
              

City, University of London Institutional Repository

Citation: Brain, M. ORCID: 0000-0003-4216-7151, Niemetz, A., Preiner, M., Reynolds, A., 
Barrett, C. and Tinelli, C. (2019). Invertibility Conditions for Floating-Point Formulae. In: 
Computer Aided Verification. CAV 2019. Lecture Notes in Computer Science, 11562. (pp. 
116-136). Cham: Springer. ISBN 978-3-030-25542-8 

This is the published version of the paper. 

This version of the publication may differ from the final published 
version. 

Permanent repository link:  http://openaccess.city.ac.uk/id/eprint/22749/

Link to published version: 

Copyright and reuse: City Research Online aims to make research 
outputs of City, University of London available to a wider audience. 
Copyright and Moral Rights remain with the author(s) and/or copyright 
holders. URLs from City Research Online may be freely distributed and 
linked to.

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

CORE Metadata, citation and similar papers at core.ac.uk

Provided by City Research Online

https://core.ac.uk/display/227454132?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Invertibility Conditions for Floating-Point
Formulas

Martin Brain3,4 , Aina Niemetz1 , Mathias Preiner1(B) ,
Andrew Reynolds2 , Clark Barrett1 , and Cesare Tinelli2

1 Stanford University, Stanford, USA
preiner@cs.stanford.edu

2 The University of Iowa, Iowa City, USA
3 University of Oxford, Oxford, UK

4 City, University of London, London, UK

Abstract. Automated reasoning procedures are essential for a number
of applications that involve bit-exact floating-point computations. This
paper presents conditions that characterize when a variable in a floating-
point constraint has a solution, which we call invertibility conditions. We
describe a novel workflow that combines human interaction and a syntax-
guided synthesis (SyGuS) solver that was used for discovering these con-
ditions. We verify our conditions for several floating-point formats. One
implication of this result is that a fragment of floating-point arithmetic
admits compact quantifier elimination. We implement our invertibility
conditions in a prototype extension of our solver CVC4, showing their
usefulness for solving quantified constraints over floating-points.

1 Introduction

Satisfiability Modulo Theories (SMT) formulas including either the theory of
floating-point numbers [12] or universal quantifiers [24,32] are widely regarded
as some of the hardest to solve. Problems that combine universal quantification
over floating-points are rare—experience to date has suggested they are hard for
solvers and would-be users should either give up or develop their own incomplete
techniques. However, progress in theory solvers for floating-point [11] and the
use of expression synthesis for handling universal quantifiers [27,29] suggest that
these problems may not be entirely out of reach after all, which could potentially
impact a number of interesting applications.

This paper makes substantial progress towards a scalable approach for solv-
ing quantified floating-point constraints directly in an SMT solver. Developing
procedures for quantified floating-points requires considerable effort, both foun-
dationally and in practice. We focus primarily on establishing a foundation for
lifting to quantified floating-point formulas a procedure for solving quantified
bit-vector formulas by Niemetz et al. [26]. That procedure relies on so-called

This work was supported in part by DARPA (award no. FA8650-18-2-7861), ONR
(award no. N68335-17-C-0558) and NSF (award no. 1656926).

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11562, pp. 116–136, 2019.
https://doi.org/10.1007/978-3-030-25543-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25543-5_8&domain=pdf
http://orcid.org/0000-0003-4216-7151
http://orcid.org/0000-0003-2600-5283
http://orcid.org/0000-0002-7142-6258
http://orcid.org/0000-0002-3529-8682
http://orcid.org/0000-0002-9522-3084
http://orcid.org/0000-0002-6726-775X
https://doi.org/10.1007/978-3-030-25543-5_8


Invertibility Conditions for Floating-Point Formulas 117

invertibility conditions, intuitively, formulas that state under which conditions
an argument of a given operator and predicate in an equation has a solution.
Building on this concept and a state-of-the-art expression synthesis engine [29],
we generate invertibility conditions for a majority of operators and predicates in
the theory of floating-point numbers. In the context of quantifier-free floating-
point formulas, floating-point invertibility conditions may enable us to lift the
propagation-based local search approach for bit-vectors in [25] to the theory of
floating-point numbers.

This work demonstrates that invertibility conditions exist and show promise
for solving quantified floating-point constraints. More specifically, it makes the
following contributions:

– In Sect. 3, we present invertibility conditions for the majority of operators
and predicates in the SMT-LIB standard theory of floating-point numbers.

– In Sect. 4, we present a custom methodology based on syntax-guided synthesis
and decision tree learning that we developed for the purpose of synthesizing
the invertibility conditions presented here.

– In Sect. 5, we present a quantifier elimination procedure for a fragment of
the theory that is based on invertibility conditions, and give experimental
evidence of its potential, based on quantified floating-point problems coming
from a verification application.

Related Work. To our knowledge, no previous work specifically discusses tech-
niques for solving universally quantified floating-point formulas. Brain et al. [11]
provide a comprehensive review of decision procedures for quantifier-free bit-
exact floating-point using both SMT-based as well as other approaches. They
identify four groups of techniques: bit-blasting approaches that use floating-point
circuits to generate bit-vector formulas [13,16,20,33], interval techniques that
use partitioning and interval propagation [10,22,23,31], optimization and numer-
ical approaches that work with complete valuations [4,7,18,21], and axiomatic
techniques that use partial or total axiomatizations of the theory of floating-point
numbers in other theories such as real arithmetic [14,15].

On the other hand, approaches for universal quantification have been devel-
oped in modern SMT solvers that target other background theories, includ-
ing linear arithmetic [8,17,29] and bit-vectors [26,27,32]. At a high level, these
approaches use model-based refinement loops that lazily add instances of univer-
sal quantifiers until they reach a conflict at the quantifier-free level, or otherwise
saturate with a model.

