
Citation: Fielding, Ben, Lawrence, Tom and Zhang, Li (2019) Evolving and Ensembling Deep
CNN Architectures for Image Classification. In: IJCNN 2019 - 2019 International Joint
Conference on Neural Networks, 14th - 19th July 2019, Budapest, Hungary.

URL:

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/40456/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to
access the University’s research output. Copyright © and moral rights for items on NRL are
retained by the individual author(s) and/or other copyright owners. Single copies of full items
can be reproduced, displayed or performed, and given to third parties in any format or
medium for personal research or study, educational, or not-for-profit purposes without prior
permission or charge, provided the authors, title and full bibliographic details are given, as
well as a hyperlink and/or URL to the original metadata page. The content must not be
changed in any way. Full items must not be sold commercially in any format or medium
without formal permission of the copyright holder. The full policy is available online:
http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription may be
required.)

http://nrl.northumbria.ac.uk/policies.html

Evolving and Ensembling Deep CNN Architectures
for Image Classification

Ben Fielding
Computer and Information Sciences

Northumbria University
Newcastle upon Tyne, UK

ben.fielding@northumbria.ac.uk

Tom Lawrence
Computer and Information Sciences

Northumbria University
Newcastle upon Tyne, UK

tom.lawrence@northumbria.ac.uk

Li Zhang
Computer and Information Sciences

Northumbria University
Newcastle upon Tyne, UK
li.zhang@northumbria.ac.uk

Abstract—Deep Convolutional Neural Networks (CNNs) have
traditionally been hand-designed owing to the complexity of
their construction and the computational requirements of their
training. Recently however, there has been an increase in research
interest towards automatically designing deep CNNs for specific
tasks. Ensembling has been shown to effectively increase the
performance of deep CNNs, although usually with a duplication
of work and therefore a large increase in computational resources
required. In this paper we present a method for automatically
designing and ensembling deep CNN models with a central weight
repository to avoid work duplication. The models are trained and
optimised together using particle swarm optimisation (PSO), with
architecture convergence encouraged. At the conclusion of the
joint optimisation and training process a base model nomination
method is used to determine the best candidates for the ensemble.
Two base model nomination methods are proposed, one using
the local best particle positions from the PSO process, and one
using the contents of the central weight repository. Once the
base model pool has been created, the individual models inherit
their parameters from the central weight repository and are then
finetuned and ensembled in order to create a final system. We
evaluate our system on the CIFAR-10 classification dataset and
demonstrate improved results over the single global best model
suggested by the optimisation process, with a minor increase in
resources required by the finetuning process. Our system achieves
an error rate of 4.27% on the CIFAR-10 image classification task
with only 36 hours of combined optimisation and training on a
single NVIDIA GTX 1080Ti GPU.

Index Terms—Deep Learning, Evolutionary Computation,
Image Classification, Convolutional Neural Networks, Particle
Swarm Optimisation

I. INTRODUCTION

Convolutional neural networks (CNNs) are a class of neural
networks that are used to learn filters (or kernels) from feature
maps, often in a sequential or hierarchical manner. The depth
of a CNN usually refers to the number of convolutional layers
that sequentially process feature maps, where the output of one
layer is used as the input to the following layer. CNNs have
been heavily used for computer vision tasks since Krizhevsky
et al. [1] used a deep CNN to beat the nearest competitor by
more than 10% on the Imagenet Large Scale Visual Recogni-
tion Challenge (ILSVRC) [2] in 2012. Since then, CNNs have
been used as effective feature extractors in a huge number of
computer vision areas, such as image description generation
[3], intelligent visual agents [4], [5], visual question answering
[6], visual dialog [6], and many more. Current methods to

use CNNs as feature extractors often rely on transfer learning
using one of a small number of pre-conceived architectures,
as designing a new architecture by hand can require in-depth
knowledge of complex parameters. Therefore, techniques are
required to automatically generate new CNN architectures,
specific to the task at hand, allowing more versatility and better
task-specific performance than ‘borrowed’ architectures.

Ensembling techniques have been shown to improve deep
convolutional neural network (CNN) performance, even when
assembled from identical architecture models. GoogleNet [7]
used an ensemble of seven identical individuals to reduce the
top-5 error rate on the ImageNet ILSVRC 2014 classification
challenge dataset from 10.07% to 6.67%, a reduction of 3.45%
over their single model result. Szegedy et al. [8] showed
that combining similar, but not identical, Inception model
architectures also produced improved performance over a
single model. Using the Imagenet ILSVRC 2012 classification
challenge dataset, they showed a reduction in error rate from
17.8% for the best performing single model, down to 16.4%
for an ensemble of four models using two different architecture
choices. Performance increases such as these represent an
attractive way to improve accuracy scores for a model, as
they only require more computational resources, rather than
modifications to the model itself. Consequently they can
theoretically be performed on any deep CNN, given enough
resources. However, this duplication of work represents a
linear increase in resource costs, often in exchange for a
minor increase in accuracy. Recent works [9], [10] show
that ensembles can be constructed effectively without a linear
increase in computational work.

