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Abstract 

An initially curved beam is considered and its motion is constrained using two elastic 

constraints; the corresponding non-smooth nonlinear transverse dynamics is investigated 

for the first time. A clamped-clamped beam with one axially movable end is modelled via 

Bernoulli-Euler beam theory together with the inextensibility condition, giving rise to 

nonlinear inertial terms along with nonlinear geometric terms. Furthermore, the damping is 

modelled via Kelvin-Voigt internal damping model. The proposed model is verified for linear 

and nonlinear behaviours via comparison to a finite element model. The impact between 

beam and constraints is incorporated via calculating its work contribution. The nonlinear 

equation of motion is derived while incorporating geometric, damping, inertial, and 

constraints nonlinearities. A series of spatial basis functions together with corresponding 

vibration modes are used as the proposed solution of the transverse displacement. A modal 

discretisation is performed via the weighted-residual method of Galerkin and the 

corresponding non-smooth terms are kept intact while conducting numerical integration. A 

numerical continuation technique is utilised to solve the resultant equations. The non-

smooth response is obtained for various cases and the effects of several parameters are 

studied thoroughly. 
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1. Introduction 

Beams/plates/shells [1-6] are the most common continuous structures present in 

different mechanical and civil applications [7-21]. Dynamical flexible systems such as beams 

subject to motion constraints, as a concept, have been examined for over few decades, due 

to their applications in systems having impact, friction, and backlash. With emergence of 

new applications of this class, such as vibration energy harvesters, this topic is gaining 

further attention from researchers. Additionally, in many applications the contact and 

impact between neighbouring elements is undesirable, which signifies the importance of 

analysing the dynamical behaviour of beam structures in contact with motion constraints.  

A common dynamical system subject to motion constraints is a set of spring-mass-

damper system subject to spatial barriers. The early investigations on this class [22-25] were 

conducted by: Nigm and Shabana [26], who performed a vibration analysis theoretically and 

obtained steady-state responses in the presence of an impact damper; Choi and Noah [27], 

who conducted an examination into the force-oscillation characteristics of a one-degree-of-

freedom system with a piecewise linear stiffness; Natsiavas [25], who analysed the effect of 

bilinear stiffness and damping on the dynamical behaviour of oscillators. Further 

investigations were conducted by Pilipchuk [28] who studied the nonlinear dynamics of 

nonlinear vibrations of damped oscillators subject to nonsmooth limits. Charroyer et al. [29] 

studied the nonlinear self-excited oscillation of systems under friction-induced vibration; 

they utilised a time integration method together with a shooting method to correctly 

shooting technique to correctly estimate the growing oscillations.  
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The mass-spring-damper models were replaced by continuous systems such as 

beams [30, 31], for instance by Björkenstam [30], who examined the dynamical stability of a 

periodically excited bar subject to a constraint.  Further investigation was conducted 

Metallidis and Natsiavas [32] who studied the longitudinal vibration of a periodically excited 

constrained rod. Issanchou et al. [33] studied conducted numerical and experimental 

investigations on the motion of a damped string against an obstacle; they employed a 

modal-based method study the system response numerically and compared it to 

experimental observations. 

One prominent application of motion limiting dynamics of beams or spring-mass-

damper systems is in vibration energy harvesters where the kinetic (motion) energy is 

converted efficiently into electrical power. The motion is limited in some vibration energy 

harvesters to broaden the frequency bandwidth, and hence to improve the performance. 

There is, however, a compromise between the effective frequency band and the amount of 

generated power. Liu et al. [34] employed a piezoelectric energy transduction method to 

and a cantilever stopper to propose an energy harvester in a microscale level. Soliman et al. 

[35] proposed a new model for an energy harvester based on a motion-limiting constraints 

for frequency bandwidth widening purposes.  

This study is the first to investigate the motion limiting non-smooth nonlinear 

dynamics of initially curved beams. Various nonlinearities are retained in model 

development and numerical simulations. The motion constraints are modelled via nonlinear 

springs. The Kelvin-Voigt model is utilised for more accurate modelling of energy dissipation. 

