◦ τ−1
(123) = {{−, −,−}} . (1.5)

An important class of double brackets consists of double Poisson brackets. They are
such that the associated triple brackets {{−,−, −}} identically vanish. Using Eq. 1.4, this
condition can be seen as a version of Jacobi identity with value in A⊗3. These structures
have also been introduced by Van den Bergh [20], and have been a recent subject of study,
see e.g. [4, 10, 15–19, 22].

Another interesting class of double brackets appears when the unit in A admits a decom-
position 1 = ∑

s∈I es in terms of a finite set of orthogonal idempotents, i.e. |I | ∈ N
× and

eset = δst es . In that case, we view A as a B-algebra for B = ⊕s∈Ikes , and we naturally
extend the definition of a double bracket to require B-bilinearity, i.e. it vanishes when one
of the arguments belongs to B. Then, we say that the double bracket is quasi-Poisson, or
that (A, {{−,−}}) is a double quasi-Poisson algebra, if the associated triple bracket (1.4)
satisfies the relation

{{a, b, c}} = 1

4

∑

s∈I

(
cesa ⊗ esb ⊗ es − cesa ⊗ es ⊗ bes − ces ⊗ aesb ⊗ es + ces ⊗ aes ⊗ bes

−esa ⊗ esb ⊗ esc + esa ⊗ es ⊗ besc + es ⊗ aesb ⊗ esc − es ⊗ aes ⊗ besc
)

,(1.6)

on any a, b, c ∈ A. Condition Eq. 1.6 is an expanded form of the original definition [20,
§5.1], and only needs to be checked on generators by the properties of a triple bracket. The
main interest of this form is that it is easier to handle in order to classify double quasi-
Poisson brackets. Indeed, up to now few cases of double quasi-Poisson brackets are known
except associated to quivers [20, 21] or fundamental groups of surfaces [14]. To have more
examples, we provide a complete classification on the free algebra over one generator, and
continue the investigation for two generators (with some restrictions).

The reader could then be tempted to say that such examples do not provide particular
insights about double quasi-Poisson brackets in general. However, an important result of
Van den Bergh is that we can perform fusion [20, §5.3] : we can identify idempotents in
an algebra with a double quasi-Poisson bracket, and the resulting algebra also admits a
double quasi-Poisson bracket. For example, if we respectively denote by e1, e2 the units of
k[t], k〈s1, s2〉 viewed as orthogonal idempotents inside k[t] ⊕ k〈s1, s2〉, the fusion algebra
obtained by the identification of e1 and e2 is nothing else than k〈t, s1, s2〉. Hence, knowing
a double quasi-Poisson bracket before fusion gives another one on the free algebra over
three generators. Therefore, our classification allows to get double quasi-Poisson brackets
over any free algebra in general, though not all of them. Moving to more exotic examples
of double quasi-Poisson algebras, there was a major obstruction to use this fusion process
up to now, as we needed the double quasi-Poisson bracket to be differential, see § 2.1 for
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the definition. It was expected by Van den Bergh that this assumption could be removed
[20, §5.3], and the main aim of this paper is to prove this result in its most general form.

Theorem 1.1 (cf. Theorem 2.14) Let (A, {{−, −}}) be a double quasi-Poisson B-algebra, with
B = ⊕s∈Ikes , |I | ∈ N

×, where eset = δst es for any s, t ∈ I . Then, if we pick s, t ∈ I distinct, the
algebra A′ obtained by identifying the idempotents es, et ∈ A has a double quasi-Poisson bracket
which coincides with the image of {{−, −}} on ⊕s′,t ′∈I ′es′A′et ′ , where I ′ = I \ {1, 2}.

The advantage of our proof of this theorem is to get an explicit form for the double quasi-
Poisson bracket in the algebra A′ obtained by identification of the idempotents es, et ∈ A : it
is given in terms of the double bracket onA, together with a second double bracket computed
in Lemma 2.19 which was uncovered by Van den Bergh [20, Theorem 5.3.1]. Therefore, it
becomes easy to see when a double quasi-Poisson bracket has been obtained by fusion. In
particular, we can show using our classification of double quasi-Poisson bracket on the free
algebra on two generators (with some mild restrictions) provided in § 4.3 that any such
double bracket is isomorphic to one obtained by fusion, see Theorem 4.10. This unexpected
result suggests that knowing double quasi-Poisson brackets on k[t] and the path algebra of
the (double of the) one-arrow quiver t : 1 → 2 may be enough to obtain most examples of
double quasi-Poisson algebra structures on free algebras.

A particular subclass of double quasi-Poisson brackets consists in those that admit a
distinguished element. To be precise, given a double quasi-Poisson algebra (A, {{−, −}}) as
above with a complete set of orthogonal idempotents (es)s∈I , a multiplicative moment map is
an invertible element � = ∑

s∈I �s with �s ∈ esAes such that we have for all a ∈ A and
s ∈ I

{{�s, a}} = 1

2
(aes ⊗ �s − es ⊗ �sa + a�s ⊗ es − �s ⊗ esa) . (1.7)

We say that the triple (A, {{−, −}} , �) is a quasi-Hamiltonian algebra. As a continuation of
the previous result, Van den Bergh showed that we can also obtain a moment map after
fusion inside a quasi-Hamiltonian algebra when the double bracket is differential [20, The-
orem 5.3.2]. We also show that this result can be extended to the general case, see Theorem
2.15. As a by-product of our method to prove that we keep a double quasi-Poisson bracket
or multiplicative moment map after fusion, we can easily recover the double quasi-Poisson
brackets of Van den Bergh [20] and Massuyeau-Turaev [14], see Theorems 3.3 and 3.5.

To finish this introduction, let us recall that double brackets have been introduced by Van
den Bergh as a non-commutative version of an antisymmetric biderivation following the
non-commutative principle formulated by Kontsevich and Rosenberg [11, 12]. More precisely,
as explained in §5.1, any double bracket on an algebra A gives rise to an antisymmetric
biderivation on the algebra k[Rep(A, n)] for any n ≥ 1, i.e. on the coordinate ring of the
representation space Rep(A, n) parametrising n-dimensional representations of A. In the
same way, a double (quasi-)Poisson bracket provides a non-commutative notion of a (quasi-
)Poisson bracket under this non-commutative principle. Hence, the present study can be
understood as giving new examples of quasi-Poisson brackets on representation spaces.

This article proceeds as follows. In Section 2, we recall the necessary constructions
needed to understand the fusion procedure, and then prove the main result of this paper
which is the fusion of quasi-Hamiltonian algebras in the general case. In light of those devel-
opments, we give in Section 3 some examples of double quasi-Poisson brackets obtained
by fusion. We also give an alternative (though equivalent) construction of Van den Bergh’s
quasi-Hamiltonian algebras associated to quivers, and those of Massuyeau-Turaev associ-
ated to the fundamental group of compact surfaces with boundary. In Section 4, we get
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some first classification results for double quasi-Poisson brackets. We finish by explain-
ing in Section 5 the notion of quasi-Poisson algebra, which is the structure carried by the
coordinate ring of representation spaces of double quasi-Poisson algebras. There are four
appendices that contain some computational proofs.

2 Fusion of quasi-Hamiltonian algebras

We consider finitely generated algebrasA, B over a field k of characteristic zero. We assume
that A is a B-algebra and, without loss of generality, we identify B with its image in A. Our
goal is to prove the main theorems of this paper, which are presented in §2.2. To state and
prove these results, we need some preliminary constructions associated to double brackets,
which were already introduced by Van den Bergh in [20] for most of them. Since these
results easily extend to the case of n-brackets (see below for the definition, noting that
double brackets are 2-brackets), we begin by introducing the objects that we will use in full
generalities.

2.1 Preliminary results

We equip the algebra A⊗n with the outer A-bimodule structure which is given by b(a1 ⊗
. . . ⊗ an)c = ba1 ⊗ . . . ⊗ anc. For any s ∈ Sn, we introduce the map τs : A⊗n → A⊗n defined
by τs(a1 ⊗ . . . ⊗ an) = as−1(1) ⊗ . . . ⊗ as−1(n). Following Van den Bergh [20], we say that a B-
linear map {{−, . . . , −}} : A×n → A⊗n is a n-bracket if it is a derivation in its last argument
for the outer bimodule structure on A⊗n, and if it is cyclically anti-symmetric :

τ(1...n) ◦ {{−, . . . , −}} ◦ τ−1
(1...n) = (−1)n+1 {{−, . . . , −}} .

By B-linearity, we mean that the map {{−, . . . , −}} is k-linear in each argument and it van-
ishes on any subset A×i−1 × B × An−i , 1 ≤ i ≤ n. Double and triple brackets as defined in
the introduction can be equivalently obtained from the above formulation, for which they
correspond to the cases n = 2 and n = 3.

2.1.1 Poly-vector fields and n-brackets

Examples of n-brackets can easily be obtained by choosing n double derivations, which are
elements of DerB(A, A ⊗ A), with A ⊗ A equipped with the outer bimodule structure. To
state the result, we set DA/B := DerB(A, A ⊗ A) and we see DA/B as an A-bimodule by
using the inner bimodule structure on A ⊗ A: if δ ∈ DA/B and a, b, c ∈ A, then (b δ c)(a) =
δ(a)′ c ⊗ b δ(a)′′. We then form the tensor algebra DBA := TADA/B of this bimodule, which
is a graded algebra if we put A in degree 0 and DA/B in degree 1. Its elements are called
poly-vector fields.

Proposition 2.1 ([20, Proposition 4.1.1])
There is a well-defined linear map μ : (DBA)n → {B-linear n-brackets on A}, Q →

{{−, . . . , −}}Q, which on Q = δ1 . . . δn is given by

{{−, . . . , −}}Q = ∑n−1
i=0 (−1)(n−1)iτ i

(1...n) ◦ {{−, . . . , −}}̃Q ◦ τ−i
(1...n) , (2.1a)

{{a1, . . . , an}}̃Q = δn(an)
′δ1(a1)′′ ⊗ δ1(a1)

′δ2(a2)′′ ⊗ . . . ⊗ δn−1(an−1)
′δn(an)

′′ . (2.1b)

The map μ factors through DBA/[DBA, DBA], where [−, −] is the graded commutator.
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We say that a n-bracket is differential if it is given by μ(Q) for some Q ∈ (DBA)n. For
example, given some δ1δ2 ∈ (DBA)2 we have a differential double bracket by setting

{{b, c}}δ1δ2 = δ2(c)
′δ1(b)′′ ⊗ δ1(b)′δ2(c)′′ − δ1(c)

′δ2(b)′′ ⊗ δ2(b)′δ1(c)′′ , (2.2)

for any b, c ∈ A. Any differential double bracket is a linear sum of such double brackets.
By [5], we can write DA/B = HomA⊗Aop (�1

BA, A ⊗ A), where �1
BA is the A-bimodule of

non-commutative 1-forms relative to B [9]. The bimodule �1
BA allows us to give conditions

for the map μ to be an isomorphism.

Proposition 2.2 ([20, Proposition 4.1.2]) Assume that A is left and right flat over B, and that �1
BA

is a projective A-bimodule. Then the map μ from Proposition 2.1 is an isomorphism.

Example 2.3 Consider k[x], with double bracket given by {{x, x}} = 1
2 (x2 ⊗ 1 − 1 ⊗ x2) (it is

quasi-Poisson by Proposition 4.1). This double bracket is differential : for dx ∈ Dk[x]/k given by
dx(x) = 1 ⊗ 1, we have that P = 1

2x2dxdx ∈ (Dkk[x])2 defines {{−, −}} using Proposition 2.1.
Fix k ≥ 3. It is not hard to see that

{{
x, xk

}} ∈ Ik ⊗k[x] + k[x]⊗ Ik for Ik the ideal generated
by xk , so that the double bracket factors as a map Ak × Ak → Ak ⊗ Ak with Ak = k[x]/Ik . We
claim that the double bracket is no longer differential on Ak . Indeed, any element P ∈ DAk/k is
uniquely defined by the image of the generator x, so it can be decomposed as

P(x) = c0,01 ⊗ 1 + c1,0x ⊗ 1 + c1,11 ⊗ x +
2k−1∑

a=2

a∑

b=0

ca,b xb ⊗ xa−b , ca,b ∈ k ,

and since we need to satisfy P(xk) = 0, we obtain that

P(x) = c(x ⊗ 1 − 1 ⊗ x) +
2k−1∑

a=2

a∑

b=0

ca,b xb ⊗ xa−b , c, ca,b ∈ k ,

with possible relations between the coefficients (ca,b). If we consider arbitrary P, Q ∈ DAk/k of
that form, we see that the double bracket they define by Eq. 2.1b can be written as

{{x, x}}PQ = Q(x)′P(x)′′ ⊗ P(x)′Q(x)′′ − P(x)′Q(x)′′ ⊗ Q(x)′P(x)′′ =
∑

a≥3

a∑

b=0

da,b xb ⊗ xa−b ,

for some da,b ∈ k. Thus, any differential double bracket {{−,−}} on Ak is such that {{x, x}} ∈
Ak ⊗ Ak has homogeneous components of degree ≥ 3, where we define the degree of xa ⊗ xb as
a+b. Hence, the double bracket onAk given by {{x, x}} = 1

2 (x2⊗1−1⊗x2) can not be differential.

The algebra DBA is a noncommutative version of the algebra of polyvector fields
on a manifold : DBA admits a canonical double Schouten–Nijenhuis bracket, which makes
DBA into a double Gerstenhaber algebra [20, §2.7,3.2]. We write this (graded) double
bracket (DBA)×2 → (DBA)⊗2 as {{−, −}}SN. We denote by {−, −}SN the associated bracket
{−, −}SN := m ◦ {{−, −}}SN, where m is the multiplication on the algebra DBA. We note that
the following results hold.

Proposition 2.4 ([20, §4.2]) Assume that {{−, −}} is a double bracket defined by the bivector
P ∈ (DBA)2. Then the associated triple bracket given by Eq. 1.4 is defined by the trivector
1
2 {P, P }SN ∈ (DBA)3.

Proposition 2.5 ([20, §3.4]) Assume e ∈ B is an idempotent such that BeB = B. Then
e(DBA)e = DeBeeAe, and the (graded) double bracket {{−, −}}SN on DBA restricted to
e(DBA)e coincides with the double Schouten-Nijenhuis bracket on DeBeeAe.
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2.1.2 Induced brackets and fusion algebras

We now state several ways to get new n-brackets from old ones. Most of these results are
straightforward extensions of propositions given in [20, §2.5], which were originally stated
in the case n = 2.

Given an algebra A over B and a non-empty subset S ⊂ A, we can consider the universal
localisation AS as an algebra over B. The morphism f : A → AS induces a unique map
of double derivations f∗ : DA/B → DAS/B which satisfies f∗(δ)(s−1) = s−1f (δ(s)′) ⊗
f (δ(s)′′)s−1 for any δ ∈ DBA and s ∈ S. This map can be extended to f∗ : DBA → DBAS .

Proposition 2.6 Consider a non-empty subset S ⊂ A. Then a B-linear n-bracket {{−, . . . , −}} on
A induces a unique B-linear n-bracket on AS . If {{−, . . . , −}} is differential for Q ∈ (DBA)n,
then the induced B-linear n-bracket is differential for f∗(Q) ∈ (DBAS)n.

Proof Note that a n-bracket on AS needs to satisfy
{{

a1, . . . , an−1, s
−1

}}
= −s−1 {{a1, . . . , an−1, s}} s−1 ,

for any a1, . . . , an−1 ∈ AS and s ∈ S due to the derivation property. Using the cyclic
antisymmetry and the derivation property, we can then always rewrite {{a1, . . . , an}} with
a1, . . . , an ∈ AS in terms of sums and products in AS containing only the n-bracket evaluated on
elements of A.

We use this result without further mention throughout the text. Next, if e ∈ B is an
idempotent, we get a canonical map πe : A → eAe, a → eae, which extends to double
derivations as πe∗ : DA/B → DeAe/eBe, δ → eδe. In the case where B = BeB, we get a
non-unique decomposition 1 = ∑

i pieqi , and it yields a trace map Tr : A → eAe given by
Tr(a) = ∑

i eqiapie. It also gives a map Tr : DA/B → DeAe/eBe by setting Tr(δ) = ∑
i eqiδpie,

which can be written as Tr(δ)(eae) = eδ′(a)pie ⊗ eqiδ
′′(a)e for any a ∈ A. To extend this

to polyvector fields, note that Tr : DBA → eDBAe : Q → ∑
i eqiQpie defines a map

DBA → DeBeeAe by Proposition 2.5.

Proposition 2.7 Assume that e ∈ B is an idempotent. Then a B-linear n-bracket {{−, . . . , −}} on
A induces a unique eBe-linear n-bracket on eAe. If B = BeB and {{−, . . . , −}} is differential for
Q ∈ (DBA)n, then the induced eBe-linear n-bracket is differential for Tr(Q) ∈ (DeBeeAe)n.

Proof Fix a1, . . . , an ∈ A. Denoting {{a1, . . . , an}} as b1 ⊗ . . . ⊗ bn ∈ A⊗n (up to linear
combinations), we get the unique induced n-bracket

{{ea1e, . . . , eane}} = (e ⊗ . . . ⊗ e) {{a1, . . . , an}} (e ⊗ . . . ⊗ e) = eb1e ⊗ . . . ⊗ ebne ∈ (eAe)⊗n.
(2.3)

If the n-bracket is differential for Q = δ1, . . . , δn ∈ (DBA)n, we get from Eq. 2.3 and Proposition
2.1 that

{{ea1e, . . . , eane}} =
n−1∑

i=0

(−1)(n−1)i (e⊗. . .⊗e)τ i
(1...n) {{−, . . . ,−}}̃Q τ−i

(1...n)(a1, . . . , an)(e⊗. . .⊗e) ,

with {{−, . . . , −}}̃Q given by Eq. 2.1b. Assuming that 1 = ∑
i pieqi , we can write for i = 0
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(e ⊗ . . . ⊗ e) {{a1, . . . , an}}̃Q (e ⊗ . . . ⊗ e)

=eδn(an)
′1δ1(a1)′′e ⊗ eδ1(a1)

′1δ2(a2)′′e ⊗ . . . ⊗ eδn−1(an−1)
′1δn(an)

′′e

=
∑

i1

. . .
∑

in

δn(eane)
′pi1eqi1δ1(ea1e)

′′ ⊗ . . . ⊗ δn−1(ean−1e)
′pineqin δn(eane)

′′

=
∑

i1

. . .
∑

in

{{ea1e, . . . , eane}}̃eqi1 δ1pi2 eqi2 δ2pi3 e...eqin δnpi1 e

=
∑

i1

{{ea1e, . . . , eane}}̃eqi1 δ1δ2...δnpi1 e = {{ea1e, . . . , eane}}̃Tr(δ1δ2...δn) .

The argument is similar for i = 1, . . . , n − 1 so that

{{ea1e, . . . , eane}} =
n−1∑

i=0

(−1)(n−1)i τ i
(1...n) {{−, . . . , −}}̃Tr(δ1δ2...δn) τ−i

(1...n)(ea1e, . . . , eane) ,

which is differential for Tr(δ1δ2 . . . δn) by definition.

Next, consider algebras A and A′ respectively over B and B ′. We get that A ⊕ A′ is a
(B ⊕ B ′)-algebra, and we can identify DA⊕A′/B⊕B ′ with DA/B ⊕ DA′/B ′ . This extends to the
identification of DB⊕B ′A ⊕ A′ and DBA ⊕ DB ′A′.

Proposition 2.8 Assume that {{−, . . . , −}} is a B-linear n-bracket on A, and {{−, . . . , −}}′ is a
B ′-linear n-bracket on A′. Then there exists a unique (B ⊕ B ′)-linear n-bracket {{−, . . . , −}}⊕
on A ⊕ A′ extending the n-brackets {{−, . . . , −}} and {{−, . . . , −}}′, while it is such that
{{c1, . . . , cn}}⊕ = 0 whenever there exists i �= j with ci = (a, 0), cj = (0, b). Furthermore, if the
n-brackets on A and A′ are differential for Q ∈ (DBA)n and Q′ ∈ (DB ′A′)n, then {{−, . . . , −}}⊕
is differential for (Q, Q′) ∈ (DB⊕B ′A ⊕ A′)n.

Proof It follows directly by linearity since

{{(a1, b1), . . . , (an, bn)}}⊕ = {{(a1, 0), . . . , (an, 0)}}⊕ + {{(0, b1), . . . , (0, bn)}}⊕
=({{a1, . . . , an}} , 0) + (0, {{b1, . . . , bn}}′) ,

for any a1, . . . , an ∈ A, b1, . . . , bn ∈ A′.

Given algebras A, A′ over B with algebra monomorphisms j : B → A and j ′ : B → A′,
recall that the free algebra A ∗B A′ is given by Tk(A ⊕ A′)/J , where J is the two-sided ideal
generated by the relations a1 ⊗ a2 = a1a2, a′

1 ⊗ a′
2 = a′

1a
′
2, j (b) = j ′(b) for all a1, a2 ∈ A,

a′
1, a

′
2 ∈ A′ and b ∈ B. Set Ā = A ∗B A′. The canonical maps i : A → Ā, i′ : A′ → Ā yield

maps of double derivations i∗ : DA/B → DĀ/A′ and i′∗ : DA′/B → DĀ/A, which can both be
seen to take value in DĀ/B . In particular, they extend to polyvector fields.

Proposition 2.9 Assume that {{−, . . . , −}} and {{−, . . . , −}}′ areB-linear n-brackets onA andA′
respectively. Then there exists a unique n-bracket {{−, . . . , −}}∗ on Ā = A ∗B A′ extending the n-
brackets {{−, . . . , −}} and {{−, . . . , −}}′, while it is such that {{a1, . . . , an}}∗ = 0 whenever there
exists i �= j with ai ∈ A, aj ∈ A′. Furthermore, if the n-brackets on A and A′ are differential for
Q ∈ (DBA)n and Q′ ∈ (DBA′)n, then {{−, . . . , −}}∗ is differential for i∗(Q)+i′∗(Q′) ∈ (DBĀ)n.

Endowing A′ with the zero n-bracket, we get the next result.

Corollary 2.10 Assume that {{−, . . . , −}} is a B-linear n-bracket on A. Then there is a unique
A′-linear n-bracket on Ā = A ∗B A′ extending it. If {{−, . . . , −}} is differential for Q ∈ (DBA)n,
then the induced A′-linear n-bracket is differential for i∗(Q) ∈ (DA′ Ā)n.
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In particular, n-brackets are compatible with base changes.
We now use these results, and assume that there exist orthogonal idempotents e1, e2 ∈ B.