In this paper, we demonstrate techniques for constructing
ensembles from the outcome of an evolutionary CNN architec-
ture search using enhanced particle swarm optimisation (PSO).
The search process itself uses a weight sharing technique
to avoid duplicating training efforts between the individuals
when performing each fitness evaluation, meaning that models
with the exact same architecture configuration will share
weights and be functionally identical networks. Following the
optimisation process, we propose two techniques for nomi-
nating candidate base models to be ensembled for the final
system. One technique uses the remaining local best particle
positions from the PSO process, which are clustered around

the global best position due to the nature of PSO. The other
technique uses the central weight sharing repository that is
utilised by the optimisation process to jointly train the models
during optimisation. Following base model identification, the
individual models are then fine-tuned on a combination dataset
in order to reduce overfitting. Once the base models have been
fine-tuned, their individual and group ensemble performance
on the test set is evaluated and provided alongside similar
related works and the results are discussed.

The remainder of the paper is structured as follows: Section
II discusses relevant related work in the area, Section III
describes our methodology in designing and implementing
the system, Section IV discusses our experimental results and
findings, and Section V contains concluding remarks and plans
for future work given these findings.

II. RELATED WORK

Bagging [11] and AdaBoost [12] are popular methods for
constructing ensembles with data variants. More specifically,
numerous models are created by dividing the training data into
smaller subsets, each subset is then used to train a model.
At test time, a sample is passed through each model and
an average is taken to give the final prediction. Khatami et
al. [13] showed ensembles gave considerable improvements
and cutting-edge results in the domain of medical image
retrieval which suffers from strongly imbalanced datasets. The
proposed architecture consisted of an ensemble of three hand-
crafted convolutional neural networks based on LeNet [14],
each trained with different structures and learning schemes
aimed at reducing the output of each network to two possible
outputs and probabilities, thus greatly reducing the search
space to a potential six. Huang et al. [15] showed that once
an architecture has been selected, the computational cost of
generating multiple models for ensembling can be reduced by
converging at multiple local minima and saving the model
parameters along its optimization path. Once complete, an
average of the discovered models was taken at test time
and a performance increase was observed. Hara et al. [16]
proposed the idea that regularisation methods such as Dropout
can be considered to be ensembling techniques. They showed
that model accuracy can be improved by taking an average
over a network with learned and unlearned units. Huang et
al. [17] proposed the idea of using stochastic depth as an
ensembling technique by taking average outputs over networks
with missing layers. Singh et al. [18] proposed swapout,
an ensembling technique that combines both dropout and
stochastic depth approaches.

A common problem to many of these approaches is the
extensive domain knowledge required in order to construct
the initial base models to be ensembled. Recent works have
addressed this requirement through the proposal of evolution-
ary search techniques for ensemble construction and CNN
architecture generation.

Zhang et al. [19] proved with extensive benchmarking
that evolutionary generated ensembles based on the firefly
algorithm can outperform state of the art variants by extending

the attractiveness behaviour with the introduction of evading
action. Attractiveness considered the global best rather than
just neighbours, and the evading action was informed by
the global and local worst. These two attributes combined
drove the fireflies to converge quickly by efficiently vacating
unpromising regions resulting in a more efficient method
for finding the best solution. By splitting the fireflies into
subswarms, multiple solutions could be found, thereby gener-
ating an entire ensemble. EUSBoost [20] used an evolutionary
approach which promoted diversity between ensembles using
the Q-statistic diversity measure as a form of guided boosting.
Bochinski et al. [21] proposed an evolutionary approach to
hyper-parameter optimisation and showed that applying such a
technique for an ensemble of multiple CNNs gave significant
improvements on the MNIST dataset for hand-written digit
recognition when compared to handcrafted architectures such
as LeNet-5 [14]. Wang et al. [22] used PSO to find an
optimal CNN architecture, automating the process of making
architectural choices such as filter sizes, stride, layer types,
network depth and width. The resulting architecture, however,
did not consistently outperform handcrafted architectures. Real
et al. [23], [24] recently presented an evolutionary generated
architecture which outperformed hand-designed architectures.
The method introduced an age property to an evolutionary
algorithm which promoted exploration within the search rather
than ‘zooming in’ on a good candidate too early. Moyano et
al. [25] showed that over a range of 14 datasets tested, an
evolutionary approach based on a generational elitist algo-
rithm could automatically generate diverse classifiers which
performed more statistically accurately and consistently when
compared to state of the art approaches. Zhao et al. [26]
found that by introducing an objective of sparseness to be
minimised, multiple evolutionary algorithms with different ob-
jectives could construct multiple models of smaller classifiers
which had the ability to generalise well together. Ultimately,
an ensemble could be discovered which was multi-objective
focused, diverse, and performed competitively. Fielding and
Zhang [27] used an enhanced PSO variant to efficiently nav-
igate a block-based CNN search space, using weight-sharing
techniques to alleviate the enormous time and resource cost
of the fitness function evaluation. The method jointly evolved
and trained a single effective CNN architecture in around 34
hours using a single consumer GPU.

