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Fusion of Wearable and Contactless Sensors for Intelligent

Gesture Recognition
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Francesco Fioranelli, and Hadi Heidari*

A novel approach of fusing datasets from multiple sensors using a hierarchical
support vector machine (HSVM) algorithm is presented. The validation of this
method is experimentally carried out using an intelligent learning system that
combines two different data sources. The sensors are based on a contactless
sensor, which is a radar that detects the movements of the hands and fingers, as
well as a wearable sensor, which is a flexible pressure sensor array that measures
pressure distribution around the wrist. A HSVM architecture is developed to
effectively fuse different data types in terms of sampling rate, data format, and
gesture information from the pressure sensors and radar. In this respect, the
proposed method is compared with the classification results from each of the two
sensors independently. Herein, datasets from 15 different participants are col-
lected and analyzed. The results show that the radar on its own provides a mean
classification accuracy of 76.7%, whereas the pressure sensors provide an
accuracy of 69.0%. However, enhancing the pressure sensors’ output results

machine-learning algorithms, have been
proposed for different sensing purposes
such as gesture, fault detection, intelligent
robot, and health monitoring.?>-¢!

In this article, the “objects” to be recog-
nized are human gestures. The hand ges-
ture is a natural way to interact between
people, especially among those who have
difficulty in speaking or hearing. Hand
gestures are also important in human-
computer interaction, particularly in situa-
tions where it is inconvenient to use speech
or typical input devices.!*”

Using only wearable static sensors
attached to the human body is unlikely to
detect the full spectrum of hand gestures
and might be perceived as uncomfortable.

with radar using the proposed HSVM algorithm improves the classification

accuracy to 92.5%.

1. Introduction

During the past decade, novel multi-sensor data fusion mecha-
nisms have been gaining attention due to the increased capabili-
ties of sensing technologies and intelligent systems.'! Generally,
multi-sensor fusion improves a system’s accuracy as a result of
increased complexity."? Compared with single sensor systems,
a multi-sensor system can observe an object from more than
one perspective.’™ To accurately describe an object with multiple
sensors, the fusion process aims to combine the strengths of
each sensor and compensate for their relative weaknesses. In
this respect, various data fusion strategies, mostly related to

X. Liang, H. Li, W. Wang, Y. Liu, Dr. R. Ghannam, Dr. F. Fioranelli,
Dr. H. Heidari

School of Engineering

University of Glasgow

Glasgow G12 8QQ, UK

E-mail: hadi.heidari@glasgow.ac.uk

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/aisy.201900088.

© 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim. This is an open access article under the terms of the Creative
Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.

DOI: 10.1002/aisy.201900088

Adv. Intell. Syst. 2019, 1, 1900088 1900088 (1 of 13)

To address this limitation, a contactless
sensor such as radar can be exploited
as an enhancer to improve recognition
accuracy and movement information.
Combining these types of on-body and con-
tactless sensors enables new methods in multisensory data
fusion to emerge. In this article, a hybrid static and dynamic sen-
sor system is proposed as a novel gesture-recognition approach.
Here, “static” refers to gestures where a person’s fingers are kept
in specific positions, whereas “dynamic” refers to gestures
involving transitions between two static gestures. In this regard,
a hybrid intelligent system comprises of wrist-worn pressure sen-
sors, with the addition of radar sensing, introduced and fused
with the former to improve the overall recognition accuracy.
Both sensors return time-dependent signals. However, for a nat-
ural sequence of human gestures, pressure sensor data are
meaningful in a static state (fingers kept still), whereas radar data
are more meaningful in a dynamic state (transition between
static states).”® These natural differences lead to the incompati-
bility of simultaneously fusing features extracted from the two
sensors.”?) For the first time, a hierarchical support vector
machine (HSVM) architecture was proposed to combine these
features at different layers. Differently from our previous work
that fuses results at decision level,'” this article presents a pur-
posely developed implementation of a multi-layer SVM classifier
to incorporate together the diverse data from the two sensors by
taking the confidence levels and the prediction labels from radar
layer as an enhancer to improve the final result.

A schematic diagram depicting the fusion process and the
potential applications is shown in Figure 1. In this architecture,
the radar sensor acts as an enhancer instead of being used in
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Figure 1. The conceptual schematic of data fusion for gesture sensing with HSVM. The sensors are radar and resistive pressure sensor array, both with
their own data acquisition systems. The proposed HSVM fuses completely different types of data sources to improve accuracy.

parallel with the pressure sensors because it only responds at the
transition regions between gestures. The result of the first layer
(radar) is fed to the second (pressure sensors) layer to improve its
accuracy, which is where data fusion is achieved. In this proce-
dure, the properties of linear SVM are fully used to optimize the
training and recognition processes.

This article is organized as follows: Section 2 provides current
state-of-the-art in multi-sensor fusion. Section 3 introduces our
data acquisition methods and our experimental setup, as well as
the preprocessing and feature extraction methods of radar data.
Section 4 provides the building blocks of HSVM including SVM
and directed acyclic graph (DAG) SVM. In Section 5, the HSVM
is proposed and its performance is primarily tested. Next, the
results of the HSVM architecture are presented in Section 6
and its enhancement to the original system is highlighted.
Finally, concluding remarks are provided in Section 7.

2. Advances in Sensors’ Fusion

State-of-the-art in the field of multi-sensor fusion demonstrated
the feasibility of a complex system in achieving higher accuracy
using data from multiple sensors.!"*'!, For the case of gesture
recognition, vision-based sensors are known to be sensitive to
background lighting and color, whereas movement-based sen-
sors can be complementary as it is more immune to this prob-
lem. Combining these two types of sensors can therefore
increase the overall accuracy of the gesture recognition.!'

A fusion method to increase the accuracy of classification has
already been proposed for a radar sensor and an inertial sensor in
the context of detecting falls and classifying other human indoor
activities. The fusion was carried out at different levels using
SVMs and K-nearest neighbor (KNN). At the feature level, data
from sensors were combined into a common feature vector sam-
ple. At the decision level, three approaches were used combining
partial decisions and confidence level from different sensors,
namely logarithmic opinion pool (LOGP), fuzzy logic, and a vot-
ing system. LOGP fusion cumulatively adds the confidence levels
from different classifiers and converts them to posterior proba-
bility through a nonlinear logarithmic function. The final output
is the class yielding the highest posterior probability. On the con-
trary, fuzzy logic first compares the confidence matrix of each
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input and chooses the lower one from each class, then it selects
the best number from this “worse” confidence matrix.
Additionally, an election system that combines the outputs of
four classifiers is proposed to provide subsequent improvement.
When the decision clash happens, LOGP is used to mix the con-
fidence level of radar and inertial sensors to generate an alterna-
tive prediction label. The accuracy improved significantly after
the feature level and reached a maximum of ~97.8% after deci-
sion fusion.”’

