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Abstract
1.	 The balance between economic growth and wildlife conservation is a priority for 

many governments. Enhancing realism in assessment of population‐level impacts 
of anthropogenic mortality can help achieve this balance. Population Viability 
Analysis (PVA) is commonly applied to investigate population vulnerability, but 
outcomes of PVA are sensitive to formulations of density‐dependence, environ-
mental stochasticity and life history. Current practice in marine assessments is to 
use precautionary models that assume no compensation from density‐depend-
ence or rescue‐effects via “re‐seeding” from other colonies. However, if we could 
empirically quantify regulatory population processes, the responses of popula-
tions to additional anthropogenic mortality may be assessed with more realism in 
PVA.

2.	 Using Bayesian state‐space models fitted to population time series from three 
sympatric seabird populations, selected for varied life histories, we inferred the 
extent to which their dynamics are driven by environmental stochasticity and 
density‐dependence.

3.	 Based on these inferences, we conducted an exhaustive PVA across credible pa-
rameterizations for intrinsic and extrinsic population regulation, simulated as a 
closed and re‐seeded system. Scenarios of anthropogenic mortality, along a slid-
ing scale of precaution, were applied both proportionally and as a fixed quota 
using Potential Biological Removal (PBR).

4.	 Baseline results from fitting revealed clear environmental regulation in two of 
our three species. Crucially, we found that for our empirically derived, realistic 
model parameterizations there are risks of decline to real populations even under 
very precautionary mortality scenarios. We find that PBR is dubious in application 
as a sustainable tool for population assessment when we account for regulation. 
Closed versus re‐seeded models showed a large divergence in outcomes, with 
sharper declines in closed simulations. Fixed‐quota mortality typically induced 
greater population declines comparative to proportional mortality, subject to reg-
ulation and re‐seeding.

www.wileyonlinelibrary.com/journal/jpe
mailto:﻿
https://orcid.org/0000-0002-4786-7619
http://creativecommons.org/licenses/by/4.0/
mailto:j.miller.5@research.gla.ac.uk


     |  2119Journal of Applied EcologyMILLER et al.

1  | INTRODUC TION

Globally, many species are facing decline and potential extinction 
from anthropogenic activities (Murphy & Romanuk, 2014; Ripple et 
al., 2016). Seabird populations are at risk from additional anthropo-
genic mortality from by‐catch, oiling, harvesting and marine renew-
ables (Croxall et al., 2012). The UK coastline hosts internationally 
significant numbers of seabirds, especially during the breeding 
season, and several of these species have been assessed as po-
tentially at risk from offshore wind installations (Furness, Wade, & 
Masden, 2013). The marine renewables industry (Platteeuw et al., 
2017) is seeking expansion, incentivized, in part, by internationally 
agreed sustainable‐energy targets (Marques, Fuinhas, & Manso, 
2010). Poorly planned developments may cause impacts such as 
additional mortality from collision strikes (Johnston, Cook, Wright, 
Humphreys, & Burton, 2014). Industry, especially in countries bear-
ing a legal requirement for environmental assessment (European 
Commission, 2011), has a responsibility to minimize its impact on 
wildlife. Assessment approaches vary, but generally contain an ap-
praisal of risk to populations from impacts of additional mortality 
(Buckland, Goudie, & Borchers, 2000), following the precautionary 
principle (Sands & Peel, 2012), supported by EU directives (European 
Commission, 2009).

Determining the consequences of additional mortality to a pop-
ulation requires an estimate of population size, an understanding 
of life history, estimates of demographic rates and how these are 
affected by regulating influences such as density‐dependence and 
environmental stochasticity (Lande, Engen, & Saether, 2003). At 
the point of assessment and more generally in population ecology, 
there are inherent uncertainties associated with these parameters 
(Clark, 2003). Assessments of inadequately studied populations may 
use proxy values from populations of the same or similar species for 
productivity or survival rates (Kindsvater et al., 2018). In addition, a 

