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Abstract: Interrupted time series (ITS) analysis is being increasingly used in epidemiology. 

Despite its growing popularity, there is a scarcity of guidance on power and sample size con-

siderations within the ITS framework. Our aim of this study was to assess the statistical power 

to detect an intervention effect under various real-life ITS scenarios. ITS datasets were created 

using Monte Carlo simulations to generate cumulative incidence (outcome) values over time. 

We generated 1,000 datasets per scenario, varying the number of time points, average sample 

size per time point, average relative reduction post intervention, location of intervention in the 

time series, and reduction mediated via a 1) slope change and 2) step change. Performance 

measures included power and percentage bias. We found that sample size per time point had 

a large impact on power. Even in scenarios with 12 pre-intervention and 12 post-intervention 

time points with moderate intervention effect sizes, most analyses were underpowered if the 

sample size per time point was low. We conclude that various factors need to be collectively 

considered to ensure adequate power for an ITS study. We demonstrate a means of providing 

insight into underlying sample size requirements in ordinary least squares (OLS) ITS analysis 

of cumulative incidence measures, based on prespecified parameters and have developed Stata 

code to estimate this.

Keywords: epidemiology, interrupted time series, sample size, power, bias

Introduction
Interrupted time series (ITS) analysis is being increasingly used in epidemiology.1–3 

It is an accessible and intuitive method that can be straightforward to implement and 

has considerable strengths.4 A common application is when population-level repeated 

measures of an outcome and/or exposure are available over time, both before and 

after some well-defined intervention such as a health policy change1,2,5 or a naturally 

occurring event of interest.6,7

Despite the substantial growth in the use of ITS methods, relatively little practical 

guidance has been developed in terms of methodological standards within the ITS 

framework,1,3 including a scarcity of guidance on required sample size. Sample size 

planning is often a key component of designing a study and should be conducted prior 

to analysis,8 although this is an aspect very often overlooked in ITS studies, with many 

being underpowered.9

Information on the power associated with various numbers of repeated measures 

of an outcome (ie, time points) has been previously reported,10 with rules of thumb 

concerning the minimum number of pre- and post-intervention time points needed, 

such as 3,3 6,11 8,12 and ≥10.9 However, researchers seeking to aggregate patient-level 
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data into a population-level time series to conduct an ITS are 

confronted with the practical issue of considering a suitable 

underlying sample size of subjects/patients per aggregate 

time point.13 Although longer time series have been shown 

to have more power than shorter time series, it seems rea-

sonable to propose that ITS analyses (even those with many 

time points) with only a small number of subjects per time 

point may contain so much noise as to render it improbable 

of detecting a true impact of an intervention under study. 

Although the ITS method has many strengths, if a given 

analysis is not adequately powered it may lead to publication 

of weak and spurious findings.14,15

Given this paucity of guidance on sample size calcula-

tion, our aim in this study was to use a simulation approach 

to estimate power in an ITS analysis case study of repeated 

measures of cumulative incidence generated from routinely 

collected health care data. We aimed to quantify the power 

available in relation to the underlying sample size per time 

point, while varying a number of other key parameters of 

interest. Furthermore, we set out to make available Stata 

code to be readily usable by epidemiologists as a tool to 

generate estimates of required sample size for similar ITS 

applications.

Methods
Study design
We used Monte Carlo simulations, the strengths of which 

have been well described previously.16,17 Briefly, simulation 

studies involve generating data with known characteristics 

defined by prespecified input parameter values. Consequently, 

because the truth regarding these characteristics is known, 

it is possible to empirically evaluate the performance of a 

given statistical model when fitted to the simulated data.18,19

Aims
Our aim was to describe the power associated with the mean 

sample size per time point to detect a change in 1) level and 

2) trend in an outcome (cumulative incidence) following a 

defined intervention in the ITS framework, using ordinary 

least squares (OLS) regression. We considered a range of 

values for various other factors such as total number of time 

points, effect size, and location of intervention in the time 

series. We set out to apply the methods within the context of 

a specific case study using a recent ITS analysis, where we 

evaluated the impact of a UK National Institute for Health 

and Care Excellence (NICE) technology appraisal on the 

cumulative incidence of joint replacement within the Clinical 

Practice Research Datalink (CPRD).20

ITS scenarios
There are many factors within an OLS ITS framework 

that could conceivably inf﻿luence the power to detect the 

impact of an intervention. Although the following is not 

an exhaustive list, we here describe the main factors that 

we investigated:

1.	 Total number of time points in the time series, N 

(Figure 1A and B): as described in the “Introduction” 

section, the ITS approach relies on repeated observations 

of an outcome event over time, usually at equally spaced 

intervals such as days, weeks, months, quarters, or years. 

