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Abstract 

The nonlinear parametric resonance of a cantilever under axial base excitation is examined 

while capturing extremely large oscillation amplitudes for the first time. A geometrically 

exact model is developed for the cantilever based on the Euler-Bernoulli beam theory and 

inextensibility condition. In order to be able to capture extremely large oscillation 

amplitudes accurately, the equation of motion is derived for centreline rotation while 

keeping trigonometric terms intact. The developed model is verified for the static case 

through comparison to a three-dimensional nonlinear finite element model. The internal 

energy dissipation model of Kelvin-Voigt is used to model the system damping in large 

amplitudes more accurately. The Galerkin modal decomposition scheme is utilised for 

discretisation procedure while keeping the trigonometric terms intact. It is shown that in 

parametric resonance region, the oscillation amplitudes grow extremely large even for 

smallest possible amplitudes of the base excitation, which highlights the significant 

importance of employing a geometrically exact model to examine the parametric resonance 

response of a cantilever. 

Keywords: Cantilever; Parametric resonance; Extremely large oscillation; Kelvin-Voigt; 

Geometrically exact model 
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1. Introduction 

Beams, subject to dynamic loads, are one of the common thin-walled structures 

which play an important role in different machines and structures [1-6]. Cantilevers, among 

beams, under direct or parametric excitation are present in many engineering systems and 

applications [7, 8]. In particular, cantilevers are present in scanning probe microscopy, mass 

and bio sensors, micro/nano-electromechanical systems, and energy harvesters [9-12]. 

Presence of various sources of nonlinearities, such as geometric nonlinearities arising from 

large rotation and inertial nonlinearities due to relationship between axial and transverse 

displacements through the inextensibility condition, makes the nonlinear dynamical analysis 

of such systems a challenging task. The present study will not provide a very detailed review 

of the literature, but rather highlights the main reason for developing of a new model for 

analysis of parametric resonance of cantilevers. 

A lot of studies have been conducted over the past few decades on examining the 

nonlinear static and dynamic behaviours of cantilevers. For instance, Crespo da Silva and 

Glynn [13, 14] obtained the equations of motion of inextensional beams taking into account 

geometric and inertial nonlinearities; they analysed the equations via the method of 

multiple scales. Nayfeh and Pai [15, 16] examined the nonlinear out-of-plane vibrations of a 

cantilever under lateral base excitation. Further investigations were conducted for instance 

by Feng and Leal [17], Anderson et al. [18], Hamdan and Dado [19], Arafat et al. [20], and 

Esmailzadeh and Jalili [21]. More recently, Farokhi et al. [22] utilised a high-dimensional 

model to demonstrate the effect of various sources of nonlinearity in a vibrating cantilever; 

they showed that both geometric and inertial nonlinearities have significant effect on 

resonance response of a vibrating cantilever and that neglecting either of those 
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nonlinearities lead to very inaccurate results. Additionally, many studies have been 

performed on the application of cantilevers in energy harvesting [9-12, 23-25]. 

In all the valuable studies on parametric resonance of cantilevers, the equations of 

motion are obtained for the transverse and longitudinal or only the transverse motion. 

Throughout the derivation procedure of the equation of motion of a cantilever under 

inextensibility condition, the following equation is commonly used:    1sin ( )w x . This 

equation implies that the tip angle varies only between 90; in other words, the transverse 

equation of motion of a cantilever fails to predict system response if the tip angle grows 

larger than 90. This limitation is easily reached for cantilevers under axial base excitation in 

which the oscillation amplitude in the parametric resonance region grows rapidly. This 

limitation can be overcome by deriving the equation of motion of a cantilever for the 

centreline rotation. 