The centreline inextensibility is used due to one end of the clamped-clamped beam being 

axially movable. The resultant nonlinear equation, consisting of nonlinear terms of 
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geometric, damping, inertial, and piecewise types is discretised making use of the method of 

Galerkin. The developed model and numerical technique are verified via comparison to 

three-dimensional nonlinear finite element analysis.  Thorough numerical simulations are 

conducted and the effects of various parameters are examined. Amplitude-frequency curves 

are constructed as well as phase plane plots and time histories.  

 

2. Continuous model for motion limiting dynamics of beams  

Shown in Fig. 1 is an initially curved doubly-clamped beam with right-hand side end 

free to move axially. The length of the initially curved beam is L; the thickness and width are 

denoted by h and b, respectively. There are two elastic constraints positioned at both sides 

of the beam in the transverse direction (i.e. z), with gap g0 from the axial axis (i.e. x), as 

shown in Fig. 1. The constrained beam system is under base excitation in the form of z0 

sin(Ωt), where Ω and z0 represent the frequency and amplitude of the base excitation, 

respectively. It should be noted that the elastic constraints are under base excitation as 

well, i.e. it is assumed that the whole system is subject to base excitation. The shape of the 

initial curvature of the beam is represented by w0(x). 

The constrained system undergoes both longitudinal and transverse motions. The 

longitudinal motion is represented by u(x,t). The total displacement in the z direction of the 

beam is denoted by v(x,t). Denoting the transverse motion relative to the clamped base by 

w(x,t), the total transverse displacement can be formulated as v(x,t)= w(x,t)+ z0 sin(Ωt). 

One important characteristics of a beam with one axially movable end is that the 

centreline remains inextensible. The centreline inextensibility condition relates the 
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longitudinal displacement and the rotation angle of the centreline to the transverse 

displacement. Hence, the axial strain in the beam can be formulated as  
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  (1) 

where z is the vertical distance from the centreline.  

The motion energy of the constrained system consists of the transverse motion as 

well as the longitudinal motion, and can be formulated as 
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in which ρ is density and A is the area of the cross-section. 

The elastic strain energy of the beam can be written as 
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in which only the elastic part of the axial stress is considered. The virtual work of the viscous 

part of the Kelvin-Voigt stress is formulated as 
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Furthermore, the virtual work of the beam constraints, modelled as nonlinear 

springs, can be written as  
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where δD, sgn, and H stand for the Dirac Delta, Sign, and Heaviside functions, respectively; 

|| indicates the absolute value. 

Substitution of Eqs. (2)-(5) into extended principle of Hamilton yields the nonlinear 

equation of motion of the constrained system as: 
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This equation is then transformed into the following dimensionless form 
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using the following dimensionless parameters 
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where   2 ( )L A EI . In Eq. (7), the asterisk notation is dropped for convenience.  

In what follows, a modal discretisation procedure based on the Galerkin approach is 

utilised to reduce the nonlinear nondimensional equation of motion into a set of discretised 

equations of ordinary differential type. In the modal decomposition technique, a finite 

number of modes (generalised coordinates) are considered to describe the motion of the 

system. These generalised coordinates, denoted by ( )rw t , are multiplied by proper spatial 
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trial functions, denoted by  ( )r x . Hence, the transverse motion, w, is expanded as a 

summation of  ( ) ( )r rx w t  for r in the range 1, 2, …, Q. Additionally, the initial curvature of 

the beam, w0, is represented by 0 1( )A x , with A0 being the initial curvature amplitude. r  

is given by: 
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In this study, Q is set to 8, i.e. 8 transverse vibration modes are kept in the 

transverse displacement series expansion. This results in an 8-degree-of-freedom (DOF) 

discretised model consisting of various sources of nonlinearity including: geometric 

nonlinearity, inertial nonlinearity, damping nonlinearity, and piecewise nonlinearity. The 

presence of all these nonlinearities together with the large number of retained modes 

increases the complexity and the computational costs significantly. A well-optimised 

continuation [36, 37] code is developed to handle various types of nonlinearities. The 

numerical results are obtained for various cases and discussed in detail in the next section. 

 

3. Numerical results for nonlinear dynamics of unconstrained system 

Before analysing the nonlinear constrained vibration dynamics of the system, it 

would be interesting to analyse the initially curved beam dynamical behaviour without any 

constraints for comparison purposes.  