III. METHODOLOGY

A. Base Model Generation

Following [27], we use the SOBA method for jointly
optimising and training block architecture models. SOBA is a
technique whereby a population of individuals explore a search
space of architecture design decisions whilst cooperatively
training their internal parameters. The individuals consist
of deep CNNs constructed in a block-wise manner, where
each block of an individual architecture represents a portion
of a linear convolutional graph. The graphs are portioned
according to a scheduled increase in depth (of convolutional
filter banks) alongside a decrease in spatial size (of feature

map). For this implementation, each architecture then consists
of five key design decisions, mapping to five distinct blocks
in the architecture. The first block, or architecture decision,
takes an image as input (32 × 32 × 3 for CIFAR-10) and
consists of 1 . . . n convolutional layers, with accompanying
BatchNorm and ReLU activation. The first convolutional layer
in the block is used to increase the depth of the subsequent
feature maps from 3 to 64, which is then maintained for the
remainder of the block. The subsequent three blocks are also
convolutional blocks and follow the same practice, whereby
the first convolutional layer in each block increases the number
of feature maps to 2ε where ε takes the values [7, 8, 9]. The
final block in the architecture controls the number of linear
classification layers at the end of the network. Prior to this
block, the output of the previous (convolutional) block is
flattened and then used as input into an initial dense layer.
This first dense layer consists of a simple linear layer of single
neurons connecting the flattened convolutional layer to a layer
output of size 4096. The subsequent layers in this block are
then simply linear layers mapping input vectors R4096 to layer
output vectors R4096. The final layer in the architecture is a
linear layer which maps the output of the final block (R4096)
to the number of output classes (R10 for CIFAR-10). We then
perform a softmax over the final output vector to calculate the
probability of the input image belonging to each individual
class.

B. Particle Swarm Optimisation

The optimisation process uses particle swarm optimisation
(PSO) to evolve a swarm of individual particles representing
different architecture choices, initialised as random positions
in the search space. The particle positions are updated using
the standard PSO methodology with modifications to the
acceleration coefficients as proposed by [27]. First the velocity
is updated taking into account the previous best position of
the individual being updated, and the previous best position
overall. The velocity update can be seen in (1).

V ti = wV t−1i + c1r1(Pi −Xt−1
i) + c2r2(Pg −Xt−1

i) (1)

The velocity is then used to update the particle positions
themselves through simple vector addition of the existing
position (i.e. the position from the previous timestep) and the
velocity, which can be seen in (2).

Xt
i = Xt−1

i + V ti (2)

The PSO acceleration coefficients w, c1, c2 can be seen in (1)
and control the tendency for the particles to follow the previous
velocity, their previous personal best position, and the previous
overall best position respectively. For this implementation we
use the ‘Cosine Late Crossover’ schedule seen in Fig. 1 and
consisting of:

w = 0.6, (3)

c1 = q +
Q− q
2

cos(π(1− t

T
)) + 1 (4)

Fig. 1. Cosine Late Crossover acceleration coefficients

where q = 1.5, Q = 2.5, and

c2 = q +
Q− q
2

cos(π
t

T
) + 1 (5)

where q = 0.5, Q = 2.5, which was found in [27] to
provide the best tradeoff between local and global exploration
throughout the optimisation/training process. We performed
the optimisation process with a population m of 50 particles
over 100 iterations.

C. Parameter Sharing through Lookup Table

As the joint optimisation and training process progresses,
the trained parameters of the models are shared through a
lookup table, using a key system to differentiate the weights of
each configuration of each individual block in the architecture.
An example lookup table following the optimisation process
can be seen in Table. I, where the block configuration is repre-
sented by a key following the pattern a.b, with a designating
the specific location of the block in the block architecture
model, and b representing the size of the block.

The size of a block (b) determines how many convolutional
layers the block will contain in the generated architecture. It
is interesting to note that the performance of each block con-
figuration degrades as it moves further away from the optimal
configuration found for each block position, with the extreme
values often representing very poor results. This can be seen
in the increase in error rates for block 1 (the second block
of convolutional layers) in the model, where 4 convolutional
layers, identified by the key 1.3 provided the best error rate
of 4.64%, and the error rates consistently increased with an
increase or decrease of the block configuration parameter.
Visual representations of the lookup table validation error rates
can be seen in Fig. 2 for block 0, Fig. 3 for block 1, Fig. 4
for block 2, Fig. 5 for block 3, and Fig. 6 for block 4. The
global best result from the optimisation process is therefore
represented by the lowest point of each of these graphs,
whilst the shape of the graphs suggests that improvements
can be found in an area, rather than a single value drastically
outperforming all other values.