The extension algebra Ā of A along the pair (e1, e2) is given by

Ā = A ∗ke1⊕ke2⊕kμ (Mat2(k) ⊕ kμ) = A ∗B B̄ , (2.4)

where μ = 1 − e1 − e2, and Mat2(k) is seen as the k-algebra generated by e1 =
e11, e12, e21, e2 = e22 with est euv = δtuesv . The fusion algebra Af of A along (e1, e2) is the
algebra obtained from Ā by discarding elements of e2Ā + Āe2, i.e.

Af = εĀε , for ε = 1 − e2 . (2.5)

We also say that Af is the fusion algebra obtained by fusing e2 onto e1. Note that Af is a
Bf -algebra for Bf = εB̄ε. The elements of Af can be characterised in terms of generators
as follows. (This choice of generators was considered by Van den Bergh [20, Proof of Lemma
5.3.3].)

Lemma 2.11 Elements of Af can be written in terms of generators of the following forms

(first type) a = t , t ∈ εAε , (2.6a)

(second type) a = e12u , u ∈ e2Aε , (2.6b)

(third type) a = ve21 , v ∈ εAe2 , (2.6c)

(fourth type) a = e12we21 , w ∈ e2Ae2 . (2.6d)

Remark that B̄ satisfies B̄ = B̄εB̄ since 1 = 1ε1 + e21εe12. Using the map Tr : DB̄Ā →
DBf Af given by Tr(Q̄) = εQ̄ε + εe12Q̄e21ε together with i∗ : DBA → DB̄Ā, we get a
map Tr ◦i∗ : DBA → DBf Af . We combine Corollary 2.10 and Proposition 2.7 to get the
following generalisation of [20, Corollary 2.5.6].

Proposition 2.12 If A is a B-algebra with n-bracket {{−, . . . , −}}, it induces n-brackets on Ā
over B̄ and Af over Bf . If the n-bracket on A is differential for Q ∈ (DBA)n, then the induced
n-brackets are differential for i∗(Q) ∈ (DB̄Ā)n and Tr ◦i∗(Q) ∈ (DBf Af )n respectively.

From now on, we denote the compositions Tr ◦i and Tr ◦i∗ simply as Tr.

2.1.3 Double quasi-Poisson brackets from the gauge elements

Assume that B = ke1 ⊕ . . .⊕keN , where the (es) form a complete set of orthogonal idempo-
tents. We define for all s = 1, . . . , N a double derivation Es ∈ DA/B such that for any a ∈ A,
Es(a) = aes ⊗ es − es ⊗ esa. These are called the gauge elements. Following [20, §5.1], we
say that a double bracket {{−, −}} on A over B is quasi-Poisson if it satisfies

{{−, −, −}} = 1

12

N∑

s=1

{{−, −, −}}E3
s

, (2.7)

where on the left-hand side we have the associated triple bracket given by Eq. 1.4, while the
triple brackets in the right-hand side are defined from Proposition 2.1 with E3

s ∈ (DBA)3.
It is then an easy exercise to check that Eq. 2.7 evaluated on a, b, c ∈ A gives (1.6), so
that this definition coincides with the one given in the introduction. Note that under the
assumption of Proposition 2.2 the double quasi-Poisson bracket {{−, −}} is differential for
some Q ∈ (DBA)2, and we get the equivalent condition that {Q, Q}SN = 1

6

∑N
s=1 E3

s modulo
[DBA, DBA] by Propositions 2.1 and 2.4.
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In a double quasi-Poisson algebra (A, {{−, −}}), we say that an element � ∈ A× is a
moment map if �s = es�es satisfies {{�s, −}} = 1

2 (�sEs + Es�s) for all s = 1, . . . , N .
It is an easy exercise to check that the s-th condition is equivalent to Eq. 1.7, hence this
definition of moment map is equivalent to the one given in the introduction.

Remark 2.13 Assume that B = ke1 ⊕ . . . ⊕ keN , B ′ = ke′
1 ⊕ . . . ⊕ ke′

M , and we have double
quasi-Poisson brackets {{−, −}} and {{−, −}}′ over A and A′ respectively. Then {{−, −}}⊕ is a
(B ⊕ B ′)-linear double quasi-Poisson bracket over A ⊕ A′. This can be obtained by combining
Proposition 2.8 and the definition of double quasi-Poisson bracket using the gauge elements given
above. Moreover, if � and �′ are the corresponding moment maps, then (�, �′) turns A ⊕ A′ into
a quasi-Hamiltonian algebra.

2.2 Main theorems

Hereafter, we assume that A is a B-algebra for B = ke1 ⊕ . . . ⊕ keN a semisimple k-algebra.
Our aim is to prove the following results.

Theorem 2.14 Assume that (A, {{−, −}}) is a double quasi-Poisson algebra over B. Consider the
fusion algebra Af obtained by fusing e2 onto e1. Then, Af has a Bf -linear double quasi-Poisson
bracket given by

{{−, −}}f := {{−, −}} + {{−, −}}f us , (2.8)

where the first double bracket on the right-hand side is induced in Af by the one of A using
Proposition 2.12, and the second double bracket {{−, −}}f us is defined by − 1

2 Tr(E1)Tr(E2) ∈
(DBf Af )2 using Proposition 2.1.

Theorem 2.15 Assume that (A, {{−, −}} , �) is a quasi-Hamiltonian algebra over B, where � =∑
s �s ∈ ⊕sesAes . Consider the fusion algebra Af obtained by fusing e2 onto e1. Then Af is a

quasi-Hamiltonian algebra for the double quasi-Poisson bracket {{−, −}}f given in Theorem 2.14
and for the multiplicative moment map

�f = e1 Tr(�1)Tr(�2)e1 +
∑

s �=1,2

es Tr(�s)es . (2.9)

Remark 2.16 In the case where the double quasi-Poisson bracket {{−, −}} is differential for
some Q ∈ (DBA)2, we have that the double quasi-Poisson bracket (2.8) is differential for
Qf := Tr(Q) − 1

2 Tr(E1)Tr(E2) by Proposition 2.12 and linearity of the map μ in Proposition
2.1. Therefore, Theorems 2.14 and 2.15 are nothing else than [20, Theorems 5.3.1,5.3.2] in such a
case. However, if the double quasi-Poisson bracket is not differential (which can only happen if A
does not satisfy the assumptions from Proposition 2.2), these results extend their analogues proved
in the differential case, as expected by Van den Bergh [20, §5.3].

2.3 Preparation for the proofs

2.3.1 Image of the gauge elements

We have well-defined double derivations Es ∈ DA/B , 1 ≤ s ≤ N , and we want to know what
are their images in the fusion algebra Af , obtained by fusing the idempotent e2 onto e1 as
in §2.1.2. To avoid any conflicting notations, write E1, E2, . . . , EN for the gauge elements
over A and their image under DA/B → DĀ/B̄ , and let F1, F3, . . . , FN be the gauge elements
in DAf /Bf , with Bf = ke1 ⊕ke3 ⊕ . . .⊕keN . We now relate the double derivations TrEs and
Fs . (These results first appeared in [20, §5.3], but we give a proof for the sake of clarity.)
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Lemma 2.17 For any s �= 1, 2, Tr(Es) = Fs .

Proof We only need to prove the equality on generators of Af . By Lemma 2.11, we can write any
a ∈ Af as a = e+αe−, for a ∈ A and some e+ ∈ {e12, ε}, e− ∈ {e21, ε}. Hence, by definition of
gauge element and the trace map

Tr(Es)(a) = ε ∗ Es(a) ∗ ε + εe12 ∗ Es(a) ∗ e21ε = ε ∗ e+Es(α)e− ∗ ε + εe12 ∗ e+Es(α)e− ∗ e21ε

=(e+αesε ⊗ εese− − e+esε ⊗ εesαe−) + (e+αese21ε ⊗ εe12ese− − e+ese21ε ⊗ εe12esαe−)

=(e+αes ⊗ ese− − e+es ⊗ esαe−)

since esε = es = εes and ese21 = 0 = e12es as s �= 2. Now, remark that we can write this as

Tr(Es)(a) = (e+αe−es) ⊗ es − es ⊗ es(e+αe−) .

Indeed, for the first term, either e− = ε and ese− = es = e−es , or e− �= ε and ese− = 0 = e−es .
The same applies to the second term.

Lemma 2.18 The double derivations Tr(E1),Tr(E2) take the following forms on generators :
if a = t for t ∈ εAε,

Tr(E1)(t) = te1 ⊗ e1 − e1 ⊗ e1t, Tr(E2)(t) = 0 , (2.10)

if a = e12u for u ∈ e2Aε,

Tr(E1)(e12u) = (e12u)e1 ⊗ e1, Tr(E2)(e12u) = −e1 ⊗ (e12u) , (2.11)

if a = ve21 for v ∈ εAe2,

Tr(E1)(ve21) = −e1 ⊗ e1(ve21), Tr(E2)(ve21) = (ve21) ⊗ e1 , (2.12)

if a = e12we21 for w ∈ e2Ae2,

Tr(E1)(e12we21) = 0, Tr(E2)(e12we21) = (e12we21)e1 ⊗ e1 − e1 ⊗ e1(e12we21) . (2.13)

In particular, Tr(E1) + Tr(E2) = F1.

Proof First, remark that Tr(E1) = εE1ε and Tr(E2) = εe12E2e21ε, by expansion as in Lemma
2.17 or using that in DBA we have Es ∈ esDBAes . Therefore, writing a generator a ∈ Af as
a = e+αe− as in Lemma 2.17,

Tr(E1)(a) =e+αe1 ⊗ e1e− − e+e1 ⊗ e1αe− ,

Tr(E2)(a) =e+αe21 ⊗ e12e− − e+e21 ⊗ e12αe− ,

using the relations between idempotents. In the first case (2.6a), α = t , e+ = e− = ε so that the
identities are clear. In the second case (2.6b) with α = u, e+ = e12 and e− = ε so that

Tr(E1)(a) = e12ue1 ⊗ e1 − e12e1 ⊗ e1u , Tr(E2)(a) = e12ue21 ⊗ e1 − e1 ⊗ e12u ,

and we get our claim by remarking that e12e1 = 0 and ue21 = uεe21 = 0. In the third case (2.6c)
we take α = v, e+ = ε and e− = e21, which yields

Tr(E1)(a) = ve1 ⊗ e1e21 − e1 ⊗ e1ve21 , Tr(E2)(a) = ve21 ⊗ e1 − εe21 ⊗ e12ve21 .

Hence, it suffices to remark that e1e21 = 0 and e12v = e12εv = 0. Finally for Eq. 2.6d, we take
α = w and e+ = e12, e− = e21 to get

Tr(E1)(a) = e12we1 ⊗ e1e21 − e12e1 ⊗ e1we21 , Tr(E2)(a) = e12we21 ⊗ e12e21 − εe12e21 ⊗ e12we21 ,

so that our claim follows since e1e21 = 0 = e12e1.
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2.3.2 Properties of the double bracket {{−,−}}fus
Recall that the double bracket {{−, −}}f us is defined by − 1

2 Tr(E1)Tr(E2) ∈ (DBf Af )2 using
Proposition 2.1.

Lemma 2.19 On generators of Af , the double bracket {{−, −}}f us can be written as
{{

εtε, εt̃ε
}}

f us
= 0 , (2.14a)

{{εtε, e12uε}}f us = 1

2
(e1 ⊗ te12u − e1t ⊗ e12u) , (2.14b)

{{εtε, εve21}}f us = 1

2
(ve21t ⊗ e1 − ve21 ⊗ te1) , (2.14c)

{{εtε, e12we21}}f us = 1

2
(e12we21t ⊗ e1 + e1 ⊗ te12we21 − e12we21 ⊗ te1 − e1t ⊗ e12we21) , (2.14d)

when the first component εtε is a generator of the first type (2.6a),

{{e12uε, εtε}}f us = 1

2
(e12u ⊗ e1t − te12u ⊗ e1) , (2.15a)

{{e12uε, e12ũε}}f us = 1

2
(e1 ⊗ e12ue12ũ − e12ũe12u ⊗ e1) , (2.15b)

{{e12uε, εve21}}f us = 1

2
(e12u ⊗ e1ve21 − ve21 ⊗ e12ue1) , (2.15c)

{{e12uε, e12we21}}f us = 1

2
(e1 ⊗ e12ue12we21 − e12we21 ⊗ e12ue1) , (2.15d)

when the first component e12uε is a generator of the second type (2.6b),

{{εve21, εtε}}f us = 1

2
(te1 ⊗ ve21 − e1 ⊗ ve21t) , (2.16a)

{{εve21, e12uε}}f us = 1

2
(e12ue1 ⊗ ve21 − e1ve21 ⊗ e12u) , (2.16b)

{{εve21, εṽe21}}f us = 1

2
(ṽe21ve21 ⊗ e1 − e1 ⊗ ve21ṽe21) , (2.16c)

{{εve21, e12we21}}f us = 1

2
(e12we21ve21 ⊗ e1 − e1ve21 ⊗ e12we21) , (2.16d)

when the first component εve21 is a generator of the third type (2.6c),

{{e12we21, εtε}}f us = 1

2
(te1 ⊗ e12we21 + e12we21 ⊗ e1t − te12we21 ⊗ e1 − e1 ⊗ e12we21t) ,(2.17a)

{{e12we21, e12uε}}f us = 1

2
(e12ue1 ⊗ e12we21 − e12ue12we21 ⊗ e1) , (2.17b)

{{e12we21, εve21}}f us = 1

2
(e12we21 ⊗ e1ve21 − e1 ⊗ e12we21ve21) , (2.17c)

{{e12we21, e12w̃e21}}f us = 0 , (2.17d)

when the first component e12we21 is a generator of the fourth type (2.6d).

Proof Remark that from the definition of the double bracket {{−, −}}f us together with Eq. 2.1b
we can write

{{a, b}}f us = − 1

2
Tr(E2)(b)′ Tr(E1)(a)′′ ⊗ Tr(E1)(a)′ Tr(E2)(b)′′

+ 1

2
Tr(E1)(b)′ Tr(E2)(a)′′ ⊗ Tr(E2)(a)′ Tr(E1)(b)′′ .

(2.18)
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It remains to use Eqs. 2.10–2.13 to get the required identities. For example, to get Eq. 2.14b we
find from Eqs. 2.10 and 2.11

{{εtε, e12uε}}f us = − 1

2
Tr(E2)(e12u)′ Tr(E1)(t)

′′ ⊗ Tr(E1)(t)
′ Tr(E2)(e12u)′′

= − 1

2
(−e1e1 ⊗ te1e12u + e1e1t ⊗ e1e12u) = 1

2
e1 ⊗ te12u − 1

2
e1t ⊗ e12u .

(2.19)
The exact same method works in each case. Note that only ten cases need to be computed as
other double brackets can be obtained by cyclic antisymmetry : {{b, a}}f us = − {{a, b}}′′f us ⊗
{{a, b}}′f us .

These explicit forms of the double bracket {{−, −}}f us are central in the proof of the next
result, which we postpone to Appendix A.

Lemma 2.20 Assume that {{−, −}} is an arbitrary B-linear double bracket on A. Consider the
induced Bf -linear double bracket {{−, −}} on Af , and define the double bracket {{−, −}}f us as

in Theorem 2.14. Furthermore, set {{−, −}}f := {{−, −}}+{{−, −}}f us . Then the Bf -linear map
κ : (Af )×3 → (Af )⊗3 defined by

κ(−, −, −) = {{−, −, −}}f − {{−, −, −}} − {{−, −, −}}f us ,

vanishes. (Here, the induced triple brackets on the right-hand side are given by Eq. 1.4 using
{{−, −}}f , {{−, −}} and {{−, −}}f us respectively.)

2.4 Fusion for the double quasi-Poisson bracket

We prove Theorem 2.14. To do so, we need to show that {{−, −, −}}f =
1
12

∑
s �=2 {{−, −, −}}F 3

i
, where {{−, −, −}}f is the triple bracket associated to the double

bracket defined by Eq. 2.8. By Lemma 2.20, we simply have that

{{−, −, −}}f = {{−, −, −}} + {{−, −, −}}f us .

By assumption, {{−, −}} is quasi-Poisson in A, hence {{−, −, −}} coincides with the differ-
ential double bracket defined by 1

12

∑
s E3

s ∈ (DBA)3, see §2.1.3. We get from Proposition
2.12 that we can write {{−, −, −}} = 1

12

∑
s {{−, −, −}}Tr(E3

s ) in Af .
We rewrite each Tr(E3

s ) in terms of the gauge elements Fs , s �= 2, of Af . Since Es =
esEses ,

Tr(E3
s ) = εE3

s ε = (εEsε)
3 = F 3

s ,

for any s �= 1, 2 by Lemma 2.17. Similarly, since e2 = e21εe12,

Tr(E3
1) + Tr(E3

2) = εE3
1ε + εe12E

3
2e21ε = (εE1ε)

3 + (εe12E2e21ε)
3 .

Modulo graded commutators, we can write

Tr(E3
1) + Tr(E3

2) = [Tr(E1) + Tr(E2)]3 − 3 Tr(E1)Tr(E2)
2 − 3 Tr(E1)

2 Tr(E2) ,

which is F 3
1 − 3 Tr(E1)Tr(E2)

2 − 3 Tr(E1)
2 Tr(E2) using Lemma 2.18. By Proposition 2.1,

the map μ defines n-brackets modulo graded commutators in DBf Af so that

{{−, −, −}}f = 1

12

∑

s �=2

{{−, −, −}}F 3
i
−1

4
{{−, −, −}}Tr(E1)Tr(E2)

2+Tr(E1)
2 Tr(E2)

+{{−, −, −}}f us .

Now, by Proposition 2.4, the bracket {{−, −, −}}f us is defined by
1
8 {Tr(E1)Tr(E2),Tr(E1)Tr(E2)}SN. After a short computation (given e.g. in [20, §5.3]), we
find that
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{Tr(E1)Tr(E2),Tr(E1)Tr(E2)}SN = 2 Tr(E1)
2 Tr(E2) + 2 Tr(E1)Tr(E2)

2 , (2.20)

modulo graded commutators, which finishes the proof.

2.5 Fusion for themomentmap

Note that �f has an inverse

(�f )−1 = e1 Tr(�
−1
2 )Tr(�−1

1 )e1 +
∑

s �=1,2

es Tr(�
−1
s )es ,

so that Theorem 2.15 directly follows from the following lemma.

Lemma 2.21 Assume that s �= 1, 2. Then for any a ∈ Af

{{Tr(�s), a}}f = 1

2
(aes ⊗ Tr(�s) + a Tr(�s) ⊗ es − es ⊗ Tr(�s)a − Tr(�s) ⊗ esa) . (2.21)

If we set �f

1 = Tr(�1)Tr(�2), we have for any a ∈ Af

{{
�

f

1 , a
}}f = 1

2
(ae1 ⊗ �

f

1 + a�
f

1 ⊗ e1 − e1 ⊗ �
f

1 a − �
f

1 ⊗ e1a) . (2.22)

The proof consists of checking (2.21) and (2.22) on generators, which is done in
Appendix B.

3 Applications

3.1 Elementary examples of fusion

Given two double quasi-Poisson algebras (A, {{−, −}}) and (A′, {{−, −}}′) over k, we can
use Remark 2.13 to get a double quasi-Poisson bracket on A ⊕ A′ which is B-linear for
B = ke1 ⊕ ke2 with e1 = (1, 0) and e2 = (0, 1). Using Theorem 2.14, we can get a double
quasi-Poisson bracket on the fusion algebra (A ⊕ A′)f obtained by fusing e2 onto e1. By
iterating this process, we can create new double quasi-Poisson algebras using the different
examples given in Section 4. (The same holds for quasi-Hamiltonian algebras if we have
moment maps.) Nevertheless, as far as we use differential double brackets, one could argue
that this could already be done using Van den Bergh’s results [20, Theorems 5.3.1,5.3.2].
Hence, we now give new examples that involve double brackets that are not differential.
To do so, recall from Example 2.3 that for any k ≥ 3, k[x]/(xk) has a double bracket given
by {{x, x}} = 1

2 (x2 ⊗ 1 − 1 ⊗ x2) which is not differential. The double bracket is in fact
quasi-Poisson, e.g. as a consequence of Proposition 4.1.

Example 3.1 Fix k ≥ 3 and form A = k[x]/(xk) which is a double quasi-Poisson algebra. Let A′
be an arbitrary double quasi-Poisson k-algebra. Then we can consider A ⊕ A′ with idempotents
e1 = (1, 0), e2 = (0, 1). For B = ke1 ⊕ ke2, A ⊕ A′ has a B-linear double quasi-Poisson bracket
by Remark 2.13. We can form the fusion algebra Ā = (A ⊕ A′)f obtained by fusing e2 onto e1,
which we see as an algebra over k by identifying the only remaining non-zero idempotent e1 with
1. Using Lemma 2.11, Ā is the algebra generated by x and e12we21 for w ∈ A′. Thus, we can
identify Ā with A ∗k A′, and see the elements of A as generators of type 1 (2.6a) after fusion,
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while the elements of A′ are generators of type 4 (2.6d). Therefore, using Theorem 2.14, we have
a double quasi-Poisson bracket on Ā given by

{{x, w}} = 1

2
(wx ⊗ 1 + 1 ⊗ xw − w ⊗ x − x ⊗ w) , w ∈ A′ ,

if we use Eq. 2.14d in Lemma 2.19, while the double brackets {{x, x}} and {{
w, w′}} for w, w′ ∈

A′ are just the ones in A and A′ respectively.

Example 3.2 Fix integers M ≥ 1 and ks ≥ 3 for 1 ≤ s ≤ M . We can form As = k[xs ]/(xks
s ) and

consider A = ⊕sAs where we denote each unit by es so that A is an algebra over B = ⊕skes .
Moreover, it has a double quasi-Poisson bracket by Remark 2.13. Fusing e2 onto e1, then e3 onto
e1 and so on up to eM , we get the fusion algebra

A′ = k〈x1, . . . , xM 〉/I , where I is the ideal generated by x
k1
1 , . . . , x

kM

M ,

which is just a k-algebra. By Theorem 2.14 and Lemma 2.19,A′ has a double quasi-Poisson bracket
given by

{{xs, xs}} = 1

2
(x2

s ⊗ 1 − 1 ⊗ x2
s ) , 1 ≤ s ≤ M ,

{{xr , xs}} = 1

2
(xsxr ⊗ 1 + 1 ⊗ xrxs − xs ⊗ xr − xr ⊗ xs) , 1 ≤ r < s ≤ M .