lack of empirical estimation of connectivity (immigration or emigra-
tion) often leads practitioners to use closed system models (Hanski, 
1998). Empirical estimates of population regulation across spatio‐
temporal scales are also deficient. The shape and magnitude of den-
sity‐dependence is difficult to quantify in wild populations despite 
its recognized importance for population dynamics (Bonenfant et 
al., 2009; Knape & deValpine, 2012). It is also challenging to derive 
quantitative estimates for extrinsic regulation from environmental 
stochasticity, especially since it may be confounded with intrin-
sic regulation in short time series (Engen, Bakke, & Islam, 1998). 
Understanding how population persistence is affected by variable 
combinations of density‐dependence and environmental regula-
tion is unknown (Saether, Engen, Lande, Both, & Visser, 2002). To 
increase the credibility of predicted outcomes from population as-
sessments it is essential to represent biological reality whilst captur-
ing uncertainty in estimates of understudied processes (Saunders, 
Cuthbert, & Zipkin, 2018). Failure to faithfully reflect accuracy and 
precision in predictions leads to one of two detrimental outcomes 
for human‐wildlife conflict; over‐precaution due to an inflated esti-
mate of risk may curtail economically important activities, whilst un-
detected risks to population viability, could set sensitive populations 
on a path to extinction.

Reflecting knowledge gaps in connectivity and the ability to cap-
ture population regulation, UK seabird populations are modelled in an 
environmental impact assessment (EIA) assuming no immigration and, 
often, no density‐dependence. The risk of additional mortality to a 
seabird population from collision is estimated typically across a period 
of 25 years, the operational life span of a wind farm, and evaluated 
as to how this estimate will affect the population. Population viability 
analysis (PVA) (Boyce, 1992) and Potential Biological Removal (PBR) 
(Wade, 1998), are among the methods used to evaluate anthropogenic 
additional mortality on seabird populations under assessment. PVA is 
an application of projection matrix modelling. PBR, designed initially 

5.	 Synthesis and applications. Practitioners using arbitrary formulations of popula-
tion regulation risk over‐precaution (economic constraint) or under‐precaution 
(endangering populations). The demands of increased economic development and 
preservation of wildlife require that methodologies apply techniques that confer 
reality and rigour to assessment. The current practice of employing models lacking 
density‐dependence and empirical environmental information imposes limitations 
in the efficacy of estimating impacts. Here, we provide a method to quantify the 
conditions that predominantly regulate a population and exacerbate the risk of 
decline from anthropogenic mortality. It is in the interests of both developers and 
conservationists to apply methods in population impact assessments that capture 
realism in the processes driving population dynamics.
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for marine mammal assessment, is a simple harvest assessment cal-
culating the maximum number of animals that may be sustainably 
removed from a given population. In EIA, PVA usually contains some 
estimate of demographic rates, with more recent assessments at-
tempting to include environmental stochasticity by implementing the 
demographic rates as stochastic processes. Although some models 
may include a form of density‐dependence, there is ongoing debate 
about the practical justification for its inclusion (Green, Langston, 
McCluskie, Sutherland, & Wilson, 2016; Horswill, O'Brien, & Robinson, 
2016). In general, PVA has been shown to be sensitive to estimates of 
parameters, affecting predicted outcomes (Cook & Robinson, 2016; 
Reed et al., 2002). PBR requires minimal demographic input, save for 
an adult survival estimate and the age at first breeding. There is an 
assumption of compensatory density‐dependence included in the 
model background (Niel & Lebreton, 2005). The PBR calculation re-
turns a threshold value of additional mortality to a population above in 
which a decline is expected, it contains no stochastic component and 
no population projection. PBR has been criticized as a tool for EIA as 
it fails to quantify potentially serious population consequences which 
can occur below this threshold (Green et al., 2016; O'Brien, Cook, & 
Robinson, 2017).

Environmental signals affecting population dynamics can be ex-
plored using time‐series data (Frederiksen, Mavor, & Wanless, 2007; 
Leirs et al., 1997), and density‐dependence signals may also be ex-
tracted from population time‐series (Brook & Bradshaw, 2006; Lande 
et al., 2002). For realistic assessment, we should aim to derive em-
pirical values for the strength of density‐dependence and the magni-
tude of environmental stochasticity from such data. Exploring these 
values in a PVA would provide multiple intrinsic and extrinsic regu-
latory scenarios against which additional mortality may be assessed. 
Furthermore, modelling the populations with a rescue‐effect (where 
immigration prevents extinction, Brown & Kodric‐Brown, 1977) could 
help us assess the sensitivity of outcomes to the assumption of closed 
populations. We therefore aimed to assess how several levels of an-
thropogenic mortality can impact real seabird populations (both closed 
and open to a rescue‐effect), operating under empirically derived esti-
mates of environmental stochasticity and density‐dependence.