We investigated nine values for the total number of time 

points (N), ranging from 6 to 50.

2.	 Number of subjects per time point, n (Figure 1C and D): 

the sample size per time point will impact the accuracy 

of outcome estimates and hence the dispersion of a given 

time series. It is therefore an important factor influencing 

the power to detect an “interruption”. We investigated 11 

values for n, ranging from approximately 150 to 5,700 

patients per time point, which for our specific case study 

corresponded to a mean number of outcome events per 

time point that ranged from 5 to 200 (Supplementary 

materials).

3.	 Nature of intervention impact (Figure 1A–D): the impact 

of an intervention can be modeled as a “step” change 

in the level of outcome and/or a “slope” change in the 

trend of outcome.4,21 More complex realities can be 

incorporated such as multiple interventions, waning or 

delayed effects, and nonlinear responses.2,21 However, 

for the purpose of the current work, we only considered 

intervention effects mediated through either 1) a step 

change or 2) a slope change.

4.	 Effect size, ie, magnitude of intervention impact: one 

of the assumptions of ITS analysis is that the pre-

intervention level and trend of outcome can be used 

to predict post-intervention counterfactual estimates, 

ie. expected values of the outcome in the time period 

after the intervention had pre-intervention level/trend 

of outcome continued uninterrupted.2,21 The impact of 

intervention can then be expressed as the difference 

between the estimated counterfactual outcome value 

for a given post-intervention time point vs the estimated 

modeled outcome value for the same time point using 

the observed data.22 In practice, this has often been done 

for the midpoint of the post-intervention period to yield 

an average post-intervention change.5,20,23 We therefore 

used the magnitude of this average post-intervention 

change expressed as a relative % to express effect size, 
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defined for mid-time series interventions as the step or 

slope change resulting in a –15%, –34%, –50%, and 

–75% reduction.

5.	 Mean pre-intervention level and trend of outcome: the 

absolute pre-intervention level of outcome is an impor-

tant factor. For example, a relative 50% reduction in a 

common outcome should be easier to detect than a rela-

tive 50% reduction in a rare outcome. Furthermore, a 

pre-intervention trend in outcome may exist, which may 

also have an effect on power. We therefore considered 

two parameters: the mean pre-intervention outcome 

value (defined using the pre-intervention midpoint) in 

conjunction with a pre-intervention trend parameter. In 

main analyses, we only explored scenarios (based on 

our prior CPRD study20), where mean pre-intervention 

cumulative incidence was 3.5% and there was either 1) 

no pre-intervention trend (for step change scenarios) or 

2) an upward trend (for slope change scenarios), as shown 

in Figure 1. We scaled trend parameters according to N 

so that absolute pre-intervention values were constant 

across all mid-time series intervention scenarios. Exact 

parameter values for these are provided in the “Supple-

mentary materials” section.

6.	 Location of intervention in time series: location of 

intervention in the time series may also have an impact 

on power as this will affect the balance in the number 

of pre-intervention and post-intervention time points to 

be modeled. Locations investigated were at one-third, 

midway, and two-thirds from the beginning of the time 

series. For trend change scenarios in our case study, we 

used the same pre-intervention and post-intervention 

trends when investigating early/late interventions as per 

the corresponding midway intervention setting within 

each N scenario (Supplementary materials).

Data-generating process
Data were generated using Stata v15.2 (StataCorp LLC, 

College Station, TX, USA), the general principles of which 

have been described elsewhere.24 Empty time series datasets 

were created of length N (total number of time points). 