2 Preliminaries

We assume the usual notions and terminology of many-sorted first-order logic with
equality (denoted by ≈). Let Σ be a signature consisting of a set Σs of sort symbols
and a set Σf of interpreted (and sorted) function symbols. Each function symbol f
has a sort τ1× ...×τn → τ , with arity n ≥ 0 and τ1, ..., τn, τ ∈ Σs. We assume that
Σ includes a Boolean sort Bool and the Boolean constants � (true) and ⊥ (false).
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We further assume the usual definition of well-sorted terms, literals, and (quanti-
fied) formulas with variables and symbols from Σ, and refer to them as Σ-terms,
Σ-atoms, and so on. For a Σ-term or Σ-formula e, we denote the free variables
of e (defined as usual) as FV(e) and use e[x] to denote that the variable x occurs
free in e. We write e[t] for the term or formula obtained from e by replacing each
occurrence of x in e by t.

A theory T is a pair (Σ, I), where Σ is a signature and I is a non-empty class
of Σ-interpretations (the models of T ) that is closed under variable reassignment,
i.e., every Σ-interpretation that only differs from an I ∈ I in how it interprets
variables is also in I. A Σ-formula ϕ is T -satisfiable (resp. T -unsatisfiable) if it
is satisfied by some (resp. no) interpretation in I; it is T -valid if it is satisfied by
all interpretations in I. We will sometimes omit T when the theory is understood
from context.

We briefly recap the terminology and notation of Brain et al. [12] which
defines an SMT-LIB theory TFP of floating-point numbers based on the IEEE-
754 2008 standard [3]. The signature of TFP includes a parametric family of
sorts Fε,σ where ε and σ are integers greater than or equal to 2 giving the
number of bits used to store the exponent e and significand s, respectively.
Each of these sorts contains five kinds of constants: normal numbers of the form
1.s ∗ 2e, subnormal numbers of the form 0.s ∗ 2−2σ−1−1, two zeros (+0 and −0),
two infinities (+∞ and −∞) and a single not-a-number (NaN). We assume a
map vε,σ for each sort, which maps these constants to their value in the set
R

∗ = R∪{+∞,−∞,NaN}. The theory also provides a rounding-mode sort RM,
which contains five elements {RNE,RNA,RTP,RTN,RTZ}.

Table 1 lists all considered operators and predicate symbols of theory TFP .
The theory contains a full set of arithmetic operations {|. . .|,+,−, ·,÷,

√
,max,

min} as well as rem (remainder), rti (round to integral) and fma (combined mul-
tiply and add with just one rounding). The precise semantics of these operators
is given in [12] and follows the same general pattern: vε,σ is used to project the
arguments to R

∗, the normal arithmetic is performed in R
∗, then the rounding

mode and the result are used to select one of the adjoints of vε,σ to convert
the result back to Fε,σ. Note that the full theory in [12] includes several addi-
tional operators which we omit from discussion here, such as floating-point min-
imum/maximum, equality with floating-point semantics (fp.eq), and conversions
between sorts.

Theory TFP further defines a set of ordering predicates {<,>,≤,≥} and a
set of classification predicates {isNorm, isSub, isInf, isZero, isNaN, isNeg, isPos}. In
the following, we denote the rounding mode of an operation above the operator

symbol, e.g., a
RTZ

+ b adds a and b and rounds the result towards zero. We use the
infix operator style for isInf (. . . ≈ ±∞), isZero (. . . ≈ ±0), and isNaN (. . . ≈
NaN) for conciseness. We further use minn/maxn and mins/maxs for floating-
point constants representing the minimum/maximum normal and subnormal
numbers, respectively. We will omit rounding mode and floating-point sorts if
they are clear from the context.
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3 Invertibility Conditions for Floating-Point Formulas

In this section, we adapt the concept of invertibility conditions introduced by
Niemetz et al. in [26] to our theory TFP . Intuitively, an invertibility condition φc

for a literal l[x] is the exact condition under which l[x] has a solution for x, i.e.,
φc is equivalent to ∃x. l[x] in TFP .

Definition 1 (Floating-Point Invertibility Condition). Let l[x] be a ΣFP -literal.
A quantifier-free ΣFP -formula φc is an invertibility condition for x in l[x] if
x �∈ FV(φc) and φc ⇔ ∃x. l[x] is TFP -valid.

As a simple example of an invertibility condition, given literal |x| ≈ t where
|x| denotes the absolute value of x, a solution for x exists if and only if t is
not negative, i.e., if ¬isNeg(t) holds. We introduce additional terminology for
the sake of the discussion. We define the dimension of an invertibility condition
problem ∃x. l[x] as the number of free variables it contains. For example, if s
and t are variables, then the dimension of ∃x. x + s ≈ t is two, the dimension of
∃x. isZero(x+ s) is one, and the dimension of ∃x. isZero(|x|) is zero. A literal l[x]
is fully invertible if its invertibility condition is �. A term e is an (unconditional)
inverse for x in l[x] if l[e] is equivalent to �. For example, the literal −x ≈ t
is fully invertible and −t is an inverse for x in this literal. We say that e is a
conditional inverse for l[x] if l[e] is an invertibility condition for l[x].

Our primary goal in this work is to establish invertibility conditions for all
floating-point constraints that contain exactly one operator and one predicate.
These conditions collectively suffice to characterize when any literal l[x] con-
taining exactly one occurrence of x, the variable to solve for, has a solution. In
total, we were able to establish 167 out of 188 invertibility conditions (count-
ing commutative cases only once) using a syntax-guided synthesis framework
which we describe in more detail in Sect. 4. In this section, we present a subset
of these invertibility conditions, highlighting the most interesting cases where

Table 1. Considered floating-point predicates/operators, with SMT-LIB 2 syntax.