We used Bayesian methods to fit a state‐space population model 
to historical data from sympatric populations of three well‐studied 
UK seabird species with divergent life histories: Northern gannet 
Morus bassanus L., black‐legged kittiwake Rissa tridactyla L. and 
common guillemot Uria aalge Pontoppidan. This provided posterior 
credible intervals for density‐dependence and environmental sto-
chasticity for each population. These intervals defined parameter 
ranges for the strength of density‐dependence and environmental 
regulation, which we explored systematically using our population 
model, generating predictions of population viability across the en-
tire space of plausible combinations of intrinsic versus extrinsic reg-
ulation. To assess risk from additional mortality we utilized PBR as 
a tool providing a range of values across a precautionary gradient, 
allowing a general approach to visualizing 25‐year mortality impact. 
Populations were modelled both under assumed closedness and 
under the possibility of annual rescue‐effects from immigration.

2  | MATERIAL S AND METHODS

2.1 | Demographic Model

High‐quality demographic rate and population abundance data were 
obtained for the sympatric island populations of Bass Rock (gannet) and 
the Isle of May (kittiwake and guillemot), Scotland (Appendix S1(A1)).

All modelling and analysis was undertaken in R (R Core Team, 
2016). A stochastic stage‐structured matrix model was developed 
for each species. The dimensions of the annual transition matrix 
were based on each species’ age‐at‐maturity. For example, the de-
terministic version of our model, using rates, for a species with one 
juvenile and three sub‐adult classes would take the form:

where B and S represent the vital rates of productivity and survival, 
and the subscripts j, 1, 2, 3 anda on the vital rates denote juvenile, sub 
adult and adult age classes respectively.

As a female‐only model, productivity was adjusted (Appendix 
S1(A2)) under the assumption of a 1:1 sex‐ratio. In the stochastic 
model, the number of chicks fledged and number of animals of each 
age class surviving were modelled as binomial processes, for all spe-
cies, including kittiwake (Appendix S1(A3)).

Generally, seabirds are characterized as long‐lived animals that 
exhibit delayed reproduction, low fecundity linked to ecological 
constraints of resource patchiness and there is evidence of compen-
satory density‐dependence in several studies (Bried & Jouventin, 
2002; Horswill et al., 2016; Appendix S1(A4)). There is evidence 
across all species that adults forego breeding when extrinsic and 
intrinsic conditions are sub‐optimal to maintain condition (Oro & 
Martinez‐Abrain, 2004; Weimerskirch, 2001). The model therefore 
estimates the strength of compensatory density‐dependence in pro-
ductivity alone, under the assumption that this would be the demo-
graphic rate most likely to be affected.

We do not attempt in this model to account for a potential 
“floater” population of adults that have the potential to breed but 
have not.

The probability of fledging female chicks at each time step Bt was 
modelled as a logit function of a linear predictor bt. The logit trans-
formation was used to ensure that Bt remained bounded within the 
0‐to‐1 range. The linear predictor took the form,

The terms on the right‐hand side of Eqn (2) correspond to an in-
tercept b0, the effect of density (nt−1) on productivity, measured as a 
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penalty to the intercept by a coefficient (�), and the effect of an en-
vironmental perturbation term (�t) comprising a time series of iden-
tically distributed Gaussian terms �t:N

(
0, �

)
 . The standard deviation 

(�) of this term, was used as our metric for the magnitude of environ-
mental stochasticity acting on the populations. The intercept repre-
sented intrinsic productivity, in the absence of density‐dependence 
and environmental perturbations and was derived from female‐only 
reported maximal values of B (Supplementary Information) as the in-
verse logit transformation:

Environmental variation can affect survival at all life stages 
(Frederiksen, Daunt, Harris, & Wanless, 2008; Jenouvrier, Barbraud, 
Cazelles, & Weimerskirch, 2005; Lewis, Elston, Daunt, Cheney, & 
Thompson, 2009; Weimerskirch, 2001) and we assume that its impact 
is synchronous to the impact on productivity. In the model, the same 
fluctuations in environmental stochasticity are therefore also applied 
to survival, using a scaling term (p) (expressing the relative importance 
of environmental stochasticity for breeding and the survival rates of 
different life stages). This scalar was calculated from available time 
series of demographic data, specific to each of our study populations 
(Appendix S1(A5)). Survival for each age class (S

∗,t) was modelled as a 
logit of baseline survival (s

∗0) and environmental stochasticity (p
∗
�t). For 

example, in the case of juveniles, the linear predictor took the form:

The population's initial age and sex structure was unknown, so 
as a plausible start (assuming equal sex‐ratio), we used the popula-
tion's stable age distribution, derived from the dominant eigenvector 
(Caswell, 2001) of the density‐independent projection matrix. This 
distribution was then scaled using the population starting size to de-
rive numbers for each age class (Appendix S1(A6)).