 

3.1 Verification of the developed model and numerical simulations 

To check the proposed model’s accuracy as well as the reliability of the employed 

numerical technique, a natural frequency analysis and a nonlinear static analysis are 

conducted employing the developed model and compared to the results obtained through 
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nonlinear finite element analysis using Abaqus. For this comparison, a beam of h=0.5 mm, 

L/h=200, and b/h=4 is considered. 

For the natural frequency comparison, the calculated fundamental natural frequency 

using FEA is converted to rad/s and then made dimensionless through multiplying by 

  2 ( )L A EI . The comparison is shown in Fig. 2, showing that the predictions of the 

initially curved beam model developed in this study are very close to those obtained using 

FEA.  

The nonlinear deformation of the initially curved beam calculated via the present 

study is compared to that obtained using FEA and plotted in Fig. 3. For this case, it is 

assumed that a point force f is exerted to the beam midpoint in the negative transverse 

direction; A0 is set to 0.05. The axial axis in Fig. 3 shows the dimensionless force (i.e. 

 2 / ( )F fL EI ) while the vertical axis shows the dimensionless transverse displacement at 

beam midpoint. The results are shown for (a) transverse displacement at beam midpoint 

and (b) longitudinal displacement at beam movable tip. As seen, the nonlinear static 

displacements predicted by the model developed in this study are very close to those 

obtained via FEA. Figure 4 shows the contour plots of the initial curved beam as it 

undergoes static deformation due to applied midpoint force. The comparison of the 

predicted deformed state of the initially curved beam via the proposed model and FEA is 

shown in Fig. 5. As seen, the deformed beam profiles obtained by the two models are 

almost the same. Hence, the developed model is checked and verified for both linear 

natural frequency calculations and nonlinear static deformation. 
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3.2 Nonlinear unconstrained dynamics 

Figure 6 shows the amplitude-frequency curves of the unconstrained initially curved 

beam under base excitation in the primary resonance region, with ω1 denoting the 

fundamental natural frequency; d=0.00035. Sub-figure (a) illustrates the transverse 

displacement at beam mid-point while sub-figure (b) shows the longitudinal displacement at 

the axially movable tip. It is seen that the initially curved configuration of the beam results 

in a complex resonance response with strong internal resonances and modal interactions. 

More specifically, for the selected system parameters, the second natural frequency of the 

transverse motion is around three times the first natural frequency, giving rise to a three-to-

one internal resonance; the energy transfer between the first two modes can be seen by 

comparing sub-figures (c) and (d). Furthermore, the system displays multiple jumps and 

snap-through motions moving between different stable solution branches. Additionally, it is 

interesting to note that the initially curved beam display quasiperiodic motion for a range of 

base excitation frequency, shown by dotted lines in the figures. The vibrating beam 

response in one period of oscillation is depicted in Fig. 7 for two different excitation 

frequencies. It is shown that the axial movement of the clamped end is very large and 

comparable to maximum transverse displacement. 

The amplitude-frequency plots for different magnitudes of the initial curvature are 

obtained and plotted in Fig. 8. For the values of initial curvature examined here, the 

maximum transverse and longitudinal displacements correspond to the case with A0=0.10. 

As seen, increasing the initial curvature amplitude shifts the primary resonance region to 

smaller excitation frequencies, indicating reduced fundamental natural frequency. It is 

worth noting that for beams with immovable boundaries, i.e. extensible beams, the 
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presence of imperfection increases the natural frequency. The difference in the behaviour is 

due to inextensibility of the system in the present study. In other words, due to 

inextensibility of the centreline, the natural frequency decreases with increasing 

imperfection amplitude.  

 

4. Numerical results for nonlinear dynamics of constrained system 

This section investigates the nonlinear dynamics of the constrained beam. In 

particular, the elastic constraints are assumed to be present at both sides of the in the 

transverse direction. For all cases, the elastic constraints are positioned at a distance xs=0.2 

from the immovable clamped end. Additionally, d=0.00035 throughout this section. 

 The forced vibration response of the constrained beam in the region of primary 

resonance is illustrated in Fig. 9 for w and u motions. The system parameters are set to: g0= 

0.05, K1=2.0103 K3=2.0106, and z0=0.002. It is seen that due to the presence of motion-

limiting elastic constraints, the resonance force vibration response becomes very complex. 