 The present study for the first time examines the nonlinear parametric resonance of 

a cantilever undergoing extremely large oscillation amplitudes. To this end, a geometrically 

exact model is developed through deriving the equation of motion for the rotation of the 

centreline of the cantilever while keeping all trigonometric terms intact in the derivation 

procedure (as detailed in Section 2). The developed model is verified for a static case via 

comparison to a three-dimensional nonlinear finite element model (as explained in Section 

3). The numerical results are presented for two cases, with either the frequency or 

amplitude of the base exaction varying as the bifurcation parameter (as detailed in Section 

4).  
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2. Model development 

The system examined in this study is a cantilever with a tip mass under axial base 

excitation as shown in Fig. 1. Two coordinate systems are shown on the beam, i.e. XZ and xz, 

denoting the inertial and curvilinear coordinates, respectively. The cantilever is under axial 

base excitation (in the X direction) of x0sin(ω0t), with x0 denoting the base excitation 

amplitude while ω0 shows the frequency of the excitation. The thickness, width, and length 

of the cantilever are represented respectively by h, b, and L, respectively. 

Inextensibility assumption indicates that the length of the centreline remains constant 

during oscillation. This assumption, which is a well-known assumption in modelling of 

cantilevers, is utilised in this study. It is important to note that under the inextensibility 

condition, the length of an element of the beam before and after deformation remains the 

same. Another outcome of the inextensibility assumption is that it reduces the independent 

displacements of the system to one. Hence, the displacements in the transverse, w(x,t), and 

axial, u(x,t), directions can be written in terms of the centreline rotation angle θ(x,t). This is 

expressed as 

 

  

0

0

( , ) sin ( , ) d ,

( , ) 1 cos ( , ) d .

x

x

w x t t

u x t t

  

  



  





  (1) 

One important note should be emphasised here again; the reason for writing the cantilever 

displacements in terms of the centreline rotation is that it allows deriving the cantilever 

motion equation in terms of θ. The main advantage of this compared to an equation for the 
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transverse motion is that it is capable of predicting the cantilever response even when the 

tip angle grows larger than 90°.  

Knowing that u in Eq. (1) denotes the axial displacement relative to the base, the total axial 

displacement can be formulated as 

         0 0

0

( , ) sin 1 cos ( , ) d .
x

Tu x t x t t  (2) 

Taking into account the rotational inertia, the kinetic energy of the cantilever, while under 

axial base-excitation, can be derived as 

     

 

 
      

  
   

 
        

    
    

    

 

 

2

0 0 0 0

0 0

2 2

0 0

1 ( , )
cos sin ( , ) d

2

( , ) 1 ( , )
cos ( , ) d d d ,

2

L x

D

x L

t
K A M x L x t t

t

t x t
t x I x

t t

  (3) 

with M0 and ρ denoting the tip mass and the beam mass density, respectively, and A and I 

standing for the cross-sectional area and its second moment, respectively; δD represents the 

Dirac delta function, while x0 and ω0 denote the base excitation amplitude and frequency, 

respectively. 

The next step is to derive the strain energy of the cantilever. Therefore, the axial strain is 

first formulated in terms of the centreline rotation as 

 





 


( , )
, , .xx

x t
x z t z

x
  (4) 

The axial stress-strain relationship based on the internal energy dissipative model of the 

Kelvin-Voigt [26-28] can be formulated as 
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 


  


 


, , ,xx
xx xxx z t E

t
  (5) 

with E and μ respectively denoting the material Young’s modulus and viscosity. It should be 

noted that the first term in Kelvin-Voigt stress contributes to the elastic strain energy while 

the second term causes dissipation in the system. Hence, the elastic strain energy and the 

virtual dissipative work are given by 

 
   


2

0

1 ( , )
d ,

2

L
x t

U EI x
x

  (6) 

 
  

   
    

    


2

0

( , ) ( , )
d ,

L
x t x t

D I x
x x t

  (7) 

with δ denoting the variational operator. 