I have been unable to find a quasi-Hamiltonian algebra whose double bracket is not
differential. It is an interesting question to determine if such an example exists, in order to
see whether Theorem 2.15 is strictly stronger than [20, Theorem 5.3.2] or not.

3.2 Revisiting Van den Bergh’s double bracket for quivers

3.2.1 Generalities

Let Q be a finite quiver with vertex set denoted I . We define the functions t, h : Q → I that
associate to an arrow a either its tail t (a) ∈ I or its head h(a) ∈ I . We form the double Q̄

of the quiver Q with the same vertex set I by adding an opposite arrow a∗ : h(a) → t (a)

to each a ∈ Q. We naturally extend h, t to Q̄, and set (a∗)∗ = a for each a ∈ Q so that the
map a → a∗, a ∈ Q̄, defines an involution on Q̄. We form the path algebra kQ̄ which is the
k-algebra generated by the arrows a ∈ Q̄ and idempotents (es)s∈I labelled by the vertices
such that

a = et(a)aeh(a) , eset = δst es .
This implies that we read paths from left to right. We see kQ̄ as a B-algebra with B =
⊕s∈Ikes .

We define ε : Q̄ → {±1} as the map which takes value +1 on arrows originally in Q,
and −1 on the arrows in Q̄ \ Q. For each a ∈ Q, we also choose γa ∈ k and set γa∗ = γa .
Finally, we associate to kQ̄ the algebra A obtained by universal localisation from the set
S = {1+ (γa −1)et (a) +aa∗ | a ∈ Q̄}. This is equivalent to add local inverses (γaet (a) +aa∗)−1

for each a ∈ Q̄ (i.e. they are inverses to γaet(a) + aa∗ in et(a)Aet(a)). If γa = 0, then a−1 :=
a∗(aa∗)−1 satisfies a−1 = (a∗a)−1a∗, so that aa−1 = et(a) and a−1a = eh(a); the same holds
for a∗.

3.2.2 The quasi-Hamiltonian structure

For each vertex s ∈ I , consider a total ordering <s on the set Ts = {a ∈ Q̄ | t (a) = s}.
Write os(−, −) for the ordering function at vertex s : on arrows a, b we have os(a, b) = +1
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if a <s b, os(a, b) = −1 if b <s a, while it is zero otherwise, i.e. if a = b ∈ Ts , if a /∈ Ts or
if b /∈ Ts .

Theorem 3.3 The algebra A has a double quasi-Poisson bracket defined by

{{a, a}} = 1

2
ot(a)(a, a∗)

(
a2 ⊗ et(a) − eh(a) ⊗ a2

)
(a ∈ Q̄) , (3.1a)

{{
a, a∗}} = γaeh(a) ⊗ et(a) + 1

2
a∗a ⊗ et(a) + 1

2
eh(a) ⊗ aa∗

+1

2
ot(a)(a, a∗) (a∗ ⊗ a − a ⊗ a∗) (a ∈ Q) , (3.1b)

and for b, c ∈ Q̄ such that c �= b, b∗

{{b, c}} = − 1

2
ot(b)(b, c) (b ⊗ c) − 1

2
oh(b)(b

∗, c∗) (c ⊗ b)

+ 1

2
ot(b)(b, c∗) cb ⊗ et(b) + 1

2
oh(b)(b

∗, c) eh(b) ⊗ bc .
(3.2)

Furthermore, A is quasi-Hamiltonian for the multiplicative moment map

� =
∑

s

�s , �s =
−→∏

a∈Ts

(γaes + aa∗)ε(a) . (3.3)

In Eq. 3.3, we take the product defining �s with respect to the ordering on Ts . If all
γa = +1, this result explicitly gives the double bracket defined from a poly-vector field
P ∈ (DBA)2 in [20, Theorem 6.7.1], which was written in the above form for particular
choices of ordering in [8, Proposition 2.6]. In fact, if all γa �= 0, the result is equivalent to the
previous case up to rescaling. If some γa are equal to zero, our result also encompasses the
generalisation proposed in [8, Proposition 2.7].

3.2.3 Proof of Theorem 3.3

As in the proof of [20, Theorem 6.7.1], we begin with the quiver Qsep which has vertex and
arrow sets given by

I sep = {vb, vb∗ | b ∈ Q} , Qsep = {b : vb → vb∗ | b ∈ Q} . (3.4)

We form the double Q̄sep of Qsep, which amounts to add the arrows {b∗ : vb∗ → vb | b ∈ Q}.
We define on it the involution ∗ given by b → b∗ and b∗ → b. We add local inverses
(γbevb

+ bb∗)−1 in kQ̄sep for all b ∈ Q̄sep to get the algebra Asep. By combining Example
4.6 (with t = b, s = b∗ for each b ∈ Qsep) and Remark 2.13, Asep is quasi-Hamiltonian for
the double quasi-Poisson bracket given by

{{
b, b∗}} = γbevb∗ ⊗ evb

+ 1

2
b∗b ⊗ evb

+ 1

2
evb∗ ⊗ bb∗ , (3.5)

for all b ∈ Qsep and which is zero on every other pair of generators, while the multiplicative
moment map is defined as

� =
∑

b∈Q̄sep

�vb
, �vb

= (γbevb
+ bb∗)ε(b) . (3.6)

To get a quasi-Hamiltonian structure on A, it remains to fuse all these disjoint quivers
of Q̄sep according to the ordering that we chose at the vertices of Q̄. More precisely,
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label the vertices in the quiver Q̄ as {1, . . . , |I |}, and label the arrows according to the
ordering, that is if the arrow b is the k-th element with respect to the total ordering on
Ts (going from the minimal to the maximal element in the chain) where s = t (b), we
label it as,k . We use the same names for the arrows in Q̄sep. To recover Q̄, we rename
va1,1 as 1, then fuse 1 and va1,2 which we still name 1, then continue with all vertices
labelled va1,k for increasing values of k. Next, we do the same for vertices 2, . . . , |I | and
recover the quiver Q̄. In terms of algebras, this means that we consider the fusion algebra
obtained after fusing eva1,2

onto e1, then eva1,3
onto e1, and so on. This finally yields the

algebra A. Therefore, it suffices to use Theorems 2.14 and 2.15 to get the desired result.
We directly find that � is given by Eq. 3.3, but understanding the double bracket requires
some work.

We first show Eqs. 3.1a and 3.1b, where there is nothing to prove if a is not a loop.
So assume that a is a loop, and a <t(a) a∗. By construction the only new terms arise
when we glue w1 := va with w2 := va∗ , so to compute these terms we use Theorem
2.14 with the vertices w1, w2 respectively playing the role of 1,2. We have that after
fusion a is a generator of third type Eq. 2.6c, so that by Eq. 2.16c the fusion amounts
to add a term 1

2a2 ⊗ et(a) − 1
2 et(a) ⊗ a2 in {{a, a}}. Similarly, a∗ is a generator of sec-

ond type Eq. 2.6b so by Eq. 2.15b we get a term 1
2 et(a) ⊗ (a∗)2 − 1

2 (a∗)2 ⊗ et(a) in
{{a∗, a∗}}. Using Eq. 2.16b, we get an additional term 1

2a∗ ⊗ a − 1
2a ⊗ a∗ in {{a, a∗}},

which gives the correct double bracket by adding (3.5). In the case a∗ <t(a) a, take
w1 := va∗ with w2 := va and the proof is similar, but now a is of second type and a∗ is of
third type.

Before proving (3.2), we need some preparation. Consider α, β ∈ Q̄ and s ∈ I with
α <s β, α �= β, β∗. With the labelling given above, we have that α = as,k0 , β = as,k1 for some
1 ≤ k0 < k1 ≤ |Ts |, and vα = vas,k0

, vβ = vas,k1
. Write Q̄α for the quiver obtained from Q̄sep

by fusing all the vertices vas′,k with either s′ < s, or s′ = s with k <s k1 (i.e. we fuse all
vertices up to excluding vβ); set tα and hα for the tail and head maps in Q̄α . Write Q̄β for
the quiver obtained from Q̄α by additionally fusing the vertex vas,k1

(i.e. we fuse all vertices
in Q̄sep up to including vβ). Set again tβ and hβ for the associated tail and head maps. We
let Aα and Aβ respectively denote the algebras obtained from Asep by fusion to arrive at the
quivers Q̄α and Q̄β.

Lemma 3.4 The step of performing fusion from Aα to Aβ amounts to add the following terms in
the double quasi-Poisson bracket of A between the elements α, α∗ and β, β∗ :

− 1
2α ⊗ β + 1

2 δtβ(α),tβ(α∗) etβ(α) ⊗ αβ in
{{

α, β
}}

, (3.7a)

+ 1
2β∗α ⊗ etβ(α) − 1

2 δtβ(α),tβ(α∗) β∗ ⊗ α in
{{

α, β∗}} , (3.7b)

+ 1
2 etβ(α) ⊗ α∗β − 1

2 δtβ(α),tβ(α∗) α∗ ⊗ β in
{{

α∗, β
}}

, (3.7c)

− 1
2β∗ ⊗ α∗ + 1

2 δtβ(α),tβ(α∗) β∗α∗ ⊗ etβ(α) in
{{

α, β
}}

. (3.7d)

Proof We know that hα(β) �= tα(β) (otherwise it would contradict the order in which we glue
vertices), so we have that α, α∗ are generators of the first type, β is a generator of the second
type and β∗ is a generator of the third type in the algebra Aβ obtained after fusing w1 := vα

and w2 := vβ. We have by Eq. 2.14b that the following terms appear in the double quasi-Poisson
bracket {{−, −}}β on Aβ for

{{
α, β

}}
β : 1

2 (ew1 ⊗ αβ − α ⊗ β). The first term is non-zero only if

hβ(α) = tβ(β), or tβ(α∗) = tβ(α), hence we can multiply it by δtβ(α),tβ(α∗). After all fusions are
performed, w1 is just tβ(α) and we get Eq. 3.7a.
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Using again (2.14b) then twice (2.14c) amounts to add the terms

1

2
(ew1 ⊗ α∗β − ew1α

∗ ⊗ β) in
{{

α∗, β
}}

β ,

1

2
(β∗α ⊗ ew1 − β∗ ⊗ αew1 ) in

{{
α, β∗}}

β ,

1

2
(β∗α∗ ⊗ ew1 − β∗ ⊗ α∗) in

{{
α∗, β∗}}

β .

A discussion as in the first case allows to get Eqs. 3.7b–3.7d.

To prove (3.2), we have to show that the equality holds for any kind of ordering when the
two arrows meet, as it is trivially zero if they do not. We first show what happens if they
meet at exactly one vertex.

If t (b) = t (c), assuming that b <t(b) c we get by Eq. 3.7a with α = b, β = c a term
− 1

2b ⊗ c in {{b, c}}. If instead c <t(b) b, we get by Eq. 3.7a with α = c, β = b a term − 1
2 c ⊗ b

in {{c, b}}, hence a term + 1
2b ⊗ c in {{b, c}} by cyclic antisymmetry. This proves (3.2) in this

case.
Next, assuming only t (b) = h(c) and b <t(b) c∗, we get by Eq. 3.7b with α = b, β = c∗ a

term + 1
2 cb ⊗ et(b) in {{b, c}}. If c∗ <t(b) b, we use Eq. 3.7c with α = c∗, β = b to get a term

+ 1
2 et(c∗) ⊗ cb in {{c, b}}, so this gives − 1

2 cb ⊗ et(b) as expected.
Then, for h(b) = t (c) with b∗ <h(b) c, we have from Eq. 3.7c with α = b∗, β = c the term

+ 1
2 et(b∗) ⊗ bc in {{b, c}}. If c <h(b) b∗ instead, we have from Eq. 3.7b with α = c, β = b∗ the

term + 1
2bc ⊗ et(c) in {{c, b}}, which yields − 1

2 eh(b) ⊗ bc in {{b, c}} and also finishes this case.
Finally, we assume h(b) = h(c). If b∗ <h(b) c∗, we get by Eq. 3.7d with α = b∗, β = c∗

the contributing term − 1
2 c ⊗ b in {{b, c}}, while for c∗ <h(b) b∗ we obtain a term − 1

2b ⊗ c in
{{c, b}}, and thus + 1

2 c ⊗ b in {{b, c}} as desired.
If b, c meet at two vertices but none of them is a loop, we can conclude by adding together

the two corresponding results just derived. Hence, it remains the tedious computation to
check the cases when at least b or c is a loop. We now write two illuminating cases where
h(b) = t (b) = t (c), and leave to the reader the task to verify all the remaining cases (not-
ing that we only need to check half these cases because of the cyclic antisymmetry) using
Eqs. 3.7a–3.7d.

Assume that h(b) = t (b) = t (c) and b <t(b) b∗ <h(b) c. When we first glue the vertices
vb, vb∗ in Q̄sep corresponding to t (b), h(b∗), no term contributes to {{b, c}}. Hence, we only
need to understand what happens when we glue the vertices corresponding to t (b) = h(b)

and t (c), and by Eq. 3.7a with α = b, β = c we get the term − 1
2b ⊗ c + 1

2 et(b) ⊗ bc, as
expected. (Alternatively, we could have used Eq. 3.7c with α = b∗, β = c to get the same
answer. It is important to remark that we glue vertices not arrows, so that only one of these
two cases has to be considered, not both together.)

Assume that h(b) = t (b) = t (c) and b <t(b) c <h(b) b∗. When gluing the vertices of Q̄sep

corresponding to t (b) and t (c), we get by Eq. 3.7a with α = b, β = c the only term − 1
2b ⊗ c

contributing to {{b, c}} since b is not (yet) a loop. Next, when we glue t (c) = t (b) and h(b),
we get by Eq. 3.7b with α = c, β = b∗ a term + 1

2bc ⊗ et(c) in {{c, b}} since c is not a loop,
hence the term − 1

2 et(b) ⊗ bc contributes to {{b, c}} and we are done.

3.3 Double quasi-Poisson brackets for fundamental groups of surfaces

Let � denote a compact connected surface with fixed orientation, and such that it has a
non-empty boundary ∂�. We denote by g ≥ 0 its genus, and r + 1 ≥ 1 the number of
boundary components. Let ∗ ∈ ∂� be a base point, and denote by π1(�, ∗) the corresponding
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fundamental group of �. The algebra A = kπ1(�, ∗) can be presented in terms of generators
α±1

i , β±1
i , γ ±1

k , �±1, 1 ≤ i ≤ g, 1 ≤ k ≤ r, subject to the relation
→∏

1≤i≤g

[αi, βi ]
→∏

1≤k≤r

γk = � . (3.8)

Here, � represents the loop around the boundary component containing ∗ (with suitable
orientation, see Fig. 1), and we used the multiplicative commutator [α, β] = αβα−1β−1.
Note that in the products we write the factors from the left to the right with increasing
indices.

Our aim is to give an alternative proof relying only on fusion of the next result due to
Massuyeau and Turaev [14], which endows A with a quasi-Hamiltonian algebra structure.
(We rescale their double bracket by a factor 1/2.) Hence, this proof is the non-commutative
analogue of the fusion process for representation varieties [3].

Theorem 3.5 For the presentation considered above, the algebra A = kπ1(�, ∗) has a double
quasi-Poisson bracket defined for any 1 ≤ i ≤ g by

{{αi, αi}} =1

2
(α2

i ⊗ 1 − 1 ⊗ α2
i ) ,

{{
βi , βi

}} = −1

2
(β2

i ⊗ 1 − 1 ⊗ β2
i ) ,

{{
αi, βi

}} = 1

2
(βiαi ⊗ 1 + 1 ⊗ αiβi − αi ⊗ βi + βi ⊗ αi) ,

(3.9)

for any φi ∈ {αi, βi}, 1 ≤ i ≤ g, and i < j , it is defined by

{{
φi, φj

}} = 1

2
(φjφi ⊗ 1 + 1 ⊗ φiφj − φi ⊗ φj − φj ⊗ φi) , (3.10)

for any φi ∈ {αi, βi}, 1 ≤ i ≤ g, and 1 ≤ k ≤ r , it is defined by

{{φi, γk}} = 1

2
(γkφi ⊗ 1 + 1 ⊗ φiγk − φi ⊗ γk − γk ⊗ φi) , (3.11)

and for any 1 ≤ k ≤ r and k < l, it is defined by

{{γk, γk}} =1

2
(γ 2

k ⊗ 1 − 1 ⊗ γ 2
k ) ,

{{γk, γl}} =1

2
(γlγk ⊗ 1 + 1 ⊗ γkγl − γk ⊗ γl − γl ⊗ γk).

(3.12)

Furthermore, for any a = αi, βi , γk , the double bracket with � is given by

{{�, a}} = 1

2
(a ⊗ � − 1 ⊗ �a + a� ⊗ 1 − � ⊗ a) . (3.13)

In particular, � is a multiplicative moment map, and A is quasi-Hamiltonian.

Fig. 1 A system of loops on� in the cases (g, r) = (1, 0) and (g, r) = (0, 1). They can be used as generators
for π1(�, ∗) after being connected to the base point ∗ ∈ ∂� in a natural way
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Proof We skip the trivial case g = r = 0 where A = k. If g = 0, r = 1, we have the generators of
the boundary components, call them γ, �, with � corresponding to the component containing ∗ ∈
∂�. Note that the algebra k[γ ±1] has a double quasi-Poisson bracket {{γ, γ }} = 1

2 (γ 2⊗1−1⊗γ 2)

such that γ is a moment map as we show in §4.1. Since it is isomorphic toA0 = k〈γ ±1, �±1〉/(γ =
�), we have a quasi-Hamiltonian algebra structure on A = A0.

If g = 1, r = 0, we have two generating cycles α, β and the generator of the boundary com-
ponent �, so that A is just A1 = k〈α±1, β±1, �±1〉/([α, β] = �). But the algebra k〈α±1, β±1〉 is
quasi-Hamiltonian by Example 4.12 (with t = α, s = β, δ = 1, γ = 0), with double quasi-Poisson
bracket

{{α, α}} =1

2
(α2 ⊗ 1 − 1 ⊗ α2) ,

{{
β, β

}} = −1

2
(β2 ⊗ 1 − 1 ⊗ β2) ,

{{
α, β

}} = 1

2
(βα ⊗ 1 + 1 ⊗ αβ − α ⊗ β + β ⊗ α) ,

(3.14)

and moment map � = [α, β]. By identification, we get a quasi-Hamiltonian algebra structure on
A = A1.

We now prove the general case. We consider g copies of the quasi-Hamiltonian algebra A1 and
r copies of A0, and we form A1 ⊕ . . . ⊕ A1 ⊕ A0 ⊕ . . . ⊕ A0. By Remark 2.13, this is a quasi-
Hamiltonian algebra. We denote the element (0, . . . , 0, 1, 0, . . . , 0) with 1 in i-th position as ei ,
1 ≤ i ≤ g + r . By fusing e2 onto e1, then e3 onto e1 and so on, we get a quasi-Hamiltonian algebra
structure by fusion on

k〈α±1
i , β±1

i , �±1
i , γ ±1

k , �̄±1
k | 1 ≤ i ≤ g, 1 ≤ k ≤ r〉/([αi, βi ] = �i, γk = �̄k) ,

where αi, βi , �i are the images of α, β, � from the i-th copy of A1, 1 ≤ i ≤ g, while γk, �̄k are
the images of γ, � in the k-th copy of A0. Rewriting the moment map in the algebra obtained by
fusion in terms of the �i, �̄k using Theorem 2.15, then removing these unnecessary elements, we
can rewrite the latter algebra as

k〈α±1
i , β±1

i , γ ±1
k , �±1 | 1 ≤ i ≤ g, 1 ≤ k ≤ r〉/(

→∏

1≤i≤g

[αi, βi ]
→∏

1≤k≤r

γk = �) . (3.15)

This is precisely A. The double quasi-Poisson bracket is then easily obtained from Theorem 2.14,
Lemma 2.19, and the ones on A0, A1. For example, fix 1 < j ≤ g. After the step of fusion of ej

onto e1, any φi ∈ {αi, βi} with 1 ≤ i < j is a generator of first type (2.6a) while φj ∈ {αj , βj }
is a generator of fourth type (2.6d), so that

{{
φi, φj

}}
gets a contribution given by Eq. 2.14d. The

fusion of ek onto e1 with k �= j does not give any additional term in
{{

φi, φj

}}
, and we obtain

(3.10).

Remark 3.6 To see that the double bracket from Theorem 3.5 coincides with the one of Massuyeau-
Turaev, note that the double brackets that do not involve the moment map are just those given in
[14, §8.3], while for the moment map they are given in [14, §9.2]. In particular, our construction
is such that the moment map is the generator of the loop at the boundary component containing
∗ ∈ ∂�.

We should also note that our proof applies to the case of a weighted surface discussed in [14,
Section 10], i.e. when we fix nk ∈ N

×, 1 ≤ k ≤ r , so that the generators αi, βi , γk (see Eq. 3.15)
satisfy the extra constraints γ

nk

k = 1 for 1 ≤ k ≤ r . Indeed, we can see that the ideal generated by
γ n − 1 in A0 is stable under the double bracket for any n ∈ N

×, so that we can start the proof with
the algebras k[γ ±1

k ]/(γ nk

k − 1) instead of r copies of A0.
Finally, remark that the way we are gluing components is the algebraic analogue of the boundary

connected sum discussed in [14, Appendix B.2].

Remark 3.7 It is an interesting problem to determine whether we can modify the definition of
double quasi-Poisson bracket and keep a non-trivial fusion property as in Theorems 2.14 and
2.15. As a motivation, note that for A = kπ1(�, ∗) the double quasi-Poisson bracket given
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in Theorem 3.5 was introduced by Massuyeau-Turaev [14] by (cyclically anti-)symmetrizing an
operation A×2 → A⊗2 denoted by {{−, −}}η. This means that for any a, b ∈ A,

{{a, b}} = {{a, b}}η + 1

2
1 ⊗ ab + 1

2
ba ⊗ 1 − 1

2
a ⊗ b − 1

2
b ⊗ a ,

see [14, §7.2] (recall that we rescale their double bracket by a factor 1/2). Since the couple
(A, {{−, −}}) can be obtained by fusion, it would be interesting to see if there is an analogue
proof for (A, {{−, −}}η) (note that {{−, −}}η is not a double quasi-Poisson bracket as Eq. 1.1 does
not hold). An explicit form similar to Theorem 3.5 of this particular operation can be found in
[2, Proposition 2.14]. For other uses of the operation {{−, −}}η, see [1, 2] and references therein.