In particular, the constrained system displays a mixed hardening softening behaviour as well 

as different saddle-node and torus bifurcation points. Torus bifurcations give rise to 

quasiperiodic solution branches, shown by dotted lines in the figures. The figure shows that 

as the impact between the beam and the constraints is characterised by a sudden change of 

slope in the curves and change of nonlinear response from softening to hardening type. It is 

seen that for the frequency range shown in the figures, multiple stable periodic attractors 

(shown by solid lines) and stable quasiperiodic attractors (shown by dotted lines) are 

present. The constrained beam could be oscillating on any of these attractors depending on 

the initial condition and external disturbances. The unstable attractors are shown by dashed 
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lines. To better illustrate the motion that the constrained beam undergo in one period of 

oscillation, Fig. 10 is constructed. This figure shows the constrained beam oscillation at 

Ωb/ω1 = 0.9764, i.e. at peak oscillation amplitude, in one period of oscillation. It is seen that 

the presence of an initial curvature results in asymmetric oscillation.   

The frequency-amplitude curves of a constrained beam similar to that of Fig. 9, but 

with larger base-excitation amplitude, are shown in Fig. 11. More specifically, all the system 

parameters remain unchanged compared to Fig. 9, except for z0, which is set to 0.006 in this 

figure. As seen, as a result of increased base excitation amplitude (compared to the system 

of Fig. 9) the response changes significantly. In this case, two period-doubling bifurcations 

occur in the vicinity of peak oscillation amplitude giving rise to a new bifurcated solution 

branch (see the magnified section in sub-figure (a)). The constrained beam displays 

quasiperiodic motion for a portion of this bifurcation solution branch and periodic motion 

for the rest. In order to compare dynamical characteristics of the constrained beam before 

and after the occurrence of the periodic-doubling bifurcation, Figs. 12 and 13 are 

constructed illustrating the time histories and plots of phase-plane of the transverse and 

longitudinal motions at Ωb/ω1=0.9351, i.e. on the stable branch before period-doubling 

bifurcation, and Ωb/ω1=0.9420, i.e. the stable branch of the bifurcated solution.  

The effect of the amplitude of the initial curvature on dynamics characteristics of the 

constrained system is depicted in Fig. 14. The system parameters are set to: z0=0.003, 

xs=0.2, g0=0.08, K1=2.0×103, and K3=2.0×106. Since the gap width is fixed for all cases, 

increasing the initial curvature amplitude reduces the clearance between the beam and the 

upper constraint and increases that between the beam and lower constraint. Hence, as the 

initial curvature amplitude is increased, the change in the response slope occurs at smaller 
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oscillation amplitudes. Additionally, the hardening behaviour is stronger when the initial 

curvature amplitude is set to larger values. 

One of the important parameters of the constrained system is the initial gap width 

g0. It should be mentioned here again that in this study, the gap width is defined as the 

distance between the elastic constraints and the axial axis (see Fig. 1). The effect of the gap 

width on nonlinear vibration response of the constrained beam is depicted in Fig. 15. The 

system parameters are selected as: z0=0.003, A0=0.05, xs=0.2, K1=2.0×103, and K3=2.0×106. It 

is seen that forced dynamic characteristics of the constrained beam are affected 

significantly with slight change in the gap width. More specifically, as the gap is decreased, 

the impact between beam and constraints occur at smaller motion amplitudes. This causes 

the sharp change of response slope to occur at smaller oscillation magnitudes. Additionally, 

due to decreased gap width, the response amplitude is decreased and the induced 

nonlinear hardening behaviour is strengthened. 

The effect of the linear spring coefficient of the elastic constraint on resonant 

dynamic characteristics of the constrained beam is shown in Fig. 16. For this case, z0=0.002, 

A0=0.05, xs=0.2, g0=0.06, and K3=2.0×106. The figure show that due to increased K1, the 

oscillation amplitude decreases significantly. Additionally, it is observed that the change in 

the response slope, due to contact initiation between the beam and the constraints, 

becomes sharper as the linear spring coefficient is increased. Figure 17 shows the effect of 

the nonlinear spring coefficient of the elastic constraint on resonant forced response. As 

seen, the nonlinear hardening behaviour is strengthened as a result of increased K3.  