The centreline rotation equation of motion can be derived utilising the generalised principle 

of Hamilton as 

   

 

  
       

   
     

      
                   

       
                      

 

 

2 2 2
2

0 0 0 0 2 2

0

2 2 2 3

0 2 2 2

0

sin sin cos sin d d

cos sin cos d d 0,

x x

D

L

x x

D

L

A M x L x t x x I
t t t

A M x L x x EI I
t t x t x

  (8) 

Defining the following dimensionless quantities 

 
 


   



   

  

2
* * 0

0
0

, , ,

, , ,d b b

MAL x t
x t

I L AL

x
x

E L

  (9) 

in which   2 ( )L A EI , the dimensionless equation of motion can be obtained as 
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   

 

  
     



   
    

      
                   

       
                      

 

 

2 2 2
2

2 2

1 0

2 2 2 3

2 2 2

1 0

1
sin 1 1 sin cos sin d d

cos 1 1 sin cos d d 0,

x x

D b b b

x x

D d

x x t x x
t t t

x x x
t t x t x

  (10) 

where the asterisk symbol is disregarded for convenience. 

In what follows, a modal discretisation based on the Galerkin approach is performed 

to reduce the partial differential-type equation of motion into a set of ordinary differential 

ones. To this end, the centreline rotation is expanded into a series consisting of time-

dependent coordinates (denoted by ( )kp t ) multiplied by specific shape functions (denoted 

by  ( )k x ). The shape function used in this study is given by 

         

         
1

( ) sinh cosh sin cos ,

sinh sin cosh cos ,

k k k k k k k

k k k k k

x x x x x     

    


    

   
 

  (11) 

in which ηk is the kth root of the equation       cos cosh 1 . Following the rest of the 

Galerkin approach procedure gives the discretised equations of motion as 

 

1 1 1

1 1 10 0 0

21

1 1 10 1 0

2

2

1
d d d

sin ( ) 1 1 ( ) co( ) ( )) s( ( )

Q Q Q

j k k j k k d j k k
k k k

x xQ Q Q

j k k D k k k k
k k k

x p x p x p

t tx p x x p p t x
t

t






  

  

     
             

     

        
                        


 


    

    

 

 

2

1 1

21

1 1 10 1 0

2

2

( ) sin ( ) d sin d d

cos ( ) 1

( ) (

1 (

)

( ) ) ( ) sin ( ) ( )

(

Q Q

k k k k b b b
k k

x xQ Q Q

j k k D k k k k
k k k

k

x p x p x x t x x

x p x x p p t x
t

x
t

t t

t t

 



 

  

    
       

     

                                 


 


 

    

1 1

) cos ( ) d d d 0, 1,2,( ..., .) ( )
Q Q

k k k
k k

p x p x x x j Qt t
 

    
       

     
 

  (12) 
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There are several points which should be highlighted and emphasised here. First, the 

trigonometric terms must be kept intact to guarantee accurate results when the amplitude 

of oscillation grows very large. More specifically, as will be shown in the numerical results, 

the tip angle could go as high as π; for such large variations in the centreline angle, the 

trigonometric terms must be kept as is to ensure accurate predictions. The second point is 

that when the trigonometric terms are kept intact, the integrations from 0 to x, 1 to x, and 0 

to 1 cannot be performed in closed form; hence, these terms are integrated numerically 

while retaining sufficient number of terms. This procedure results in very large-size 

equations and hence increases the computational costs, but ensures reliable results even at 

extremely large oscillation amplitudes. The third point is the number of modes required to 

obtain converged results. In the present study, Q is set to 6, resulting in 6-degree-of-

freedom (DOF) system which is sufficient to obtain converged results. A pseudo-arclength 

continuation technique is utilised to solve the resultant discretised set of equations 

numerically, which results in the amplitude of the centreline rotation; the axial and 

transverse motion amplitudes will then be obtained using the relationship given in Eq. (1).  

 

3. Model verification 

The model developed in Section 2 is verified in this section through comparison to 

three-dimensional (3D) nonlinear finite element analysis (FEA). More specifically, a 

nonlinear static analysis is performed on a cantilever subject to a tip load perpendicular to 

the beam centreline, using the model developed in Section 2 as well as a 3D nonlinear FEA 

via Abaqus/CAE. The comparison is performed for a cantilever of h=1 mm, L/h=200, and 

b/h=5. An 8-node quadrilateral continuum shell element with reduced integration is utilised 
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for its superior accuracy compared to conventional shell elements; a mesh size of 0.5 mm is 

used to ensure converged results.  