Control through gestures has been used for playing video
games using a combination of multi-channel electromyography
(EMG) sensors and 3D accelerometer. To improve the accuracy,
they segmented the EMG and accelerometer stream and
extracted their feature for data fusion.!"*) The two-stream hidden
Markov model (HMM) was used for classification of the data
from these two sensors. The probability of a pair of data is a
combination of the probability from each sensor with weight
factors assigned. The result of recognition was also determined
by the maximum combination probability. The overall accuracy
improved from 85.5% to 91.7%. Their manuscript presented a
soft voting mechanism that is commonly used for data fusion.!"*)

As two widely used deep-learning network, convolutional neu-
ral network (CNN) and long short-term memory (LSTM) have
been applied to the depth sensor and the inertial data for action
detection and recognition."**>) Actions such as stand, sit, and
fall are captured by the multi-sensory system, followed by the
classification using the deep learning-based fusion approach.
Finally, the accuracy improved from 79.1% to 92.8%.*

Similarly, the CNN has been used for another multi-sensor
system consisting of an optical sensor, a depth camera, and radar
for developing a user interface during driving. A classifier was
created by CNN after feature extraction. The performance of
the sensor improved to ~294%.!'” They also showed that the per-
formance of SVM was not as good as the DNN method when the
optical sensor provided unreliable data.l'

Multiple SVMs have been used to classify and fuse the data
from synthetic aperture radar imagery and the optical images.*
After two SVMs were used to classify the two data sources sepa-
rately, another SVM-based decision fusion generates the final
result. The results show that the additional SVM method outper-
forms other classifiers and fusion methods, but the accuracy was
not improved too much compared with the single SVM.[¥
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In this article, an innovative HSVM approach that uses a
multi-layer SVM structure to exploit the relations between the
different sensors sources is proposed. In particular, the radar
and the pressure sensors produce different features that cannot
be combined in a conventional feature fusion approach, as the
former detects transitions/changes of gestures, and the latter
detects static gestures (i.e., the gesture at the end of the transi-
tion). Furthermore, this method presents an approach to pre-
cisely allocate the weight of each sensor source for final
decision-making. This method is particularly good at dealing
with situations where the classes of the two sensor sources
are partially in agreement but cannot be directly used together
as parallel and simultaneous inputs of classifiers. The proposed
HSVM architecture is still able to fuse pressure sensors and
radar data and perform a good improvement (from 69.0% to
92.5%). The training and testing are all based on multiple linear
classifiers of SVM, which is less computationally intensive com-
pared with other calculations such as convolutions. A compari-
son between state-of-the-art multi-sensory data fusion is
summarized in Table 1. The proposed HSVM yielded a relatively
high accuracy and improvement.

3. Data Acquisition and Experimental Setup

A measurement setup comprising of a set of five flexible resistive
pressure sensors and an ultra-wideband (UWB) pulse-Doppler
radar was developed as a proof-of-concept data collection plat-
form. The experimental setup and graphical user interface
(GUI) are shown in Figure 2a and Figure 2b. As two different
data sources, pressure sensors and radar require their specific
readout circuits, data acquisition tools, and GUI, which will
be introduced in this section.l”’ Their data will be then processed
in MATLAB to verify the performance of the proposed classifi-
cation and data fusion architecture.

3.1. Wearable Resistive Pressure Sensor Array

According to the literature, gesture recognition can be achieved
by monitoring tendon movements around the wrist using an
array of pressure sensors.”'®!”) The five pressure sensors based
on force-sensitive resistors are mechanically supported by a pur-
posely designed wristband to make sure the subtle movement is
detectable by the pressure sensors. It is worth noting that there
are many factors that could affect the overall quality of the data,
such as thickness, size, and flexibility of the sensors. The impact

Table 1. A comparison of recent advances in multi-sensor fusion.
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of these factors can be attenuated by ensuring that the sensors
are worn consistently across all gestures and participants in the
data collection, and by developing machine-learning and multi-
sensor fusion algorithms capable of capturing the subtle tendon
differences encoded in the data. The commercially available
FSR402 provides proper characteristics to meet the requirements
of these experiments. The pressure sensors were embedded in
EcoFlex flexible substrate together with fixing tape. For force-
to-voltage conversion, each pressure sensor was integrated into
a simple voltage divider with an additional 10 kQ resistor, accord-
ing to its datasheet.”-*”18 Afterward, the voltage variation was
captured by a microcontroller. The data-acquisition platform
achieved a sampling rate of 278 Hz for each sensor, and
51 Hz was chosen for this work. The data received from the
five sensors were subsequently processed in SVM as a five-
dimensional vector in the next step.

In our previous work, a real-time wrist-worn gesture-capacitive
pressure-sensing system with SVM was demonstrated.l”’ The
capacitive-based pressure sensors were chosen because the inter-
action between skin and the capacitive sensor provided an
enhancement to the capacitive output.'*'® However, capacitive
pressure sensors are not stable enough for durable and long-term
measurements because the voltage range drifts over time when it
is attached to the skin. Thus, instead of capacitive sensors, resis-
tive pressure sensors were used because of their stability, as well
as simple readout circuit with a higher sampling rate.

3.2. Contactless Radar Sensing and Preprocessing

An off-the-shelf UWB pulse-Doppler radar (X4M300) was used
in capturing range and velocity changes relevant to finger move-
ment. The center frequency of the radar transmitter was
7.29 GHz with ~1.5 GHz bandwidth at —10 dB. The integrated
microstrip antenna transmitted the radar signals with a pulse
repetition frequency (PRF) equal to 200 Hz, with simultaneous
reception and digitization of amplitude and phase components at
the receiver. In the experiment, the radar chip was connected to a
laptop to acquire the data. This UWB-Doppler radar had a reso-
lution in the range of centimeters, sufficient for detecting fine
and subtle movements such as hand gestures, as opposed to
human macro-movements or movements of man-made objects
such as cars.”® Furthermore, hands are difficult targets to detect
due to their small size and typical weak reflections, which can be
easily mixed with background noise.