3.4 Morphisms of double quasi-Poisson algebras

Fix two double quasi-Poisson algebras (A, {{−, −}}) and (A′, {{−, −}}′) over a k-algebra B.
We say that a map ψ : A → A′ is a morphism of double quasi-Poisson algebras (over B) if ψ is
a morphism of B-algebras such that for any a, b ∈ A,

(ψ ⊗ ψ) {{a, b}} = {{ψ(a), ψ(b)}}′ . (3.16)

We say that it is an isomorphism of double quasi-Poisson algebras if ψ is an isomorphism
of B-algebras, which implies that the inverse ψ−1 : A′ → A is also an isomorphism of dou-
ble quasi-Poisson algebras. It seems natural to seek for isomorphisms between the different
double quasi-Poisson algebra structures associated to quivers by Van den Bergh [20], or the
slight generalisation given by Theorem 3.3. The same problem can be formulated for the
double bracket of Massuyeau-Turaev [14] given in Theorem 3.5 if we change the presenta-
tion of the fundamental group by swapping factors1 in Eq. 3.8. In fact, these results easily
follow from the next proposition, which is a non-commutative version of [3, Proposition 5.7].

Proposition 3.8 Assume that (A, {{−, −}} , �) is a quasi-Hamiltonian algebra over B = ⊕skes .
Consider the algebra A

f

1←2 obtained by fusing e2 onto e1 and the algebra A
f

1→2 obtained by fusing
e1 onto e2, which are both quasi-Hamiltonian algebras. Then there exists an isomorphism of double
quasi-Poisson algebras A

f

1←2 → A
f

1→2 which preserves moment maps.

The proof of this statement is quite tedious, so we skip it and we will provide details in
further work. Let us simply mention that the isomorphisms between multiplicative prepro-
jective algebras with different orderings, which are given in the proof of [7, Theorem 1.4],
are precisely induced by this map.

4 Elementary classification

All our algebras are over a field k of characteristic 0 for convenience, but the discussion
may be adapted to any integral domain (with unit) such that 2 is invertible. One could get
rid of the latter localisation by rescaling the defining property (1.6) as in [14].

4.1 Polynomial ring in one variable

We begin by classifying all double quasi-Poisson brackets on A = k[t] over B = k. Our
argument is similar to the classification of Powell [18, Proposition A.1] in the case of a double

1It was pointed out by an anonymous referee that this can be obtained from [14] by invariance of the double
bracket of Massuyeau-Turaev under self-homeomorphisms of the surface � preserving ∗.
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Poisson bracket, i.e. when the associated triple bracket (1.4) identically vanishes. We define
a degree on A by setting |t | = 1, to get the decomposition A = ⊕k≥0ktk in homogeneous
components, which can clearly be extended to A⊗n : an element a1⊗. . .⊗an is homogeneous
of degree k if each ai is homogeneous in A and

∑
i |ai | = k.

Proposition 4.1 A has a double bracket which is quasi-Poisson if and only if it is of the form

{{t, t}} = λ(t ⊗ 1 − 1 ⊗ t) + μ(t2 ⊗ 1 − 1 ⊗ t2) + ν(t2 ⊗ t − t ⊗ t2) , (4.1)

for λ, μ, ν ∈ k with 4(μ2 − λν) = 1.

Proof First, we remark that the quasi-Poisson property can be rewritten from Eq. 1.6 as requiring

{{t, t, t}} = 1

4
(1 + τ(123) + τ 2(123))(1 ⊗ t2 ⊗ t − 1 ⊗ t ⊗ t2) . (4.2)

Next, following [18, Proposition A.1], we split the double bracket as {{−, −}} =∑max
k=min {{−, −}}k , where {{−, −}}k is its homogeneous component of degree k, i.e. {{t, t}}k ∈

⊕l≤kkt l ⊗ktk−l . We then obtain that the decomposition of the triple bracket {{−, −, −}} in homo-
geneous components has in highest degree the triple bracket defined by {{−, −}}max of degree
2max−1. Since Eq. 4.2 is homogeneous of degree 3, we need that the triple bracket associated
to {{−, −}}max vanishes if max ≥ 3, that is we need {{−, −}}max to be a double Poisson bracket.
But [18, Proposition A.1] gives that such a homogeneous double Poisson bracket is non-zero only
if its degree is at most 3. Moreover, if max = 3, this result also yields that it is a multiple of
{{t, t}}3 := t2 ⊗ t − t ⊗ t2.

We have thus obtained that {{t, t}} must be of the form (4.1) for some λ, μ, ν ∈ k. The
corresponding triple bracket is easily computed (see e.g. [18, Proposition A.1]) and gives

{{t, t, t}} = (μ2 − λν)(1 + τ(123) + τ 2(123))(1 ⊗ t2 ⊗ t − 1 ⊗ t ⊗ t2) , (4.3)

so we can conclude by comparing this last expression with (4.2).

Lemma 4.2 Assume that A = k[t] is endowed with a double quasi-Poisson bracket in the form
(4.1), and set Ā = k[t](t−λ). Then Ā is a quasi-Hamiltonian algebra if and only if ν = 0.

Proof First, remark that when ν = 0, we have by Proposition 4.1 that μ = δ
2 for some δ ∈ {±1},

and � = (t − λ)δ is a moment map.
For the converse, we see Ā as the graded algebra k[t̄±1], where t̄ = t − λ has degree +1. We

also note that Eq. 4.1 is equivalent to
{{

t̄ , t̄
}} = (λ+2λμ+λ2ν)(t̄ ⊗1−1⊗ t̄ )+ (μ+λν)(t̄2 ⊗1−1⊗ t̄2)+ν(t̄2 ⊗ t̄ − t̄ ⊗ t̄2) . (4.4)

Since Ā is quasi-Hamiltonian, there exists an (invertible) element � that satisfies

{{
�, t̄

}} = 1

2
(t̄ ⊗ � − 1 ⊗ �t̄ + t̄� ⊗ 1 − � ⊗ t̄ ) , (4.5)

and which we can decompose as

� =
∑

k0≤l≤k1

cl t̄
l , ck0 , ck1 ∈ k

× . (4.6)

Then, we get by looking at Eq. 4.5 in highest degree that ck1

{{
t̄ k1 , t̄

}}
is of degree at most k1 + 1.

But using the derivation property (1.3), this highest degree is exactly D + k1 − 1, where D is the
maximal degree of

{{
t̄ , t̄

}}
given in Eq. 4.4. This implies that D ≤ 2, i.e. there is no component of

degree 3 in
{{

t̄ , t̄
}}
. We get from Eq. 4.4 that ν = 0.
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4.2 Algebra with two idempotents

In the previous case, the algebra A was simply a k-algebra with no non-trivial (i.e. distinct
from 0,1) idempotent elements. The simplest case where such a decomposition occurs con-
sists in taking the path algebra kQ1 of the quiver Q1 with vertices {1, 2} and unique arrow
t : 1 → 2. (For conventions on quivers and path algebras, see §3.2.1.) We can see kQ1 as a
B-algebra with B = ke1 ⊕ ke2, and if we assume that we have a B-linear double bracket on
kQ1, the derivation rules yield

{{t, t}} = {{e1te2, e1te2}} = e1 ∗ e1 {{t, t}} e2 ∗ e2 .

Using Sweedler’s notation, this implies that {{t, t}}′ and {{t, t}}′′ are of the form αt for some
α ∈ k. Therefore {{t, t}} = α t ⊗ t , and the cyclic antisymmetry implies α = 0 so that kQ1

can only be endowed with the zero double bracket. At the same time, it is easy to see that
{{t, t, t}} given by Eq. 1.6 vanishes for kQ1, so we get the next result.

Lemma 4.3 The zero double bracket is the unique double quasi-Poisson bracket on kQ1.

As we have seen in §4.1, the zero double bracket is not quasi-Poisson on k[t], and the fact
that it is quasi-Poisson on kQ1 is only due to the idempotent decomposition which implies
t2 = 0. In fact, if we consider k[t] as the fusion algebra obtained by fusing e1 and e2 in
kQ1, the zero double quasi-Poisson bracket on kQ1 yields after fusion the case λ = ν = 0
in Proposition 4.1.

To get non-trivial examples of B-linear double brackets, we consider the double quiver
Q̄1 obtained by adding to Q1 the arrow s = t∗ : 2 → 1. If we define a degree on A by setting
|s| = |t | = 1 and extend it to A ⊗ A, we can characterise the B-linear double quasi-Poisson
brackets on A that have degree at most +4 on generators. By the latter condition, we mean
that {{s, s}} , {{t, t}} and {{t, s}} (hence {{s, t}}) are sums of homogeneous terms of degree at
most +4.

Proposition 4.4 Any B-linear double quasi-Poisson bracket {{−, −}} on A = kQ̄1 which has
degree at most +4 on generators must be one of the following :

Case 1: {{s, s}} = 0, {{t, t}} = 0 and one of the next two conditions holds

1.a) {{t, s}} = δ

2
(st ⊗ e1 − e2 ⊗ ts) , δ ∈ {±1} , (4.7a)

1.b) {{t, s}} = γ e2 ⊗ e1 + φst ⊗ ts + α(st ⊗ e1 + e2 ⊗ ts) ,

α, γ, φ ∈ k, α2 = 1

4
+ γφ ; (4.7b)

Case 2: {{s, s}} = 0, {{t, t}} = λ(tst ⊗ t − t ⊗ tst) for λ ∈ k
× and

{{t, s}} = δ

2
(st ⊗ e1 − e2 ⊗ ts) , δ ∈ {±1} ;

Case 3: {{t, t}} = 0, {{s, s}} = λ(sts ⊗ s − s ⊗ sts) for λ ∈ k
× and

{{t, s}} = δ

2
(st ⊗ e1 − e2 ⊗ ts) , δ ∈ {±1} .

The proof is given in Appendix C.

Example 4.5 The simplest double quasi-Poisson brackets that can be obtained from Case 1 are

{{t, t}} = 0 , {{s, s}} = 0 , {{t, s}} = δ

2
st ⊗ e1 + δ′

2
e2 ⊗ ts , δ, δ′ ∈ {±1} . (4.8)
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These double brackets are all obtained by fusion. Indeed, consider the quiverQ1 with vertices {1, 2}
and unique arrow t : 1 → 2, and the quiver Q′

1 with vertices {3, 4} and unique arrow s : 4 → 3.
Their path algebras have a double quasi-Poisson bracket which is the zero one by Lemma 4.3.
Thus, the zero double bracket on the path algebra A of the quiver Q1 � Q′

1 is also quasi-Poisson
by Remark 2.13. We can see A as an algebra over B = ⊕4

s=1kes , where es is the elementary path
corresponding to the s-th vertex. We can glue the vertices 1 and 3, as well as the vertices 2 and 4.
The resulting fusion algebra is just kQ̄1, and we have a double quasi-Poisson bracket by Theorem
2.14 given by Eq. 4.8, where δ = +1 (resp. δ = −1) if we fuse e3 onto e1 (resp. e1 onto e3), and
where δ′ = +1 (resp. δ′ = −1) if we fuse e4 onto e2 (resp. e2 onto e4).

Example 4.6 Up to localisation, we claim that the algebra A with double quasi-Poisson bracket
given by Case 1 with Eq. 4.7b is quasi-Hamiltonian when γφ = 0. In such a case, we set α = δ

2
for some δ = ±1.

If φ = 0, consider the localisation of A at δγ + st and δγ + ts. This is equivalent to require that
the element δγ e1 + ts is invertible in e1Ae1, while δγ e2 + st is invertible in e2Ae2. We can easily
check that �1 = (δγ e1 + ts)δ and �2 = (δγ e2 + st)−δ satisfy (1.7). Hence � = �1 + �2 is a
moment map in the localised algebra.

If γ = 0, we require that ts (resp. st) is invertible in e1Ae1 (resp. e2Ae2) with local inverse
(ts)−1 (resp. (st)−1). We then further require that we have local inverses for φe1 + (ts)−1 and
φe2 + (st)−1. As a result, we can check that � = �1 + �2 is a moment map for �1 = (δφe1 +
(ts)−1)−δ and �2 = (δφe2 + (st)−1)δ .

When γ = φ = 0, both constructions give the same quasi-Hamiltonian algebra.

Remark 4.7 For φ = 0 and γ = δ = +1 in Example 4.6, this corresponds to Van den Bergh’s
key example of quasi-Hamiltonian algebra associated to the double of the quiver 1 → 2 given in
[20, §6.5] (see Theorem 3.3).

4.3 Free algebra on two generators

Consider A = k〈s, t〉 with B = k. To obtain new examples of double quasi-Poisson brackets
on A, we assume that we have a double bracket such that

{{t, t}} = λ(t ⊗ 1 − 1 ⊗ t) + μ(t2 ⊗ 1 − 1 ⊗ t2) + ν(t2 ⊗ t − t ⊗ t2) , (4.9a)

{{s, s}} = l(s ⊗ 1 − 1 ⊗ s) + m(s2 ⊗ 1 − 1 ⊗ s2) + n(s2 ⊗ s − s ⊗ s2) , (4.9b)

with coefficients in k that satisfy 4(μ2 − λν) = 1 and 4(m2 − ln) = 1. Furthermore, we
consider that the double bracket between s and t has the form

{{t, s}} = α0 t2 ⊗ 1 + α′
0 1 ⊗ t2 + β0 s2 ⊗ 1 + β′

0 1 ⊗ s2 + γ0 t ⊗ t + γ1 s ⊗ s

+ α1 ts ⊗ 1 + α′
1 st ⊗ 1 + α2 t ⊗ s + α′

2 s ⊗ t + α3 1 ⊗ ts + α′
3 1 ⊗ st

+ β1 t ⊗ 1 + β′
1 1 ⊗ t + β2 s ⊗ 1 + β′

2 1 ⊗ s + γ 1 ⊗ 1 ,

(4.10)

with all coefficients in k. In other words, if we fix a degree on A by |t | = |s| = 1 and extend
it to A ⊗ A, we assume that the double bracket {{t, s}} has degree at most +2. We wish to
formulate a classification of the double quasi-Poisson brackets of the above form. To do so,
introduce the conditions

(C1) λ = ν = 0, μ = ±1

2
, (C1’) μ = 0, ν = −1

4λ
∈ k

× ,

(C2) l = n = 0, m = ±1

2
, (C2’) m = 0, n = −1

4l
∈ k

× .

We say that a double bracket {{−, −}} on A of the form (4.9a)–(4.9b) and (4.10) is reduced
if it satisfies either (C1) or (C1’), together with either (C2) or (C2’). It is not difficult to see
that, up to an affine change of variables t → t + ρt , s → s + ρs , for suitable ρt , ρs ∈ k, any
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double bracket {{−, −}} on A of the form (4.9a)–(4.9b) and (4.10) can be put into reduced
form.

Proposition 4.8 Any double bracket {{−, −}} on A of the form (4.9a)–(4.9b) and (4.10) which is
quasi-Poisson is isomorphic to one of the following reduced double quasi-Poisson brackets :

Case 1: For any γ0, γ1 ∈ k, μ = ± 1
2 , α ∈ k such that α2 = 1

4 + γ0γ1,

{{t, t}} = μ(t2 ⊗ 1 − 1 ⊗ t2) , {{s, s}} = μ(s2 ⊗ 1 − 1 ⊗ s2) ,

{{t, s}} = γ0t ⊗ t + γ1s ⊗ s + μ(st ⊗ 1 − 1 ⊗ ts) + α(t ⊗ s + s ⊗ t) ,
(4.11)

Case 2: For any γ ∈ k, α, μ = ± 1
2 ,

{{t, t}} = μ(t2 ⊗ 1 − 1 ⊗ t2) , {{s, s}} = −μ(s2 ⊗ 1 − 1 ⊗ s2) ,

{{t, s}} = α(st ⊗ 1 + 1 ⊗ ts) + μ(s ⊗ t − t ⊗ s) + γ 1 ⊗ 1 ,
(4.12)

Case 3: For any m, μ = ± 1
2 ,

{{t, t}} = μ(t2 ⊗ 1 − 1 ⊗ t2) , {{s, s}} = m(s2 ⊗ 1 − 1 ⊗ s2) ,

{{t, s}} = μ(st ⊗ 1 − t ⊗ s + s ⊗ t − 1 ⊗ ts) ,
(4.13)

Case 4: For any α, m, μ = ± 1
2 ,

{{t, t}} = μ(t2 ⊗ 1 − 1 ⊗ t2) , {{s, s}} = m(s2 ⊗ 1 − 1 ⊗ s2) ,

{{t, s}} = α(st ⊗ 1 − t ⊗ s − s ⊗ t + 1 ⊗ ts) ,
(4.14)

Case 5: For any n ∈ k
×, α, μ = ± 1

2 ,

{{t, t}} = μ(t2 ⊗ 1 − 1 ⊗ t2) , {{s, s}} = −1

4n
(s ⊗ 1 − 1 ⊗ s) + n(s2 ⊗ s − s ⊗ s2) ,

{{t, s}} = α(st ⊗ 1 − t ⊗ s − s ⊗ t + 1 ⊗ ts) ,

(4.15)
Case 6: For any n ∈ k

×, μ = ± 1
2 ,

{{t, t}} = μ(t2 ⊗ 1 − 1 ⊗ t2) , {{s, s}} = −1

4n
(s ⊗ 1 − 1 ⊗ s) + n(s2 ⊗ s − s ⊗ s2) ,

{{t, s}} = μ(st ⊗ 1 − t ⊗ s + s ⊗ t − 1 ⊗ ts) ,

(4.16)
Case 7: For any n, ν ∈ k

×, α = ± 1
2 ,

{{t, t}} = −1

4ν
(t ⊗ 1 − 1 ⊗ t) + ν(t2 ⊗ t − t ⊗ t2) ,

{{s, s}} = −1

4n
(s ⊗ 1 − 1 ⊗ s) + n(s2 ⊗ s − s ⊗ s2) ,

{{t, s}} = α(st ⊗ 1 − t ⊗ s − s ⊗ t + 1 ⊗ ts) ,

(4.17)

Remark 4.9 Under the automorphism of A given by s → t , t → s, the cases given by (4.11),
(4.12), (4.14) and (4.17) are invariant; we obtain from the other cases (4.13), (4.15) and (4.16) three
additional cases that do not appear in Proposition 4.8. In particular, this explains why there is no
other occurrence of the case ν �= 0 than in Eq. 4.17.

The proof of Proposition 4.8 is quite tedious and not interesting, so we skip it until
Appendix D. The idea is to realise that the two conditions

{{t, t, t}} = 1

4
(1+τ(123)+τ 2(123))(1⊗t2⊗t−1⊗t⊗t2) , {{s, s, s}} = 1

4
(1+τ(123)+τ 2(123))(1⊗s2⊗s−1⊗s⊗s2) ,
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obtained from Eq. 1.6 are trivially satisfied by Proposition 4.1 since we require 4(μ2−λν) = 1

and 4(m2 − ln) = 1. Using that a triple bracket is cyclically antisymmetric and is completely
determined by its value on generators, it remains to check for which coefficients we have
the equalities

{{t, t, s}} =1

4

(
st ⊗ t ⊗ 1 − st ⊗ 1 ⊗ t − s ⊗ t2 ⊗ 1 + s ⊗ t ⊗ t

− t ⊗ t ⊗ s + t ⊗ 1 ⊗ ts + 1 ⊗ t2 ⊗ s − 1 ⊗ t ⊗ ts
)

,

(4.18)

{{s, s, t}} =1

4

(
ts ⊗ s ⊗ 1 − ts ⊗ 1 ⊗ s − t ⊗ s2 ⊗ 1 + t ⊗ s ⊗ s

− s ⊗ s ⊗ t + s ⊗ 1 ⊗ st + 1 ⊗ s2 ⊗ t − 1 ⊗ s ⊗ st
)

,

(4.19)

also obtained from Eq. 1.6.

4.3.1 Fusion for Proposition 4.8

We can use Theorem 2.14 to obtain the following result.

Theorem 4.10 Up to localisation, any double quasi-Poisson bracket on A of the form (4.9a)–(4.9b) and
(4.10) is isomorphic to a reduced double quasi-Poisson bracket obtained by fusion.

The proof follows by combining the different examples that we give now together with
Proposition 4.8.

Example 4.11 (Fusion for Case 1.) For any α, γ0, γ1 ∈ k such that α2 = 1
4 + γ0γ1, we can consider kQ̄1

with the double quasi-Poisson bracket given by Eq. 4.7b in Proposition 4.4 with γ = γ1, φ = γ0. We form
the algebra A by locally inverting ts = e1tse1 and st = e2ste2. We can introduce s̄ = (ts)−1t = t (st)−1 ∈
e1Ae2. The double quasi-Poisson bracket descends to A in such a way that

{{t, t}} = 0 = {{s̄, s̄}} , {{t, s̄}} = γ0t ⊗ t + γ1 s̄ ⊗ s̄ + α(t ⊗ s̄ + s̄ ⊗ t).

Fusing e1 and e2, we get the fusion algebra Af = k〈t±1, s±1〉 with double quasi-Poisson bracket given by
Eq. 4.11, where μ = + 1

2 (resp. μ = − 1
2 ) if we fuse e2 onto e1 (resp. e1 onto e2) by using Eq. 2.16c (resp.

Eq. 2.15b).

Example 4.12 (Fusion for Case 2.) For any γ ∈ k and δ = ±1, the localisation A of the path algebra kQ̄1

at a = δγ + ts and b = δγ + st is a quasi-Hamiltonian B-algebra for B = ke1 ⊕ ke2 by Example 4.6
(with φ = 0). The fusion algebra Af obtained by fusing e2 onto e1 can be identified with k〈s, t〉a,b . It is a
quasi-Hamiltonian algebra with double quasi-Poisson bracket

{{t, t}} =1

2
(t2 ⊗ 1 − 1 ⊗ t2) , {{s, s}} = 1

2
(1 ⊗ s2 − s2 ⊗ 1) ,

{{t, s}} =γ 1 ⊗ 1 + δ

2
(st ⊗ 1 + 1 ⊗ ts) + 1

2
(s ⊗ t − t ⊗ s) ,

(4.20)

using successively (2.16c), (2.15b) and (2.16b). The moment map � = aδb−δ is obtained by Theorem 2.15.
If we fuse e1 onto e2 instead, the factors 1

2 appearing in Eq. 4.20 are replaced by − 1
2 and the moment map is

now � = b−δaδ .

Remark 4.13 After fusion, the case γ = δ = +1 treated in Example 4.12 corresponds to Van den Bergh’s
quasi-Hamiltonian algebra associated to a one-loop quiver [20] (see Theorem 3.3). The case γ = 0 appears
after localisation on A′ = k〈s±1, t±1〉 in [8], and gives the quasi-Hamiltonian structure for the fundamental
group of a torus with one marked boundary component [14] (see Theorem 3.5).