2.2 | State space model fitting to derive regulation

The above population model was fitted to the observations of 
historical population trend data for each species at each colony 
using the program JAGS (Plummer, 2003) interfaced with R via the 
runjags package (Denwood, 2016). There were missing data from 
years between counts in all the colonies except kittiwake. The 
datasets for each species were: kittiwake: years  =  24; estimates 
across years = 24; gannet: years = 29; estimates across years = 5; 
guillemot: years  =  44; estimates across years  =  39. Observation 
error was included in the model by allowing for a 1% sampling error 
in colony counts.

To estimate the regulatory parameters of interest: strength of 
density‐dependence (�) and strength of environmental stochas-
ticity (�), minimally informative priors were used for the models 
(Appendix S1(A7)).

The density‐dependence parameter � (Eqn 3) was assigned 
a gamma distribution, restricting density‐dependence to a com-
pensatory form. During model fitting, the MCMC chains explored 
extremely low values for density‐dependence in some species. To 
facilitate computation in these cases we imposed a floor‐truncation 
to this prior at the value 10−11. Our model estimated the strength 
of environmental stochasticity as the precision (� =�−2) of the sto-
chastic process �t. This was assigned a gamma prior (constraining �2 
to positive values). Models were run until satisfactory convergence, 
based on the Gelman‐Rubin diagnostic, PSRF (Brooks & Gelman, 
1997), effective sample sizes for all model parameters and visual 
inspection of traceplots (Kass, Carlin, Gelman, & Neal, 1998). The 
ranges of values for the strength of density‐dependence and en-
vironmental stochasticity were given by the upper and lower 95% 
credible intervals of the posteriors for �, �.

2.3 | Mortality sensitivity: PVA

Populations were projected in a PVA analysis using the demographic 
matrix model outlined in 2.1 with ranges of values for density‐de-
pendence and environmental stochasticity taken from the posterior 
credible intervals (2.2) obtained from model‐fitting. We divided each 
interval into 51 increments, producing 2,601 pairwise combinations 
of values for density‐dependence and environmental stochasticity. 
For each species, every combination was examined via population 
projections from our PVA model. Firstly, to gain a broader overview 
of the dynamics of these models and to allow comparisons between 
species, the estimated posterior values for density‐dependence and 
environmental stochasticity were extended beyond their credible 
values and projected in PVA with no additional mortality. To assess 
what impact mortality had on populations under different regula-
tion, populations were again projected under each pairwise com-
bination. After a settling‐in period of 200 years (Appendix S1(A8)), 
mortality treatment was applied with the PBR derived from the 
starting population size at the 200‐year mark. Severity of mortality 
was manipulated by the recovery factor term (FR) in the equation 
(Appendix S1 (A9)). The PBR was applied annually as a fixed number, 
and as a proportion removed annually based on the starting popula-
tion size at 200 years. In all cases mortality was applied across all 
age classes in proportion to their annual size. Mortality was applied 
over a 25‐year period, a typical windfarm life span. The mean popu-
lation size �1 across this period, was then calculated and compared to 
the 25‐year population mean �0 directly prior to the introduction of 
anthropogenic mortality. Impact (I) was calculated as a proportional 
change in population thus:

To further explore the effects of mortality in this system we 
simulated the PVA analysis under a traditional “closed” system, 
where we first assumed no connectivity in the populations and 

(3)b0= log
B

1−B

(4)sj,t= sj,0+pj�t

(5)I=
�0−�1

�0
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then allowed an annual rescue‐effect by the introduction of a fe-
male, re‐seeding the population and preventing extinction, but not 
avoiding declines.

3  | RESULTS

3.1 | Baseline population change beyond boundaries 
of empirically derived density‐dependence and 
environmental stochasticity

With no additional mortality, each species displayed declines and 
eventual extinctions under higher strengths of density‐dependence 
and higher environmental stochasticity (Figure 1). All species pro-
duced similar qualitative patterns to increased regulation but varied 
in their response and sensitivity to regulation at lower values. The 
boxes overlaying plots in Figure 1 indicate the fit‐derived estimates 
for density‐dependence and environmental stochasticity (Appendix 
S1(A11)). The boxes vary in their shape and limits across each of the 
species, but all are estimated near the lower limits of the full range 
of density‐dependence explored, where colony persistence is unaf-
fected by density regulation.