Prior to feature extraction, raw radar data were filtered to
remove the static clutter and emphasize moving targets. After

Data source Object Fusion Accuracy before  Final accuracy ~ Improvement ~ Computational  Reference
method fusion [%] [%] [%] burden
EMG + accelerometer Gesture HMM 85.5 91.7 6.2 Medium [13]
RGBD + Inertial Human action CNN + LSTM 79.1 92.8 13.7 Intensive [14]
Optical sensor + depth camera + radar Gesture CNN 90.9 94.1 3.2 Intensive [17]
Radar + optical imagery Land cover Multi-SVM 68.9 77.1 8.2 Low [2]
Inertial + radar Human activity monitoring ~ SVM + KNN 89.3 97.8 8.5 Intensive [9]
Pressure sensors + radar Gesture HSVM (linear) 69.0 92.5 23.5 Low This work
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Figure 2. Experimental setup for the data collection. a) The experiment setup: at the same time, a radar sensor captures the motion of gesture. b) GUI
developed in LabVIEW to visualize pressure sensors’ data in real-time. c) Participant 5’s training gestures and data over time as an example (“PS” in the
figure denotes pressure sensor). The participant was required to show a sequence of gestures and keep fingers still for 4 s for each. It can be seen that
different voltage combinations are measured for different gestures, but there are also similarities that may make the classification problem challenging.
For the radar part, the Doppler signature corresponding to different transition parts are shown, where the positive Doppler corresponds to the movement
approaching toward the radar, and vice versa. The color indicates the strength of the gesture movement with respect to different parts of the hand. The
main misclassification takes places between those classes for which the directions of the movement are very similar, and the amplitudes of the recorded

signals are also similar (e.g., 1 to 5 and 2 to 5).

that, short-time Fourier transform (STFT) with 2.5 s window size
and 95% overlapping was applied on the range-time matrix to
map the information into the Doppler-time domain. In this ges-
tures’ recognition scenario, characterizing fingers’ trajectory was
of interest rather than the static position of palm and fingers.
This was done by exploiting the micro-Doppler effect, visible
from the result of the STFT.!] The equation of STFT is derived
below

e

Z x(n)w(n — mR)e (1)

n=—0o0

STFT{x(n)}(m, ) =

where x(n) is the input signal, w(n) is the chosen window func-
tion (Hamming window in this case), R is the hop size, also
known as an overlapping factor between successive fast
Fourier transforms (FFTs). The result of the STFT operation
was a Doppler-time matrix, whose absolute value is usually
referred to as spectrogram and was used to extract features,
i.e., significant parameters to represent relevant information
for the classification process. The features extracted from the
radar data are listed in Table 2, including those related to the
centroid, bandwidth, and singular value decomposition (SVD)
of the micro-Doppler matrix resulting from the STFT. The cen-
troid of the Doppler signatures represents the center of the mass
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of the movement over time. The bandwidth aims to find the
extent of the energy around the Doppler centroid. In previous
works, SVD was used to transform the original Doppler-time
matrix into three individual matrices U, S, and V, where U
and V are the left and right eigenvectors’ matrix of the original
micro-Doppler signature resulting from the STFT.*!
However, some of the features may be redundant and cost
extra computation loads. To select the optimal features’ sets,
sequential forward selection (SFS) was used on the original
features’ set to evaluate the classification performance of differ-
ent feature combinations through an SVM classifier.”’! The
SFS approach started from single features and progressively
selected additional features among the possible combinations
to maximize the classification performances; the algorithm
stopped when there was no longer any improvement after
adding more features. The SFS algorithm selected features
on the basis of classification performance. More features were
progressively selected from possible combinations to maximize
performance. Naturally, no features were added when the clas-
sification performance plateaued. Five out of the 20 extracted
features were selected by the SFS algorithm to construct an opti-
mal feature set. This included the kurtosis and the mean of the
Doppler bandwidth, the skewness of the Doppler centroid, the
sum of all pixels of the right matrix derived from the SVD of
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Table 2. Feature selection of radar data.

Radar features Number of features

Mean, standard deviation, skewness, and kurtosis of the 4
centroid of the Doppler spectrogram

Mean, standard deviation, skewness, and kurtosis of the 4
bandwidth of the Doppler spectrogram

Two-dimensional mean, standard deviation, skewness, 4
and kurtosis of the whole segment of the spectrogram

Mean and standard deviation of the first left and right 4
eigenvector of the SVD of the spectrogram

Sum of pixels of the entire left and right matrices 2
Mean of the diagonal of the left and right matrices 2

the spectrogram, and the mean of the first column (eigenvector)
of this matrix.

3.3. Data Collection

With the abovementioned experimental setup, the data of pressure
sensors and radar were collected simultaneously from 15 individ-
ual participants. All the volunteers who took part in the experi-
ments were given a comprehensive prior description of the
experimental procedure and objectives, and their explicit consent
was obtained prior to data collection. The number of gestures was
four since three gestures were ideally recognizable (over 90% accu-
racy) in the previous work of this article.”) In this study, the par-
ticipants were required to perform four different static gestures,
namely the numbers 0, 1, 2, and 5 with one hand, and the related
transitions between these gestures, as shown in Figure 2c. The par-
ticipants wore the wristband and performed the specific gestures in
front of the radar at a distance of =50 cm. It is worth noting that the
inherent different nature of radar and pressure sensors array make
pressure sensors’ data meaningful only in the static state when the
fingers are kept still and the tendons create a pressure stimulus,
whereas the radar returns almost blank response as it cannot detect
well the fingers’ reflections. In contrast, the radar will capture accu-
rate information related to the movement of the fingers, in this
case, the transition movements between static states.

Therefore, not only each static state needed to be collected but
also each different transition. For example, the transition of ges-
ture 1 (G1) to gesture 3 (G3) and G3 to G1 gave us a completely
different response. In other word, the data of G1-G3 differed
from G2-G3 even if both of them stopped at G3. Taking this into
account to obtain training data for the four desired gestures, per-
forming at least A% |y_, = 12 transitions was necessary. To cover
all 4 static gestures and 12 dynamic transitions, the participants
were required to perform 13 static states and keep their fingers
still for 4 s for each state. In their second trial, where the data
were used to test the accuracy of classification algorithms in
the recognition step, participants performed 7 gestures and kept
their fingers still for 4 s in each case.

An example (for Participant 5 in Section 5) of the training
data set is shown in Figure 2c. Given a certain sequence of
changing gestures to classify, the pressure sensors’ data
recorded the voltage levels for each finger, whereas the radar
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data were processed to extract the micro-Doppler signatures
through STFT. Features were then extracted from each transi-
tion region between static gestures.