The static equation of motion for a cantilever subject to a tip load which is always 

perpendicular to the beam centreline can be derived as 

   


   
  

     
 

 
1 1 2

2
cos cos ( 1) d sin sin ( 1) d 0,tip D D

x x

F x x x x
x

  (13) 

where  2 ( )tipF FL EI , in which F is the dimensional force applied to the tip and Ftip is its 

dimensionless counterpart. The static equation of motion is discretised following the 

procedure explained in Section 2. The FEA results are made dimensionless as well.  

The deformed configurations of the cantilever for three different tip loads are shown 

in Fig. 2. The symbols indicate the results obtained via 3D nonlinear FEA while the solid line 

indicates those obtained via the model developed in the present study. As seen, the 

deformations predicted by the model developed in this study are very close to those of the 

3D nonlinear FEA even at extremely large deformation magnitudes. This comparison verifies 

the accuracy and reliability of the model developed in this study as well as the accuracy of 

the employed numerical technique. The contour plots of the 3D nonlinear FEA analysis for 

the most extreme case of Fig. 2, i.e. when Ftip=7.24, are shown in Fig. 4 for both transverse 

and axial deformations. 

 

4. Nonlinear parametric resonance 

This section investigates the nonlinear parametric resonance of the cantilever under 

axial base excitation. It is worth mentioning that a cantilever under axial base excitation is 
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classified as a parametrically excited system. For such a system, parametric resonance could 

occur when the frequency of the axial base excitation is varied near twice the fundamental 

transverse natural frequency. It should be noted that in this section, the nondimensional 

fundamental transverse natural frequency is shown by ω1, which is related to its 

dimensional counterpart 1̂  through 1 1
ˆ  . Two different types of parameter resonance 

analyses are performed in this section. The first type is by fixing the amplitude of the base 

excitation and changing its frequency in a range around twice the first transverse natural 

frequency. The second type of analysis is performed by fixing the frequency of the base 

excitation to a value near twice the fundamental transverse natural frequency and varying 

the amplitude of the base excitation as the bifurcation parameter. The results of these 

analyses are discussed in detail in the following. One important note should be made here 

regarding the value of β, as it is the only parameter whose value requires defining specific 

dimensions. For any beam with a large length-to-thickness aspect ratio, the value of β will 

be large enough so that the term 1/β can be safely neglected. The reason for emphasising 

this is that the aim of this study is to present general dimensionless results which are 

applicable to any cantilever. The value of β=480000 is used in this study which corresponds 

to a cantilever with L/h=200. But, as long as the cantilever length-to-thickness ratio is large 

enough (more than 50 for instance), the results of the present study can be used safely. The 

dimensionless material viscosity coefficient μd is set to 0.004 throughout this study. This 

value of damping is equivalent to a damping ratio of 0.007   for small oscillations. In all 

the results presented for parametric resonance cases, the solid line indicates the stable 

solution while the dashed line shows the unstable one.  
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4.1 Parametric resonance due to varying base excitation frequency 

This section examines the nonlinear parametric resonance of the cantilever when 

the frequency of the axial base excitation is changed as the bifurcation parameter. The 

nonlinear parametric resonance response of the cantilever under base excitation is shown in 

Fig. 4 when xb=0.005. The frequency-amplitude diagrams are shown for (a, b) tip 

displacements in transverse and axial directions, respectively, corresponding to maximum 

tip rotation (c). It is visibly seen that the cantilever shows a hardening-type nonlinear 

response in parametric resonance region. More specifically, as the frequency is varied near 

2ω1, two nontrivial solution branches are bifurcated from the trivial zero-amplitude state via 

two period-doubling bifurcations at points P1 and P2 corresponding to ωb=1.9932 ω1 and 

2.0072 ω1, respectively. The two bifurcation solution branches, one stable and one unstable, 

coincide at point S (ωb=2.0356 ω1) corresponding to a saddle-node bifurcation. It is seen 

that the oscillation amplitude goes as high as almost 80% of the beam length, which 

highlights the necessity of employing a geometrically exact model. 