Symbol SMT-LIB syntax Sort

isNorm, isSub fp.isNormal, fp.isSubnormal Fε,σ → Bool

isPos, isNeg fp.isPositive, fp.isNegative Fε,σ → Bool

isInf, isNaN, isZero fp.isInfinite, fp.isNaN, fp.isZero Fε,σ → Bool

≈, <, >, ≤, ≥ =, fp.lt, fp.gt, fp.leq, fp.geq Fε,σ × Fε,σ → Bool

|. . .|, − fp.abs, fp.neg Fε,σ → Fε,σ

rem fp.rem Fε,σ × Fε,σ → Fε,σ
√
, rti fp.sqrt, fp.roundToIntegral RM × Fε,σ → Fε,σ

+, −, ·, ÷ fp.add, fp.sub, fp.mul, fp.div RM × Fε,σ × Fε,σ → Fε,σ

fma fp.fma RM × Fε,σ × Fε,σ × Fε,σ → Fε,σ
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we succeeded (or failed) to establish an invertibility condition. Due to space
restrictions, we omit the conditions for the remaining cases.1

Table 2. Invertibility conditions for floating-point operators (excl. fma) with ≈.

Literal Invertibility condition

x
R

+ s≈ t t≈ (t
RTP− s)

R

+ s∨ t≈ (t
RTN− s)

R

+ s∨ s≈ t

x
R− s≈ t t≈ (s

RTP

+ t)
R− s∨ t≈ (s

RTN

+ t)
R− s∨ (s �≈ t∧ s≈±∞ ∧ t≈±∞)

s
R− x≈ t t≈s

R

+ (t
RTP− s) ∨ t≈s

R

+ (t
RTN− s) ∨ s≈ t

x
R· s≈ t t≈ (t

RTP÷ s)
R· s∨ t≈ (t

RTN÷ s)
R· s∨ (s≈±∞ ∧ t≈±∞) ∨ (s≈±0 ∧ t≈±0)

x
R÷ s≈ t t≈ (s

RTP· t)
R÷ s∨ t≈ (s

RTN· t)
R÷ s∨ (s≈±∞ ∧ t≈±0) ∨ (t≈±∞ ∧ s≈±0)

s
R÷ x≈ t t≈s

R÷ (s
RTP÷ t) ∨ t≈s

R÷ (s
RTN÷ t) ∨ (s≈±∞ ∧ t≈±∞) ∨ (s≈±0 ∧ t≈±0)

x rem s≈ t t≈ t rem s

s remx≈ t ?

R
√
x≈ t t≈ R

√
(t

RTP· t) ∨ t≈ R

√
(t

RTN· t) ∨ t≈±0

|x|≈ t ¬isNeg(t)
−x≈ t �
R

rti(x)≈ t t≈
R

rti(t)

Table 2 lists the invertibility conditions for equality with the operators
{+,−, ·,÷, rem,

√
, |. . .|,−, rti}, parameterized over a rounding mode R (one of

RNE, RNA, RTP, RTN, or RTZ). Note that operators {+, ·} and the multiplica-
tive step of fma are commutative, and thus the invertibility conditions for both
variants are identical.

Each of the first six invertibility conditions in this table follows a pattern. The
first two disjuncts are instances of the literal to solve for, where a term involving
rounding modes RTP and RTN is substituted for x. These disjuncts are then
followed by disjuncts for handling special cases for infinity and zero. From the
structure of these conditions, e.g., for +, we can derive the insight that if there

is a solution for x in the equation x
R

+ s≈ t and we are not in a corner case where
s = t, then either t

RTP−s or t
RTN− s must be a solution. Based on extensive runs of our

syntax-guided synthesis procedure, we believe this condition is close to having
minimal term size. From this, we conclude that an efficient yet complete method

for solving x
R

+ s≈ t checks whether t − s rounding towards positive or negative
is a solution in the non-trivial case when s and t are disequal, and otherwise
concludes that no solution exists. A similar insight can be derived for the other
invertibility conditions of this form.

1 Available at https://cvc4.cs.stanford.edu/papers/CAV2019-FP.

https://cvc4.cs.stanford.edu/papers/CAV2019-FP


Invertibility Conditions for Floating-Point Formulas 121

We found that t is a conditional inverse for the case of
R

rti(x)≈ t and
x rem s≈ t, that is, substituting t for x is an invertibility condition. For the
latter, we discovered an alternative invertibility condition:

|tRTP

+ t| ≤ |s| ∨ |tRTN

+ t| ≤ |s| ∨ ite(t ≈ ±0, s �≈ ±0, t �≈ ±∞) (1)

In contrast to the condition from Table 2, this version does not involve rem.
It follows that certain applications of floating-point remainder, including those
whose first argument is an unconstrained variable, can be eliminated based on
this equivalence. Interestingly, for s remx≈ t, we did not succeed in finding an
invertibility condition. This case appears to not admit a concise solution; we
discuss further details below.

Table 3 gives the invertibility conditions for ≥. Since these constraints admit
more solutions, they typically have simpler invertibility conditions. In particular,
with the exception of rem, all conditions only involve floating-point classifiers.

When considering literals with predicates, the invertibility conditions for
cases involving x + s and s − x are identical for every predicate and rounding
mode. This is due to the fact that s − x is equivalent to s + (−x), indepen-
dent from the rounding mode. Thus, the negation of the inverse value of x for
an equation involving x + s is the inverse value of x for an equation involving
s − x. Similarly, the invertibility conditions for x · s and s ÷ x over predicates
{<,≤, >,≥, isInf, isNaN, isNeg, isZero} are identical for all rounding modes.

For all predicates except {≈, isNorm, isSub}, the invertibility conditions for
operators {+,−,÷, ·} contain floating-point classifiers only. All of these condi-
tions are also independent from the rounding mode. Similarly, for operator fma
over predicates {isInf, isNaN, isNeg, isPos}, the invertibility conditions contain

Table 3. Invertibility conditions for floating-point operators (excl. fma) with ≥.