3.2 | Mortality treatment results: Gannet

The gannet baseline, with no mortality treatment, showed no clear 
pattern of population change regulated by environmental stochas-
ticity, strength of density‐dependence or any combination of these. 
Both closed and re‐seeded baseline projections were found to have 
increased across the 25‐year period on average (Figure 2, pan-
els 1A, 2A and 1F, 2F). Under a proportional mortality there was 
no difference in impact between the closed and re‐seeded projec-
tions. Density‐dependence contributed to decline under increased 

proportional mortality in both (declines seen from RHS to LHS along 
x‐axis), with the full proportional impact causing loss across much 
of the projected populations (mean −24%; Figure 2, panels 1A–1J). 
In the fixed mortality analyses results varied between the closed 
and re‐seeded simulations. Increasing mortality resulted in higher 
vulnerability predominantly under higher environmental stochas-
ticity in the closed analyses (decline seen in populations nearer the 
upper limit of the y‐axis (Figure 2 panels 2A–2E)) with decline more 
prominent under higher density‐dependence in the re‐seeded ver-
sions (Figure 2, panels 2F–2J). Closed, fixed take simulations with 
the highest mortality experienced extinction across density‐de-
pendence and environmental stochasticity combinations. In contrast 
re‐seeded simulations under the same conditions averaged −39% 
change (Figure 2, panels 2E and 2J).

3.3 | Mortality treatment results kittiwake

The kittiwake closed baseline simulations indicated extinction and 
therefore regulation by environmental stochasticity to all projections 
above a clear threshold (Figure 3, panels 1A and 2A). Projections 
below this level showed increases but no pattern was seen from den-
sity‐dependence. The re‐seeded baseline (Figure 3, panels 1F and 
2F) showed increases in the areas previously declining or extinct in 
the closed scenarios. Closed baseline scenarios showed a mean pop-
ulation drop across the simulated space, whilst the re‐seeded base-
line found a mean increase in population change across projections 
(Figure 3, panels 1A, 2A and 1F, 2F). In the closed simulations, as 
mortality treatment was applied, both proportional (Figure 3 panels 
1A–1E) and fixed (Figure 3, panels 2A–2E) declined, with the fixed 
declining to a greater extent than the proportional projections. The 
re‐seeded simulations were found to also decline as mortality treat-
ment was increased, the decline was more gradual than their closed 

F I G U R E  1   Baseline population change when density‐dependence (DD) varies between 1e‐11 and 0.2 and environmental stochasticity 
(ES) varies between 0 and 4. Panels a, b and c represent gannet, kittiwake and guillemot, respectively, with boxes indicating the posterior 
boundaries of DD and ES derived from fitting and used in subsequent mortality projections. Pale colours are near‐zero changes, pink 
through to red indicate proportional increases. Light blue indicates small declines through to darker blues indicating greater decline
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F I G U R E  2   Gannet population projections under estimates of strength of density‐dependence (x‐axis) and environmental stochasticity 
(y‐axis). Closed proportional removal (1A–1E) and re‐seeded (1F–1J). Closed fixed removal (2A–2E) and re‐seeded (2F–2J). A‐J represent 
different mortality treatments, reporting the corresponding impact (mean population change (%) pre‐ and post‐mortality) across each plot. 
The bands to the right and below each plot represent mean % change across rows and columns. A & F—no additional mortality (baseline); B 
&G—additional mortality with PBR FR of 0.1; C & H—additional mortality with PBR FR of 0.3; D & I—additional mortality with PBR FR of 0.5, 
E & J—additional mortality with PBR FR of 1.0. Coloration indicates impact. Blues indicate population decline, white indicate zero change 
and pinks through to red indicate population increases, with darkest reds being any proportional increase of 1.0 or greater
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F I G U R E  3   Kittiwake population projections under estimates of strength of density‐dependence (x‐axis) and environmental stochasticity 
(y‐axis). Closed proportional removal (1A–1E) and re‐seeded (1F–1J). Closed fixed removal (2A–2E) and re‐seeded (2F–2J). A‐J represent 
different mortality treatments reporting the corresponding impact (mean population change (%) pre‐ and post‐mortality) across each plot. 
The bands to the right and below each plot represent mean % change across rows and columns. A & F—no additional mortality (baseline); B 
&G—additional mortality with PBR FR of 0.1; C & H—additional mortality with PBR FR of 0.3; D & I—additional mortality with PBR FR of 0.5, 
E & J—additional mortality with PBR FR of 1.0. Coloration indicates impact. Blues indicate population decline, white indicate zero change 
and pinks through to red indicate population increases, with darkest reds being any proportional increase of 1.0 or greater
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counterparts (Figure 3, panels A–J). Different magnitudes of decline 
were seen between the proportional and fixed re‐seeded simula-
tions (Figure 3, panels G–J). As mortality increased, those popula-
tions facing a proportional mortality reduced more than those under 
a fixed mortality. Overwhelmingly, re‐seeded simulations main-
tained positive growth (dark red pixels) under high environmental 
stochasticity, whilst those simulations under increased mortality and 
lower environmental stochasticity were found to decline (blue pix-
els; Figure 3, panels F–J).