Increasing the amplitude of the axial base excitation to xb=0.01 leads to a new set of 

results as illustrated in Fig. 5. As seen, due to increased base excitation amplitude, the 

unstable region between the two period-doubling bifurcations becomes wider and the 

saddle-node bifurcation occurs at a larger excitation frequency. One interesting aspect of 

the resonance transverse response is that it reaches a local maximum at ωb=2.0312 ω1, and 

then decreases with increasing frequency. This is due to the fact that the transverse 

displacement plotted here corresponds to maximum tip rotation. The decrease in the 

transverse displacement amplitude indicates that the cantilever tip has deflected so much 

that it bends backward. This behaviour is shown in more detail in Fig. 6 through plotting the 
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oscillation of the cantilever in one period at different excitation frequencies. As seen for the 

last case, i.e. sub-figure (d), the transverse amplitude of the tip reaches a maximum value 

and the decreases. One important note should be made here that such extremely large 

amplitudes can be obtained only using a geometrically exact model while retaining all 

nonlinearities, i.e. the model developed in Section 2. The significance of a geometrically 

exact model is better shown in Appendix A through comparison of static and dynamic 

results to a third-order truncated model. Another important factor is retaining a sufficient 

number of modes in Galerkin discretisation. The frequency-amplitude diagrams for all 

generalised coordinates are depicted in Fig. 7. As seen, the 6-DOF model employed in this 

study ensure converged results; it is seen that the amplitude of sixth generalised coordinate 

is very small compared to that of the first generalised coordinate indicating convergence. 

The phase-plane plots and time histories of w, θ, and u are shown in Figs. 8 and 9 for 

excitation frequencies ωb=1.9877 ω1 and ωb=2.0704 ω1, respectively. The time history of the 

transverse motion in Fig. 9 clearly shows that the transverse motion reaches its maximum 

amplitude before the tip angle reaching its maximum.  

The effect of the axial base excitation amplitude on the transverse motion 

parametric resonance response is shown in Fig. 10; the oscillation envelope is plotted in this 

figure by plotting both maximum and minimum transverse displacements. As seen, the 

whole parametric resonance region becomes wider with increasing base excitation 

amplitude. Additionally, at sufficiently large base excitation amplitudes, the tip transverse 

displacement corresponding to maximum tip rotation reaches a local maximum and then 

decreases. 
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The effect of the added tip mass ratio γ on nonlinear frequency-amplitude responses 

of the system is depicted in Fig. 11. As seen, increasing the added tip mass ratio results in 

parametric resonance region shifting to the left on the frequency axis, which is an indication 

of reduced natural frequency. As seen in sub-figure (b), the tip axial displacement 

magnitude increases slightly with increasing tip mass ratio. 

 

4.2 Parametric resonance due to varying base excitation amplitude 

Parametric resonance could occur when the amplitude of the axial base excitation is 

changed as the bifurcation parameter given that the base-excitation frequency is set to a 

value near twice the fundamental natural frequency. An example of that is shown in Fig. 12 

when ωb is set to 2.00 ω1 and xb is varied as the control parameter. It is interesting to note 

that a period-doubling bifurcation occurs at point P, corresponding to xb= 0.0043, which 

renders the trivial configuration unstable and results in bifurcation of a nontrivial stable 

solution branch. It is worth mentioning that for any base excitation amplitude less than 

0.0043, parametric resonance does not occur in the cantilever. Hence, based on the 

assumed material viscosity of 0.004, a minimum axial base excitation amplitude of 

xb=0.0043 is required for the occurrence of parametric resonance. To gain a better 

understanding of this minimum required value for parametric resonance, it is interesting to 

compare the dimensionless load in the dynamic case to the dimensionless self-weight 

buckling load. Conducting a static self-weight buckling analysis reveals that buckling occurs 

at a dimensionless load of 3 ( ) 7.8375AL g EI   , which is in agreement with the values 

reported in the literature. Knowing that parametric resonance occurs when xb=0.0043 and 

ωb=2.00ω1, with ω1=3.5160, the minimum dimensionless load corresponding to parametric 
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resonance is obtained as 2
b bx  = 0.2126, which is almost 2.7% of the self-weight buckling 

load.   