Literal Invertibility condition

x
R

+ s ≥ t (isPos(s)∨ ite(s≈±∞, (t≈±∞ ∧ isNeg(t)), isNeg(s)))∧ t 
≈NaN

x
R− s ≥ t ite(isNeg(s), t 
≈NaN, ite(s≈±∞, (t≈±∞ ∧ isNeg(t)), (isPos(s)∧ t 
≈NaN)))

s
R− x ≥ t (isPos(s)∨ ite(s≈±∞, (t≈±∞ ∧ isNeg(t)), isNeg(s)))∧ t 
≈NaN

x
R· s ≥ t (isNeg(t)∨ t≈±0∨ s 
≈±0)∧ s 
≈NaN∧ t 
≈NaN

x
R÷ s ≥ t (isNeg(t)∨ t≈±0∨ s 
≈±∞)∧ s 
≈NaN∧ t 
≈NaN

s
R÷ x ≥ t (isNeg(t)∨ t≈±0∨ s 
≈±0)∧ s 
≈NaN∧ t 
≈NaN

x rem s ≥ t ite(isNeg(t), s 
≈NaN, (|tRNE

+ t| ≤ |s| ∧ t 
≈±∞))∧ s 
≈±0

s remx ≥ t ?
R
√
x ≥ t t 
≈NaN

|x| ≥ t t 
≈NaN

−x ≥ t t 
≈NaN
R

rti(x) ≥ t t 
≈NaN
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only floating-point classifiers. All of these conditions except for isNeg(fma(x, s, t))
and isPos(fma(x, s, t)) are also independent from the rounding mode.

For all floating-point operators with predicate isNaN, the invertibility condi-
tion is �, i.e., an inverse value for x always exists. This is due to the fact that
every floating-point operator returns NaN if one of its operands is NaN, hence
NaN can be picked as an inverse value of x. Conversely, we identified four cases
for which the invertibility condition is ⊥, i.e., an inverse value for x never exists.
These four cases are isNeg(|x|), isInf(x rem s), isInf(s remx), and isSub(rti(x)). For
the first three cases, it is obvious why no inverse value exists. The intuition for
isSub(rti(x)) is that integers are not subnormal, and as a result if x is rounded to
an integer it can never be a subnormal number. All of these cases can be easily
implemented as rewrite rules in an SMT solver.

For operator fma, the invertibility conditions over predicates {isInf, isNaN,
isNeg, isPos} contain floating-point classifiers only. For predicate isZero, the
invertibility conditions are more involved. Equations (2) and (3) show the invert-
ibility conditions for isZero(fma(x, s, t)) and isZero(fma(s, t, x)) for all rounding
modes R.

R

fma(−(t
RTP÷ s), s, t)≈±0 ∨

R

fma(−(t
RTN÷ s), s, t)≈±0 ∨ (s≈±0 ∧ t≈±0) (2)

R

fma(s, t,−(s
RTP· t))≈±0 ∨

R

fma(s, t,−(s
RTN· t))≈±0 (3)

These two invertibility conditions contain case splits similar to those in Table 2 and

indicate that, e.g., −t
RTP÷ s is an inverse value for x when

R

fma(−(t
RTP÷ s), s, t)≈±0

holds.
As we will describe in Sect. 4, an important aspect of synthesizing these

invertibility conditions was considering their visualizations. This helped us deter-
mine which invertibility conditions were relatively simple and which exhibited
complex behavior.

s

t

(a) x+ s ≈ t

s

(b) x · s ≈ t

s

(c) x ÷ s ≈ t

s

(d) s ÷ x ≈ t

Fig. 1. Invertibility conditions for {+, ·,÷} over ≈ for F3,5 and rounding mode RNE.
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s

t

(a) x rem s ≈ t

s

t

(b) s remx ≈ t

Fig. 2. Invertibility conditions for rem over ≈ for F3,5.

Figure 1 shows the visualizations of the invertibility conditions for operators
{+, ·,÷} over ≈ from Table 2 for sort F3,5 with rounding mode RNE (each of the
literals is two-dimensional). We use 227×227 pixel maps over all possible values
of s and t, where the pixel at point (s, t) is white if the invertibility condition is
true, and black if it is false.2 The values of s are plotted on the horizontal axis
and the values of t are plotted on the vertical axis. The leftmost two columns
(resp. topmost two rows) give the value of the invertibility condition for s = ±0
(resp. t = ±0); the rightmost column (resp. bottom row) gives its value for NaN;
the next two columns left of (resp. next two rows on top of) NaN give its value
for ±∞; the remainder plots the values of the subnormal and normal values of
s and t, left-to-right (resp. top-to-bottom) in increasing order of their absolute
value, alternating between positive and negative values. These visualizations give
an intuition of the complexity of the behavior of invertibility conditions, which
is a consequence of the complex semantics of floating-point operations.

Figure 2 gives the invertibility condition visualizations for remainder over
≈ with sort F3,5 and rounding mode RNE. The visualization on the left hand
shows that solving for x as the first argument is relatively easy. It suggests that
an invertibility condition for this case involves a linear inequality relating the
absolute values of s and t, which we were able to derive in Eq. (1). Solving for x
as the second argument, on the other hand, is much more difficult, as indicated
by the right picture, which has a significantly more complex structure. We con-
jecture that no simple solution exists for the latter problem. The visualization of
the invertibility condition gives some of the intuition for this: the diagonal divide
is caused by the fact that output t will always have a smaller absolute value than
the input s. The top-left corner represents subnormal/subnormal computation,
this acts as fixed-point and behaves differently from the rest of the function.
The stepped blocks along the diagonal occur when s and t have the same expo-
nent and thus the pattern is similar to the invertibility condition for + shown in
Fig. 1. Portions right of the main diagonal appear to exhibit random behavior.

2 Notice that we consider all possible (2σ−1−1)∗2 NaN values of TFP as one single NaN
value. Thus, for sort F3,5 we have 227 floating-point values (instead of 28 = 256).
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s

t

(a) x rem s > t

s

(b) x rem s ≥ t

s

(c) s remx > t

s

(d) s remx ≥ t

Fig. 3. Invertibility conditions for rem over inequalities for F3,5.

s

t

(a) fma(x, s, t)≈±0

s

(b) fma(s, t, x)≈±0

s

(c) isSub(fma(x, s, t))

s

(d) isSub(fma(s, t, x))

Fig. 4. Invertibility conditions for fma over {isZero, isSub} for F3,5 and rnd. mode RNE.