Example 4.14 (Fusion for Cases 3,6.)We consider the algebra k〈s〉with double quasi-Poisson bracket (4.9b),
and kQ1 for the quiver Q1 given by t : 1 → 2 endowed with the zero double quasi-Poisson bracket. Consider
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the direct sum A = kQ1 ⊕ k〈s〉, where we denote the identity of k〈s〉 as e3. This is a double quasi-Poisson
algebra by Remark 2.13.

If we fuse e3 onto e2 (resp. e2 onto e3) and call it e2, we obtain the fusion algebra A′ with double
quasi-Poisson bracket (4.9b), {{t, t}} = 0 and

{{t, s}} = α(e2 ⊗ ts − s ⊗ t) , α = +1

2
(resp. α = −1

2
).

Then, if we fuse e2 onto e1 (resp. e1 onto e2) which becomes the unit in the fusion algebra A′′, we have a
double quasi-Poisson bracket given by Eq. 4.9b and

{{t, t}} = μ(t2 ⊗ 1 − 1 ⊗ t2) , {{t, s}} = α(1 ⊗ ts − s ⊗ t) + μ(st ⊗ 1 − t ⊗ s) ,

where μ = 1
2 (resp. μ = − 1

2 ). When α = −μ, we get Eq. 4.13 if n = l = 0, or we get Eq. 4.16 if m = 0.

Example 4.15 (Fusion for Cases 4,5,7.) We consider the algebras k〈t〉 and k〈s〉 with double quasi-Poisson
brackets (4.9a)–(4.9b). Then A = k〈t〉 ⊕ k〈s〉 is a double quasi-Poisson algebra by Remark 2.13, and we
denote e1 = (1, 0), e2 = (0, 1). If we fuse e2 onto e1 (resp. e1 onto e2) which is the unit in the fusion algebra
A′, we get a double quasi-Poisson bracket given by Eqs. 4.9a–4.9b and

{{t, s}} = α(st ⊗ 1 + 1 ⊗ ts − s ⊗ t − t ⊗ s) ,

with α = + 1
2 (resp. α = − 1

2 ). For n = l = ν = λ = 0 we get Eq. 4.14, for m = ν = λ = 0 we get Eq. 4.15,
while for m = μ = 0 we get Eq. 4.17.

5 Representations spaces and (quasi-)Poisson algebras

5.1 Generalities on representation spaces

We assume that A is a finitely generated associative algebra over B = ⊕K
s=1kes , with eset =

δst es . Following [20, Section 7] (see also [6, Section 4] and [14, Section 3]), let I = {1, . . . , K} and
choose a dimension vector α ∈ N

I , setting N = ∑
s∈I αs . We consider the representation space

(relative to B) Rep(A, α). The representation space is the affine scheme whose coordinate
ring O(Rep(A, α)) is generated by symbols aij for a ∈ A, 1 ≤ i, j ≤ N , which satisfy

(a + b)ij = aij + bij , (ab)ij =
N∑

k=1

aikbkj ,

together with the condition that for any 1 ≤ s ≤ K the matrix X (es) = ((es)ij )ij is the s-th
diagonal identity block of size αs . In other words, we have that (es)ij = δij if α1+. . .+αs−1+1 ≤
i, j ≤ α1+. . .+αs , while it is zero otherwise. Note that this implies 1ij = δij for all 1 ≤ i, j ≤ N .
To ease notations, denote by R = O(Rep(A, α)) the coordinate ring, and for any a ∈ A set X (a)

to denote the matrix with entries aij ∈ R.
By definition of Rep(A, α), any element a ∈ A induces functions (aij )ij on Rep(A, α), and

we would like to extend this definition to derivations. We associate to any δ ∈ DA/B the
vector fields δij ∈ Der(R), 1 ≤ i, j ≤ N , defined by

δij (bkl) = δ(b)′kj δ(b)′′il , (5.1)

and introduce the vector field-valued matrix X (δ) with (i, j) entry δij . We call the particular
disposition of indices in Eq. 5.1 the standard index notation as in [21]. More generally, for an
element δ = δ1 . . . δn ∈ (DBA)n we define δij ∈ ∧n

R Der(R) from the matrix identity X (δ) =
X (δ1) . . .X (δn), and we set trX (δ) = ∑

i δii .
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Proposition 5.1 ([20, Propositions 7.5.1,7.5.2]) Assume that {{−,−}} is a B-linear double bracket defined
on A. Then there is a unique antisymmetric biderivation {−,−} on R such that

{aij , bkl} = {{a, b}}′kj {{a, b}}′′il , (5.2)

for any a, b ∈ A. Moreover, for any a, b, c ∈ A,

Jac(aij , bkl , cuv) = {{a, b, c}}uj,il,kv − {{a, c, b}}kj,iv,ul , (5.3)

where, on the left-hand side, Jac : R×3 → R is defined by

Jac(g1, g2, g3) = {g1, {g2, g3}} + {g2, {g3, g1}} + {g3, {g1, g2}} , g1, g2, g3 ∈ R ,

while on the right-hand side {{−,−,−}} is the triple bracket (1.4) defined by {{−,−}}, and we write for
a = a′ ⊗ a′′ ⊗ a′′′ ∈ A⊗3 that aij,kl,uv = a′

ij a
′′
kla

′′′
uv .

We now remark the following result, which will be important in §5.2.

Lemma 5.2 Assume thatQ ∈ (DBA)n, and denote by {{−, . . . , −}} the corresponding differential n-bracket
given by Proposition 2.1. For any a = a1 ⊗ . . . ⊗ an ∈ A⊗n, introduce

a(u1v1,...,unvn) = a1u1v1 . . . an
unvn

∈ R ,

with indices in the set {1, . . . , N}. Consider the natural action of Sn on {1, . . . , n} and the action of Sn−1 on
{2, . . . , n} obtained by fixing the element 1. Then the following holds

trX (Q)(a1u1v1 , . . . , a
n
unvn

) =
∑

σ̃∈Sn−1

ε(σ̃ )
{{

a1, aσ̃ (2), . . . , aσ̃ (n)
}}

σ̃ (u,v)
(5.4)

where σ̃ (u, v) := (uσ̃ (n)v1, u1vσ̃ (2), . . . , uσ̃ (n−1)vσ̃ (n)), while ε(σ̃ ) = +1 if σ̃ is an even permutation, and
ε(σ̃ ) = −1 if σ̃ is an odd permutation.

Proof By linearity, we can just assume that Q = δ1 . . . δn with each δi ∈ DA/B . We can write

trX (Q)(a1u1v1 , . . . , a
n
unvn

) =
∑

i1,...,in

(δ1i1i2 ∧ . . . ∧ δn
ini1

)(a1u1v1 , . . . , a
n
unvn

)

=
∑

i1,...,in

∑

σ∈Sn

ε(σ ) δ1i1i2 (a
σ(1)
uσ(1)vσ(1)

) . . . δ
q
iq iq+1

(a
σ(q)
uσ(q)vσ(q)

) . . . δn
ini1

(aσ(n)
uσ(n)vσ(n)

) .

Using Eq. 5.1 and summing over all iq , we get that this equals

∑

σ∈Sn

ε(σ ) (δ1(aσ(1))′δ2(aσ(2))′′)uσ(1)vσ(2) . . . (δq (aσ(q))′δq+1(aσ(q+1))′′)uσ(q)vσ(q+1) . . . (δn(aσ(n))′δ1(aσ(1))′′)uσ(n)vσ(1)

=
∑

σ∈Sn

ε(σ )
(
δn(aσ(n))′δ1(aσ(1))′′ ⊗ δ1(aσ(1))′δ2(aσ(2))′′ ⊗ . . . ⊗ δn−1(aσ(n−1))′δ1(aσ(1))′′

)

σ(u,v)
,

where σ(u, v) = (uσ(n)vσ(1), uσ(1)vσ(2), . . . , uσ(n−1)vσ(n)).
Next, remark that we can identify any σ ∈ Sn with σ̃ τ i , where τ = (1 . . . n), i ∈ {0, . . . , n − 1}, and

σ̃ ∈ Sn−1 acts on {2, . . . , n}. Given σ , the pair (i, σ̃ ) is unique and satisfies ε(σ ) = (n−1)i+ε(σ̃ ). Moreover,
the action of σ ∈ Sn on A⊗n decomposes into the permutation τ i of the factors and the action of σ̃ ∈ Sn−1

fixing the first copy in the tensor product. Therefore, we can write trX (Q)(a1u1v1 , . . . , a
n
unvn

) as follows

∑

σ̃∈Sn−1

ε(σ̃ )

n−1∑

i=0

(−1)(n−1)i
(
δn(aσ(n))′δ1(aσ(1))′′ ⊗ . . .⊗ δn−1(aσ(n−1))′δ1(aσ(1))′′

)

σ(u,v)
, (5.5)

where σ(u, v) = (uσ(n)vσ(1), uσ(1)vσ(2), . . . , uσ(n−1)vσ(n)) and we put σ = σ̃ τ i .
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Meanwhile, remark that we can get from Proposition 2.1

{{
b1, . . . , bn

}}
=

n−1∑

i=0

(−1)(n−1)i δτ−i (n)(bn)′δτ−i (1)(b1)′′ ⊗ . . . ⊗ δτ−i (q)(bq)′δτ−i (q+1)(bq+1)′′ ⊗ . . .

. . . ⊗ δτ−i (n−1)(bn−1)′δτ−i (n)(bn)′′ .

If we extend the action of Sn−1 on {2, . . . , n} to {1, . . . , n} by setting σ̃ (1) = 1, we find that
∑

σ̃∈Sn−1

ε(σ̃ )
{{

aσ̃ (1), aσ̃ (2), . . . , aσ̃ (n)
}}

σ̃ (u,v)

=
∑

σ̃∈Sn−1

ε(σ̃ )

n−1∑

i=0

(−1)(n−1)i
(
δτ−i (n)(aσ̃ (n))′δτ−i (1)(aσ̃ (1))′′ ⊗ . . . ⊗ δτ−i (n−1)(aσ̃ (n−1))′δτ−i (n)(aσ̃ (n))′′

)

σ̃ (u,v)
.

where σ̃ (u, v) := (uσ̃ (n)vσ̃ (1), uσ̃ (1)vσ̃ (2), . . . , uσ̃ (n−1)vσ̃ (n)). Now, we remark that if we simultaneously
apply τ i on the tensor product and on the indices σ̃ (u, v), then each term on the right-hand side is unchanged.
But doing so is equivalent to replace any element q ∈ {1, . . . , n} (before applying σ̃ !) by τ i (q) in the indices
occurring in the tensor product as well as in σ̃ (u, v). This gives nothing else than Eq. 5.5.

We will particularly be interested in the case n = 3, which takes the following form.

Lemma 5.3 Assume that Q ∈ (DBA)3, and denote by {{−,−,−}}Q the corresponding differential triple
bracket. With the notation introduced in Lemma 5.2, we have for any a, b, c ∈ A

trX (Q)(aij , bkl , cuv) = ({{a, b, c}}Q)uj,il,kv − ({{a, c, b}}Q)kj,iv,ul . (5.6)

Remark 5.4 Let us look again at Proposition 5.1 when {{−,−}} is differential for some P ∈ (DBA)2. First,
looking at Lemma 5.2 with n = 2, the right-hand side of Eq. 5.4 is the same as the right-hand side of Eq. 5.2
when aij = a1u1v1 , bkl = a2u2v2 . Hence, {−,−} is equivalently defined by the bivector field trX (P ) on
Rep(A, α), as first observed in [20, §7.8].

Next, note that the left-hand side of Eq. 5.3 is obtained by applying the trivector 1
2 [trX (P ), trX (P )],

where [−,−] is the (geometric) Schouten-Nijenhuis bracket. But it was remarked in [20, §7.7] that taking
traces defines a Lie algebra homomorphism from the algebraic to the geometric Schouten-Nijenhuis bracket,
so that trX ({P,P }SN) = [trX (P ), trX (P )]. Now, by Proposition 2.4, the triple bracket {{−,−,−}} defined
by {{−,−}} is differential with trivector 1

2 {P,P }SN. Therefore, Eq. 5.3 becomes a corollary of Eq. 5.6 with

Q = 1
2 {P,P }SN.

5.2 Quasi-Poisson algebras

Let g be a Lie algebra over k such that g is equipped with a non-degenerate symmet-
ric bilinear form denoted (−|−). Furthermore, assume that the form is g-invariant, i.e.
(η1|[η2, η3]) = ([η1, η2]|η3) for all η1, η2, η3 ∈ g. If we take dual bases (εi ), (ε

i ) under (−|−), then
we can define the Cartan trivector φ ∈ ∧3

g given by

φ = 1

12

∑

i,j,k

(εi |[εj , εk]) εi ∧ εj ∧ εk . (5.7)

Following [14, Section 2] from now on, we assume that g acts on a commutative k-algebra
R by derivation, so that the map g → Der(R) is a Lie algebra homomorphism. Denoting by
ηR the action of η ∈ g on R, the latter means that [η1, η2]R(a) = η1R(η2R(a)) − η2R(η1R(a)) for
any a ∈ R, η1, η2 ∈ g. We say that R is a quasi-Poisson algebra over g if R is equipped with an
anti-symmetric biderivation {−,−} such that for any η ∈ g and a, b, c ∈ R

ηR({a, b}) = {ηR(a), b} + {a, ηR(b)} , (5.8a)

{a, {b, c}} + {b, {c, a}} + {c, {a, b}} = 1

2
φR(a, b, c) . (5.8b)
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Here, φR is the image of the Cartan trivector induced by the map g⊗3 × R×3 → k given by

(η1 ⊗ η2 ⊗ η3, a, b, c) → (η1 ⊗ η2 ⊗ η3)R(a, b, c) := η1R(a)η2R(b)η3R(c) .

The operation {−,−} is called a quasi-Poisson bracket. Note that if Rg ⊂ R is the subalgebra of
g-invariant elements, i.e. Rg = {a ∈ R | ηR(a) = 0∀η ∈ g}, then {−,−} descends to a Poisson
bracket on Rg since the right-hand side of Eq. 5.8b vanishes.

Remark 5.5 In this work, we restrict the definition of quasi-Poisson algebra to the case where φ is the Cartan
trivector (5.7), in analogy with [3, 20]. Working in greater generalities, Massuyeau and Turaev considered
an arbitrary element φ ∈ ∧3

g, from which we still get a Poisson bracket on Rg [14, §2.2]. This notion also
encompasses Poisson algebras when we take g = {0}.

Assume that we are also given an arbitrary group G acting on the left on g by Lie algebra
automorphisms. (We do not require that g = Lie(G).) For any g ∈ G, we write the action as
η → gη, η ∈ g. We say that R is a (G, g)-algebra if R is a g-algebra endowed with a compatible
left G-action :

(gη)R a = g.ηR(g−1.a) , g ∈ G, η ∈ g , a ∈ R . (5.9)

We say that R is a quasi-Poisson algebra over the pair (G, g) if R is a (G, g)-algebra and if R is a
quasi-Poisson algebra over g such that for any g ∈ G, a, b ∈ R

g.{a, b} = {g.a, g.b} , (5.10a)

gφ = 1

12

∑

i,j,k

(εi |[εj , εk]) gεi ∧ gεj ∧ gεk = φ . (5.10b)

We easily see that if RG ⊂ R is the subalgebra of G-invariant elements, then the quasi-
Poisson bracket descends to a Poisson bracket on RG ∩ Rg.

We now consider R = O(Rep(A, α)) as in §5.1. The algebra R is naturally endowed with an
action of GLα = ∏K

s=1 GLαs (k), which is given in matrix notation by g.X (a) = g−1X (a)g for all
a ∈ A, g ∈ GLα . We can also consider the Lie algebra gα = ∏K

s=1 glαs
(k) of GLα , which acts by

derivation on R as ηR(X (a)) = [X (a), η], for all a ∈ A, η ∈ gα . We can endow gα with the trace
pairing (η1|η2) = tr(η1η2), and consider the left adjoint action of GLα on gα so that Eq. 5.9 is
satisfied. The following result generalises [20, Theorem 7.12.2], see also [14, Lemma 4.4]. (This
was already noticed by Van den Bergh without a proof, as mentioned in [20, Remark 7.12.3].)

Theorem 5.6 Assume that (A, {{−,−}}) is a double quasi-Poisson algebra over B. Then the algebra R =
O(Rep(A, α)) is a quasi-Poisson algebra over the pair (GLα, gα) for the quasi-Poisson bracket defined by
Proposition 5.1.

Proof Showing Eqs. 5.8a, 5.10a and 5.10b is easy, so we are left to show Eq. 5.8b on generators of the
coordinate ring R. Hence, fix a, b, c ∈ A. We remark that by [20, Proposition 7.12.1] the 3-vector field φR

is given by 1
6

∑K
s=1 trX (E3

s ), hence we can write for any 1 ≤ i, j, k, l, u, v ≤ N

1

2
φR(aij , bkl , cuv) = 1

12

∑

s

trX (E3
s )(aij , bkl , cuv) .

Using Lemma 5.3, this is the same as

1

2
φR(aij , bkl , cuv) =

(
{{a, b, c}} 1

12

∑
s E3

s

)

uj,il,kv
−

(
{{a, c, b}} 1

12

∑
s E3

s

)

kj,iv,ul
.

But then, since the double bracket is quasi-Poisson we get by definition

1

2
φR(aij , bkl , cuv) = {{a, b, c}}uj,il,kv − {{a, c, b}}kj,iv,ul , (5.11)
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where the triple bracket is defined from {{−,−}} using Eq. 1.4. The right-hand side of Eq. 5.11 is nothing
else than Jac(aij , bkl , cuv) by Eq. 5.3.

If k is algebraically closed, we can use Le Bruyn-Procesi Theorem [13, Theorem 1] to
get that AGLα is generated by functions trX (a), a ∈ A, see e.g. [6, Remark 4.3]. In particular,
AGLα = AGLα ∩ Agα .

Corollary 5.7 Assume that (A, {{−,−}}) is a double quasi-Poisson algebra over B. If k is an algebraically
closed field of characteristic 0, then the algebra RGLα = O(Rep(A, α)//GLα) is a Poisson algebra whose
Poisson bracket is induced by the quasi-Poisson bracket on R.

Example 5.8 Fix integers M ≥ 1 and km ≥ 3 for 1 ≤ m ≤ M . Let N = max(k1, . . . , kM). Combining
Example 3.2 and Theorem 5.6, we get that the algebra

R = k
[
Xm,ij | 1 ≤ m ≤ M, 1 ≤ i, j ≤ N

]
/
(
Xkm

m =0N for Xm =(Xm,ij ), 1 ≤ m ≤ M
)

is a quasi-Poisson algebra over the pair (GLN(k), glN(k)) with quasi-Poisson bracket

{Xm,ij , Xm,kl} = 1

2
(X2

m)kj δil − 1

2
δkj (X

2
m)il , 1 ≤ m ≤ M ,

{Xm,ij , Xn,kl} = 1

2
(XnXm)kj δil + 1

2
δkj (XmXn)il − 1

2
Xn,kjXm,il − 1

2
Xm,kjXn,il , 1 ≤ m < n ≤ M .

When all the (km)m are equal, this gives a quasi-Poisson algebra structure on the coordinate ring
corresponding to M copies of the space of nilpotent N × N matrices.

Example 5.9 If k = R, we have by [14, Appendix B] that the double quasi-Poisson bracket of Massuyeau
and Turaev given in Theorem 3.5 endows Rep(kπ1(�, ∗), N) with the quasi-Poisson bracket given in [3].

5.3 Momentmaps and Poisson algebra

Consider the quasi-Poisson algebra (R, {−,−}) over the pair (GLα, gα) obtained from the
double quasi-Poisson algebra (A, {{−,−}}) by Theorem 5.6. We now assume that A is a
quasi-Hamiltonian algebra, i.e. it is endowed with a moment map � ∈ ⊕sesAes . For any
(qs) ∈ (k×)K , let q = ∑

s qses ∈ B× and define the ideal Jq generated by the entries of the
matrix identity X (�) − X (q) = 0N . We can form the algebra Rq = R/Jq , and denote by r̄ the
image of an element r ∈ R under the projection R → Rq .

We clearly have that Jq is GLα- and gα-invariant, so that we can consider the induced
actions on Rq = R/Jq . If we let Rt

q ⊂ Rq denote the subalgebra generated by elements tr(r̄),
r ∈ R, we can see that Rt

q ⊂ R
GLα
q ∩ R

gα
q . The next result follows either from [20, Proposition

6.8.1] and [6, Theorem 4.5], or from [20, Proposition 7.13.2] and quasi-Hamiltonian reduction [3].

Theorem 5.10 Let (A, {{−,−}} ,�) be a quasi-Hamiltonian algebra over B. Then, for any q ∈ B×, the
algebra Rt

q is a Poisson algebra whose Poisson bracket is induced by the quasi-Poisson bracket on R.

Corollary 5.11 Assume that (A, {{−,−}} ,�) is a quasi-Hamiltonian algebra overB, and fix q ∈ B×. If k is
an algebraically closed field of characteristic 0, then the algebra R

GLα
q = (O(Rep(A, α))/(X (� − q)))GLα

is a Poisson algebra.

Example 5.12 If k is algebraically closed, the double quasi-Poisson bracket of Van den Bergh given in
Theorem 3.3 (with γa = +1 for all a ∈ Q̄) defines a Poisson structure on multiplicative quiver varieties of
Crawley-Boevey and Shaw [7], see [20, Theorem 1.1].