Three ITS variables were inserted: time point identifier 

(integer), post-intervention indicator (binary), and post-

intervention time point identifier (integer).21 The time 

point identifier was created first, then used in combination 

with the “location of intervention” parameter to generate 

the other two ITS variables. The underlying sample size 

for each time point (n
t
) was then simulated from a normal 

distribution with mean n (a key parameter of interest; 11 

values investigated) and SD of n/3. The number of outcome 

events occurring at each time point was then drawn as a 

Figure 1 Example simulation scenarios for (A) less time points vs (B) more time points; (C) smaller sample size per time point vs (D) larger sample size per time point.
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binomial random variate (n
t
, p

t
), where n

t
 represents the 

sample size and p
t
 is the probability of outcome. p

t
 was a 

linear function defined using the ITS variables in combina-

tion with other scenario-specific parameter values (equa-

tion included in the “Supplementary materials” section). 

The number of events per time point and n
t
 were used to 

derive the cumulative incidence time series. A total of 

1,000 Monte Carlo repetitions were carried out for each 

unique scenario.

Methods of analysis
A segmented linear regression model was fitted to each cre-

ated dataset. This took the form of model (1) for step change 

scenarios and model (2) for slope change scenarios:

(1)	Y
t
=β

0
 + β

1
*time point

t
 + β

2
*intervention_indicator

t
 + e

(2)	Y
t
=β

0
 + β

1
*time point

t
 + β

3
*post_intervention_timepoint

t
 + e

where Y
t
 is the value of outcome at time point t. b

0
 estimates 

the level of the outcome just before the beginning of the time 

series. b
1
 estimates the pre-intervention trend, b

2
 estimates 

the change in level between the time point immediately 

before vs after the intervention, and b
3
 estimates the change 

in trend occurring immediately after the intervention. e is 

the error term.

Estimands
The target of inference was the change in outcome following 

a defined intervention, specifically testing the null hypoth-

esis of no change (ie, β
2
=0 [model 1] or β

3
=0 [model 2]). 

The outcome at each time point was a proportion, which in 

our case study was the 5-year cumulative incidence of joint 

replacement in rheumatoid arthritis patients.20

Performance
The coefficients, standard error, and P-values from these 

models were stored, and the empirical power to reject the 

null hypothesis of no post-intervention change was calculated 

as the proportion of simulations, where the P-value for the 

intervention variable coefficient (step/slope change) was 

<0.05.19,24,25 This was represented graphically as contour plots 

across scenarios according to N and n. For the convenience 

of comparison, additional presentation was made for power 

according to different effect size and location scenarios while 

keeping N constant (N=28). In addition, the percentage bias19 

of the regression coefficients was calculated for midway step 

and slope change scenarios (while keeping N constant), which 

is defined as follows:

	

Percentage bias

Average estimate across simulations

True parame
=

- tter value

True parameter value



















*100

	

Sensitivity analysis
To explore the impact of pre-intervention level of outcome, 

we repeated main analyses investigating power for slope and 

step changes while keeping N constant (N=28) but varying 

pre-intervention level from 3.5% to 8% and then to 20%. 

Stata program
Although we based the current analyses on a case study 

exploring a range of parameter values adapted from our 

prior CPRD study as specified earlier,20 we also developed 

a Stata program (Supplementary materials) with associated 

documentation (Supplementary materials) to provide a 

ready-to-use means for assessing power associated with any 

valid list of (nine) input parameter values as described in the 

“Supplementary materials” section.

Results
Results from our case study are presented in the following 

paragraphs describing the impact of N and n on power within 

several ITS scenarios (Figure 2A and 2B). Results from analy-

ses exploring different effect sizes (whilst keeping N constant) 

are presented in Figures 3A and 3B. Although the main results 

pertained to a setting where the mean pre-intervention level 

of outcome for mid-time series interventions was 3.5%, the 

Stata program developed can be used to explore alternative 

input parameter values (Supplementary materials).

Slope change
As expected, power increased as N and/or n increased 

(Figure 2A) and as effect sizes became larger (Figure 3A). 

Results for different N and n combinations for each effect 

size investigated are provided in the “Supplementary materi-

als” section. These indicated that nearly all mid-time series 

intervention scenarios with a large effect size (–75%) had 

at least 80% power when there were >24 total time points, 

even when there was a very small sample size per time 

point (approximately 150 subjects, which in this case-study, 

corresponded to only five outcome events per time point). 