D. Base Model Preparation

Following the joint optimisation and training process, we
diverge from the original SOBA method, which simply chose

Table. I
EXAMPLE LOOKUP TABLE CONTENTS FOLLOWING OPTIMISATION
PROCESS (EVALUATION PERFOMED ON THE VALIDATION DATASET)

Block
Configuration

Last Error
(%)

Best Error
(%)

0.0 29.02 29.02
0.1 13.02 13.02
0.2 9.68 9.68
0.3 6.76 6.76
0.4 5.12 4.98
0.5 4.8 4.64
0.6 5.72 5.72
0.7 10.4 9.24
0.8 16.4 16.4
1.0 20.62 16.88
1.1 12.38 10.72
1.2 4.92 4.84
1.3 4.8 4.64
1.4 9.26 9.26
1.5 24.36 24.36
1.6 47.94 47.94
1.7 48.4 48.4
1.8 65.72 59.88
2.0 14.48 14.48
2.1 6.16 5.7
2.2 5.24 4.86
2.3 4.8 4.64
2.4 5.94 5.82
2.5 18.8 14.16
2.6 16.74 16.74
2.7 32.06 31.72
2.8 28.8 28.8
3.0 4.8 4.64
3.1 5.62 5.62
3.2 9.46 9.46
3.3 13.98 10.84
3.4 14.44 11.24
3.5 15.32 15.32
3.6 18.06 18.06
3.7 20.56 20.56
3.8 90.42 52.1
4.0 4.8 4.64
4.1 5.42 5.42
4.2 10.36 9.12
4.3 15.26 15.26
4.4 18.46 16.96
4.5 59.54 36.94
4.6 23.82 23.82
4.7 28.62 28.62
4.8 90.14 89.36

Block Configuration (Number of Convolutional Layers)

Er
ro

r R
at

e
of

 th
e

Re
su

lti
ng

 M
od

el
 (%

)

0

25

50

75

100

0 1 2 3 4 5 6 7 8 9

Last Best

Fig. 2. Block 0 validation error rate by configuration

Block Configuration (Number of Convolutional Layers)

Er
ro

r R
at

e
of

 th
e

Re
su

lti
ng

 M
od

el
 (%

)

0

25

50

75

100

0 1 2 3 4 5 6 7 8 9

Last Best

Fig. 3. Block 1 validation error rate by configuration

Block Configuration (Number of Convolutional Layers)

Er
ro

r R
at

e
of

 th
e

Re
su

lti
ng

 M
od

el
 (%

)

0

25

50

75

100

0 1 2 3 4 5 6 7 8 9

Last Best

Fig. 4. Block 2 validation error rate by configuration

Block Configuration (Number of Convolutional Layers)

Er
ro

r R
at

e
of

 th
e

Re
su

lti
ng

 M
od

el
 (%

)

0

25

50

75

100

0 1 2 3 4 5 6 7 8 9

Last Best

Fig. 5. Block 3 validation error rate by configuration

Block Configuration (Number of Convolutional Layers)

Er
ro

r R
at

e
of

 th
e

Re
su

lti
ng

 M
od

el
 (%

)

0

25

50

75

100

0 1 2 3 4 5 6 7 8 9

Last Best

Fig. 6. Block 4 validation error rate by configuration

the global best architecture, finetuned it for a number of
epochs on a combined training & validation dataset, and then
reported test results. In contrast, we look to utilise multiple
particle positions in the swarm in order to promote diversity
in the overall resulting model. We experimented with two
main methods for choosing candidate base models for the
ensemble process, the first method was to use the local best
positions from the PSO optimisation process, where the local
best represents the best result that each individual particle
has previously occupied, which includes the global best. The
second method was to use the weight sharing lookup table to
nominate particles based on the best results that have been
seen for each individual block, in order to promote even more
diversity in the resulting base models.

1) Local Best Base Model Nomination: Starting with the
m particles’ local best positions, we consider only the unique
positions in the search space, as the weight sharing process of
the SOBA system ensures that particles with the same position
will also have the same parameters, so ensembling them would
be relatively pointless. This can be considered as the set of all
distinct local best particle positions:

A = {Pi}i∈{1,...,n} (6)

Which essentially represents every distinct, remaining particle
local best, clustered around the global best architecture, where:

Ai = [a1, a2, a3, a4, a5] (7)

This results in a variable number of base models from 1 to m
where m represents the population of the swarm.