4. Multi-Class Support Vector Machine

The SVM machine-learning algorithm is used for gesture
recognition. First invented by Vapnik, SVM is a binary classifier
that finds an optimal hyperplane to separate two groups of multi-
dimensional data.””** Later on, Platt, a researcher of Microsoft,
USA, proposed a sequential minimal optimization (SMO) for
efficiently training SVM, which simplifies the implementa-
tion.”>*’! Since a single SVM is a binary classifier, the DAG
can be used to organize the relationship between each binary
classifier to achieve multi-classification.”®**) An example of
SVM-based classification is visualized at the end of this section
(Figure 3). Instead of using available SVM libraries, a purposely
developed SVM package described in this section was imple-
mented specifically for the experimental work in this article.

4.1. Linear Support Vector Machine

Assume that a data set (x7,y;),...,(%,y;), X €ER,
Y€ [+1, —1] is the input of an SVM, where x; is the
multi-dimensional input data and y; is their label. Assume that
X; is a n-dimensional input vector, the aim of SVM is to find a
n-dimensional hyperplane to separate the two different
groups.** The hyperplane can be described by

WT% +b=0 2)

where W is the normal and b denotes the bias. With label y, this
hyperplane should satisfy

1—y(WT% +b) <0 fori=1,2,3...i (3)

The points on the hyperplane W'x; +b = +1 are support
vectors in Figure 3a. Suppose the margin between the two hyper-
planes (==£1) is p = ﬁ.[zs] Thus, the problem is to minimize
||W]| for the optimal hyperplane with largest margin p, which
can be described as

, (AT -
=_ == 4
ming (w) =5 [[w||* =5 W' W ()

subject to Equation (3).
Here, Lagrange multipliers a; are introduced to solve this
quadratic programming problem.”®!

1 p p
L(W, b a) =S WIW - WY ayi+ ) a (5)
i=1 i=1

For the Lagrangian multiplier with inequality constraint, the
Karush-Kuhn-Tucker (KKT) can be used as optimality condi-
tions to solve it further.**?>) After calculating partial derivative
of the equation with respect to W and b, the dual problem of
linearly separable samples is
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Figure 3. a) An example of 2D linear support vector machine including support vectors, samples, and the hyperplane separating them. b) DAG SVM
consists of several “one-against-one” classifiers for multi-class classification. There are six classifiers for four classes classification. c) 3D data of pressure
sensors of Participant 5. Note that the actual dimension of all data is 5, but this would not be displayable. After training, the support vectors for creating
the classifiers are also highlighted. d) The classifiers are flat planes because they are derived from linear SVM. The classifiers roughly separate different

groups of gesture data.

1 p_r
n}lax W( ) (W b a EZ Zalaj})le xl J (6)
i=1 j=1
Satisfying
a; Z 0 (7)
p
Z a;y;, = 0 (8)
i=1

The support vectors in Figure 3a are those samples with a; > 0
and they will be used to determine the position of the hyperplane
(W and b).2*%]

However, the collected samples are not supposed to be
ideally separable by a linear hyperplane. The slack variable
E= (&, &, £m) and cost factor C are introduced to
Equation (4) to allow for some data points located at unexpected
locations, and avoid no solution scenario.?*?® Afterward, the
Equation (4) and Equation (3) are

; L = L .
mind (W) = [lwl’ =5 W W+C§;§L 9)
subject to
1—¢&—y (W% +b)<0and >0 (10)

After the same procedure as above, the max W (a) is remained

but the constrains now are
0<a<C (11)
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(12)

P
Z ay; =0
i=1

4.2. Sequential Minimal Optimization

SMO is an algorithm that efficiently solves the Lagrangian
multipliers of a quadratic programming problem by updating
two of the multipliers continuously according to a certain proce-
dure.2%?73% wWhile other a; are fixed, the two multipliers
(a; and @) can be randomly chosen and optimized at each itera-
tion. Therefore, Equation (6) can be written as

max W(a) = L(W, b, a) = a; + a, + constantl
a

1
-3 <a%Y%(97f VTR + a3 (%2) %5 + 2an a0y, (1) TR

2 (zaim)T) (cy 8+, ) + constantz)
i=3
(13)

Applying partial derivative to Equation (13) and equal to 0, the
new a, can be obtained

Ya(Er — Bp)

arzlew + ag]d + A2 = atz)ld _
n

(14)

where prediction
——  —)
2361 Xy —%X1" — xz

error E;=WIX+bygg—y, and 5=
Also, the feasible range of a}*" needs to be
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taken into consideration before updating it. Assume L and H are
minimum and maximum, the feasible value of aj®V, 1) if
Y1 # ¥2, L=max(0,a3¢ — a$¢), H = min(C, C + ag¢ — a9¢), 2)

else L =max(0,ad + a9 — C), H = min(C, ag + a99).l"->>2¢!
new, clipped

Finally, a, and a]*V can be obtained
_ H, if H>ad
ape Clivped _ ) gnewif [ <gnev < (15)
L if a&v<L
A + a4+ Aa = o — yip, A0, (16)

After that, the normal W can be updated. However, there are
two new b due to the updated two KKT constraints. For rapidly
updating, here the average number of them is calculated

Ab— (by +b,) _ (E1 + y1Aay (31)%1) + (Ey + 80, (%1 7)%;)

2 2

(17)

One SMO loop is finished after updating W and b. This pro-
cedure is repeated until all samples satisfy KKT constraints and
the optimal hyperplane can be obtained.”>”! The incoming data
can be classified by the sign of the classifier formula

f(®) =sin(WTx, +b) =0 (18)
Instead of the linear classifier described above, the SVM has a
superior performance in nonlinear classification by mapping
both of the training and incoming data (¥; and 7, ) into higher
dimensional space using kernel functions such as polynomial
kernels (K(X;, %)) = (%, % + 1)) and the Gaussian radial basis
—  — 2
(K3 = exp (-2
this article, the linear SVM classifier is first analyzed because
it suits well the HSVM where the distance between samples
and hyperplanes is involved.

function ) 12428 However, in

4.3. Directed Acyclic Graph SVM

A single SVM is a binary classifier. It is too complicated and com-
putationally intensive to achieve multi-class classification with
one SVM classifier.”**! A frequently used solution is the
DAG SVM algorithm that consists a chain of binary SVM clas-
sifiers.”**! The architecture for the four gestures’ problem is
shown in Figure 3b. Each hyperplane is a “one-against-one” clas-
sifier.??! Under this structure, N(N — 1)/2 classifiers are required
for multi-class classification, where N is the total number of cat-
egories.”*!! Compared with “one-against-all” classifier in the lit-
erature, DAG is faster and has no overlap and unclassified
situation.””!