However, when the effect size was small (–15%) then to 

achieve 80% power an analysis had to either contain a large 

N or very large n (Supplementary materials). While keeping 

other factors constant (effect size =-34% and N=28), power 
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was greater in scenarios with mid-time series interventions, 

with comparably less power in scenarios with earlier/later 

interventions (Figure 4A). The percentage bias in model 

coefficients was small, and this trended toward zero as sample 

size increased (Figure 5).

Step change
Similar to slope change scenarios, power increased as N 

and n became larger (Figure 2B) or as the effect size was 

larger (Figure 3B). Generally, there was less power in step 

change scenarios than in corresponding slope change sce-

narios (Figure 2A and B), with nearly all mid-time series 

intervention scenarios being inadequately powered when the 

effect size was only –15% (Figure 3B and Supplementary 

materials). Even when effect sizes were large and the number 

of time points was moderate (14 pre-intervention and 14 

post-intervention time points), analyses were underpowered 

if sample size per time point was low (Figure 3B and Supple-

mentary materials). Interestingly, little difference was found 

in power following an early or late intervention as compared 

to when the intervention occurred midway through (Figure 4). 

The percentage bias in model coefficients was small, and 

this trended toward zero as sample size increased (Figure 5).

Discussion
Main findings
This study demonstrates that simple rules regarding the num-

ber of time points are not adequate by themselves to denote 

an ITS analysis as sufficiently powered. Other factors such 

as the sample size per time point, expected effect size, loca-

Figure 2 Empiracle power to detect a relative 34% reduction in outcome, where mean pre-intervention incidence is 3.5%: by the number of time points and mean sample 
size per time point: (A) slope change (B) step change.
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tion of intervention in the time series, and pre-intervention 

trends need to be considered. For example, in our case study 

where mean pre-intervention level of outcome was 3.5%, to 

achieve 80% power to detect a relative 34% post-intervention 

step change reduction, with 14 pre- and 14 post-intervention 

time points, one needed over 1,000 subjects per time point 

(ie, >28,000 total subjects), which may or may not be realistic 

for a given study. However, three pre- and post-intervention 

Figure 3 Empirical power in the case studya (stratified by effect size) to detect an intervention resulting in (A) a slope change or (B) step change.
Note: aAssuming a mean pre-intervention outcome of 3.5%, mid-time series intervention, and 28 total time points.
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Figure 4 Empirical power in the case studya (stratified by intervention location) to detect an intervention resulting in (A) a slope change or (B) step change.
Note: aAssuming a mean pre-intervention outcome of 3.5%, 28 total time points, and an average 34% relative reduction post intervention (early/late slope changes were 
identical to midway scenario, therefore, achieved a different effect size).
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time points were equally sufficient to achieve 80% power 

in relatively rare situations of large intervention effect sizes 

combined with very large sample sizes per time point (Sup-

plementary materials). These results underline the importance 

of robust pre-study sample size planning. Estimates arising 

from scenarios with a very small n were only slightly biased, 

which disappeared as n increased (Figure 3).

That power increases as N increases is an expected find-

ing and has previously been shown for fixed ratios of effect 

size to the SD of the time series.10,26 However, we in this 

study addressed the previously undescribed trade-off between 

N and n. This is an important consideration and a helpful 

development. First, the SD of a given number of repeated 

population-level outcome measures may likely be difficult 

for applied researchers to estimate in advance of a proposed 

ITS study. Second, exploring this trade-off between N and n 

informs to what extent it may be beneficial (in terms of power) 

when generating an aggregate ITS dataset to sacrifice sample 

size per time point to increase the number of time points (or 

vice versa). It allows a combination of N and n to be selected 

to optimize power. Although the exact nuances of this unique 

trade-off were scenario specific, in most cases only very little 

gain in power was achieved when a time series was lengthened 

at the expense of time point sample size, although gains were 

more noticeable where a very short time series was lengthened.