Figure 18 shows a comparison of the resonant responses of three systems: a system 

with no constraints, and two constrained systems with different stiffness coefficients. For 
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the “elastic constraints” case K1=2.0×103 and K2=2.0×106, while for “rigid constraints” case 

K1=10.0×103 and K2=200.0×106. It is very interesting to note that the constrained system 

with elastic constraints undergoes larger-amplitude oscillation compared to the 

unconstrained system. Moreover, it is seen that as the spring coefficients of the constraints 

are set to large values, to simulate rigid constraints, the transverse amplitude at x= 0.2, i.e. 

where the constraints are located, increases only slightly after hitting the constraints. The 

oscillations of these three systems at peak amplitude are illustrated in Fig. 19. 
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5. Concluding remarks 

The nonlinear dynamics of an initially curved constrained beam has been studied 

numerically. The beam is considered to have an initial curvature. The fully nonlinear model 

of the constrained beam is developed taking into account geometric, inertial, damping, and 

piecewise nonlinearities. The Kelvin-Voigt model is utilised along with Euler-Bernoulli beam 

theory to derive the nonlinear motion equation while assuming inextensible centreline due 

to one end being axially movable. The Galerkin modal discretisation procedure is used to 

derive a discretised model of the constrained system.  

Numerical simulations were conducted for both unconstrained and constrained 

systems. The nonlinear dynamics of unconstrained system showed that the presence of 

initial curvature gives rise strong modal interactions as well as quasiperiodic motion. 

Additionally, it was shown that increasing the initial curvature amplitude results in 

decreased natural frequency and hence resonant region being shifted to the left on 

frequency axis. 

The constrained nonlinear dynamic analysis revealed that the presence of elastic 

constraints renders the motion much more complex and gives rise to many bifurcation 

points and many stable and unstable attractors. It was shown that at larger base excitation 

amplitudes, period-doubling bifurcation occurs resulting in a new bifurcation solution 

branch with both quasiperiodic and periodic attractors. The effect of various parameters 

was examined and it was shown that: decreasing the gap width reduces the vibration 

amplitude and causes the slope-change to occur at smaller oscillation amplitudes; increasing 

the linear spring coefficient results in increased change of slope at point of contact while 

increasing the nonlinear spring coefficient strengthens the hardening behaviour after 
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contact; increasing the amplitude of the initial curvature causes the contact to initiate at 

smaller oscillation amplitudes and results in a wider hardening response range after 

initiation of contact. 

 

Appendix A. Analysis of Convergence 

An analysis of convergence is performed to justify selection of 8 modes in this study. 

To this end, the amplitude-frequency diagram of the constrained system of Fig. 9 is 

reconstructed for different discretised models of the system namely, a 2-degree-of-freedom 

(2-DOF), 4-DOF, 8-DOF, and 10-DOF systems. As seen, the 2-DOF model gives wrong results. 

The predictions of the 4-DOF model are closer to converged results, however is not yet fully 

converged. The 8-DOF model predicts the same resonance amplitudes as the 10-DOF model 

indicating convergence. This convergence analysis shows that an 8-DOF model is accurate 

enough and ensures converged results. 
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Fig. 1. Schematic of the doubly clamped constrained beam with one axially-movable end. The whole system is 
under base excitation. 
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Fig.2. Fundamental dimensionless natural frequency of the initially curved beam obtained using the proposed 
model and finite element analysis. 
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(a) 

 
(b) 

 
Fig.3. Nonlinear deformation of the initially curved beam calculated using the proposed model and finite 
element analysis; (a) w at x=0.5; (b) u at x=1. A0=0.05. 
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(a) 

 
 
(b) 

 
 
(c) 

 
(d) 

 
Fig.4. Contour plots of the deformed configuration of the initially curved beam with increasing midpoint force 
obtained using finite element analysis. A0=0.05. The legends show the transverse displacement in mm. 
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Fig.5. Deformed configuration of the initially curved beam obtained using the proposed model (solid line) and 
finite element analysis (symbols); A0=0.05. The initially curved beam deform in the direction shown; deformed 
configurations are plotted for F=2.04, 7.87, 21.47, and 40.96.  
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(c) 

 
(d) 

 
Fig.6. Amplitude-frequency plots of the unconstrained system; (a) w at x=0.5; (b) u at x=1.0; (c) q1; (d) q2; 
z0=0.006 and A0=0.05. Solid, dashed, and dotted lines: stable periodic, unstable periodic, and stable 
quasiperiodic responses, respectively. 
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(a) 