3.4 | Mortality treatment results guillemot

The guillemot closed baseline projections indicated clear extinction 
and therefore regulation by environmental stochasticity to all projec-
tions above ~“2.2” strength. The re‐seeded populations however re-
versed this effect, with increases shown (Figure 4, panels 1A, 2A, 1F 
and 2F). In the closed simulations all mortality treatments reported 
extinctions, with mean values higher than the baseline. However, 
the risk of decline as mortality increased was reduced in the pro-
portional harvests comparative to the fixed harvest rate (Figure 4, 
panels 1B–1E, 2B–2E). The re‐seeded simulations were found to also 
decline as mortality treatment was increased (Figure 4, panels G–J), 
the decline was more gradual than their closed counterparts. In the 
re‐seeded simulations a very different pattern was observed than in 
the closed. Here, under lower mortality those populations experi-
encing neither intermediate environmental conditions experienced 
decline (Figure 4, panels F–I). As mortality increased, this pattern 
enhanced, capturing more of the middle band of environmental sto-
chasticity as vulnerable to decline and eventually at the highest pro-
portional mortality causing decline even in those projections with 
lower environmental stochasticity (Figure 4, panels 1G–1J). There is 
also a very slight hint at density‐dependent risk to decline from the 
bottom right‐hand side of the highest mortality (Figure 4 plot 1J and 
2J) comparative to those projections with lower density‐depend-
ence on the bottom left‐hand side of the same plots.

4  | DISCUSSION

Population persistence is a function of quantifiable effects (e.g. 
mortality from collisions at wind farms), population dynamics (life 
history, strength of density‐dependence, connectivity) and random 
effects (variable environmental conditions) and these may conspire 
to cause declines in seemingly stable populations. Quantifying in-
ternal and external processes and associated population change are 
still fundamental problems in population biology and conservation 
(Elton, 1924; Matthiopoulos et al., 2015; Turchin, 1995).

In our study, exploring extended ranges for the strength of 
density‐dependence and environmental stochasticity allowed a 
visual comparison of vulnerability between our study species. All 
three‐study species presented extinctions under higher strength of 
density‐dependence (penalized fecundity) and high environmental 
stochasticity (high unpredictability), but the shape of these effects 

varied depending on each species’ demography. The gannet and 
guillemot time series we used for model fitting were intermittent. 
These lower sample sizes and the necessary data‐imputation car-
ried out by our model, extended the time necessary for convergence 
and generated broader credible intervals than we might expect with 
more data‐rich populations (Appendix S1(A11)). Hence, our broader 
ranges of scenarios examined along the environmental stochasticity 
axis, for these populations, are also the result of greater observa-
tional uncertainty.

Under the explicit assumptions of population structure in these 
simulations, i.e. closedness, and in the absence of additional mortal-
ity, the baseline windows derived from the model fitting show kit-
tiwake and guillemot straddle a well‐defined threshold separating 
proliferation and extinction‐ mediated by environmental stochastic-
ity. Notably, the gannets are not operating close to this threshold, 
possibly reflecting the fact that although current population growth 
is slowing down, the Bass Rock population has been increasing 
and gannets are arguably more robust to environmental perturba-
tions due their life‐history (Garthe, Montevecchi, & Davoren, 2011; 
Montevecchi, Benvenuti, Garthe, Davoren, & Fifield, 2009; Wanless, 
Murray, & Harris, 2005). When we allowed rescue‐effects, the pic-
ture changed for kittiwakes and guillemots. There is a clear indica-
tion, particularly for kittiwake, that population re‐seeding can offset 
detrimental environmental stochasticity. The results are similar al-
beit more stochastic for guillemot where re‐seeded simulations also 
offset the magnitude of decline under certain mortality treatments.