2) Lookup Table Base Model Nomination: We also experi-
mented with a method to generate candidate base models using
the weight sharing lookup table. By considering each block Bi
in the architecture individually, we check the best values in
the lookup table for each configuration. For each block Bi we
then take two candidate configurations representing the two
best fitness values seen, and construct a tuple (b1, b2) where
bi represents a single integer block configuration. In this way
we build a set of tuples in B, e.g.:

B = {(1, 2), (1, 4), (6, 3), (2, 7), (0, 1)} (8)

which we can then use to generate candidate models by taking
the cartesian product of all tuples:

A = B1×· · ·×Bn = {(b1, . . . , bn) | xi ∈ Xi∀i ∈ {1, . . . , n}}
(9)

This results in 25 or 32 base models using the five-block
skeleton architecture, with an individual model represented by:

Ai = [a1, a2, a3, a4, a5] (10)

e.g. the first model nominated from B above will be:

A1 = [1, 1, 6, 2, 0] (11)

E. Ensemble Construction

Following the base model nomination process, each individ-
ual base model is then individually finetuned on a combination
dataset consisting of the training dataset and the validation
dataset from the optimisation process. This finetuning process
takes the form of an additional 10 epochs of training on
the combined dataset, using a cosine annealing learning rate
schedule similar to [28], although we choose not to perform
any restarts for this work. None of the parameters of the
model are fixed during the finetuning process, it can be
considered simply as an extension of the training process for
each individual base model. Although notably the parameters
learned through this process are not stored in the lookup table.
The learning rate anneals from 1e−4 down to 1e−7 over the
10 epochs, ensuring that any small improvements in position
can still be made, without jumping over minima. Following
the finetuning process, the distinct, finetuned architectures
are then combined into an ensemble using a plurality voting
technique (12), where the class D decided for each example
is determined by:

D = argmax
d∈{1,...,N}

T∑
t=1

Ct,d (12)

where C represents the classifications (Ct,d ∈ {0, 1}) of
each base model Ai for each individual class for the input,
d = 1, . . . , N represents the number of classes (N = 10 for
CIFAR-10), and t = 1, . . . , T represents the number of base
models in the base model pool (T = 32 for the lookup table
nomination method). Plurality voting is conceptually similar
to majority voting, although in the case where an individual
class for a single example does not achieve more than 50% of
the votes, plurality voting still takes the highest voted class,
rather than discarding the example as lacking consensus. This
technique ensures that we always receive a valid classification
for every example, even with widespread confusion amongst
the base models.

F. Duplication of Work

A significant downside to the construction of ensembles
of deep learning models is the duplication of work that is
required in order to generate multiple, distinct models. This
duplication of work is common when ensembling CNNs with
the same architecture, as often multiple identical models are

Fig. 7. CIFAR-10 classes with example images

trained either on slices of the dataset with a bagging technique,
or even on identical datasets, and then ensembled together
to produce a slight increase in performance. Our system
alleviates the majority of this duplication of work through
our weight sharing mechanism, which ensures that as the
optimisation process progresses, the individual blocks in the
architectures are trained by all of the models that share them.
The only remaining duplication of work is the small finetuning
step, whereby we train each base model on the combined
training and validation datasets for a small number of epochs
in order to reduce overfitting from the optimisation process.
This finetuning process takes around four minutes of extra
processing time for each base model on our single NVIDIA
GTX 1080Ti GPU, representing a very minor increase in
required resources.

IV. EVALUATION

We evaluate our system on the CIFAR-10 [29] image
classification dataset, which consists of 32×32 colour images,
each with a single associated class, examples of which can be
seen in Fig. 7. The dataset itself consists of 60,000 images,
with precalculated splits of 50,000 for training and 10,000
for testing. We pre-process the images on-the-fly using the
augmentations proposed by [30]. For our evaluations we used
the same splitting technique as [27], whereby we further
split the 50,000 training images into 45,000 training and
5,000 validation. The validation images are then used as the
performance measure for the fitness evaluations during the
evolutionary optimisation process. After the conclusion of the
joint optimisation/training process, the training and validation
images were recombined back into the 50,000 image training
set which was used to finetune each of base models following
the nomination process. To this end, we experimented with the
two methods of base model nomination previously described.

A. Local Best Ensemble

Following the conclusion of the joint optimisation and train-
ing process, we were left with 5 distinct local best positions,
with a number of clusters of particles occupying the same
position. The finetuning process was performed, taking around
15 minutes extra processing time than simply using the global
best position. The final test performance of the individual base
models and the resulting constructed ensemble on the CIFAR-
10 test set can be seen in Table. II. Each remaining distinct
position is given, along with a tally of the number of particles
occupying this position at the conclusion of the optimisation
process. It’s clear from the results that the global best position
provides the best results out of all of our candidate base
models. It is also clear that the ensemble technique resulted
in improved performance over all of the base models used in
its construction, including an improvement of 0.27% over the
global best solution chosen by the optimisation process going
from an error rate of 4.66% down to 4.39%. Fig. 8 shows
each of the remaining, distinct local best positions projected
into two dimensions using t-Distributed Stochastic Neighbour
Embedding (t-SNE) [31] in order to demonstrate the variations
in architecture for the base models in the ensemble.