The tip transverse displacement corresponding to maximum tip rotation for two 

base excitation frequencies of 2.05 ω1 and 2.10 ω1 are shown in Fig. 13 (a, b), respectively. 

As seen, for both cases, after the occurrence of the period-doubling bifurcation at point P, 

an unstable nontrivial solution is bifurcated from the original trivial branch. This unstable 

branch regains stability via a saddle-node bifurcation; for the case with ωb =2.10 ω1, two 

more saddle-node bifurcations appear with increasing base excitation amplitude. 

The tip mass ratio effect on parametric resonance of the cantilever is illustrated in 

Fig. 14. The frequency of the base excitation is set to 7.10 for all cases. As seen, increasing 

the tip mass ratio postpones the nontrivial solution bifurcation to larger base excitation 

amplitudes. Additionally, for larger tip mass ratios, the cantilever shows more complex 

parametric resonance response with three saddle-node bifurcations.   
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5. Conclusions 

The nonlinear parametric resonance response of a cantilever under axial base 

excitation is examined via developing a geometrically exact model capable of capturing 

extremely large oscillation amplitudes accurately. The Euler-Bernoulli beam theory along 

with centreline inextensibility is utilised to derive the equation of motion for centreline 

rotation, while employing the Kelvin-Voigt model to model internal energy dissipation. 

Galerkin’s technique is utilised to obtain the discretised set of equations which are then 

solved using a continuation technique.  

A comparison of the developed model to a three-dimensional nonlinear finite 

element model showed that it can capture extremely large deformations accurately.  

Examining the nonlinear parametric resonance of the cantilever when the frequency 

of the axial base excitation is varied as the bifurcation parameter showed that the oscillation 

amplitude grows very large after the occurrence of the period-doubling bifurcations. 

Tracking the tip transverse amplitude corresponding to maximum tip rotation revealed that 

it reaches a maximum and then decreases with increasing frequency. It is shown that the 

addition of a tip mass shifts the parametric resonance region to smaller excitation 

frequencies.  

It was shown that when the amplitude of the base excitation is changed as the 

bifurcation parameter, no parametric resonance occurs for excitation amplitudes smaller 

than 0.0043; it was shown that this base excitation amplitude is equivalent to a 

dimensionless dynamic load amplitude of 0.2126, which is almost 2.7% of the self-weight 

buckling load. Additionally, depending on the excitation frequency, the parametric 
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resonance region consists of zero, one, or three saddle-node bifurcations. For a fixed 

excitation frequency, it was shown that the addition of a tip mass postpones the occurrence 

of the period-doubling bifurcation to larger amplitudes of the base excitation.  

 

Appendix A. The significance of a geometrically exact model 

In this appendix, the static and dynamic responses of a cantilever are examined using the 

proposed exact model for centreline rotation and a third-order nonlinear model for the 

transverse motion. The third-order model accounts for geometric and inertial nonlinearities 

and utilises a Kelvin-Voigt damping mechanism for the purpose of consistency with the 

proposed model for the dynamic analysis. The comparison of the two models is shown in 

Fig. 15. Sub-figure (a) shows the comparison between the two models in predicting the 

static response of a cantilever with a tip load in the z direction; f0 denotes the 

nondimensional load ( 2
0 ( )f fL EI ). As seen, third-order model deviates from the exact 

model at tip static deflection of around 40% of the length, occurring in the vicinity of f0=1.2; 

beyond that, the third-order model error increases rapidly. 

Figure 15(b) shows the comparison between the parametric resonance responses of the 

cantilever using the two models when ωb/ω1=2.0. As seen, both models predict almost the 

same base excitation amplitude for the occurrence of the period-doubling bifurcation. 