Acknowledgements The author is grateful to O. Chalykh for introducing him to the theory of double
brackets, and for valuable comments on an earlier draft of this work which greatly improved the presentation

940



Double Quasi-Poisson Brackets: Fusion and New Examples

of the present paper. The author also thanks A. Alekseev for useful discussions, and the referees for their
comments. Part of this work was supported by a University of Leeds 110 Anniversary Research Scholarship.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

Appendix A: Vanishing of themap κ

In this appendix, we prove Lemma 2.20. Note that κ is a linear combination of triple brack-
ets, so it is itself a triple bracket. By definition, it is a derivation in its last argument and is
cyclically anti-symmetric. Thus, to show that κ vanishes, it suffices to show that it is equal
to zero when applied to generators of Af . Before tackling this task, we use Eq. 1.4 and
remark that we can write

κ(−, −, −) = {{−, −, −}}f − {{−,−, −}} − {{−, −, −}}f us

=
∑

r∈Z3

τ r
(123) ◦ [

({{−, −}} ⊗ 1A) ◦ (1A ⊗ {{−, −}}f us) + ({{−,−}}f us ⊗ 1A) ◦ (1A ⊗ {{−, −}})] ◦ τ−r
(123) ,

where 1A is the identity map. Therefore, evaluated on some elements a, b, c ∈ Af , we can
write

κ(a, b, c) =
{{

a, {{b, c}}′f us

}}
⊗ {{b, c}}′′f us

︸ ︷︷ ︸
A

+ {{
a, {{b, c}}′}}

f us
⊗ {{b, c}}′′

︸ ︷︷ ︸
A′

+ τ(123)

{{
b, {{c, a}}′f us

}}
⊗ {{c, a}}′′f us

︸ ︷︷ ︸
B

+ τ(123)
{{
b, {{c, a}}′}}

f us
⊗ {{c, a}}′′

︸ ︷︷ ︸
B ′

+ τ(132)

{{
c, {{a, b}}′f us

}}
⊗ {{a, b}}′′f us

︸ ︷︷ ︸
C

+ τ(132)
{{
c, {{a, b}}′}}

f us
⊗ {{a, b}}′′

︸ ︷︷ ︸
C′

,

(A.1)

so that we will write down the terms A,B, C, A′, B ′, C′ for the different types of generators.
Using the cyclicity, we only have twenty cases to check. We will only detail the computa-
tions in the first few cases, and we will give the final form of the terms A,B, C,A′, B ′, C′ in
the remaining cases so that the reader can check that they sum up to zero.

Before beginning with the calculations, we remark that identities involving the double
bracket {{−, −}} follow from extension from A to Af which respects the derivation property
in each variable. That is, given e+, f+ ∈ {ε, e12} and e−, f− ∈ {ε, e21}, we have for any
a = e+αe−, b = f+βf− with α, β ∈ A that

{{a, b}} = f+
{{
α, β

}}′
e− ⊗ e+

{{
α, β

}}′′
f− . (A.2)

Here, in the left-hand side we have the induced double bracket on Af , while the double
bracket in the right-hand side is the original one on A. Recall that we can choose generators
a, b ∈ Af that admit such a decomposition by Lemma 2.11.
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A.1 All generators of the same type

We drop the idempotent ε in our computations since this is the unit in Af .

Generators of the second type. Write a = e12α, b = e12β and c = e12γ for α, β, γ ∈ e2Aε.
Using Eq. 2.15b, then the derivation property for the outer bimodule structure in the
second entry of the double bracket on Af together with Eq. A.2, we get that

A(a, b, c) = − 1

2

{{
e12α, e12γ e12β

}} ⊗ e1 = −1

2

(
e12γ

{{
e12α, e12β

}} + {{e12α, e12γ }} e12β
) ⊗ e1

= − 1

2
e12 {{α, γ }}′ ⊗ e12 {{α, γ }}′′ e12β ⊗ e1 − 1

2
e12γ e12

{{
α, β

}}′ ⊗ e12
{{
α, β

}}′′ ⊗ e1 .

Similarly we obtain

B(a, b, c) = − 1

2
τ(123)(e12

{{
β, α

}}′ ⊗ e12
{{

β, α
}}′′

e12γ ⊗ e1 + e12αe12
{{

β, γ
}}′ ⊗ e12

{{
β, γ

}}′′ ⊗ e1)

= − 1

2
e1 ⊗ e12

{{
β, α

}}′ ⊗ e12
{{

β, α
}}′′

e12γ − 1

2
e1 ⊗ e12αe12

{{
β, γ

}}′ ⊗ e12
{{

β, γ
}}′′

,

C(a, b, c) = − 1

2
τ(132)(e12

{{
γ, β

}}′ ⊗ e12
{{
γ, β

}}′′
e12α ⊗ e1 + e12βe12 {{γ, α}}′ ⊗ e12 {{γ, α}}′′ ⊗ e1)

= − 1

2
e12

{{
γ, β

}}′′
e12α ⊗ e1 ⊗ e12

{{
γ, β

}}′ − 1

2
e12 {{γ, α}}′′ ⊗ e1 ⊗ e12βe12 {{γ, α}}′ .

Now, remark that Eq. A.2 gives
{{
e12β, e12γ

}} = e12
{{

β, γ
}}′⊗e12

{{
β, γ

}}′′, so that the element
in the first copy of A⊗2 is also a generator of the second type. Using Eq. 2.15b for the
expression of {{−, −}}f us , we get

A′(a, b, c) =
{{

e12α, e12
{{

β, γ
}}′}}

f us
⊗ e12

{{
β, γ

}}′′

=1

2
e1 ⊗ e12αe12

{{
β, γ

}}′ ⊗ e12
{{

β, γ
}}′′ − 1

2
e12

{{
β, γ

}}′
e12α ⊗ e1 ⊗ e12

{{
β, γ

}}′′ .

In the same way, we find

B ′(a, b, c) =1

2
τ(123)(e1 ⊗ e12βe12 {{γ, α}}′ ⊗ e12 {{γ, α}}′′ − e12 {{γ, α}}′ e12β ⊗ e1 ⊗ e12 {{γ, α}}′′)

=1

2
e12 {{γ, α}}′′ ⊗ e1 ⊗ e12βe12 {{γ, α}}′ − 1

2
e12 {{γ, α}}′′ ⊗ e12 {{γ, α}}′ e12β ⊗ e1 ,

C′(a, b, c) =1

2
τ(132)(e1 ⊗ e12γ e12

{{
α, β

}}′ ⊗ e12
{{
α, β

}}′′ − e12
{{
α, β

}}′
e12γ ⊗ e1 ⊗ e12

{{
α, β

}}′′
)

=1

2
e12γ e12

{{
α, β

}}′ ⊗ e12
{{
α, β

}}′′ ⊗ e1 − 1

2
e1 ⊗ e12

{{
α, β

}}′′ ⊗ e12
{{
α, β

}}′
e12γ .

Summing all terms, we obtain after obvious cancellations

κ(a, b, c) = − 1

2
(e12 {{α, γ }}′ ⊗ e12 {{α, γ }}′′ e12β ⊗ e1 + e12 {{γ, α}}′′ ⊗ e12 {{γ, α}}′ e12β ⊗ e1)

− 1

2
(e1 ⊗ e12

{{
β, α

}}′ ⊗ e12
{{

β, α
}}′′

e12γ + e1 ⊗ e12
{{
α, β

}}′′ ⊗ e12
{{
α, β

}}′
e12γ )

− 1

2
(e12

{{
γ, β

}}′′
e12α ⊗ e1 ⊗ e12

{{
γ, β

}}′ + e12
{{

β, γ
}}′

e12α ⊗ e1 ⊗ e12
{{

β, γ
}}′′

) .

It remains to notice in the last expression that all lines vanish using the cyclic
antisymmetry of the double bracket.
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Generators of the third type. Write a = αe21, b = βe21 and c = γ e21 for α, β, γ ∈ εAe2. From
Eqs. 2.16c and A.2 we get that

A(a, b, c) =1

2

{{
αe21, γ e21βe21

}} ⊗ e1

=1

2
{{α, γ }}′ e21 ⊗ {{α, γ }}′′ e21βe21 ⊗ e1 + 1

2
γ e21

{{
α, β

}}′
e21 ⊗ {{

α, β
}}′′

e21 ⊗ e1 .

Similarly we obtain

B(a, b, c) =1

2
e1 ⊗ {{

β, α
}}′

e21 ⊗ {{
β, α

}}′′
e21γ e21 + 1

2
e1 ⊗ αe21

{{
β, γ

}}′
e21 ⊗ {{

β, γ
}}′′

e21 ,

C(a, b, c) =1

2

{{
γ, β

}}′′
e21αe21 ⊗ e1 ⊗ {{

γ, β
}}′

e21 + 1

2
{{γ, α}}′′ e21 ⊗ e1 ⊗ βe21 {{γ, α}}′ e21 .

Noticing from Eq. A.2 that {{b, c}}′ = {{
β, γ

}}′
e21 is a generator of the third type, we get

again from Eq. 2.16c

A′(a, b, c) =
{{

αe21,
{{

β, γ
}}′

e21

}}

f us
⊗ {{

β, γ
}}′′

e21

=1

2

{{
β, γ

}}′
e21αe21 ⊗ e1 ⊗ {{

β, γ
}}′′

e21 − 1

2
e1 ⊗ αe21

{{
β, γ

}}′
e21 ⊗ {{

β, γ
}}′′

e21 .

Analogously

B ′(a, b, c) =1

2
{{γ, α}}′′ e21 ⊗ {{γ, α}}′ e21βe21 ⊗ e1 − 1

2
{{γ, α}}′′ e21 ⊗ e1 ⊗ βe21 {{γ, α}}′ e21 ,

C′(a, b, c) =1

2
e1 ⊗ {{

α, β
}}′′

e21 ⊗ {{
α, β

}}′
e21γ e21 − 1

2
γ e21

{{
α, β

}}′
e21 ⊗ {{

α, β
}}′′

e21 ⊗ e1 .

Summing all terms yield

κ(a, b, c) = + 1

2
({{α, γ }}′ e21 ⊗ {{α, γ }}′′ e21βe21 ⊗ e1 + {{γ, α}}′′ e21 ⊗ {{γ, α}}′ e21βe21 ⊗ e1)

+ 1

2
(e1 ⊗ {{

β, α
}}′

e21 ⊗ {{
β, α

}}′′
e21γ e21 + e1 ⊗ {{

α, β
}}′′

e21 ⊗ {{
α, β

}}′
e21γ e21)

+ 1

2
(
{{
γ, β

}}′′
e21αe21 ⊗ e1 ⊗ {{

γ, β
}}′

e21 + {{
β, γ

}}′
e21αe21 ⊗ e1 ⊗ {{

β, γ
}}′′

e21) ,

which is zero using the cyclic antisymmetry.
Generators of the first type. For a, b, c ∈ εAε, we have by Eq. A.2 that the double bracket

{{−, −}} evaluated on any two of these elements belongs to (εAε)⊗2. At the same time,
Eq. 2.14a gives that {{εAε, εAε}}f us = 0. Hence all terms in Eq. A.1 trivially vanish and
κ(a, b, c) = 0.

Generators of the fourth type. As in the first type case, we use Eq. A.2 to get that
{{e12Ae21, e12Ae21}} ⊂ (e12Ae21)

⊗2 and Eq. 2.17d to obtain {{e12Ae21, e12Ae21}}f us = 0, so
that all terms vanish.

A.2 Two generators of the first type

Let a, b ∈ εAε.

With one generator of the second type. Consider c = e12γ for some γ ∈ e2Aε. Using
Eqs. 2.14b and 2.15a,

A = − 1

2
e1 {{a, b}}′ ⊗ {{a, b}}′′ ⊗ e12γ ,

B =1

2
e1a ⊗ e12 {{b, γ }}′ ⊗ {{b, γ }}′′ − 1

2
e1 ⊗ {{b, a}}′ ⊗ {{b, a}}′′ e12γ − 1

2
e1 ⊗ ae12 {{b, γ }}′ ⊗ {{b, γ }}′′ .
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By Eq. 2.14a, C trivially vanishes. It is also the case for B ′ because {{e12γ, a}}′ ∈ εAε. Next
we get by Eqs. 2.14b and 2.15a that

A′ =1

2
e1 ⊗ ae12 {{b, γ }}′ ⊗ {{b, γ }}′′ − 1

2
e1a ⊗ e12 {{b, γ }}′ ⊗ {{b, γ }}′′ ,

C′ =1

2
e1 {{a, b}}′ ⊗ {{a, b}}′′ ⊗ e12γ − 1

2
e1 ⊗ {{a, b}}′′ ⊗ {{a, b}}′ e12γ ,

so that all terms cancel out together (after using the cyclic antisymmetry, which we will
need in each of the remaining cases).

With one generator of the third type. Consider c = γ e21 for some γ ∈ εAe2. We get from
Eqs. 2.14c and 2.16a that

A = 1

2
{{a, γ }}′ ⊗ {{a, γ }}′′ e21b ⊗ e1 + 1

2
γ e21 {{a, b}}′ ⊗ {{a, b}}′′ ⊗ e1

−1

2
{{a, γ }}′ ⊗ {{a, γ }}′′ e21 ⊗ be1 ,

B = 1

2
γ e21 ⊗ {{b, a}}′ ⊗ {{b, a}}′′ e1 .

Again using Eq. 2.14a we have C = 0, and A′ = 0 since {{b, γ e21}}′ ∈ εAε. Finally, from
Eqs. 2.14c and 2.16a we get

B ′ =1

2
{{γ, a}}′′ ⊗ {{γ, a}}′ e21b ⊗ e1 − 1

2
{{γ, a}}′′ ⊗ {{γ, a}}′ e21 ⊗ be1 ,

C′ =1

2
γ e21 ⊗ {{a, b}}′′ ⊗ {{a, b}}′ e1 − 1

2
γ e21 {{a, b}}′ ⊗ {{a, b}}′′ ⊗ e1 ,

and all terms sum up to zero.
With one generator of the fourth type. Consider c = e12γ e21 for some γ ∈ e2Ae2. First, using

Eqs. 2.14d and 2.17a we get

A =1

2
e12 {{a, γ }}′ ⊗ {{a, γ }}′′ e21b ⊗ e1 + 1

2
e12γ e21 {{a, b}}′ ⊗ {{a, b}}′′ ⊗ e1

− 1

2
e12 {{a, γ }}′ ⊗ {{a, γ }}′′ e21 ⊗ be1 − 1

2
e1 {{a, b}}′ ⊗ {{a, b}}′′ ⊗ e12γ e21 ,

B =1

2
e12γ e21 ⊗ {{b, a}}′ ⊗ {{b, a}}′′ e1 + 1

2
e1a ⊗ e12 {{b, γ }}′ ⊗ {{b, γ }}′′ e21

− 1

2
e1 ⊗ {{b, a}}′ ⊗ {{b, a}}′′ e12γ e21 − 1

2
e1 ⊗ ae12 {{b, γ }}′ ⊗ {{b, γ }}′′ e21 .

Again, C = 0 by Eq. 2.14a. Meanwhile, we find from Eqs. 2.14b, 2.14c and 2.17a

A′ =1

2
e1 ⊗ ae12 {{b, γ }}′ ⊗ {{b, γ }}′′ e21 − 1

2
e1a ⊗ e12 {{b, γ }}′ ⊗ {{b, γ }}′′ e21 ,

B ′ =1

2
e12 {{γ, a}}′′ ⊗ {{γ, a}}′ e21b ⊗ e1 − 1

2
e12 {{γ, a}}′′ ⊗ {{γ, a}}′ e21 ⊗ be1 ,

C′ =1

2
e12γ e21 ⊗ {{a, b}}′′ ⊗ {{a, b}}′ e1 + 1

2
e1 {{a, b}}′ ⊗ {{a, b}}′′ ⊗ e12γ e21

− 1

2
e1 ⊗ {{a, b}}′′ ⊗ {{a, b}}′ e12γ e21 − 1

2
e12γ e21 {{a, b}}′ ⊗ {{a, b}}′′ ⊗ e1 .

Summing terms together, we get κ = 0.

A.3 Two generators of the second type

Let a = e12α, b = e12β for α, β ∈ e2Aε. We only collect the final form of the terms
A,B, C,A′, B ′, C′ from now on, and the reader can check that they sum up to zero.
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With one generator of the first type. Consider c ∈ εAε.

A=1

2
e12

{{
α, β

}}′⊗ e12
{{
α, β

}}′′⊗e1c − 1

2
{{α, c}}′⊗e12{{α, c}}′′e12β ⊗ e1− 1

2
ce12

{{
α, β

}}′ ⊗ e12
{{
α, β

}}′′⊗ e1 ,

B = − 1

2
e12α ⊗ e1

{{
β, c

}}′ ⊗ e12
{{

β, c
}}′′

,

C = − 1

2

{{
c, β

}}′′
e12α ⊗ e1 ⊗ e12

{{
c, β

}}′ − 1

2
{{c, α}}′′ ⊗ e1 ⊗ e12βe12 {{c, α}}′ ,

A′ =1

2
e12α ⊗ e1

{{
β, c

}}′ ⊗ e12
{{

β, c
}}′′ − 1

2

{{
β, c

}}′
e12α ⊗ e1 ⊗ e12

{{
β, c

}}′′
,

B ′ =1

2
{{c, α}}′′ ⊗ e1 ⊗ e12βe12 {{c, α}}′ − 1

2
{{c, α}}′′ ⊗ e12 {{c, α}}′ e12β ⊗ e1 ,

C′ =1

2
ce12

{{
α, β

}}′ ⊗ e12
{{
α, β

}}′′ ⊗ e1 − 1

2
e12

{{
α, β

}}′ ⊗ e12
{{
α, β

}}′′ ⊗ e1c .

With one generator of the third type. Consider c = γ e21 for some γ ∈ εAe2.

A =1

2
e12

{{
α, β

}}′ ⊗ e12
{{
α, β

}}′′ ⊗ e1γ e21 − 1

2
{{α, γ }}′ ⊗ e12 {{α, γ }}′′ e21 ⊗ e12βe1 ,

B =1

2
γ e21 ⊗ e12

{{
β, α

}}′ ⊗ e12
{{

β, α
}}′′

e1 − 1

2
e12α ⊗ e1

{{
β, γ

}}′ ⊗ e12
{{

β, γ
}}′′

e21 ,

C = − 1

2

{{
γ, β

}}′′
e12α ⊗ e1 ⊗ e12

{{
γ, β

}}′
e21 − 1

2
{{γ, α}}′′ ⊗ e1 ⊗ e12βe12 {{γ, α}}′ e21 ,

A′ =1

2
e12α ⊗ e1

{{
β, γ

}}′ ⊗ e12
{{

β, γ
}}′′

e21 − 1

2

{{
β, γ

}}′
e12α ⊗ e1 ⊗ e12

{{
β, γ

}}′′
e21 ,

B ′ =1

2
{{γ, α}}′′ ⊗ e1 ⊗ e12βe12 {{γ, α}}′ e21 − 1

2
{{γ, α}}′′ ⊗ e12 {{γ, α}}′ e21 ⊗ e12βe1 ,

C′ =1

2
γ e21 ⊗ e12

{{
α, β

}}′′ ⊗ e12
{{
α, β

}}′
e1 − 1

2
e12

{{
α, β

}}′ ⊗ e12
{{
α, β

}}′′ ⊗ e1γ e21 .

With one generator of the fourth type. Consider c = e12γ e21 for some γ ∈ e2Ae2.

A = − 1

2
e12 {{α, γ }}′ ⊗ e12 {{α, γ }}′′ e21 ⊗ e12βe1 ,

B =1

2
e12γ e21 ⊗ e12

{{
β, α

}}′ ⊗ e12
{{

β, α
}}′′

e1 − 1

2
e1 ⊗ e12

{{
β, α

}}′ ⊗ e12
{{

β, α
}}′′

e12γ e21

− 1

2
e1 ⊗ e12αe12

{{
β, γ

}}′ ⊗ e12
{{

β, γ
}}′′

e21 ,

C = − 1

2
e12

{{
γ, β

}}′′
e12α ⊗ e1 ⊗ e12

{{
γ, β

}}′
e21 − 1

2
e12 {{γ, α}}′′ ⊗ e1 ⊗ e12βe12 {{γ, α}}′ e21 ,

A′ =1

2
e1 ⊗ e12αe12

{{
β, γ

}}′ ⊗ e12
{{

β, γ
}}′′

e21 − 1

2
e12

{{
β, γ

}}′
e12α ⊗ e1 ⊗ e12

{{
β, γ

}}′′
e21 ,

B ′ =1

2
e12 {{γ, α}}′′ ⊗ e1 ⊗ e12βe12 {{γ, α}}′ e21 − 1

2
e12 {{γ, α}}′′ ⊗ e12 {{γ, α}}′ e21 ⊗ e12βe1 ,

C′ =1

2
e12γ e21 ⊗ e12

{{
α, β

}}′′ ⊗ e12
{{
α, β

}}′
e1 − 1

2
e1 ⊗ e12

{{
α, β

}}′′ ⊗ e12
{{
α, β

}}′
e12γ e21 .

A.4 Two generators of the third type

Let a = αe21, b = βe21 for α, β ∈ εAe2.
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With one generator of the first type. Consider c ∈ εAε.

A =1

2
{{α, c}}′ e21 ⊗ {{α, c}}′′ e1 ⊗ βe21 ,

B =1

2
e1⊗

{{
β, α

}}′
e21⊗

{{
β, α

}}′′
e21c + 1

2
e1 ⊗ αe21

{{
β, c

}}′
e21 ⊗{{

β, c
}}′′− 1

2
ce1⊗

{{
β, α

}}′
e21⊗

{{
β, α

}}′′
e21 ,

C =1

2

{{
c, β

}}′′
e21αe21 ⊗ e1 ⊗ {{

c, β
}}′ + 1

2
{{c, α}}′′ e21 ⊗ e1 ⊗ βe21 {{c, α}}′ ,

A′ =1

2

{{
β, c

}}′
e21αe21 ⊗ e1 ⊗ {{

β, c
}}′′ − 1

2
e1 ⊗ αe21

{{
β, c

}}′
e21 ⊗ {{

β, c
}}′′

,

B ′ =1

2
{{c, α}}′′ e21 ⊗ {{c, α}}′ e1 ⊗ βe21 − 1

2
{{c, α}}′′ e21 ⊗ e1 ⊗ βe21 {{c, α}}′ ,

C′ =1

2
e1 ⊗ {{

α, β
}}′′

e21 ⊗ {{
α, β

}}′
e21c − 1

2
ce1 ⊗ {{

α, β
}}′′

e21 ⊗ {{
α, β

}}′
e21 .

With one generator of the second type. Consider c = e12γ for some γ ∈ e2Aε.

A =1

2
e12 {{α, γ }}′ e21 ⊗ {{α, γ }}′′ e1 ⊗ βe21 − 1

2
e1

{{
α, β

}}′
e21 ⊗ {{

α, β
}}′′

e21 ⊗ e12γ ,

B =1

2
e1αe21 ⊗ e12

{{
β, γ

}}′
e21 ⊗ {{

β, γ
}}′′ − 1

2
e12γ e1 ⊗ {{

β, α
}}′

e21 ⊗ {{
β, α

}}′′
e21 ,

C =1

2
e12

{{
γ, β

}}′′
e21αe21 ⊗ e1 ⊗ {{

γ, β
}}′ + 1

2
e12 {{γ, α}}′′ e21 ⊗ e1 ⊗ βe21 {{γ, α}}′ ,

A′ =1

2
e12

{{
β, γ

}}′
e21αe21 ⊗ e1 ⊗ {{

β, γ
}}′′ − 1

2
e1αe21 ⊗ e12

{{
β, γ

}}′
e21 ⊗ {{

β, γ
}}′′

,

B ′ =1

2
e12 {{γ, α}}′′ e21 ⊗ {{γ, α}}′ e1 ⊗ βe21 − 1

2
e12 {{γ, α}}′′ e21 ⊗ e1 ⊗ βe21 {{γ, α}}′ ,

C′ =1

2
e1

{{
α, β

}}′
e21 ⊗ {{

α, β
}}′′

e21 ⊗ e12γ − 1

2
e12γ e1 ⊗ {{

α, β
}}′′

e21 ⊗ {{
α, β

}}′
e21 .