B. Lookup Table Ensemble

Following the conclusion of the joint optimisation and
training process, we used the lookup table base model nom-
ination process described earlier to generate 32 base models.
The finetuning process for the lookup based ensemble took
around 2 hours of extra processing time when compared
to simply using the global best. The positions, counts, and
test results can be seen in Table. III and Fig. 9 shows the
same t-SNE projection for the candidate positions identified
by the lookup table method of base-model construction. It
is clear that using the lookup table method can provide us
with many more diverse candidate base models for ensemble
construction than the local best nomination method, although
the majority of these models are not necessarily the best
candidates overall. Interestingly, the lowest single model error
rate was not achieved by the global best position, rather it was
achieved by a position that did not appear in the remaining
local bests whatsoever. The increased diversity of the base
models nominated by the lookup table method resulted in the
construction of a much more effective ensemble, producing
an error rate of 4.27%, which was 0.36% lower than the

Table. II
PERFORMANCE MEASURES FOR LOCAL BEST METHOD OF ENSEMBLE

CONSTRUCTION ON THE CIFAR-10 TEST SET

(Integer) Position Particle
Tally

Accuracy
(%)

Error Rate
(%)

[5, 3, 3, 0, 0] (Global Best) 38 95.34 4.66
[5, 2, 2, 0, 0] 4 95.16 4.84
[4, 2, 3, 0, 0] 1 95.13 4.87
[5, 3, 2, 0, 0] 5 95.29 4.71
[5, 2, 3, 0, 0] 2 95.28 4.72
Ensemble N/A 95.61 4.39

Table. III
PERFORMANCE MEASURES FOR LOOKUP TABLE METHOD OF ENSEMBLE

CONSTRUCTION ON THE CIFAR-10 TEST SET

(Integer) Position Accuracy
(%)

Error Rate
(%)

[5, 3, 3, 0, 0] (Global Best) 95.37 4.63
[5, 3, 3, 0, 1] 95.36 4.64
[5, 3, 3, 1, 0] 95.42 4.58
[5, 3, 3, 1, 1] 95.32 4.68
[5, 3, 2, 0, 0] 95.25 4.75
[5, 3, 2, 0, 1] 95.30 4.70
[5, 3, 2, 1, 0] 95.27 4.73
[5, 3, 2, 1, 1] 95.25 4.75
[5, 2, 3, 0, 0] 95.27 4.73
[5, 2, 3, 0, 1] 95.22 4.78
[5, 2, 3, 1, 0] 95.19 4.81
[5, 2, 3, 1, 1] 95.23 4.77
[5, 2, 2, 0, 0] 95.20 4.80
[5, 2, 2, 0, 1] 95.14 4.86
[5, 2, 2, 1, 0] 95.12 4.88
[5, 2, 2, 1, 1] 95.17 4.83
[4, 3, 3, 0, 0] 95.17 4.83
[4, 3, 3, 0, 1] 95.05 4.95
[4, 3, 3, 1, 0] 95.21 4.79
[4, 3, 3, 1, 1] 95.21 4.79
[4, 3, 2, 0, 0] 95.14 4.86
[4, 3, 2, 0, 1] 95.10 4.90
[4, 3, 2, 1, 0] 95.09 4.91
[4, 3, 2, 1, 1] 95.09 4.91
[4, 2, 3, 0, 0] 95.25 4.75
[4, 2, 3, 0, 1] 95.28 4.72
[4, 2, 3, 1, 0] 95.11 4.89
[4, 2, 3, 1, 1] 95.16 4.84
[4, 2, 2, 0, 0] 95.10 4.90
[4, 2, 2, 0, 1] 94.99 5.01
[4, 2, 2, 1, 0] 95.02 4.98
[4, 2, 2, 1, 1] 95.04 4.96
Ensemble 95.73 4.27

[5, 2, 2, 0, 0]

[5, 3, 3, 0, 0]

[4, 2, 3, 0, 0]

[5, 3, 2, 0, 0]

[5, 2, 3, 0, 0]

t-SNE X

t-S
N

E
Y

-100

-50

0

50

100

-100 -50 0 50 100

Fig. 8. Projection of the candidate positions identified by the local best
method into two-dimensional space using t-SNE (global best in red)

[5, 3, 3, 0, 0]

[5, 3, 3, 0, 1]

[5, 3, 3, 1, 0]

[5, 3, 3, 1, 1]

[5, 3, 2, 0, 0]

[5, 3, 2, 0, 1]

[5, 3, 2, 1, 0]

[5, 2, 3, 0, 0]

[5, 2, 3, 0, 1]

[5, 2, 3, 1, 0]

[5, 2, 3, 1, 1]

[5, 2, 2, 0, 0]

[5, 2, 2, 0, 1]

[5, 2, 2, 1, 0]

[5, 2, 2, 1, 1]

[4, 3, 3, 0, 0]

[4, 3, 3, 0, 1]

[4, 3, 3, 1, 0]

[4, 3, 3, 1, 1]

[4, 3, 2, 0, 0][4, 3, 2, 0, 1]

[4, 3, 2, 1, 0]

[4, 3, 2, 1, 1]

[4, 2, 3, 0, 0]

[4, 2, 3, 0, 1]

[4, 2, 3, 1, 0]
[4, 2, 3, 1, 1]

[4, 2, 2, 0, 0][4, 2, 2, 0, 1]

[4, 2, 2, 1, 0]

t-SNE X

t-S
N

E
Y

-100

-50

0

50

100

-100 -50 0 50 100

Fig. 9. Projection of the candidate positions identified by the lookup method
into two-dimensional space using t-SNE (global best in red)

global best and 0.31% better than the best single base model
performance.