An example of the pressure sensors’ training data of one of the
participants has been shown in Figure 3c to demonstrate the
details of the developed SVM implementation (namely, data from
Participant 5 as later described in Section 6). Note that since the
five-dimensional data are not displayable, three of them are taken
in this section to show the sample distribution and the six clas-
sifiers generated by them.”) After SMO, the support vectors of
each classifier are also labeled. The hyperplanes are shown in
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Figure 3d where the four different groups of the samples are
roughly separated by each “one-against-one” classifier. The
hyperplane is flat because the classifier is a linear SVM without
kernel function. The same technique has also been applied
on radar’s data with respect to different features, number of
classes (12), and number of binary classifiers (66).

5. Multi-Layer HSVM for Data Fusion

This section aims to present our proposed data fusion method
for different types of data sources. As mentioned in Section 1,
the data from the pressure sensors and the radar cannot be
directly merged because their most significant data imply dif-
ferent gesture status (4 static states and 12 transition states,
respectively). The classification results of pressure sensor
and radar can be obtained by using separate SVM classifiers.
Afterward, the prime difficulty is how to take the radar’s results
into the decision-making steps of pressure sensor data.
Previous researches on multi-sensor fusion have been dis-
cussed in Section 2. For example, they addressed this issue
by building a voting mechanism where several different
machine-learning algorithms, such as SVM, neural network,
KNN, etc., are applied on both the two types of data to find a
final result using majority voting.”) Implementing a voting
mechanism for decision fusion brings the complication of find-
ing the optimized structure and values of the weights of each
individual classifier, especially if they provide different labels
with different confidence levels. Furthermore, it is difficult
to develop an implementation based on majority-voting that
can suit different scenarios, where the correct label might be
produced by a minority of classifiers.

With the proposed HSVM, this issue is avoided with the
implementation of the second layer for fusion. The main idea
of HSVM is to create two layers of SVM. In the second layer,
the data of pressure sensors and weighted radar result are fused
to get the final result.

5.1. Principle

In the firstlayer, as in Figure 4a, the extracted radar’s features are
the input, whereas the output is the classification results along
with their scores. Each class has a unique score, which represents
the confidence level of choosing this class when the classifier
makes a decision. In this article, the confidence level is a
12 x 6 x5 cell array, where 12 represents the number of
transition classes (all the possible classes for the radar defined
at training stage), 6 corresponds to the number of observations
(the 6 transitions observed in each testing dataset), and 5 indi-
cates the number of participants. The formula for calculating
the confidence level is shown below

fx) =Y ayGx,x) +b (19)
j=1

where f{x) is a function related to confidence level, a and b are the
estimated SVM factors, G (x;, %) is the product of the predictor
and the support vectors for jth class. The confidence level of each
class in the form of the loss function is always <0; however, the
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Figure 4. a) The input of second layer SVM is a i +j dimensional vector. The schematic shows the elements of this matrix. The number of dimensions
depends on the number of gestures and the number of sensors in the pressure sensor array. In addition to the pressure sensors’ data, another j-dimen-
sional hierarchical vector will be obtained from the result of radar. b,c) Two examples of the relative position between classifier and hierarchic dimensions
in the case of four gesture recognition. After training, the angle between classifiers and hierarchic dimensions is different. This phenomenon leads to a
different Ad. The a; in (b) is smaller than the a;, in (c) and therefore Ad < Ad’ if AHT =AH2. With this concern, the angle a should be taken into
consideration when calculating the AH for uniform Ad. d) The performance evaluation of proposed HSVM. In the first graph, the result is exactly
the same as the result without HSVM if CL=0. Afterward, the CL value is increased by the step 0.2, where the ground truth target gesture is G4.
As it can be observed, the result is gradually led to G4 and over 90% of the result is G4 when CL=1. e) The proportion of correct target gestures
over increased values of the parameter CL is also demonstrated. As expected, the four target gestures present rather similar but not ideally matched
tendency. The reason is the locations of each data group are different. The closer the data group to the hyperplane, the easier the points of this group to be
led to another side of hyperplane, which will change the predicted result.

class with confidence level closest to 0 means that it is highly = mostly diverted to gesture 2 (or remain to the result of pressure
possible to choose this class as the predicted label. sensor).
The data operation of training and recognition will be intro-

CL(x) =1 —|f(%)] (20)  duced as follows.

Using 1 to subtract the absolute value of the confidence level,
the old confidence level is turned into new scores with its value ~ 5.2. Training
normalized between 0 and 1.

The input matrix of the second layer SVM is the key element ~ The two SVM layers are trained separately. The first layer follows
of data fusion. The proposed idea is shown in Figure 4a. Firstof ~ the normal SVM procedure as described. SVM receives radar’s
all, the data of pressure sensors are on the left side. In this  features to train the classifiers. In the second layer, the training
experiment, five resistive pressure sensors (i = 5) are embedded ~ matrix consists of not only the data of pressure sensors but also
into the wristband and the corresponding data sets are S1...S5.  the hierarchical dimensions. The values of the hierarchy dimen-
In addition, there are four hierarchical dimensions on the right  sion only depend on their label during training. The Hy is set to
side for four recognizable gestures. By transforming the values ~ “1” scaled by a certain number if the label is N, whereas the other
in this hierarchical domain, this structure can exploit the dimensions remain “0”. The reason is that “virtual features” are
radar’s result as a weighted factor to affect the result of pressure  desired for each gesture and, more importantly, this space will be
sensors data. In other words, for example, if the first layer  filled in by CL values in testing. For example, if the label of pres-
(radar) claims that the result is gesture 2 with very high (or  sure sensor data is gesture 3 (H;=1) for four gesture recogni-
low) confidence, the final result of the second layer will be  tion, the input matrix is
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[ Sl 52 53 S4 SS 0 0 1/Scale 0} (21)
where S; ... Ss are pressure sensors’ data. The scale value
depends on the range of data set and cost factor of SVM. The

choice of scale value will be discussed.

5.3. Testing for Recognition

The incoming data flow for recognition and input matrix of the
second layer is shown in Figure 4a. First, the first SVM layer
processes the radar data and outputs the results and confidence
level. Assume that the number of static gestures is 4 and the
result of the first layer is a transition from gesture x to gesture
¥ (Gx— G,) with confidence level CL =z. Second, G is negli-
gible because it is the past status, whereas G, is kept as the final
gesture state after a transition. G, is also what we aim to recog-
nize. All H values in the matrix are initialized to “1” according
to the principle that if all the values in hierarchical dimension
are set to be the same number as what it is in training (Hy = 1),
the final result will not be influenced by the radar sensor as all
its CL values will be the same. Third, when the confidence levels
at the testing stage are received from the first layer SVM, H, is
expected to be close to 1 while the other values dropped. In
other words, the yth dimension will be kept to the value closer
to the training value “1/scale,” whereas the others are dragged
away from this number. Therefore, the final result will be
diverted to G,.