With one generator of the fourth type. Consider c = e12γ e21 for some γ ∈ e2Ae2.

A =1

2
e12 {{α, γ }}′ e21 ⊗ {{α, γ }}′′ e21βe21 ⊗ e1 + 1

2
e12γ e21

{{
α, β

}}′
e21 ⊗ {{

α, β
}}′′

e21 ⊗ e1

− 1

2
e1

{{
α, β

}}′
e21 ⊗ {{

α, β
}}′′

e21 ⊗ e12γ e21 ,

B =1

2
e1αe21 ⊗ e12

{{
β, γ

}}′
e21 ⊗ {{

β, γ
}}′′

e21 ,

C =1

2
e12

{{
γ, β

}}′′
e21αe21 ⊗ e1 ⊗ {{

γ, β
}}′

e21 + 1

2
e12 {{γ, α}}′′ e21 ⊗ e1 ⊗ βe21 {{γ, α}}′ e21 ,

A′ =1

2
e12

{{
β, γ

}}′
e21αe21 ⊗ e1 ⊗ {{

β, γ
}}′′

e21 − 1

2
e1αe21 ⊗ e12

{{
β, γ

}}′
e21 ⊗ {{

β, γ
}}′′

e21 ,

B ′ =1

2
e12 {{γ, α}}′′ e21 ⊗ {{γ, α}}′ e21βe21 ⊗ e1 − 1

2
e12 {{γ, α}}′′ e21 ⊗ e1 ⊗ βe21 {{γ, α}}′ e21 ,

C′ =1

2
e1

{{
α, β

}}′
e21 ⊗ {{

α, β
}}′′

e21 ⊗ e12γ e21 − 1

2
e12γ e21

{{
α, β

}}′
e21 ⊗ {{

α, β
}}′′

e21 ⊗ e1 .

A.5 Two generators of the fourth type

Let a = e12αe21, b = e12βe21 for α, β ∈ e2Ae2.
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With one generator of the first type. Consider c ∈ εAε. We get C = 0, while

A =1

2
{{α, c}}′ e21 ⊗ e12 {{α, c}}′′ e1 ⊗ e12βe21 + 1

2
e12

{{
α, β

}}′
e21 ⊗ e12

{{
α, β

}}′′
e21 ⊗ e1c

− 1

2
{{α, c}}′ e21 ⊗ e12 {{α, c}}′′ e12βe21 ⊗ e1 − 1

2
ce12

{{
α, β

}}′
e21 ⊗ e12

{{
α, β

}}′′
e21 ⊗ e1 ,

B =1

2
e1 ⊗ e12

{{
β, α

}}′
e21 ⊗ e12

{{
β, α

}}′′
e21c + 1

2
e1 ⊗ e12αe21

{{
β, c

}}′
e21 ⊗ e12

{{
β, c

}}′′

− 1

2
ce1 ⊗ e12

{{
β, α

}}′
e21 ⊗ e12

{{
β, α

}}′′
e21 − 1

2
e12αe21 ⊗ e1

{{
β, c

}}′
e21 ⊗ e12

{{
β, c

}}′′
,

A′ =1

2
e12αe21 ⊗ e1

{{
β, c

}}′
e21 ⊗ e12

{{
β, c

}}′′ − 1

2
e1 ⊗ e12αe21

{{
β, c

}}′
e21 ⊗ e12

{{
β, c

}}′′
,

B ′ =1

2
{{c, α}}′′ e21 ⊗ e12 {{c, α}}′ e1 ⊗ e12βe21 − 1

2
{{c, α}}′′ e21 ⊗ e12 {{c, α}}′ e12βe21 ⊗ e1 ,

C′ =1

2
e1 ⊗ e12

{{
α, β

}}′′
e21 ⊗ e12

{{
α, β

}}′
e21c + 1

2
ce12

{{
α, β

}}′
e21 ⊗ e12

{{
α, β

}}′′
e21 ⊗ e1

− 1

2
ce1 ⊗ e12

{{
α, β

}}′′
e21 ⊗ e12

{{
α, β

}}′
e21 − 1

2
e12

{{
α, β

}}′
e21 ⊗ e12

{{
α, β

}}′′
e21 ⊗ e1c .

With one generator of the second type. Consider c = e12γ for some γ ∈ e2Aε. We get C = 0,
A′ = 0, while

A =1

2
e12 {{α, γ }}′ e21 ⊗ e12 {{α, γ }}′′ e1 ⊗ e12βe21 − 1

2
e12 {{α, γ }}′ e21 ⊗ e12 {{α, γ }}′′ e12βe21 ⊗ e1

− 1

2
e12γ e12

{{
α, β

}}′
e21 ⊗ e12

{{
α, β

}}′′
e21 ⊗ e1 ,

B = − 1

2
e12γ e1 ⊗ e12

{{
β, α

}}′
e21 ⊗ e12

{{
β, α

}}′′
e21 ,

B ′ =1

2
e12 {{γ, α}}′′ e21 ⊗ e12 {{γ, α}}′ e1 ⊗ e12βe21 − 1

2
e12 {{γ, α}}′′ e21 ⊗ e12 {{γ, α}}′ e12βe21 ⊗ e1 ,

C′ =1

2
e12γ e12

{{
α, β

}}′
e21 ⊗ e12

{{
α, β

}}′′
e21 ⊗ e1 − 1

2
e12γ e1 ⊗ e12

{{
α, β

}}′′
e21 ⊗ e12

{{
α, β

}}′
e21 .

With one generator of the third type. Consider c = γ e21 for some γ ∈ εAe2. We get C = 0,
B ′ = 0, while

A =1

2
e12

{{
α, β

}}′
e21 ⊗ e12

{{
α, β

}}′′
e21 ⊗ e1γ e21 ,

B =1

2
e1 ⊗ e12

{{
β, α

}}′
e21 ⊗ e12

{{
β, α

}}′′
e21γ e21 + 1

2
e1 ⊗ e12αe21

{{
β, γ

}}′
e21 ⊗ e12

{{
β, γ

}}′′
e21

− 1

2
e12αe21 ⊗ e1

{{
β, γ

}}′
e21 ⊗ e12

{{
β, γ

}}′′
e21 ,

A′ =1

2
e12αe21 ⊗ e1

{{
β, γ

}}′
e21 ⊗ e12

{{
β, γ

}}′′
e21 − 1

2
e1 ⊗ e12αe21

{{
β, γ

}}′
e21 ⊗ e12

{{
β, γ

}}′′
e21 ,

C′ =1

2
e1 ⊗ e12

{{
α, β

}}′′
e21 ⊗ e12

{{
α, β

}}′
e21γ e21 − 1

2
e12

{{
α, β

}}′
e21 ⊗ e12

{{
α, β

}}′′
e21 ⊗ e1γ e21 .

A.6 Remaining cases

We now take three different types of generators.
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No generator of the fourth type. Let a ∈ εAε, b = e12β for β ∈ e2Aε and c = γ e21 for γ ∈
εAe2. We have A′ = 0, while

A =1

2
e12

{{
a, β

}}′ ⊗ {{
a, β

}}′′ ⊗ e1γ e21 − 1

2
{{a, γ }}′ ⊗ {{a, γ }}′′ e21 ⊗ e12βe1 ,

B =1

2
γ e21 ⊗ {{

β, a
}}′ ⊗ e12

{{
β, a

}}′′
e1 ,

C = − 1

2
{{γ, a}}′′ ⊗ e12β ⊗ e1 {{γ, a}}′ e21 ,

B ′ =1

2
{{γ, a}}′′ ⊗ e12β ⊗ e1 {{γ, a}}′ e21 − 1

2
{{γ, a}}′′ ⊗ {{γ, a}}′ e21 ⊗ e12βe1 ,

C′ =1

2
γ e21 ⊗ {{

a, β
}}′′ ⊗ e12

{{
a, β

}}′
e1 − 1

2
e12

{{
a, β

}}′ ⊗ {{
a, β

}}′′ ⊗ e1γ e21 .

No generator of the third type. Let a ∈ εAε, b = e12β for β ∈ e2Aε and c = e12γ e21 for
γ ∈ e2Ae2.

A = − 1

2
e12 {{a, γ }}′ ⊗ {{a, γ }}′′ e21 ⊗ e12βe1 ,

B =1

2
e12γ e21 ⊗ {{

β, a
}}′ ⊗ e12

{{
β, a

}}′′
e1 + 1

2
e1a ⊗ e12

{{
β, γ

}}′ ⊗ e12
{{

β, γ
}}′′

e21

− 1

2
e1 ⊗ {{

β, a
}}′ ⊗ e12

{{
β, a

}}′′
e12γ e21 − 1

2
e1 ⊗ ae12

{{
β, γ

}}′ ⊗ e12
{{

β, γ
}}′′

e21 ,

C = − 1

2
e12 {{γ, a}}′′ ⊗ e12β ⊗ e1 {{γ, a}}′ e21 ,

A′ =1

2
e1 ⊗ ae12

{{
β, γ

}}′ ⊗ e12
{{

β, γ
}}′′

e21 − 1

2
e1a ⊗ e12

{{
β, γ

}}′ ⊗ e12
{{

β, γ
}}′′

e21 ,

B ′ =1

2
e12 {{γ, a}}′′ ⊗ e12β ⊗ e1 {{γ, a}}′ e21 − 1

2
e12 {{γ, a}}′′ ⊗ {{γ, a}}′ e21 ⊗ e12βe1 ,

C′ =1

2
e12γ e21 ⊗ {{

a, β
}}′′ ⊗ e12

{{
a, β

}}′
e1 − 1

2
e1 ⊗ {{

a, β
}}′′ ⊗ e12

{{
a, β

}}′
e12γ e21 .

No generator of the second type. This case and the next one are a bit tedious. We set a ∈ εAε,
b = βe21 for β ∈ εAe2 and c = e12γ e21 for γ ∈ e2Ae2.

A =1

2
e12 {{a, γ }}′ ⊗ {{a, γ }}′′ e21βe21 ⊗ e1 + 1

2
e12γ e21

{{
a, β

}}′ ⊗ {{
a, β

}}′′
e21 ⊗ e1

− 1

2
e1

{{
a, β

}}′ ⊗ {{
a, β

}}′′
e21 ⊗ e12γ e21 ,

B =1

2
e12γ e21 ⊗ {{

β, a
}}′

e21 ⊗ {{
β, a

}}′′
e1 + 1

2
e1a ⊗ e12

{{
β, γ

}}′
e21 ⊗ {{

β, γ
}}′′

e21

− 1

2
e1 ⊗ {{

β, a
}}′

e21 ⊗ {{
β, a

}}′′
e12γ e21 − 1

2
e1 ⊗ ae12

{{
β, γ

}}′
e21 ⊗ {{

β, γ
}}′′

e21 ,

C =1

2
e12

{{
γ, β

}}′′
e21a ⊗ e1 ⊗ {{

γ, β
}}′

e21 + 1

2
e12 {{γ, a}}′′ ⊗ e1 ⊗ βe21 {{γ, a}}′ e21

− 1

2
e12

{{
γ, β

}}′′
e21 ⊗ ae1 ⊗ {{

γ, β
}}′

e21 ,
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A′ =1

2
e12

{{
β, γ

}}′
e21a ⊗ e1 ⊗ {{

β, γ
}}′′

e21 + 1

2
e1 ⊗ ae12

{{
β, γ

}}′
e21 ⊗ {{

β, γ
}}′′

e21

− 1

2
e12

{{
β, γ

}}′
e21 ⊗ ae1 ⊗ {{

β, γ
}}′′

e21 − 1

2
e1a ⊗ e12

{{
β, γ

}}′
e21 ⊗ {{

β, γ
}}′′

e21 ,

B ′ =1

2
e12 {{γ, a}}′′ ⊗ {{γ, a}}′ e21βe21 ⊗ e1 − 1

2
e12 {{γ, a}}′′ ⊗ e1 ⊗ βe21 {{γ, a}}′ e21 ,

C′ =1

2
e12γ e21 ⊗ {{

a, β
}}′′

e21 ⊗ {{
a, β

}}′
e1 + 1

2
e1

{{
a, β

}}′ ⊗ {{
a, β

}}′′
e21 ⊗ e12γ e21

− 1

2
e1 ⊗ {{

a, β
}}′′

e21 ⊗ {{
a, β

}}′
e12γ e21 − 1

2
e12γ e21

{{
a, β

}}′ ⊗ {{
a, β

}}′′
e21 ⊗ e1 .

No generator of the first type. Let a = e12α for α ∈ e2Aε, b = βe21 for β ∈ εAe2 and c =
e12γ e21 for γ ∈ e2Ae2.

A =1

2
e12 {{α, γ }}′ ⊗ e12 {{α, γ }}′′ e21βe21 ⊗ e1 + 1

2
e12γ e21

{{
α, β

}}′ ⊗ e12
{{
α, β

}}′′
e21 ⊗ e1

− 1

2
e1

{{
α, β

}}′ ⊗ e12
{{
α, β

}}′′
e21 ⊗ e12γ e21 ,

B =1

2
e12γ e21 ⊗ e12

{{
β, α

}}′
e21 ⊗ {{

β, α
}}′′

e1 − 1

2
e1 ⊗ e12

{{
β, α

}}′
e21 ⊗ {{

β, α
}}′′

e12γ e21

− 1

2
e1 ⊗ e12αe12

{{
β, γ

}}′
e21 ⊗ {{

β, γ
}}′′

e21 ,

C =1

2
e12 {{γ, α}}′′ ⊗ e1βe21 ⊗ e12 {{γ, α}}′ e21 − 1

2
e12

{{
γ, β

}}′′
e21 ⊗ e12αe1 ⊗ {{

γ, β
}}′

e21 ,

A′ =1

2
e1 ⊗ e12αe12

{{
β, γ

}}′
e21 ⊗ {{

β, γ
}}′′

e21 − 1

2
e12

{{
β, γ

}}′
e21 ⊗ e12αe1 ⊗ {{

β, γ
}}′′

e21 ,

B ′ =1

2
e12 {{γ, α}}′′ ⊗ e12 {{γ, α}}′ e21βe21 ⊗ e1 − 1

2
e12 {{γ, α}}′′ ⊗ e1βe21 ⊗ e12 {{γ, α}}′ e21 ,

C′ =1

2
e12γ e21 ⊗ e12

{{
α, β

}}′′
e21 ⊗ {{

α, β
}}′

e1 + 1

2
e1

{{
α, β

}}′ ⊗ e12
{{
α, β

}}′′
e21 ⊗ e12γ e21

− 1

2
e1 ⊗ e12

{{
α, β

}}′′
e21 ⊗ {{

α, β
}}′

e12γ e21 − 1

2
e12γ e21

{{
α, β

}}′ ⊗ e12
{{
α, β

}}′′
e21 ⊗ e1 .

Appendix B: Proof of Lemma 2.21

Note that Tr(�s) = ε�sε for s �= 2, while Tr(�2) = e12�2e21. In particular, using that for
s �= 2 we have �s = es�ses , we get Tr(�s) = �s by understanding that equality in Af .

B.1 Momentmap condition for the non-fused idempotents

First, assume that s �= 1, 2. Then, using Lemma 2.18, we get

Tr(E1)(Tr(�s)) = �se1 ⊗ e1 − e1 ⊗ e1�s = 0 , Tr(E2)(Tr(�s)) = 0 ,

which gives {{Tr(�s), −}}f us = 0. Therefore, if a = e+αe− is a generator of Af ,

{{Tr(�s), a}}f = {{Tr(�s), a}} = e+ {{�s, α}}′ ε ⊗ ε {{�s, α}}′′ e− ,

where the double bracket in the last equality is taken in A. By assumption �s satisfies (1.7)
for {{−, −}} on A so that

{{Tr(�s), a}}f = 1

2
(e+αes ⊗ �se− − e+es ⊗ �sαe− + e+α�s ⊗ ese− − e+�s ⊗ esαe−) ,

(B.1)
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where we omitted to write the idempotents ε, because with s �= 1, 2 we get esε = es = εes .
It remains to see that it coincides with Eq. 2.21 in all four cases of generators. For example,
if a = e12αε with α ∈ e2Aε, we obtain for e+ = e12, e− = ε

{{Tr(�s), e12αε}}f = 1

2
(aes ⊗ �s + a�s ⊗ es) ,

because the second and last terms in Eq. B.1 disappear since e12es = 0 = e12�s .
Meanwhile, the right-hand side of Eq. 2.21 reads in that case

1

2
(aes ⊗ Tr(�s) + a Tr(�s) ⊗ es − es ⊗ Tr(�s)a − Tr(�s) ⊗ esa) ,

and the last two terms disappear as s �= 1, 2. Indeed esa = ese12α = 0 and Tr(�s)a =
ε(es�ses)ε(e12α) = es�sese12α = 0. The two expressions coincide, and the result is
similar with the other types of generators.

B.2 Momentmap condition at the fused idempotent

Using the derivation properties and decomposing the double bracket {{−,−}}f as {{−, −}} +
{{−,−}}f us , we obtain for a = e+αe− ∈ Af , α ∈ A, that

{{
�

f

1 , a
}}f =Tr(�1)e12 ∗ e+ {{�2, α}} e− ∗ e21 + ε ∗ e+ {{�1, α}} e− ∗ ε Tr(�2)

+ Tr(�1) ∗ {{Tr(�2), e+αe−}}f us + {{Tr(�1), e+αe−}}f us ∗ Tr(�2) .
(B.2)

The first two terms can easily be obtained from Eq. 1.7. Since Tr(�2) is a generator of
fourth type (2.6d), we need (2.17a)–(2.17d) to evaluate the third term. In the exact same
way, as Tr(�1) is a generator of first type (2.6a), we need (2.14a)–(2.14d) to evaluate the
last term. Thus, we check separately the four types of generators.

On a generator of the first type. We let a ∈ εAε, hence e+ = e− = ε and a = α. We
directly get by Eq. 1.7 that {{�2, a}} = 0 since e2a = 0 = ae2, while {{Tr(�1), a}}f us = 0
by Eq. 2.14a. For the remaining two terms, we have on one hand by Eq. 1.7

{{�1, a}} = 1

2
(ae1 ⊗ Tr(�1) − e1 ⊗ Tr(�1)a + a Tr(�1) ⊗ e1 − Tr(�1) ⊗ e1a) ,

after projecting the equality in Af where Tr(�1) = �1. On the other hand by Eq. 2.17a

{{Tr(�2), a}}f us = 1

2
(ae1 ⊗ Tr(�2) + Tr(�2) ⊗ e1a − a Tr(�2) ⊗ e1 − e1 ⊗ Tr(�2)a) .

Putting this back in Eq. B.2 yields
{{

�
f

1 , a
}}f =1

2
(ae1 Tr(�2) ⊗Tr(�1) − e1 Tr(�2) ⊗Tr(�1)a + aTr(�1)Tr(�2) ⊗ e1 −Tr(�1)Tr(�2) ⊗ e1a)

+ 1

2
(ae1⊗Tr(�1)Tr(�2) + Tr(�2) ⊗ Tr(�1)e1a − a Tr(�2) ⊗ Tr(�1)e1 − e1⊗Tr(�1)Tr(�2)a) .

Using that Tr(�1) = e1 Tr(�1)e1 and Tr(�2) = e1 Tr(�2)e1 allows us to conclude after
cancellation of the first and seventh terms, and the second and sixth terms.

On a generator of the second type. Let a = e12αε with e+ = e12, e− = ε, α ∈ e2Aε. We get from
Eq. 1.7

{{�1, α}} = 1

2
(αe1 ⊗ �1 + α�1 ⊗ e1) , {{�2, α}} = −1

2
(e2 ⊗ �2α + �2 ⊗ e2α) ,
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because e1α = 0 and αe2 = 0. Meanwhile, Eqs. 2.14b and 2.17b give

{{Tr(�1), a}}f us = 1

2
(e1 ⊗ Tr(�1)a − e1 Tr(�1) ⊗ a) ,

{{Tr(�2), a}}f us = 1

2
(ae1 ⊗ Tr(�2) − a Tr(�2) ⊗ e1) .

Hence, Eq. B.2 gives

{{
�

f

1 , a
}}f = − 1

2
( e12e21 ⊗ Tr(�1)e12�2α + e12�2e21 ⊗ Tr(�1)e12e2α )

+ 1

2
( e12αe1 Tr(�2) ⊗ �1 + e12α�1 Tr(�2) ⊗ e1 )

+ 1

2
(ae1 ⊗ Tr(�1)Tr(�2) − a Tr(�2) ⊗ Tr(�1)e1)

+ 1

2
(e1 Tr(�2) ⊗ Tr(�1)a − e1 Tr(�1)Tr(�2) ⊗ a) .

This equality holds in Af where Tr(�1) = �1, Tr(�2) = e12�2e21 and a = e12α. Thus it is not
hard to rewrite all factors in the four first terms as Tr(�s), a or the idempotents (we have to
note for the first term that e12�2α = e12�2e2α = e12�2e21e12α = Tr(�2)a). After cancelling
out the second (resp. third) with the seventh (resp. sixth) term, we get the desired result.

On a generator of the third type. Let a = εαe21 with e+ = ε, e− = e21, α ∈ εAe2. Using Eq. 1.7
yields

{{�1, α}} = −1

2
(e1 ⊗ �1α + �1 ⊗ e1α) , {{�2, α}} = 1

2
(αe2 ⊗ �2 + α�2 ⊗ e2) ,

because αe1 = 0 and e2α = 0. From Eqs. 2.14c and 2.17c we obtain

{{Tr(�1), a}}f us = 1

2
(a Tr(�1) ⊗ e1 − a ⊗ Tr(�1)e1) ,

{{Tr(�2), a}}f us = 1

2
(Tr(�2) ⊗ e1a − e1 ⊗ Tr(�2)a) .