We believe this is the result of repeated cancellations in the computation of the
remainder for those values, which suggests a behavior that we believe is similar
to the Blum-Blum-Shub random number generator [9].

For remainder with inequalities, we succeeded in determining invertibility
conditions for ≤ and ≥ if x is the first argument. However, for x rem s over
{<,>}, and s remx over {≥,≤, <,>} we did not. This is particularly surprising
considering that the invertibility conditions for non-strict and strict inequalities
are nearly identical (varying only by a handful of pixels), as shown in Fig. 3.
Note that for x as the first argument, all variations of the concise invertibility
conditions for non-strict inequality we considered failed as solutions for the strict
inequality. This behavior is representative of the many subtle corner cases we
encountered while synthesizing these conditions.

Figure 4 shows visualizations for invertibility conditions involving fma. The left
two images are visualizations for the invertibility conditions for isZero. The corre-
sponding invertibility conditions are given in Eqs. (2) and (3) above. We were not
able to determine invertibility conditions for operator fma over predicate isSub,
which are visualized in the rightmost two pictures in Fig. 4. Finally, we did not
succeed in finding invertibility conditions for fma with binary predicates, which
are particularly challenging since they are three-dimensional. Finding solutions for
these cases is ongoing work (see Sect. 4 for a more in-depth discussion).
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4 Synthesis of Floating-Point Invertibility Conditions

Deriving invertibility conditions in TFP is a highly challenging task. We were
unable to derive these conditions manually despite our substantial background
knowledge of floating-point numbers. As a consequence, we developed a custom
extension of the syntax-guided synthesis (SyGuS) paradigm [1] with the goal of
finding invertibility conditions automatically, which resulted in the conditions
from Sect. 3. While the extension was optimized for this task, we stress that
our techniques are theory-agnostic and can be used for synthesis problems over
any finite domain. Our approach builds upon the SyGuS capabilities of the SMT
solver CVC4 [5,29], which has recently been extended to support reasoning about
the theory of floating-points [11]. We use the invertibility condition for floating-
point addition with equality here as a running example.

Establishing an invertibility condition requires solving a synthesis problem
with three levels of quantifier alternation. In particular, for floating-point addi-
tion with equality, we are interested in finding a solution for predicate IC that
satisfies the conjecture:

∃ IC.∀s, t. (IC(s, t) ⇔ (∃x. x
R

+ s ≈ t)) (4)

for some rounding mode R. In other words, this conjecture states that IC(s, t)
holds exactly when there exists an x that, when rounding the result of adding x
to s according to mode R, yields t. Furthermore, we are interested in finding a
solution for IC that holds independently of the format of x, s, t. Note that SMT
solvers are not capable of reasoning about constraints that are parametric in the
floating-point format. To address this challenge, following the methodology from
previous work [26], our strategy for establishing (general) invertibility conditions
first solves the synthesis conjecture for a fixed format Fε,σ, and subsequently
checks whether that solution also holds for other formats. The choice of the
number of exponent bits ε and significand bits σ in Fε,σ balances two criteria:

1. ε, σ should be large enough to exercise many (or all) of the behaviors of the
operators and relations in our synthesis conjecture,

2. ε, σ should be small enough for the synthesis problem to be tractable.

In our experience, the best choices for (ε, σ) depended on the particular invert-
ibility condition we were solving. The most common choices for (ε, σ) were (3, 5),
(4, 5) and (4, 6). For most two-dimensional invertibility conditions (those that
involve two variables s and t), we used (3, 5), since the required synthesis pro-
cedures mentioned below were roughly eight times faster than for (4, 5). For
one-dimensional invertibility conditions, we often used higher precision formats.
Since floating-point operators like addition take as additional argument a round-
ing mode R, we assumed a fixed rounding mode when solving, and then cross-
checked our solution for multiple rounding modes.
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Assume we have chosen to synthesize the invertibility condition for conjec-
ture (4) for format F3,5 and rounding mode RNE. Notice that current SyGuS
solvers [2,29] support only two levels of quantifier alternation. However, we can
expand the innermost quantifier in this conjecture to obtain the conjecture:

∃IC.∀st. (IC(s, t) ⇔ (
226∨

i=0

i
RNE

+ s ≈ t)) (5)

where for simplicity of notation we use i = 0, . . . , 226 to denote the values of
F3,5. This methodology was also used in Niemetz et al. [26], where invertibility
conditions for bit-vector operators were synthesized for bit-width 4 by giving
the conjecture of the above form to an off-the-shelf SyGuS solver. In contrast
to that work, we found that the synthesis conjecture above is too challenging
to be solved efficiently by current state-of-the-art enumerative SyGuS solvers.
The reason for this is twofold. First, the smallest viable floating-point format is
3 + 5 = 8 bits, which requires the body of (5) to have a significantly large number
of disjuncts (227), which is more than ten times larger than the 16 disjuncts
required when synthesizing 4-bit invertibility conditions for bit-vectors. Second,
floating-point formulas are much harder to solve than bit-vector formulas, due to
the complexity of their bit-blasted encodings. Thus, a significantly challenging
satisfiability query must be solved for each candidate considered within the
SyGuS solver.

To address the above challenges, we perform a more extreme preprocessing
step on our synthesis conjecture, which computes the input/output behavior of
the invertibility condition on all points in the domain of s and t. In other words,
we rephrase our synthesis conjecture as:

∃IC.
226∧

i=0

226∧

j=0

(IC(i, j) ⇔ ci,j) (6)

where each ci,j is a Boolean constant (either � or ⊥) determined by a quantifier-
free satisfiability query. In particular, for each pair of floating-point values (i, j),
constant ci,j is � if x+i ≈ j is satisfiable, and ⊥ if it is unsatisfiable. In practice,
we represent the above conjecture as a 227 × 227 table, which we call the full
I/O specification of invertibility condition IC. In our experiments, computing
this table for most two-dimensional invertibility conditions of sort F3,5 required
15 min (for 227 ∗ 227 = 51, 529 quantifier-free queries), and 2 h for sort F4,5

(requiring 483 ∗ 483 = 233, 289 queries). This process was accelerated by first
applying random sampling over possible values of x to quickly test if a query was
satisfiable. For some operators, notably remainder, this required significantly
more time than for others (up to a factor of 2). Due to the high cost of this
preprocessing step, we generated a database with the full I/O specifications for
all invertibility conditions from Sect. 3 using a cluster of 50 nodes with Intel
Xeon E5-2637 with 3.5 GHz and 32 GB memory, and then shared this database
among multiple developers. Computing the full I/O specifications for F3,5, F4,5,
and F4,6 required a total of 459 days of CPU time (6.1 for F3,5, 54.7 for F4,5, and
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398.5 for F4,6). Despite the heavy cost of this step, it was crucial for accelerating
our framework for synthesizing invertibility conditions, described next.