C. Overall Results

Table. IV shows a comparison with other, recent evolution-
ary architecture generation works, with our model referred to
as Swarm Optimsed Block Architecture Ensembles (SOBAE).
Notably our method uses a single GPU and runs in a rea-
sonable amount of time compared to some of the other works.
We also show that with minor increases in the amount of time,
using our ensembling method, we can show an improvement of
over half a percent when compared to the SOBA [27] method.

V. CONCLUSION

In this paper, we have shown that ensembling through care-
ful nomination of base models following a joint evolutionary
optimisation and training process for CNN architecture gener-
ation can produce improved performance over the single best
model found by the search process. We found that constructing
and ensembling a pool of base models from our shared weight
lookup table could improve the error rate of the resulting
system from 4.66% down to 4.27% with a two-hour increase
in required processing time. Alternatively, constructing and
ensembling a pool of base models from the remaining local
best positions following the optimisation process improved the
error rate of the resulting system from 4.66% down to 4.39%
with only 15 minutes of extra processing time. Our method
is able to perform the above owing to a minimal duplication
of work, as the majority of the training of the base models is
performed jointly throughout the optimisation process.

In the future we intend to further explore methods for
increasing the diversity of the base models that are generated
by the optimisation process, this requires careful thought in
order to maintain the structure of the search itself. We also
intend to explore different ensembling methods, including
weighted ensembling in order to provide more influence to
the global best, and the higher performing (better fitness)
individuals from the optimisation process.

Table. IV
CLASSIFICATION RESULTS ON CIFAR-10 FOR EVOLUTIONARY ARCHITECTURE OPTIMISATION TECHNIQUES

Method Error Rate (%) GPUs Time (hours)
Related Works

Large-Scale Evolution [23] 5.40 250 264
Genetic CNN [32] 7.10 ∼ 20 ∼ 24
Hierarchical Representations [33] 3.60 200 36
SOBA [27] 4.78 1 34

Ours
SOBAE (local best nomination) 4.39 1 ∼ 34.25
SOBAE (lookup table nomination) 4.27 1 ∼ 36

ACKNOWLEDGMENT

This work was supported in part by RPPtv Ltd through an
industrial collaborative studentship project.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[2] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International Journal of Computer
Vision, vol. 115, no. 3, pp. 211–252, 2015.

[3] P. Kinghorn, L. Zhang, and L. Shao, “Deep learning based image
description generation,” in Neural Networks (IJCNN), 2017 International
Joint Conference on. IEEE, 2017, pp. 919–926.

[4] B. Fielding, P. Kinghorn, K. Mistry, and L. Zhang, “An enhanced
intelligent agent with image description generation,” in International
Conference on Intelligent Virtual Agents. Springer, 2016, pp. 110–119.

[5] L. Zhang, B. Fielding, P. Kinghorn, and K. Mistry, “A vision enriched
intelligent agent with image description generation,” in Proceedings of
the 2016 International Conference on Autonomous Agents & Multia-
gent Systems. International Foundation for Autonomous Agents and
Multiagent Systems, 2016, pp. 1488–1490.

[6] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. Lawrence Zitnick,
and D. Parikh, “Vqa: Visual question answering,” in Proceedings of
the IEEE international conference on computer vision, 2015, pp. 2425–
2433.

[7] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[8] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning.” in
AAAI, vol. 4, 2017, p. 12.

[9] S. Singh, D. Hoiem, and D. Forsyth, “Swapout: Learning an ensemble
of deep architectures,” in Advances in neural information processing
systems, 2016, pp. 28–36.

[10] G. Huang, Y. Li, G. Pleiss, Z. Liu, J. E. Hopcroft, and K. Q. Wein-
berger, “Snapshot ensembles: Train 1, get m for free,” arXiv preprint
arXiv:1704.00109, 2017.