To the best of our knowledge, a differential power accord-

ing to whether an intervention impact is mediated via a slope 

or step change has not previously been investigated. We 

found that power was greater in slope change scenarios, a 

likely explanation being that our effect size was the average 

difference between post-intervention values and counterfac-

tuals, which in the case of slope change scenarios continued 

to increase as per the pre-intervention slope and therefore 

made detection of a change more probable.

Within scenarios with a slope change, we found power 

to be greater in settings with a balanced number of pre-

intervention and post-intervention time points (as opposed 

to earlier/later interventions), while the location of the inter-

vention had little impact on power to detect step changes and 

was even marginally greater when the intervention occurred 

early. Although this was unexpected, it is not without some 

support from previous work.10

Limitations
Our study is subject to various limitations. Each time point 

was a cumulative incidence, and given that individual sub-

jects/patients could only be included in a single time point, 

we treated time points to be independent. As such, we did not 

explore what impact autocorrelation may have on estimates, 

although this remains a subject for further investigation. 

Despite the availability of ITS approaches that explicitly 

model autocorrelation, such as autoregressive integrated 

moving average (ARIMA) models,27 it would seem that 

where the assumptions of OLS regression are met then this 

is preferable for epidemiological studies where the goal is 

likely to be causal inference rather than future prediction. 

Indeed, while autocorrelation needs to be addressed where 

present, it has been noted that in epidemiological studies it 

can often be accounted for by controlling for other variables,2 

and interestingly of a recent review of over 200 drug utiliza-

Figure 5 Percentage bias in estimates of intervention impact in the case studya: stratified by the nature of impact.
Note: aAssuming a mean pre-intervention outcome of 3.5%, total of 28 time points, and an average 34% relative reduction post intervention.
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tion studies implementing ITS analysis, 50% were found to 

use segmented linear regression.1 Specification of ARIMA 

models are frequently cited to require a minimum of 50 time 

points,28 with >100 being preferable,27 yet it is common to 

have less than this minimum available in epidemiology con-

texts using routinely collected data.10,21,23,29 For these reasons, 

our focus in this study was on “short” time series where we 

considered 50 time points as a maximum and used Durbin–

Watson statistics to confirm that first-order autocorrelation 

was not present. Previous work investigated the relationship 

between the number of time points and power in the presence 

of autocorrelation,10,30 where positive autocorrelation has 

been shown to reduce power and negative autocorrelation 

to increase power.10 Similarly, we did not consider season-

ality nor situations where there may be a delay or waning 

intervention effect.

Another limitation is that our definition of effect size 

as the difference between post-intervention time points 

and counterfactual time points (ie, what would have been 

observed had pre-intervention level/slope continued unin-

terrupted) involves extrapolation and therefore uncertainty. 

While this is often done in practice, with uncertainty of model 

estimates expressed using CIs,22 there is still the assumption 

that pre-intervention trends would have continued unchanged.

We only investigated scenarios where the repeated out-

come measure is a cumulative incidence (ie, a proportion). 

This is a common epidemiological measure, but incorporat-

ing other common measures such as person-year rates, means 

(eg, length of hospital stay or drug doses prescribed), and 

frequencies is a logical next step and remains the subject for 

imminent further investigation.

Strengths
The disentangling of N and n is a key strength and novel 

aspect of the current study, as is the separate consideration 

of post-intervention step and slope changes. Although we did 

not investigate the impact of varying all of the parameters 

defined, the development and inclusion of a Stata program 

are important features of the investigation, facilitating 

researchers to estimate sample size requirements for future 

ITS studies in similar applications and thereby promoting 

the avoidance of carrying out underpowered analyses. We 

are currently working on using this tool as the basis for an 

online calculator. It is also worth mentioning that we based 

the parameter values for our case study on a “real-world” 

clinical scenario20 to increase the applicability of the findings, 

rather than starting from arbitrary parameter values.

Conclusion
Multiple factors influence the power of OLS ITS analysis, 

and these should be collectively taken into account when 

considering the feasibility of a proposed ITS study. We have 

demonstrated how a simulation approach can be used to 

estimate the power available within specific ITS scenarios 

and provide Stata code to facilitate pre-analysis sample size 

planning of future ITS studies within similar applications.
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