This work highlights several findings of interest to conservation 
strategists and population assessments. Firstly, the PBR calculation, 
is questionable in its theoretical sustainability of the population. 
Results here show clearly that for all species there were some stark 
reductions from the baseline mean population size under mortality 
estimated using PBR, exacerbated by regulatory processes. This was 
seen in both the closed and re‐seeded simulations of each mortality 
type (fixed or proportional), where population baselines were not 
maintained. Whilst perhaps some lower levels of PBR applied mor-
tality may be considered “sustainable”, a switch in regulation may 
further reduce a population, potentially affecting sustainability. PBR 
has come under criticism from conservationists and industry advi-
sors as to its appropriateness in assessment and is now broadly con-
sidered unsuitable for seabird assessment in the U.K. EIA process. 
The results here agree with recent work suggesting that it should 
not be utilized in seabird population management (Green et al., 2016; 
O'Brien et al., 2017).

Secondly, there is no permissible value of decline to a popula-
tion under assessment from industry impact. In renewable energy 
impact assessment, mortality is usually applied as a proportion 
thereby treating the impact as a per capita effect. Intuitively, we 
expect a fixed mortality to have a stronger effect on a declining 
population and a weaker effect on an increasing population. In 
most of our treatments the proportional application of mortality 
conveyed a reduction in mean decline comparable to the fixed 
mortality. However, our results also indicated different patterns 
in regulation and risk when the same population baseline was 
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F I G U R E  4   Guillemot population projections underestimates of strength of density‐dependence (x‐axis) and environmental stochasticity 
(y‐axis). Closed proportional removal (1A–1E) and re‐seeded (1F–1J). Closed fixed removal (2a–2e) and re‐seeded (2F–2J). A‐J represent 
different mortality treatments reporting the corresponding impact (mean population change (%) pre‐ and post‐mortality) across each plot. 
The bands to the right and below each plot represent mean % change across rows and columns. A & F—no additional mortality (baseline); B 
&G—additional mortality with PBR FR of 0.1; C & H—additional mortality with PBR FR of 0.3; D & I—additional mortality with PBR FR of 0.5, 
E & J—additional mortality with PBR FR of 1.0. Coloration indicates impact. Blues indicate population decline, white indicate zero change 
and pinks through to red indicate population increases, with darkest reds being any proportional increase of 1.0 or greater.
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subjected to a proportional or fixed mortality. For example, in the 
kittiwake re‐seeded models, risk of decline from mortality was 
greater to those projections under lower environmental stochas-
ticity compared to the closed projections; the decline from base-
line was marginally greater under a proportional mortality than 
a fixed when re‐seeded. This suggests that regulation from envi-
ronmental stochasticity can mediate between mortality estimate 
and population size to either enhance the buffering effects of the 
re‐seeding to decline or effectively absorb the buffering re‐seed. 
In such cases the fixed calculation may be more conservative in 
application than a proportional, dependent on starting population 
size, period of mortality and subsequent environmental stochas-
ticity. The closed simulations showed that environmental condi-
tions and a fixed mortality will result in extinctions. This suggests 
that the population dynamics, starting population size, time‐series 
trend and regulation is crucial to consider when applying a mortal-
ity treatment. For example, the gannets at Bass Rock, an increasing 
population thought to slowly be reaching their carrying capacity 
(k) (Murray, Harris, & Wanless, 2015) reflected no difference in 
results between the closed and re‐seeded simulations and a pro-
portional take. Given the inherent positive growth of this popu-
lation, re‐seeding the population has very little influence on the 
risk of extinction. Density‐dependent regulation was clear in pat-
terns from multiple mortality treatments applied to the gannets; 
this does suggest that, particularly in the case of the gannets that 
they are likely to be sensitive to regulation from their conspecifics, 
such that mortality and higher strengths of density‐dependence 
(penalized maximal fecundity) work together to confer decline. 
Our re‐seeded models for guillemot and kittiwake returned a band 
of decline at intermediate and lower environmental stochastic-
ity respectively. This suggests that the guillemot, in intermediate 
levels of environmental stochasticity are either being simulated 
with successive “bad years”, lowering k and exacerbating density‐
dependence penalties to fecundity (reflected as a decline in % 
change between the means we are comparing across time‐scales) 
or hit by successive “good years” mediated by density‐dependence 
and show no change. For the kittiwake example of more decline in 
lower fluctuations of environmental stochasticity, two scenarios 
may be unfolding. In higher fluctuations of successive “good years” 
of environmental stochasticity, density‐dependence becomes ir-
relevant and is over‐ridden by radical growth or in higher levels of 
negative environmental perturbations, re‐seeding forces a recov-
ery, biasing our proxy for impact (this % change).