PBE SyGuS
Solver

Samples

SyGuS Grammar Side Condition

IC Candidate

User IC Problem

Verifier

Full I/O Spec

solve

filter

cex-guided sampling

Fig. 5. Architecture for synthesizing invertibility conditions for floating point formulas.

Figure 5 summarizes our architecture for solving synthesis conjectures of the
above form. The user first selects an invertibility condition problem to solve,
where we assume the full I/O specification has been computed using the afore-
mentioned techniques. At a high level, our architecture can be seen as an inter-
active synthesis environment, where the user manages the interaction between
two subprocedures:

1. a SyGuS solver with support for decision tree learning, and
2. a solution verifier storing the full I/O specification of the invertibility condition.

We use a counterexample-guided loop, where the SyGuS solver provides the
solution verifier with candidate solutions, and the solution verifier provides the
SyGuS solver with an evolving subset of sample points taken from the full I/O
specification. These points correspond to counterexamples to failed candidate
solutions, and are sampled in a uniformly random manner over the domain of
our specification. To accelerate the speed at which our framework converges on a
solution, we configure the solution verifier to generate multiple counterexample
points (typically 10) for each iteration of the loop. The process terminates when
the SyGuS solver generates a candidate solution that is correct for all points
according to its full I/O specification.

We give the user control over both the solutions and counterexample points
generated in this loop. First, as is commonly done in syntax-guided synthesis
applications, the user in our workflow provides an input grammar to the SyGuS
solver. This is a context-free grammar in a standard format [28], which contains
a guess of the operators and patterns that may be involved in the invertibility
condition we are synthesizing. Second, note that the domain of floating-point
numbers can be subdivided into a number of subdomains and special cases (e.g.
normal, subnormal, not-a-number, infinity), as well as split into different clas-
sifications (e.g. positive and negative). Our workflow allows the user to provide
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a side condition, whose purpose is to focus on finding an invertibility condition
that is correct for one of these subdomains. The side condition acts as a filter-
ing mechanism on the counterexample points generated by the solution verifier.
For example, given the side condition isNorm(s)∧ isNorm(t), the solution verifier
checks candidate solutions generated by the SyGuS solver only against points
(s, t) where both arguments are normal, and consequently only communicates
counterexamples of this form to the SyGuS solver. The solution verifier may
also be configured to establish that the current candidate solution generated by
the SyGuS solver is conditionally correct, that is, it is true on all points in the
domain that satisfy the side condition.

There are several advantages to the form of the synthesis conjecture in (6)
that we exploit in our workflow. First, its structure makes it easy to divide the
problem into sub-cases: our synthesis workflow at all times sends only a subset
of the conjuncts of (6) for some (i, j) pairs. As a result, we do not burden the
underlying SyGuS solver with the entire conjecture at once, which would not
scale in practice. A second advantage is that it is in programming-by-examples
(PBE) form, since it consists of a conjunction of concrete input-output pairs.
As a consequence, specialized algorithms can be used by the SyGuS solver to
generate solutions for (approximations of) our conjecture in a way that is highly
scalable in practice. These techniques are broadly referred to as decision tree
learning or unification algorithms. As a brief review (see Alur et al. [2] for a
recent SyGuS-based approach), a decision tree learning algorithm is given as
input a set of good examples c1 �→ �, . . . , cn �→ � and a set of bad examples
d1 �→ ⊥, . . . , dm �→ ⊥. The goal of a decision tree algorithm is to find a predicate,
or classifier, that evaluates to true on all the good examples, and false on all
the bad examples. In our context, a classifier is expressed as an if-then-else tree
of Boolean sort. Sampling the space of conjecture (6) provides the decision tree
algorithm with good and bad examples and the returned classifier is a candidate
solution that we give to the solution verifier. The SyGuS solver of CVC4 uses
a decision-tree learning algorithm, which we rely on in our workflow. Due to
the scalability of this algorithm and the fact that only a small subset of our
conjecture is considered at any given time, candidate solutions are typically
generated by the SyGuS solver in our framework in a matter of seconds.

Another important aspect of the SyGuS solver in Fig. 5 is that it is configured
to generate multiple solutions for the current set of sample points. Due to the
way the SyGuS-based decision-tree learning algorithm works, these solutions
tend to become more general over the runtime of the solver. As a simple example
(assuming exact integer arithmetic), say the solver is given input points (1, 1) �→
�, (2, 0) �→ �, (1, 0) �→ ⊥ and (0, 1) �→ ⊥ for (s, t). It enumerates predicates over
s and t, starting with simplest predicates first, say s ≈ 0, t ≈ 0, s ≈ 1, y ≈ 1,
s + t > 1, and so on. After generating the first four predicates, it constructs
the solution ite(s ≈ 1, t ≈ 1, t ≈ 0), which is a correct classifier for the given
set of points. However, after generating the fifth predicate in this list, it returns
s + t > 1 itself as a solution; this can be seen as a generalization of the previous
solution since it requires no case splitting.
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Since more general candidate solutions have a higher likelihood of being
actual solutions in our experience, our workflow critically relies on the ability of
users to manually terminate the synthesis procedure when they are satisfied with
the last generated candidate. Our synthesis procedure logs a list of candidate
solutions that satisfy the conjecture on the current set of sample points. When
the user terminates the synthesis process, the solution verifier will check the last
solution generated in this list. Users have the option to rearrange the elements
of this list by hand, if they have an intuition that a specific candidate is more
likely to be correct—and so should be tested first.