In this process, the angle between each classifier and hierar-
chical axis needs to be taken into consideration because the
gradually diverted result is expected to perform coherently
for every target gesture, i.e., given similar confidence levels,
the results should not be drastically diverted. If the H value
is reduced or increased by a consistent number, the classifiers
that have larger angle with hierarchical axis would be more sen-
sitive to the confidence level, whereas the similar sensitivity of
every classifier is desired to unify the effect of confidence level
for different gestures. This problem can be compensated by tak-
ing the angles into calculation. To explain this phenomenon,
Figure 4b,c presents in a simplified sketch two examples of
the relative position of classifiers (1-2 and 2-3) and four hier-
archical axes after training. In the nine-dimensional space, all
axes are orthogonal. As can be seen in Figure 4b, a stand-up side
view of the classifier, an implication of the parallelism of the
classifier and two H axes is their property that the fluctuation
on H; and H, axes will not affect the result of Classifier 1-2. As
an example, the angles between classifiers and axes after train-
ing Participant 5 in Section 6 are calculated and provided in
Table 3.

Assume that P is an incoming data that need to be classified.
During the fusion with radar’s result, the point is dragged along
H; axis by AH; to P,. The point gets closed to Classifier 1-2

Ad = AH, sina, (22)

For another classifier in Figure 4c, the «] is larger than o,
when AH; = AH,, which leads to a greater Ad’. However, greater
Ad makes the data point easier to enter another side of the clas-
sifier. Therefore, Ad should be uniformed by changing AH.
Furthermore, this value can be the CL from radar under the
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Table 3. Angles between hierarchic axis and classifiers (Participant 5).

H1 ] H2 [°] H3 ] H4 ]
Classifier 1-2 14.15 —14.15 0 0
Classifier 1-3 7.67 0 —7.67 0
Classifier 1-4 10.22 0 0 -10.22
Classifier 2-3 0 17.69 —17.69 0
Classifier 2-4 0 18.22 0 —18.22
Classifier 3-4 0 0 39.15 —39.15

condition that the uniform extent scale is obtained. The actual
AH is

CL
AH, = r

" sina,

(23)

In summary, assuming that the target gesture is G3, the input
vector of second layer SVM for nth classifier in the testing is

[S; S, S3 S¢ Ss 1—AH, 1—AH, 1 1-—AH,]

(24)

where the value in the third hierarchical axis remains while the
others are reduced.

5.4. Performance Evaluation

The representative performance of the proposed HSVM is eval-
uated as following. The training process has been done by the
training data of Participant 5, followed by manually giving the
target gesture, which hints the result of radar, and varying CL
to observe the tendency of the recognition result.

As can be seen in Figure 4d, at CL=0 and target
gesture = G4, the result presents the same as the result without
HSVM. In other word, in the case of CL = 0, the HSVM classifier
considers only pressure sensor data since the radar’s counterpart
is not confident. What can be clearly seen in the figures is the
gradual increase in the number of target gesture (G4) with
increasing CL. The proportion of samples being diverted to target
gesture for each target gesture is summarized in Figure 4e. It
is getting more samples located in target gesture when CL is
increased. The four tendencies are not ideally uniform due to
their different initial coordinates. Some data points are closer
to a classifier, but some points could be far away.

5.5. Fusion Parameters

In SVM, a crucial parameter is the cost factor in Equation (9).
Also, scale value is introduced to HSVM in Equation (21).
Note that a high-cost factor and scale value results in the situation
that the location of each point will be very close to the hyperplane
at the testing/recognition step. In this case, a minor difference in
AH (CL) will lead to the class diverted. To avoid this situation, the
cost factor and scale value should be kept within a reasonably
small number. After all data of pressure sensors are normalized,
the accuracy and improvement over varying cost factor and scale
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Figure 5. Results for (a) improvement of accuracy versus scale and cost factor as parameters and (b) final accuracy versus scale and cost factor.
The highest values are highlighted. The values are the average number of 15 times simulation to improve reliability.

value are computed and shown in Figure 5a. From the graph, the
highest accuracy (92.67%) occurs when scale = 15 and C=0.12,
while highest improvement is 23.35% at scale = 13 and C = 0.08.
With the purpose of maximizing the accuracy, the parameters of
the highest accuracy in Figure 5b are chosen for next step. The
suitable situation of this scale and cost factor values should sat-
isfy the following three conditions: 1) all data are normalized;
2) five data axes; and 3) four hierarchical axes.
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6. Data Set and Experimental Results
6.1. Data Set

Section 3 introduced the methodology followed for the data col-
lection, whereas Section 4 and 5 provided the data training and
recognition techniques. Based on them, the data were collected
with 15 participants, of which some were involved in previous
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similar experiments (Participant 1, 3, 4, 7, and 10) and others
were totally new to this. For each participant, two sets of data
were collected for training and recognition, respectively, to
mimic calibration and operation step in real applications. The
participants were required to show 13 static states, containing
12 transitions in between, as training data, and 7 static states
(with 6 transitions) in testing data. Every gesture was held for
4. To facilitate data processing, the sequence of all five partic-
ipants was “G1-G2-G3-G4-G3-G2-G1-G3-G1-G4-G2-G4-G1” in
training and “G1-G4-G3-G1-G3-G2-G4” in testing. An example
of training data has been visually shown in Figure 2c. All data
were labeled for supervised learning in training and result veri-
fication in testing.

To see the enhancement, SVM with same parameters is first
applied on data from individual sensors separately, and then,
HSVM is used to fuse them together.

6.2. Results of Pressure Sensor array

We used pressure sensors’ data with a DAG SVM without hier-
archical dimension. The total dimension was five for five pres-
sure sensor inputs. In each 4s gesture, the first 1 (transition
region) is removed to keep the data being processed stable.
Six hyperplanes were created in a five-dimensional space as
shown in Figure 3d. To be coherent with radar, the data were
analyzed starting from the second static state gesture because
radar has no response for the first one. The overall accuracy
of pressure sensors’ data is 69.0% on average. By combining
all subjects’ data and taking the average, the confusion matrix
of the four gestures is shown in Figure 6a. The classifiers pre-
cisely separate G1 from the others but are often confused by
G3 and G4.

6.3. Radar Results

From the classification results of radar in Figure 6b, some sig-
nificant errors occur between Class 1 and 5,2 and 3, 3 and 5, due
to the very small range and velocity difference between each tran-
sition. The average results of “training and testing on the same
group of participants” are ~66.1%. A further + 10.6% improve-
ment is possible using suitable feature selection techniques.
Therefore, only using radar data, the result can yield an accuracy
of 76.7%.