With a paucity of reliable connectivity estimates between popu-
lations of the same species, closed system modelling is the preferred 
precautionary approach to population assessment. There is clear 
evidence of connectivity through immigration and emigration in 
many seabird populations (Horswill & Robinson, 2015) and low rates 
of either may impact on colony population growth. Our basic the-
oretical re‐seeded models followed classic metapopulation theory 
where local extinctions have the potential for local increases in the 
face of connectivity for our kittiwake and guillemot (Hanski & Gilpin, 
1997). Our results show a clear reduction in sensitivity to decline for 

many projections under this basic rescue‐effect, but what it does 
not reveal is the true spatial population dynamics of connectivity 
between colonies of each species. For example, the risk of decline 
and extinction of a colony, we can hypothesize, will be different for 
those acting as sinks rather than sources within a metapopulation 
structure (Sanz‐Aguilar, Igual, Tavecchia, Genovart, & Oro, 2016). It 
would be of benefit to industry and conservation objectives alike to 
encourage research empirically and theoretically exploring connec-
tivity estimates to examine this dynamic further in the context of 
regulation and risk.

Thirdly, the ongoing debate around the inclusion or exclusion 
of density‐dependence in population assessment modelling derives 
from the stance that density‐independent models are a more pre-
cautionary approach. Our results indicate that risk of decline was 
enhanced by the penalty effect on fecundity at higher strengths of 
density‐dependence under certain conditions upon application of 
even our lowest mortality. Density‐dependence was included as a 
compensatory mechanism in the models. However, there is a grow-
ing literature suggesting other forms of density‐dependence may 
be appropriate to explore in future adaptations of these models, 
particularly in the case of species such as kittiwake, where severely 
reduced population sizes can experience enhanced predation, accel-
erating declines (Horswill & Robinson, 2015). Here we explore the 
effect of direct mortality, but guillemot may suffer displacement 
(Furness et al., 2013). This may manifest a different pattern in im-
pact under regulation, the ecological mechanisms of which are not 
captured here, but we provide a baseline method against which such 
effects may also be assessed.

5  | CONCLUSIONS

Seabird populations are dynamic systems, regulated by extrinsic and 
intrinsic influences. Insights from this work unveil vulnerability in 
different seabird populations from these influences even in the ab-
sence of additional anthropogenic mortality. Assessment in wildlife 
systems is rarely able to derive estimates for the strength of intrinsic 
and extrinsic regulation reducing our confidence in PVA predictions. 
Clearly, as our results show, unpredictability in the environment is 
key to population viability and subsequent carrying capacity (Lande, 
1993) affecting density‐dependent responses on fecundity. We un-
derstand that extreme weather events may be more frequent and 
that climate change is affecting processes like the synchronicity of 
breeding attempts with prey availability and changing the accessibil-
ity of prey spatially. Our approach captures information contained 
in demography to allow us to theorize about the risk of decline in 
future, reflecting how our populations may respond to unknown 
conditions and highlighting how regulation is affected by mortality 
and the sensitivity of projections to mortality treatment. We show 
that this method can be applicable to data‐limited populations, a 
benefit of a Bayesian approach. Populations lacking time series for 
example would produce larger credible intervals, capturing more 
uncertainty. Care must be taken in these instances to describe the 
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data‐limitation, rather than assume a potential greater effect signal 
from the process estimated. Complementing current literature, this 
work determines that PBR is not a rigorous tool for seabird assess-
ment and furthermore we recommend it not be used to facilitate EIA 
for seabirds. Here we demonstrate that population decline, together 
with regulation may confer opposing outcomes of risk depending 
on the population dynamics and the type of mortality applied. Our 
results suggest that populations experiencing higher environmental 
perturbations, such as unpredictable foraging sources, require en-
hanced protection from additional mortality. The responses to the 
rescue‐effect in our analyses were interesting to note between our 
study species and their underlying dynamics. Further exploration of 
the connectivity in these systems would be beneficial. For example, 
our assumption that colonies experiencing more environmental dy-
namism might be more vulnerable is confounded by the knowledge 
gaps in the mechanisms of connectivity i.e. to what extent is connec-
tivity driven by extrinsic or intrinsic factors and what is the availabil-
ity of immigrants for species, such as the kittiwake, where multiple 
colonies are in decline? We should stress that, in the absence of em-
pirical rates of connectivity, precaution remains with the assumption 
of a closed‐system. Resolution of human‐wildlife conflict happens at 
the space between over‐precaution and recklessness. This can only 
be found and navigated with sound quantitative knowledge of the 
certainties and uncertainties in the systems involved. Adding real-
ism in impact assessment can only improve upon mediating positive 
outcomes in both conservation, environmental and economic goals.
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