Experience. The first challenging invertibility condition we solved with our
framework was addition with equality for rounding mode RNE. Initially, we used
a generic grammar that contained the entire floating-point signature. As a first
key step towards solving this problem, the synthesis procedure suggested the sin-

gle literal t≈s
RNE

+ (t
RNE− s) as candidate solution. Although counterexamples were

found for this candidate, we noticed that it satisfied over 98% of the specification,
and a visualization of its I/O behavior showed similar patterns to the invertibil-
ity condition we were solving for. Based on these observations, we focused our
grammar towards literals of this form. In particular, we used a function that
takes two floating-points x, y and two rounding modes R1, R2 as arguments and

returns x
R1

+(y
R2−x) as a builtin symbol of our grammar. We refer to such a function

as a residual computation of y, noting that its value is often approximately y. By
including various functions for residual computations, we focused the effort of
the synthesizer on more interesting predicates. The end solution involved multi-
ple residual computations, as shown in Table 2. Our initial solution was specific
to the rounding mode RNE. After solving for several other rounding modes, we
were able to construct a parametric solution that was correct for all rounding
modes. In total, it took roughly three days of developer time to discover the
generalized invertibility condition for addition with equality. Many of the sub-
sequent invertibility conditions took a matter of hours, since by then we had a
good intuition for the residual computations that were relevant for each case.

Invertibility conditions involving rem, fma, isNorm, and isSub were challeng-
ing and required further customizations to the grammar, for instance to include
constants that corresponded to the minimum and maximum normal and sub-
normal values. Three-dimensional invertibility conditions (which in this work is
limited to cases of fma with binary predicates) were especially challenging since
the domain of their conjecture is a factor of 227 larger for F3,5 than the others.
Following our strategy for solving the invertibility conditions for specific formats
and rounding modes, in ongoing work we are investigating solving these cases
by first solving the invertibility condition for a fixed value c for one of its free
variables u. Solving a two-dimensional problem of this form with a solution ϕ
may suggest a generalization that works for all values of u where all occurrences
of c in ϕ are replaced by u.

We found the side condition feature of our workflow important for narrowing
down which subdomain was the most challenging for the conjecture in question.
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For instance, for some cases it was very easy to find invertibility conditions that
held when both s and t were normal (resp., subnormal), but very difficult when
s was normal and t was subnormal or vice versa.

We also implemented a fully automated mode for the synthesis loop in Fig. 5.
However, in practice, it was more effective to tweak the generated solutions
manually. The amount of user interaction was not prohibitively high in our
experience.

Finally, we found that it was often helpful to visualize the input/output
behavior of candidate solutions. In many cases, the difference between a candi-
date solution and the desired behavior of the invertibility condition would reveal
a required modification to the grammar or would suggest which parts of the
domain of the conjecture to focus on.

4.1 Verifying Conditions for Multiple Formats and Rounding
Modes

We verified the correctness of all 167 invertibility conditions by checking them
against their corresponding full I/O specification for floating-point formats F3,5,
F4,5, and F4,6 and all rounding modes, which required 1.6 days of CPU time. This
is relatively cheap compared to computing the specifications, since checking is
essentially constant evaluation of invertibility conditions for all possible input
values. However, this quickly becomes infeasible with increasing precision, since
the time required for computing the I/O specification roughly increases by a
factor of 8 for each bit.

As a consequence, we generated quantified floating-point problems to verify
the 167 invertibility conditions for formats F3,5, F4,5, F4,6, F5,11 (Float16), F8,24

(Float32), and F11,53 (Float64) and all rounding modes. Each problem checks the
TFP -unsatisfiability of formula ¬(φc ⇔ ∃x. l[x]), where l[x] corresponds to the
floating-point literal, and φc to its invertibility condition. In total, we generated

Fig. 6. Recursive procedure QEFP for computing quantifier elimination for x in the unit
linear formula ∃x. P (t1, . . . , tj [x], . . . , tn). The free variables in this formula and the
fresh variable y are implicitly universally quantified. Placeholder � denotes a floating-
point operator from Table 1.
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3786 problems (116 ∗ 5 + 513 for each floating-point format) and checked them
using CVC4 [5] (master 546bf686) and Z3 [16] (version 4.8.4).

We consider an invertibility condition to be verified for a floating-point format
and rounding mode if at least one solver reports unsatisfiable. Given a CPU time
limit of one hour and a memory limit of 8 GB for each solver/benchmark pair, we
were able to verify 3577 (94.5%) invertibility conditions overall, with 99.2% of
F3,5, 99.7% of F4,5, 100% of F4,6, 93.8% of F5,11, 90.2% of F8,24, and 84% of F11,53.
This verification with CVC4 and Z3 required a total of 32 days of CPU time.
All verification jobs were run on cluster nodes with Intel Xeon E5-2637 3.5 GHz
and 32 GB memory.

5 Quantifier Elimination for Unit Linear Floating-Point
Formulas

Based on the invertibility conditions presented in Sect. 3, we can define a quan-
tifier elimination procedure for a restricted fragment of floating-point formulas.
The procedure applies to unit linear formulas, that is, formulas of the form
∃x. P [x] where P is a ΣFP -literal containing exactly one occurrence of x.

Figure 6 gives a quantifier elimination procedure QEFP for unit linear floating-
point formulas ∃x. P [x]. We write getIC(y,Q[y]) to indicate the invertibility con-
dition for y in Q[y], which amounts to a table lookup for the appropriate condi-
tion as given in Sect. 3. Note that our procedure is currently a partial function
because we do not have yet invertibility conditions for some unit linear formulas.
The recursive procedure returns a conjunction of conditions based on the path
on which x occurs in P . If x occurs beneath multiple nested function applica-
tions, a fresh variable y is introduced and used for referencing the intermediate
result of the subterm we are currently solving for. We demonstrate this in the
following example.