6.4. Fusion Results

6.4.1. Fixed CL Value (First Trial)

Fusion of the two sensors’ data was tested by two methods.
In the first trial, the results of the first layer was passed to next
layer without their CL. Instead, the CL was manually set within
the second layer from 0 to 1 by steps of 0.1. In addition to ana-
lyzing the maximum accuracy, the parameter of maximum
improvement (scale=13 and C=0.08) was also tested and
discussed. The case of the highest improvement shows that
the HSVM can bring the overall accuracy to over 90% even
when the result of only pressure sensors is low. The improve-
ment of accuracy compared with the result of pure pressure
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sensor array and the total accuracy can be observed in
Figure 6¢c. The parameters of scale=15 and C=0.12 were
tested with the concern of maximizing accuracy. From the
chart, it can be found that the highest accuracy and largest
improvement occur when CL = 0.4. Before this point, radar’s
result increased the final accuracy, and subsequently, the fusion
result followed closely the radar’s result. The highest improve-
ment and accuracy are 14.7% and 90.5%, respectively, at
CL=0.4. When scale=13 and C=0.08, it can be seen that
the HSVM was able to reach a 20% improvement. However,
due to its lower final accuracy compared with the scenario of
scale=15 and C=0.12, the scenario of highest accuracy was
tested in the second trial.

6.4.2. CL Generated from Radar Layer SVM (Second Trial)

In the second trial, the CL was received from radar and normal-
ized to 0 to 1 as CL instead of manually setting the value.
Figure 6d provides the confusion matrix of the final result.
The bottom right of the matrix shows that the misclassification
of G3 and G4 in the testing of only pressure sensors’ data was
significantly compensated by the radar enhancer. The radar sen-
sor is more sensitive to the G4, corresponding to gesture “five”
because more fingers move.

The result of each participant and each gesture in this trial is
shown in Table 4. Most cases were improved to at least 90%,
especially for Participant 1 and 5, whose data were drastically
improved to 97.8% and 99.4%, respectively. Interestingly, the
accuracy of enhancer of Participant 1 is the lowest one but yields
the second largest enhancement, which is diametrically opposite
to Participant 3. The main reason is the first layer of Participant 1
generates a lower accuracy, but more precise CL value compared
with Participant 3. However, no increase in Participant 9 was
found, and its accuracy of both before and after fusion yields
an obviously low value, which was assumed caused by nonideal
collection of the data. Overall, the average accuracy of all partic-
ipants is 92.5%, which is slightly higher than the highest
accuracy in the first trial. However, the CL value in the first trial
is manually set and then the highest point was found. More
significantly, taking the CL from the radar is an automatic oper-
ation without the need of analyzing the performance in advance
or overfit the process to a specific scenario or group of users,
which is more realistic and beneficial for practical applications
of the system. Finally, Figure 6e,f shows the agreement between
the result and ground truth before and after fusion. The result
after fusion ideally matches the ground truth with a minor
misclassification.

To summarize, the advances of this work compared with the
other state-of-the-art multi-sensor fusion have been highlighted
in Table 1. Although it is difficult to find an ideally comparable
case (fusion of dynamic and static sensor for gestures), this work
can provide a significant improvement and increase the accuracy
by using only multiple linear classifiers of SVM.

7. Conclusion and Discussion

This article demonstrates the performance of an HSVM fusion
algorithm for the simultaneous combination of wearable and
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(b) Confusion matrix of radar only
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Figure 6. a) Confusion matrix of pressure sensors only. b) Confusion matrix of radar only. In confusion matrices, the diagonal elements are the events
correctly classified, whereas the nondiagonal elements are the misclassifications. c) The result in first trial, both cases of the highest accuracy and
improvement is tested. d) Confusion matrix after data fusion. Finally, the classification results of the Participant 1 (e) before and (f) after fusion

are compared.

contactless sensors. Unlike other multi-sensory systems, the
fusion takes place neither at the feature level nor the decision
level, but in between. The overall accuracy of the proposed
HSVM learning system was improved by adding a radar as an
enhancer to the pressure sensors. This resulted in an average
improvement of 23.5%, such that the classification accuracy
reached 92.5%. To further demonstrate the capabilities of
HSVM, the parameter of the highest improvement was tested
because the parameter of highest accuracy requires greater
computational time and processing power. The results showed
that the highest improvement can reach 19.2%. Moreover,
the HSVM was still able to improve its accuracy to >90%
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when the classification accuracy of the pressure sensors’ data
was <75%.

The experimental analysis and results from 15 individual
participants confirmed that the HSVM could be a promising
approach in organizing different sources of data in a flexible
and scalable multi-sensor intelligent system. Further investiga-
tions of the HSVM technique may involve 1) increasing the
number of layers or sensors to combine more data sources;
2) analytically describing and modeling the effect of different
parameters; 3) investigating the computational and implemen-
tation speeds; and 4) examining other machine-learning
approaches in addition to SVM in a hierarchical structure.
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Table 4. Accuracy for each participant in the testing trial.

Result of pressure Result of Accuracy

sensors only [%] fusion [%] improvement [%)]
Participant 1 81.2 97.0 15.7
Participant 2 38.0 79.9 41.9
Participant 3 87.3 91.0 3.7
Participant 4 86.9 97.7 10.8
Participant 5 83.6 95.1 11.5
Participant 6 75.0 99.8 24.8
Participant 7 78.5 87.5 9.0
Participant 8 83.5 100.0 16.5
Participant 9 56.0 52.4 -35
Participant 10 86.9 100.0 13.1
Participant 11 37.2 99.6 62.4
Participant 12 78.2 90.2 12.0
Participant 13 59.0 97.5 38.6
Participant 14 52.4 100.0 47.6
Participant 15 51.3 99.8 48.6
Average 69.0 92.5 235

Supporting Information

Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements

This work was partially supported by the Royal Society under grant RSG\
R1\180269”, EP/R511705/1 and EP/R041679/1 from the UK EPSRC. The
authors appreciate all the participants with data collection.

Conflict of Interest

The authors declare no conflict of interest.

Keywords

gesture recognition, hierarchical support vector machine, multi-sensor
fusion

Received: July 29, 2019
Revised: August 19, 2019
Published online: September 30, 2019

[1] M. Liggins I. 1., D. Hall, ). Llinas, Handbook of Multisensor Data Fusion:
Theory and Practice, 2, CRC press, Boca Raton, FL 2017.

[2] B. Khaleghi, A. Khamis, F. O. Karray, S. N. Razavi, Inf. Fusion 2013,
14, 28.

[3] J. Liu, M. Gong, K. Qin, P. Zhang, IEEE Trans. Neural Netw. Learn.
Syst. 2018, 29, 545.