[11] L. Breiman, “Bagging Predictors,” Machine Learning, vol. 24, no. 2,
pp. 123–140, 1996. [Online]. Available: https://doi.org/10.1023/A:
1018054314350

[12] Y. Freund and R. E. Schapire, “A Decision-Theoretic Generalization
of On-Line Learning and an Application to Boosting,” Journal
of Computer and System Sciences, vol. 55, no. 1, pp. 119–139,
1997. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S002200009791504X

[13] A. Khatami, M. Babaie, A. Khosravi, H. R. Tizhoosh, and S. Nahavandi,
“Parallel deep solutions for image retrieval from imbalanced medical
imaging archives,” Applied Soft Computing, vol. 63, pp. 197–205,
2018. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1568494617306877

[14] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[15] G. Huang, Y. Li, G. Pleiss, Z. Liu, J. E. Hopcroft, and K. Q.
Weinberger, “Snapshot Ensembles: Train 1, get M for free,” apr 2017.
[Online]. Available: https://arxiv.org/abs/1704.00109

[16] K. Hara, D. Saitoh, and H. Shouno, “Analysis of dropout learning
regarded as ensemble learning,” jun 2017. [Online]. Available:
https://arxiv.org/abs/1706.06859

[17] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Weinberger, “Deep
Networks with Stochastic Depth,” mar 2016. [Online]. Available:
https://arxiv.org/abs/1603.09382

[18] S. Singh, D. Hoiem, and D. Forsyth, “Swapout: Learning an
ensemble of deep architectures,” may 2016. [Online]. Available:
http://arxiv.org/abs/1605.06465

[19] L. Zhang, W. Srisukkham, S. C. Neoh, C. P. Lim, and D. Pandit,
“Classifier ensemble reduction using a modified firefly algorithm: An
empirical evaluation,” Expert Systems with Applications, vol. 93, pp.
395–422, 2018.

[20] M. Galar, A. Fernández, E. Barrenechea, and F. Herrera, “EUSBoost:
Enhancing ensembles for highly imbalanced data-sets by evolutionary
undersampling,” Pattern Recognition, vol. 46, no. 12, pp. 3460–3471,
2013. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0031320313002100

[21] E. Bochinski, T. Senst, and T. Sikora, “Hyper-parameter optimization
for convolutional neural network committees based on evolutionary al-
gorithms,” in 2017 IEEE International Conference on Image Processing
(ICIP), 2017, pp. 3924–3928.

[22] B. Wang, Y. Sun, B. Xue, and M. Zhang, “Evolving Deep
Convolutional Neural Networks by Variable-length Particle Swarm
Optimization for Image Classification,” mar 2018. [Online]. Available:
https://arxiv.org/abs/1803.06492

[23] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. Le,
and A. Kurakin, “Large-Scale Evolution of Image Classifiers,” mar
2017. [Online]. Available: https://arxiv.org/abs/1703.01041

[24] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized Evolution
for Image Classifier Architecture Search,” feb 2018. [Online]. Available:
http://arxiv.org/abs/1802.01548

[25] J. M. Moyano, E. L. Gibaja, K. J. Cios, and S. Ventura, “An
evolutionary approach to build ensembles of multi-label classifiers,”
Information Fusion, 2018. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S1566253518302574

[26] J. Zhao, L. Jiao, S. Xia, V. B. Fernandes, I. Yevseyeva, Y. Zhou, and
M. T. Emmerich, “Multiobjective sparse ensemble learning by means of
evolutionary algorithms,” Decision Support Systems, 2018.

[27] B. Fielding and L. Zhang, “Evolving image classification architectures
with enhanced particle swarm optimisation,” IEEE Access, 2018.

[28] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with
warm restarts,” arXiv preprint arXiv:1608.03983, 2016.

[29] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” University of Toronto, Toronto, Ontario, Canada, Tech.
Rep. vol 1. no. 4, pp. 7, 2009.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[31] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[32] L. Xie and A. L. Yuille, “Genetic cnn.” in ICCV, 2017, pp. 1388–1397.
[33] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu,

“Hierarchical representations for efficient architecture search,” arXiv
preprint arXiv:1711.00436, 2017.

https://doi.org/10.1023/A:1018054314350
https://doi.org/10.1023/A:1018054314350
http://www.sciencedirect.com/science/article/pii/S002200009791504X
http://www.sciencedirect.com/science/article/pii/S002200009791504X
http://www.sciencedirect.com/science/article/pii/S1568494617306877
http://www.sciencedirect.com/science/article/pii/S1568494617306877
https://arxiv.org/abs/1704.00109
https://arxiv.org/abs/1706.06859
https://arxiv.org/abs/1603.09382
http://arxiv.org/abs/1605.06465
http://www.sciencedirect.com/science/article/pii/S0031320313002100
http://www.sciencedirect.com/science/article/pii/S0031320313002100
https://arxiv.org/abs/1803.06492
https://arxiv.org/abs/1703.01041
http://arxiv.org/abs/1802.01548
http://www.sciencedirect.com/science/article/pii/S1566253518302574
http://www.sciencedirect.com/science/article/pii/S1566253518302574

	Introduction
	Related Work
	Methodology
	Base Model Generation
	Particle Swarm Optimisation
	Parameter Sharing through Lookup Table
	Base Model Preparation
	Local Best Base Model Nomination
	Lookup Table Base Model Nomination

	Ensemble Construction
	Duplication of Work

	Evaluation
	Local Best Ensemble
	Lookup Table Ensemble
	Overall Results

	Conclusion
	References