Example 2. Consider the unit linear formula ∃x. (x
R· u)

R

+ s ≥ t. Invoking the
procedure QEFP on this input yields, after two recursive calls, the conjunction

getIC(y1, y1
R

+ s ≥ t) ∧ getIC(y2, y2
R· u ≈ y1) ∧ getIC(x, x ≈ y2)

where y1 and y2 are fresh variables. The third conjunct is trivially equivalent
to �. This formula is quantifier-free and has the properties specified by the
following theorem.

Theorem 1. Let ∃x. P be a unit linear formula and let I be a model of TFP .
Then, I satifies ¬∃x. P if and only if there exists a model J of TFP (constructible
from I) that satisfies ¬QEFP(∃x. P ).

3 116 invertibility conditions from rounding mode dependent operators and 51 invert-
ibility conditions where the operator is rounding mode independent (e.g., rem).
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Niemetz et al. [26] present a similar algorithm for solving unit linear bit-vector
literals. In that work, a counterexample-guided loop was devised that made
use of Hilbert-choice expressions for representing quantifier instantiations. In
contrast to that work, we provide here only a quantifier elimination procedure.
Extending our techniques to a general quantifier instantiation strategy is the
subject of ongoing work. We discuss our preliminary work in this direction in
the next section.

6 Solving Quantified Floating-Point Formulas

We implemented a prototype extension of the SMT solver CVC4 that lever-
ages the results of the previous section to determine the satisfiability of quanti-
fied floating-point formulas. To handle quantified formulas, CVC4 uses a basic
model-based instantiation loop (see, e.g., [30,32] for instantiation approaches for
other theories). This technique maintains a quantifier-free set of constraints F
corresponding to instantiations of universally quantified formulas. It terminates
with the response “unsatisfiable” if F is unsatisfiable, and terminates with “sat-
isfiable” if it can show that the given quantified formulas are satisfied by a model
of TFP that satisfies F . For TFP , the instantiations are substitutions of univer-
sally quantified variables to concrete floating-point values, e.g. ∀x. P (x) ⇒ P (0),
which can be highly inefficient in the worst case for higher precision.

We extend this basic loop with a preprocessing pass that generates theory
lemmas based on the invertibility conditions corresponding to literals of quanti-
fied formulas ∀x.P with exactly one occurrence of x, as explained in the example
below.

Example 3. Suppose the current set S of formulas contains a formula ϕ of the
form ∀x.¬((x · u) + s ≥ t ∧ Q(x)) where u, s and t are ground terms; then we
add the following formula to S where y1 and y2 are fresh (free) variables:

(getIC(y1, y1 + s ≥ t) ⇒ y1 + s ≥ t) ∧ (getIC(y2, y2 · u ≈ y1) ⇒ y2 · u ≈ y1)

The addition of this lemma is satisfiability preserving because, if the invertibility
condition holds for y1 + s ≥ t (resp., y2 · u ≈ y1), then y1 (resp., y2) a solution
for that literal. We then add the instantiation lemma ϕ ⇒ ¬((y2 · u) + s ≥ t ∧
Q(y2)). Although x is not necessarily linear in the body of ϕ, if both invertibility
conditions hold, then the combination of the above lemmas implies (y2 ·u)+s ≥ t,
which together with the instantiation lemma allows the solver to infer that the
remaining portion of the quantified formula Q cannot hold for y2. An inference
of this form may be more productive than enumerating the possible values of x
in instantiations.

Evaluation. We considered all 61 benchmarks from SMT-LIB [6] that contained
quantified formulas over floating-points (logic FP), which correspond to verifi-
cation conditions from the software verification competition that use a floating-
point encoding [19]. The invertibility conditions required for solving their liter-
als include floating-point addition, multiplication and division (both arguments)
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with equality and inequality. We implemented all cases of invertibility conditions
for solving these cases. We extended our SMT solver CVC4 (GitHub master
5d248c36) with the above preprocessing pass (GitHub cav19fp 9b5acd74), and
compared its performance with (configuration CVC4-ext) and without (configu-
ration CVC4-base) the above preprocessing pass enabled to the SMT solver Z3
(version 4.8.4). All experiments were run on the same cluster mentioned earlier,
with a memory limit of 8 GB and a 1800 s time limit. Overall, CVC4-base solved
35 benchmarks within the time limit (with no benchmarks uniquely solved com-
pared to CVC4-ext), CVC4-ext solved 42 benchmarks (7 of these uniquely solved
compared to the base version), and Z3 solved 56 benchmarks. While CVC4-ext
solves significantly fewer benchmarks than Z3, we believe that the improvement
over CVC4-base is indicative that our approach for invertibility conditions shows
potential for solving quantified floating-point constraints in SMT solvers. A more
comprehensive evaluation and implementation is left as future work.

7 Conclusion

We have presented invertibility conditions for a large subset of combinations of
floating-point operators over floating-point predicates supported by SMT solvers.
These conditions were found by a framework that utilizes syntax-guided synthe-
sis solving, customized for our problem and developed over the course of this
work. We have shown that invertibility conditions imply that a simple frag-
ment of quantified floating-points admits compact quantifier elimination, and
have given preliminary evidence that an SMT solver that partially leverages this
technique can have a higher success rate on floating-point problems coming from
a software verification application.

For future work, we plan to extend techniques for quantified and quantifier-
free floating-point formulas to incorporate our findings, in particular to lift pre-
vious quantifier instantiation approaches (e.g., [26]) and local search procedures
(e.g., [25]) for bit-vectors to floating-points. We also plan to extend and use our
synthesis framework for related challenging synthesis tasks, such as finding con-
ditions under which more complex constraints have solutions, including those
having multiple occurrences of a variable to solve for. Our synthesis framework
is agnostic to theories and can be used for any sort with a small finite domain.
It can thus be leveraged also for solutions to quantified bit-vector constraints.
Finally, we would like to establish formal proofs of correctness of our invertibility
conditions that are independent of floating-point formats.
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