However, beyond that point, the third-order model loses accuracy very rapidly with 

increasing base excitation amplitude. The differences between the two models for both 

static and dynamic cases clearly signify the importance of employing a geometrically exact 

model based on rotation when examining the large-amplitude response of cantilevers. 
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Fig. 1. Schematic illustration of a cantilever with a tip mass under axial base excitation. 
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Fig.2. Nonlinear static deformation of the cantilever at different force levels (shown on the curves). Solid line 
and symbols denote the results obtained by the model developed in this study and those obtained via the 3D 
nonlinear FEA, respectively. X and Z are dimensionless relative to the length. 
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(a) 

 

(b) 

 
Fig. 3. 3D nonlinear FEA contour plots of (a) transverse and (b) axial static deformations of the cantilever of Fig. 

2 for the case Ftip=7.24. 
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(c) 

 
Fig.4. Parametric resonance of the cantilever under axial base excitation; (a, b) transverse and axial tip 
displacements, respectively, corresponding to maximum tip rotation (c). xb=0.005, γ=0, and ω1=3.5160. 
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(c) 

 
Fig.5. Parametric resonance of the cantilever under axial base excitation; (a, b) transverse and axial tip 
displacements, respectively, corresponding to maximum tip rotation (c). xb=0.01, γ=0, and ω1=3.5160. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
Fig.6. Oscillation of the system of Fig. 5 at (a) ωb/ω1=1.9742, (b) ωb/ω1=1.9877, (c) ωb/ω1=2.0247, and (d) 
ωb/ω1=2.0704. X and Z are dimensionless relative to the length. 
 
 
 
 
 
 
 
 
 
 
 
 
 



27 
 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
(e) 

 

(f) 

 
Fig.7. Rotational motion generalised coordinates of the system of Fig. 5. 
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 (a) 

 

(b) 

 
(c) 

 

(d) 

 
(e) 

 

(f) 

 
Fig.8. Dynamics of the system of Fig. 5 at ωb/ω1=1.9877. Phase-plane plots and time histories of (a, b) w at tip, 
(c, d) θ at tip, and (e, f) u at tip. tn : normalised time relative to the oscillation period. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
(e) 

 

(f) 

 
Fig.9. Dynamics of the system of Fig. 5 at ωb/ω1=2.0704. Phase-plane plots and time histories of (a, b) w at tip, 
(c, d) θ at tip, and (e, f) u at tip. tn : normalised time relative to oscillation period. 
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Fig.10. Transverse oscillation envelope of the tip of the cantilever corresponding to maximum tip rotation in 
parametric resonance for various axial base excitation amplitudes. γ=0 and ω1=3.5160. 
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 (a) 

 
(b) 

 
Fig.11. Effect of added tip mass on parametric resonance of the cantilever under axial base excitation; (a,b) tip 
transverse and axial displacements, respectively, corresponding to maximum tip rotation. xb=0.007. 
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(c) 
 

 
Fig.12. Parametric resonance of the cantilever under axial base excitation; (a, b) transverse and axial tip 
displacements, respectively, corresponding to maximum tip rotation (c). ωb/ω1=2.0. 
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(a) 

 
(b) 

 
Fig.13. Parametric resonance of the cantilever under axial base excitation; tip transverse motion corresponding 
to maximum tip rotation when (a) ωb/ω1=2.05 and (b) ωb/ω1=2.10. 
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(a) 

 
(b) 

 
Fig.14. Effect of the added tip mass on parametric resonance of the cantilever under axial base excitation; (a, 
b) tip transverse and axial displacements, respectively, corresponding to maximum tip rotation. ωb  is set to 
7.10 for all cases. 
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(a) 

 
(b) 

 
Fig.15. Comparison of large-amplitude responses of the cantilever obtained using the proposed model and a 
third-order model of the transverse motion of the cantilever. (a) static response under a tip load in z direction; 
(b) parametric resonance response when ωb/ω1=2.0. 
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