Summing everything inside Eq. B.2, we get

{{
�

f

1 , a
}}f =1

2
(αe21 ⊗ Tr(�1)e12�2e21 + α�2e21 ⊗ Tr(�1)e12e2e21)

− 1

2
(e1 Tr(�2) ⊗ �1αe21 + �1 Tr(�2) ⊗ e1αe21)

+ 1

2
(Tr(�2) ⊗ Tr(�1)e1a − e1 ⊗ Tr(�1)Tr(�2)a)

+ 1

2
(a Tr(�1)Tr(�2) ⊗ e1 − a Tr(�2) ⊗ Tr(�1)e1) .

By arguments similar to the previous case, we can rewrite the four first terms using
a,Tr(�1),Tr(�2) and the idempotents e1, e2 so that the second and eighth terms cancel out,
while the third and fifth terms cancel out. The remaining terms give the desired result.

On a generator of the fourth type. We let a = e12αe21 with e+ = e12, e− = e21, α ∈ e2Ae2. We
directly get by Eq. 1.7 that {{�1, a}} = 0, and by Eq. 2.17d that {{Tr(�2), a}}f us = 0. For the
remaining two terms, we have by Eqs. 1.7 and 2.14d

{{�2, α}} =1

2
(αe2 ⊗ �2 − e2 ⊗ �2α + α�2 ⊗ e2 − �2 ⊗ e2α) ,

{{Tr(�1), a}}f us =1

2
(a Tr(�1) ⊗ e1 + e1 ⊗ Tr(�1)a − a ⊗ Tr(�1)e1 − e1 Tr(�1) ⊗ a) .
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Thus, we get after some easy manipulations
{{
�

f

1 , a
}}f =1

2
(a ⊗ Tr(�1)Tr(�2) − e1 ⊗ Tr(�1)Tr(�2)a + a Tr(�2) ⊗ Tr(�1) − Tr(�2) ⊗ Tr(�1)a)

+ 1

2
(aTr(�1)Tr(�2)⊗e1+e1 Tr(�2) ⊗Tr(�1)a − aTr(�2)⊗Tr(�1)e1 − e1Tr(�2)Tr(�1)⊗a) ,

from which we can conclude.

Appendix C: Proof of Proposition 4.4

Note that any B-linear double bracket on A of degree at most +4 on generators needs to
satisfy

{{t, t}} = λ(tst ⊗ t − t ⊗ tst) , {{s, s}} = l(sts ⊗ s − s ⊗ sts) , (C.1a)

{{t, s}} = γ e2⊗e1+α′
1st⊗e1+α3e2⊗ts+φ0stst⊗e1+φ1st⊗ts+φ2e2⊗tsts , (C.1b)

after using that t = e1te2, s = e2se1 with the cyclic antisymmetry and the derivation rules.
Moreover, if {{−,−}} is a double quasi-Poisson bracket it must satisfy (1.6) on generators,
and this is easily seen to be equivalent to require that

{{t, t, t}} = 0 , {{s, s, s}} = 0 , (C.2a)

{{t, t, s}} = 1

4
(st ⊗ t ⊗ e1 − e2 ⊗ t ⊗ ts) , (C.2b)

{{s, s, t}} = 1

4
(ts ⊗ s ⊗ e2 − e1 ⊗ s ⊗ st) . (C.2c)

Lemma C.1 If Eq. C.2a holds, then either λ = l = 0 or

γ = 0, φ1 = 0, α′
1 = −α3, φ0 = −φ2 . (C.3)

Proof By Eq. 1.4, we have that for any a ∈ A,

{{a, a, a}} = (1 + τ(123) + τ(132))
{{
a, {{a, a}}′}} ⊗ {{a, a}}′′ . (C.4)

We first look at the case a = t . Using Eq. C.1a, we can find that
{{
t, {{t, t}}′}}⊗{{t, t}}′′ =λ2 tstst⊗t⊗t−λ2 t⊗tstst⊗t−λ2 tst⊗t⊗tst+λ2 t⊗tst⊗tst+t {{t, s}} t⊗t .

The first four terms cancel if we take their sum under cyclic permutations, so that we can
write

{{t, t, t}} = λ(1 + τ(123) + τ(132))t {{t, s}} t ⊗ t

= λ(1 + τ(123) + τ(132))
[
γ t ⊗ t ⊗ t + (α′

1 + α3)t ⊗ t ⊗ tst

+(φ0 + φ2)t ⊗ t ⊗ tstst + φ1t ⊗ tst ⊗ tst] .

Therefore either λ = 0, or the different coefficients vanish i.e. γ = 0, φ1 = 0 while
α′
1 = −α3 and φ0 = −φ2. Doing the computation with s instead of t , we need either l = 0

or the same four conditions.

Lemma C.2 If λ = 0 and Eq. C.2b holds, then

φ0 = 0, φ2 = 0, (C.5a)

(α′
1)

2 = 1
4 + φ1γ, α2

3 = 1
4 + φ1γ . (α′

1 − α3)γ = 0, (α′
1 − α3)φ1 = 0 . (C.5b)
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The same identities are satisfied if l = 0 and Eq. C.2c holds.

Proof When we compute {{t, t, s}} using Eq. 1.4, we get that the term (st)3 ⊗ t ⊗ e1 only
appears with a factor φ2

0 , and e2 ⊗ t ⊗ (ts)3 only appears with a factor −φ2
2 . Therefore, if

Eq. C.2b is satisfied we need φ0 = φ2 = 0 which gives Eq. C.5a.
Under the conditions from Eq. C.5a, the only terms remaining in {{t, t, s}} are given by

st ⊗ t ⊗ e1, e2 ⊗ t ⊗ ts, e2 ⊗ t ⊗ e1 and st ⊗ t ⊗ ts with respective coefficients (α′
1)

2 −
φ1γ , −((α3)

2 − φ1γ ), (α′
1 − α3)γ and (α′

1 − α3)φ1. Comparing with Eq. C.2b, we get
Eq. C.5b.

The method is exactly the same in the case l = 0 assuming that Eq. C.2c holds.

We get by combining Lemmas C.1 and C.2 that if λ = l = 0 as well as α′
1 �= α3, we are

in the case 1.a) of Proposition 4.4. If α′
1 = α3 instead, we are in the case 1.b).

We now assume that at least one of the two constants λ, l is nonzero. Hence, if the double
bracket (C.1a)–(C.1b) satisfies (C.2a), it must be such that

{{t, s}} = α3(e2 ⊗ ts − st ⊗ e1) + φ0(stst ⊗ e1 − e2 ⊗ tsts) , α3, φ0 ∈ k , (C.6)

using Lemma C.1.

Lemma C.3 If Eq. C.2b holds, then φ0 = 0, lλ = 0 and α2
3 = 1

4 . Moreover, the same
statement holds if Eq. C.2c holds.

Proof Developing {{t, t, s}} with Eq. 1.4, we get that the term e2 ⊗ tstst ⊗ ts only appears
with a factor φ2

0 . (This is also true for e2 ⊗ t ⊗ tststs, st ⊗ tstst ⊗ e1 and ststst ⊗ t ⊗ e1

with factor −φ2
0 .) Therefore φ0 = 0. Under this condition, we obtain that

{{t, t, s}} = α2
3(st ⊗ t ⊗ e1 − e2 ⊗ t ⊗ ts) + λl(st ⊗ t ⊗ tsts − stst ⊗ t ⊗ ts) ,

and we get the remaining two equalities by comparing this expression with Eq. C.2b. The
computation for {{s, s, t}} with Eq. C.2c is similar and gives the second result.

As a consequence of this lemma, φ0 vanishes and α3 = ± 1
2 in Eq. C.6. Furthermore,

either we have λ �= 0 with l = 0, or we have l �= 0 with λ = 0. These are respectively Case
2 and Case 3 from Proposition 4.4.

Appendix D: Proof of Proposition 4.8

D.1 Coefficients verifying the triple brackets identities

The strategy of the proof is given after Proposition 4.8. In this subsection, we gather a list
of equalities that the coefficients appearing in the double bracket must satisfy in order for
the corresponding triple bracket to satisfy (4.18) or (4.19).

D.1.1 First conditions

Lemma D.1 If a double bracket given by Eqs. 4.9a–4.9b and 4.10 satisfies (4.18), then we
have β0 = β′

0 = α1 = α′
3 = 0.
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Proof Without computing all terms, we can remark that in {{t, t, s}} (obtained from Eq. 1.4
using Eqs. 4.9a, 4.10) the element s3 ⊗ 1⊗ 1 appears with coefficient β2

0, and so do respec-
tively 1 ⊗ 1 ⊗ s3, t2s ⊗ 1 ⊗ 1 and 1 ⊗ 1 ⊗ st2 with coefficients −(β′

0)
2, α2

1 and −(α′
3)

2.
None of these expressions appear Eq.4.18.

We can go through a similar argument using {{s, s, t}} instead.

Lemma D.2 If a double bracket given by Eqs. 4.9a–4.9b and 4.10 satisfies (4.19), then we
have α0 = α′

0 = α1 = α′
3 = 0.

Hence, we are left to discuss the coefficients of the double bracket given by Eqs. 4.9a–
4.9b and

{{t, s}} = γ0 t ⊗ t + γ1 s ⊗ s + α′
1 st ⊗ 1 + α2 t ⊗ s + α′

2 s ⊗ t + α3 1 ⊗ ts

+ β1 t ⊗ 1 + β′
1 1 ⊗ t + β2 s ⊗ 1 + β′

2 1 ⊗ s + γ 1 ⊗ 1 .
(D.1)

D.1.2 Identities verified by the coefficients when Eq. 4.18 is satisfied

Lemma D.3 Consider a double bracket defined on A by Eqs. 4.9a, 4.9b and D.1, with
ν = 0, λ ∈ k and μ ∈ {± 1

2 }. Then Eq. 4.18 is satisfied if and only if the following list of
identities hold :

α′
1, α3 = ±1

2
, α2

2 = 1

4
+ γ1γ0 , (α′

2)
2 = 1

4
+ γ1γ0 , (D.2a)

1

4
+ α2α3 = −μ(α2 + α3) ,

1

4
+ α′

1α
′
2 = μ(α′

1 + α′
2) , (D.2b)

γ1(α
′
1 − μ) = 0 , γ1(α

′
2 − α2) = 0 , γ1(α3 + μ) = 0 , (D.2c)

β2(α
′
1 − μ) = 0 , β2(α

′
2 − μ) − γ1β′

1 = 0 , (β2 − λ)(α′
1 + α′

2) − γ1β1 = 0 , (D.2d)

β′
2(α3 + μ) = 0 , β′

2(α2 + μ) − γ1β1 = 0 , (β′
2 + λ)(α2 + α3) − γ1β′

1 = 0 , (D.2e)

γ0(α
′
1 − μ) = 0 , γ0(α

′
2 − α2) = 0 , γ0(α3 + μ) = 0 , (D.2f)

β1(α
′
1 − α2) + γ0(β2 − λ) = 0 , β′

1(α
′
2 − α3) − γ0(β′

2 + λ) = 0 , (D.2g)

β′
1(α

′
1 − μ) − β1(α3 + μ) = 0 , β1(α

′
2 − μ) − β′

1(α2 + μ) + γ0λ = 0 , (D.2h)

γ (α2 + μ) − β2β1 = 0 , γ (α′
1 − α3)+β′

1(β2 − λ)−β1(β′
2+λ)=0 , γ (α′

2 − μ)−β′
2β′

1= 0 , (D.2i)

β′
2(β

′
2 + λ) − γ1γ = 0 , β2(β2 − λ) − γ1γ = 0 , (D.2j)

(β2 − β′
2 − λ)γ1 = 0 , (β2 − β′

2 − λ)γ = 0 . (D.2k)

Proof We collect now all nonzero terms that appear in the expansion of {{t, t, s}} obtained
from Eq. 1.4, leaving the cumbersome (but elementary) computations to the reader.

The coefficients for t ⊗ t ⊗ s, s ⊗ t ⊗ t , 1 ⊗ t ⊗ ts and st ⊗ t ⊗ 1 are respectively
γ0γ1 − α2

2, (α′
2)

2 − γ0γ1, −α2
3 and (α′

1)
2. The coefficient for t ⊗ 1 ⊗ ts and 1 ⊗ t2 ⊗ s

is −α2α3 − μ(α2 + α3), while we have for st ⊗ 1 ⊗ t and s ⊗ t2 ⊗ 1 the coefficient
α′
1α

′
2 − μ(α′

1 + α′
2). Since these terms appear in Eq. 4.18, this gives Eqs. D.2a and D.2b. In

particular, all the other coefficients in the expansion of {{t, t, s}} must vanish.
The coefficients for st ⊗ 1 ⊗ s, s ⊗ t ⊗ s and s ⊗ 1 ⊗ ts are respectively γ1(α

′
1 − μ),

γ1(α
′
2 − α2) and γ1(α3 + μ), which yields Eq. D.2c.

The vanishing of the coefficients for st ⊗1⊗1, s ⊗1⊗ t and s ⊗ t ⊗1 gives successively
the three identities in Eq. D.2d. Similarly 1⊗1⊗ ts, t ⊗1⊗ s and 1⊗ t ⊗ s imply Eq. D.2e,
while 1 ⊗ t2 ⊗ t , t ⊗ t2 ⊗ 1 and t ⊗ t ⊗ t give Eq. D.2f.
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The coefficients for t ⊗ t ⊗ 1, 1 ⊗ t ⊗ t and 1 ⊗ t2 ⊗ 1, t ⊗ 1 ⊗ t give Eqs. D.2g and
D.2h respectively. With t ⊗ 1 ⊗ 1, 1 ⊗ t ⊗ 1 and 1 ⊗ 1 ⊗ t we obtain (D.2i).

The terms 1⊗ 1⊗ s and s ⊗ 1⊗ 1 give Eq. D.2j. We finally get Eq. D.2k from s ⊗ 1⊗ s

and 1 ⊗ 1 ⊗ 1.

In the exact same way, we get the next lemma.

Lemma D.4 Consider a double bracket defined on A by Eqs. 4.9a, 4.9b and D.1, with
ν �= 0 and λ, μ ∈ k satisfying 4(μ2 − λν) = 1. Then Eq. 4.18 is satisfied if and only if the
following list of identities holds :

γ0 = 0 , γ1 = 0 , β2 = 0 , β′
2 = 0 , (D.3a)

α′
1, α2, α

′
2, α3 = ±1

2
,

1

4
+ α2α3 = −μ(α2 + α3) ,

1

4
+ α′

1α
′
2 = μ(α′

1 + α′
2) , (D.3b)

α′
1 = −α′

2 , α2 = −α3 , β′
1 = −β1 , (D.3c)

β1(α2 + α′
2) = 0 , β1(α

′
1 + α3)−νγ = 0 , β1(α

′
2 − α3)+νγ = 0, β1(α

′
1−α2)−νγ = 0 , (D.3d)

γ (α2 + μ) = 0 , γ (α′
1 − α3) = 0 , γ (α′

2 − μ) = 0 , λγ = 0 . (D.3e)

Remark D.5 These results are easily adapted to the case where the double bracket is Pois-
son, i.e. when the associated triple bracket (1.4) identically vanishes. In such a case, we
require 4(μ2 − λν) = 0 to get {{t, t, t}} = 0 by [18, Proposition A.1].

If ν = μ = 0, then {{t, t, s}} = 0 when the conditions (D.2a)–(D.2k) of Lemma D.3 are
satisfied with the extra requirements that all the terms containing a factor μ are removed,
and that all the terms ± 1

2 and 1
4 in Eqs. D.2a–D.2b are removed (in particular α′

1 = α3 = 0).
If ν �= 0 and μ2 − λν = 0 then {{t, t, s}} = 0 when the conditions (D.3a)–(D.3e) of

Lemma D.3 are satisfied with the extra requirements that the terms ± 1
2 and 1

4 appearing in
the identities (D.3b) are removed.

D.1.3 Identities verified by the coefficients when Eq. 4.19 is satisfied

We can obtain the analogues of Lemmae D.3 and D.4 when Eq. 4.19 is satisfied as follows.
Using the cyclic antisymmetry of the double bracket, remark that we can get from Eq. D.1

{{s, t}} = − γ1 s ⊗ s − γ0 t ⊗ t − α3 ts ⊗ 1 − α2 s ⊗ t − α′
2 t ⊗ s − α′

1 1 ⊗ st

− β′
2 s ⊗ 1 − β2 1 ⊗ s − β′

1 t ⊗ 1 − β1 1 ⊗ t − γ 1 ⊗ 1 .
(D.4)

Comparing (4.9a) and (4.9b), then doing the same with Eqs. D.1 and D.4, one can see that
to compute {{s, s, t}} one just needs to consider {{t, t, s}} in which we replace all variables s

by t and vice-versa, then do the following changes in the coefficients

λ → l , μ → m , ν → n ,

γ0 → −γ1 , γ1 → −γ0 , α′
1 → −α3 , α2 → −α2 , α′

2 → −α′
2 , α3 → −α′

1 ,

β1 → −β′
2 , β′

1 → −β2 , β2 → −β′
1 , β′

2 → −β1 , γ → −γ .
(D.5)

For n = 0, l ∈ k and m ∈ {± 1
2 }, we have that Eq. 4.19 is satisfied if and only if the list

of identities obtained by applying (D.5) to (D.2a)–(D.2k) is verified.
For n �= 0 and l, m ∈ k satisfying 4(m2 − ln) = 1, we have that Eq. 4.19 is satisfied if

and only if the list of identities obtained by applying (D.5) to (D.3a)–(D.3e) is verified.
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D.2 Splitting the identities into cases

Lemma D.6 Consider a reduced double bracket defined on A by Eqs. 4.9a, 4.9b and D.1,
with ν = λ = 0 and μ ∈ {± 1

2 }. Then Eq. 4.18 is satisfied if and only if the double bracket
verifies one of the following cases

Case A: For γ0, γ1 ∈ k
×, then γ ∈ k is free while

α′
1 = μ, α3 = −μ, α′

2 = α2 with α2
2 = 1

4
+ γ0γ1 ,

β1 = γ0β2

α2 − μ
, β′

1 = γ0β2

α2 + μ
, β′

2 = β2 with β2
2 = γ γ1 .

(D.6)

Case B: For γ1 ∈ k
×, γ0 = 0, then β2 ∈ k is free while

α′
1 = μ, α3 = −μ, β′

2 = β2, γ = β2
2

γ1
, (D.7)

and one of the following two sets of conditions holds :

B1) α′
2 = α2 = μ, β′

1 = 0, β1 = 2μβ2
γ1

, (D.8a)

B2) α′
2 = α2 = −μ, β1 = 0, β′

1 = − 2μβ2
γ1

. (D.8b)

Case C: For γ0 ∈ k
×, γ1 = 0, then

α′
1 = μ, α3 = −μ, β′

2 = β2 = 0, γ = 0 , (D.9)

and one of the following two sets of conditions holds :

C1) α′
2 = α2 = μ, β′

1 = 0, β1 ∈ k , (D.10a)

C2) α′
2 = α2 = −μ, β1 = 0, β1 ∈ k . (D.10b)

Case D: For γ0 = γ1 = 0, then β′
2 = β2 = 0 and one of the following sets of conditions

holds :
if (α′

1, α3) = (−μ,μ),

D1) α′
1 = α2 = −μ, α3 = α′

2 = μ, β1 = β′
1 = γ = 0 ; (D.11)

if (α′
1, α3) = (μ,μ),

D2.1) α′
1=α′

2=α3=μ, α2=−μ, β1 = 0, β′
1, γ ∈ k , (D.12a)

D2.2) α′
1=α3=μ, α2 = α′

2 = −μ, β1 = β′
1 = γ = 0 ; (D.12b)

if (α′
1, α3) = (−μ, −μ),

D3.1) α′
1=α2=α3=−μ, α′

2=μ, β′
1 = 0, β1, γ ∈ k , (D.13a)

D3.2) α′
1=α3=−μ, α2 = α′

2 = μ, β1 = β′
1 = γ = 0 ; (D.13b)

if (α′
1, α3) = (μ,−μ),

D4.1) α′
1=α2=α′

2=μ, α3=−μ, β′
1=γ =0, β1 ∈ k , (D.14a)

D4.2) α′
1=μ, α3=α2=α′

2=−μ, β1=γ =0, β′
1 ∈ k , (D.14b)

D4.3) α′
1=α2=μ, α3=α′

2=−μ, γ =0, β′
1=−β1, β1∈k, (D.14c)

D4.4) α′
1 = α′

2 = μ, α3 = α2 = −μ, β1 = β′
1 = γ = 0 . (D.14d)

The proof of Lemma D.6 consists in listing the possible coefficients of a reduced double
bracket that satisfy Lemma D.3. The next lemma is obtained similarly from Lemma D.4.
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Lemma D.7 Consider a reduced double bracket defined on A by Eqs. 4.9a, 4.9b and D.1,
with ν ∈ k

× and μ = 0, λ = −1
4ν . Then Eq. 4.18 is satisfied if and only if the double bracket

verifies

γ0 = γ1 = 0, β2 = β′
2 = 0, γ = 0, α2 = ±1

2
, (D.15)

and one of the following two conditions holds :

Aν) α′
1 = α2, α′

2 = α3 = −α2, β′
1 = −β1, β1 ∈ k , (D.16a)

Bν) α′
2 = α2, α′

1 = α3 = −α2, β1 = β′
1 = 0 . (D.16b)

Remark D.8 From the discussion in §D.1.3, we get that a reduced double bracket defined
on A by Eqs. 4.9a, 4.9b and D.1 satisfies (4.19) if and only if the double bracket verifies
one of the cases from Lemma D.6 or Lemma D.7 after application of the mapping (D.5) on
the different coefficients in each case.

D.3 Finishing the proof

We need to see which conditions from Lemma D.6 or Lemma D.7 are compatible with at
least one of the conditions obtained by applying the mapping (D.5), as explained in Remark
D.8.

For example, applying transformation (D.5) to the case D4.4 in Lemma D.6 yields

Case D4.4(s)) γ0 = γ1 = 0, β1 = β′
1 = 0 ,

α3 = α′
2 = −m, α′

1 = α2 = m, β2 = β′
2 = γ = 0 .

(D.17)

A quick inspection shows that this is compatible with the conditions of the cases D1, D4.3
given by Eqs. D.11, D.14c in Lemma D.6, and Aν given by Eq. D.16a in Lemma D.7. In
the first two cases, and under the isomorphism t → s, s → t (with μ ↔ m), the obtained
double quasi-Poisson brackets satisfy Case 3 of Proposition 4.8 given by Eq. 4.13. In the
last case, the double bracket is isomorphic to Case 6 of Proposition 4.8 given by Eq. 4.16
under the same isomorphism (with m → μ, ν → n).
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