 
(b) 

 
 

Fig.7. Oscillation of the unconstrained beam of Fig. 4 in one period at (a) Ωb/ω1 = 0.8477 (peak amplitude) and 
(b) Ωb/ω1 = 0.9225 (secondary peak); wt = w + w0. 
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(a) 

 
(b) 

 
Fig.8. Amplitude-frequency plots of the unconstrained system for various initial curvature amplitudes; (a) w at 
x=0.5; (b) u at x=1.0; z0=0.006. 
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(a) 

 
(b) 

 
Fig.9. Amplitude-frequency plots of the constrained system; (a) w at x=0.5; (b) u at x=1.0; z0=0.002, A0=0.05, 
xs=0.2, g0=0.06, K1=2.0×10

3
, and K3=2.0×10

6
. Solid, dashed, and dotted lines: stable periodic, unstable periodic, 

and stable quasiperiodic responses, respectively. 
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Fig.10. Oscillation of the constrained beam of Fig. 7 in one period at Ωb/ω1 = 0.9764 (peak amplitude); wt = w + 
w0. 
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(a) 

 
 

(b) 

 
Fig.11. Amplitude-frequency plots of the constrained system; (a) w at x=0.5; (b) u at x=1.0; z0=0.006, A0=0.05, 
xs=0.2, g0=0.06, K1=2.0×10

3
, and K3=2.0×10

6
. Solid, dashed, and dotted lines: stable periodic, unstable periodic, 

and stable quasiperiodic responses, respectively. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
 
Fig.12. Vibration characteristics of the case of Fig. 9 at Ωb/ω1=0.9351 (peak amplitude), illustrating the time 
response and phase-plane plot of w at x=0.5 and those of u at x=1.0. tn is the time normalised relative to 
oscillation period. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
 
Fig.13. Vibration characteristics of the case of Fig. 9 at Ωb/ω1=0.9420 (bifurcated branch), illustrating the time 
response and phase-plane plot of w at x=0.5 and those of u at x=1.0. tn is the time normalised relative to 
oscillation period. 
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(a) 

 
(b) 

 
Fig.14. Amplitude-frequency plots of the constrained system for different initial curvature amplitudes; (a) w at 
x=0.5; (b) u at x=1.0; z0=0.003, xs=0.2, g0=0.08, K1=2.0×10

3
, and K3=2.0×10

6
. 
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(a) 

 
(b) 

 
Fig.15. Amplitude-frequency plots of the constrained system for different values of the gap width; (a) w at 
x=0.5; (b) u at x=1.0; z0=0.003, A0=0.05, xs=0.2, K1=2.0×10

3
, and K3=2.0×10

6
. 
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(a) 

 
(b) 

 
Fig.16. Amplitude-frequency plots of the constrained system for different coefficients of linear spring; (a) w at 
x=0.5; (b) u at x=1.0; z0=0.002, A0=0.05, xs=0.2, g0=0.06, and K3=2.0×10

6
. 
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(a) 

 
(b) 

 
Fig.17. Amplitude-frequency plots of the constrained system for different coefficients of linear spring; (a) w at 
x=0.5; (b) u at x=1.0; z0=0.003, A0=0.05, xs=0.2, g0=0.06, and K1=2.0×10

3
. 
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(a) 

 
(b) 

 
Fig.18. Comparison of amplitude-frequency curves of the unconstrained system to those of constrained 
systems; (a) w at x=0.5; (b) w at x=0.2; z0=0.003, A0=0.05, xs=0.2, and g0=0.06. K1=2.0×10

3
 and K2=2.0×10

6
 for 

the case “Elastic constraints”; K1=10.0×10
3
 and K2=200.0×10

6
 for the case “Rigid constraints”. 
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(a) 

 
(b) 

 
(c) 

 
 
Fig.19. Vibration response of the three cases of Fig. 16, at points of peak amplitude; (a) No constraints; (b) 
Elastic constraints; (c) Rigid constraints. 
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Fig.20. Amplitude-frequency plots of the constrained system for different discretised models showing w at 
x=0.5; z0=0.002, A0=0.05, xs=0.2, g0=0.06, K1=2.0×10

3
, and K3=2.0×10

6
. 
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