Adv. Intell. Syst. 2019, 1, 1900088 1900088 (13 of 13)

www.advintellsyst.com

[4] B. Waske, J. A. Benediktsson, IEEE Trans. Geosci. Remote Sens. 2007,
45, 3858.

[5] a) G. Fortino, S. Galzarano, R. Gravina, W. Li, Inf. Fusion 2015, 22, 50;
b) W. Li, G. Wei, D. W. Ho, D. Ding, IEEE Trans. Neural Netw. Learn.
Syst. 2018; c) R. C. Luo, M.-H. Lin, R. S. Scherp, IEEE J. Robot. Autom.
1988, 4, 386; d) J. Hang, J. Zhang, M. Cheng, IET Renew. Power Gener.
2014, 8, 289.

[6] C. Tawk, M. in het Panhuis, G. M. Spinks, G. Alici, Adv. Intell. Syst.
2019, 1, 1900002.

[7] X. Liang, R. Ghannam, H. Heidari, IEEE Sens. J. 2019, 19, 1082.

[8] H. Li, A. Shrestha, H. Heidari, |. L. Kernec, F. Fioranelli, IEEE Sens. J.
2018, 1.

[9] H. Li, A. Shrestha, H. Heidari, ). Le Kernec, F. Fioranelli, IEEE .
Electromagn. RF Microwaves Med. Biol. 2018, 2, 102.

[10] H. Li, X. Liang, A. Shrestha, Y. Liu, H. Heidari, ). Le Kernec,
F. Fioranelli, IEEE J. Electromagn. RF Microwaves Med. Biol. 2019.

[11] K. Liu, C. Chen, R. Jafari, N. Kehtarnavaz, IEEE Sens. J. 2014,
14, 1898.

[12] P. Molchanov, S. Gupta, K. Kim, K. Pulli, in IEEE Int. Conf- Workshops
Autom. Face Gesture Recognit., Vol. 1, IEEE, Ljubljana, 2015, p. 1.

[13] X. Zhang, X. Chen, W.-H. Wang, J.-H. Yang, V. Lantz, K.-Q. Wang, in
Int. Conf. Intell. User Interface, ACM, 2009, p. 401.

[14] N. Dawar, N. Kehtarnavaz, IEEE Sens. J. 2018, 18, 9660.

[15] J. L. Kernec, F. Fioranelli, C. Ding, H. Zhao, L. Sun, H. Hong,
J. Lorandel, O. Romain, IEEE Signal Process. Mag. 2019, 36, 29.

[16] X. Liang, H. Heidari, R. Dahiya, in IEEE New Gener. Circuits Syst.,
Genova, Italy 2017, p. 181.

[17] A. Dementyeyv, ). A. Paradiso, in Proc. Annu. ACM Symp. User Interface
Software Technol., ACM, Honolulu, Hawaii, USA 2014, p. 161.

[18] H. Heidari, E. Bonizzoni, U. Gatti, F. Maloberti, R. Dahiya, IEEE Sens.
J. 2016, 16, 8736.

[19] K. O. Htet, H. Fan, H. Heidari, in IEEE Int. Symp. Circuits Syst.
(ISCAS), Florence, Italy 2018, pp. 1-5.

[20] a) R. Ricci, A. Balleri, IET Radar Sonar Navig. 2015, 9, 1216;
b) F. Fioranelli, M. Ritchie, H. Griffiths, IEEE Geosci. Remote Sens.
Lett. 2015, 12, 1933; c) A. Shrestha, J. Le Kernec, F. Fioranelli,
E. Cippitelli, E. Gambi, S. Spinsante, in Int. Conf. Radar Syst., |ET,
Belfast, 2017, p. 6; d) M. S. Seyfioglu, A. M. Ozbayoglu,
S. Z. Giirbiiz, IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 1709.

[21] V. C. Chen, W. J. Miceli, D. Tahmoush, Radar Micro-Doppler
Signatures:  Processing and  Applications, The Institution of
Engineering and Technology, Hertfordshire 2014.

[22] ). ). M. De Wit, R. I. A. Harmanny, P. Molchanov, in Int. Radar Conf.,
IEEE, Lile, 2014, p. 1.

[23] S. Z. Gurbiiz, B. Erol, B. Cagliyan, B. Tekeli, IET Radar Sonar Navig.
2015, 9, 1196.

[24] V. N. Vapnik, The Nature of Statistical Learning Theory, Springer-
Verlag, New York, NY 2000.

[25] J. Platt, Microsoft Research, MSR-TR-98-14, April 1998.

[26] S.S. Keerthi, S. K. Shevade, C. Bhattacharyya, K. R. K. Murthy, Neural
Comput. 2014, 13, 637.

[27] F. Cai, V. Cherkassky, IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 997.

[28] N. Cristianini, ). Shawe-Taylor, An Introduction to Support Vector
Machines: and Other Kernel-Based Learning Methods, Cambridge
University Press, Cambridge, UK, 2000.

[29] P. Chen, S. Liu, in Fifth Int. Conf. Nat. Comput., Tianjin, China 2009,
pp. 460-462.

[30] ). F. Wang, S. Peng, J. C. Wang, P. C. Lin, T. W. Kuan, in |EEE Int. Conf.
Syst. Man Cybernetics, IEEE 2011, pp. 1621-1625.

[31] Y. Xue, Z. Ju, K. Xiang, ). Chen, H. Liu, Appl. Sci. 2017, 7, 358.

© 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


http://www.advancedsciencenews.com
http://www.advintellsyst.com

	Fusion of Wearable and Contactless Sensors for Intelligent Gesture Recognition
	1. Introduction
	2. Advances in Sensors&aposx; Fusion
	3. Data Acquisition and Experimental Setup
	3.1. Wearable Resistive Pressure Sensor Array
	3.2. Contactless Radar Sensing and Preprocessing
	3.3. Data Collection

	4. Multi-Class Support Vector Machine
	4.1. Linear Support Vector Machine
	4.2. Sequential Minimal Optimization
	4.3. Directed Acyclic Graph SVM

	5. Multi-Layer HSVM for Data Fusion
	5.1. Principle
	5.2. Training
	5.3. Testing for Recognition
	5.4. Performance Evaluation
	5.5. Fusion Parameters

	6. Data Set and Experimental Results
	6.1. Data Set
	6.2. Results of Pressure Sensor array
	6.3. Radar Results
	6.4. Fusion Results
	6.4.1. Fixed CL Value (First Trial)
	6.4.2. CL Generated from Radar Layer SVM (Second Trial)


	7. Conclusion and Discussion


