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Abstract: Load frequency control (LFC) is one of the most challenging problems in multi-area
power systems. In this paper, we consider power system formed of distinct control areas with
identical dynamics which are interconnected via weak tie-lines. We then formulate a disturbance
rejection problem of power-load step variations for the interconnected network system. We follow
a top-down method to approximate a centralized linear quadratic regulator (LQR) optimal controller
by a distributed scheme. Overall network stability is guaranteed via a stability test applied to
a convex combination of Hurwitz matrices, the validity of which leads to stable network operation
for a class of network topologies. The efficiency of the proposed distributed load frequency controller
is illustrated via simulation studies involving a six-area power system and three interconnection
schemes. In the study, apart from the nominal parameters, significant parametric variations have been
considered in each area. The obtained results suggest that the proposed approach can be extended to
the non-identical case.

Keywords: multi-area power system; large-scale power system; distributed load frequency control;
automatic generation control; interconnected control areas; secondary frequency control; distributed
linear quadratic regulator; distributed optimal control

1. Introduction

Power systems are important in engineering, and their stable and continuous operation is
inherently connected to social welfare and economic prosperity. Power system networks can be
characterized as large-scale complex systems which encompass a broad array of subsystems and
tasks. This intrinsic complexity is constantly evolving and growing in alignment with state-of-the-art
technologies, facilitating a more efficient power generation, transmission, and distribution.
Recently, the increasing penetration of sustainable energy sources into the energy map and the
digitalization of power control systems have resulted in sophisticated concepts, such as intelligent
power networks and smart grids. The stochasticity and intermittency of renewable energy sources,
along with the decentralization of power generation and the integration of unsafe communication
layers across the physical structure of the power network, are just a few of the vital reasons that render
the control of the modern power systems highly challenging.

In this paper, we consider power system networks formed of distinct control areas which are
interconnected via weak transmission lines referred to as tie-lines. Each area maintains a single nominal
frequency across its geographical region and is comprised of either a single or a group of generators.
In order for an area to maintain its frequency under load variations in the case of multiple generators,
a local load frequency controller is used, distributed to the corresponding turbine-governing systems
of each generating unit. The design of load frequency control (LFC) is based on a single-plant model
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which represents the sum of the generating units [1]. The area is responsible for meeting power
demand of its own consumers, as well as of certain adjacent areas with which power exchange is
normally scheduled for a contracted value. However, due to power load differentiation, the frequency
of each area, along with the scheduled power exchange with its interconnected peers, may vary from
their nominal value.

The rate of change of frequency (RoCoF) is related to the power system inertia and the active
power mismatch. The relationship between inertia of a distinct area, RoCoF, and change in active
power can be found in [2,3]. Virtually, synchronous machines have been the main source of system
inertia, hence the area frequency is directly coupled to the rotational speed of the aggregated
synchronous generators [2,4]. Traditionally, the prime mover of conventional thermal power stations
and hydroelectric plants, along with the synchronous generators (typically of large inertia), act as
smoothing (low-pass) filters on variations of electric loads and participate primarily in the frequency
regulation of the area. In contrast, renewable energy generation units behave differently from
conventional synchronous generators, mostly because they are connected through power electronic
interfaces. In effect, these devices fully or partly can electrically decouple the generator from the
grid [3], hence the coupling between the rotational speed of the generator and the system frequency is
eliminated [5]. For this reason, unlike synchronous generators, inverter-connected generation units do
not inherently contribute to the total system inertia [6]. Although control strategies for participation
in frequency regulation by inverter-connected sources have been proposed in literature [7–9],
such functions are rarely enabled in reality. Thus, the development of inverter-connected renewable
energy sources introduces new challenges in the design of LFC, which is primarily performed
by synchronous generating units due to their inherent capability to affect the RoCoF caused by
active-power-imbalance events. Here, we focus on the design of LFC schemes with distributed pattern
for multi-area power systems. In our model, we intentionally consider only synchronous generating
units (thermal power stations, hydroelectric power plants) for the reasons outlined above. The violation
of steady-state operation caused by active power imbalance is formulated as a feedback disturbance
rejection problem of a large scale interconnected system.

LFC is one of the most challenging problems in multi-area power systems. An introduction to
power systems design and LFC can be found in textbooks [2,10,11], while an overview of control
strategies in the field of LFC problems has been discussed in [12,13]. Comprehensive literature surveys
on the topic of LFC for diverse configurations of conventional and future smart power systems can be
found in [14–17]. In typical situations, the geographical expanse and the mere complexity of the system
resulting from dynamical couplings among areas make centralized control schemes either impossible
or undesirable [18–20]. Hence, decentralized and distributed control is typically needed to ensure
stable network operation. Analytical methods for designing a decentralized and distributed LFC have
been presented in [21–23]. Robust decentralized control design methodologies have been presented
in [24], where the authors propose two control schemes for LFC based on robust optimal control
techniques and linear matrix inequalities (LMI). A rigorous and computationally efficient method,
also based on the versatile formulation of LMI’s for robust decentralized control of multi-machine
power systems, has been presented in [25].

A systematic methodology based on reachability for identifying the impact of potential cyber
attacks in the Automatic Generation Control (AGC) of a two-area power system has been presented
in [26]. Set-theoretic method for LFC design in the context of cyber-physical power systems can be
found in [27], while in [28], the authors propose LFC design based on an anti-windup compensator,
assuring stability of the closed-loop system even in cases of large load disturbance. Model predictive
control has also attracted attention from the power system community in recent years due to its
convenience in managing online disturbance rejection problems with state and input constraints,
which is a highly desired feature in a multi-area power system control. Model predictive control with
decentralized and distributed architecture for LFC design in interconnected power systems has been
proposed in [29–33].
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In this paper, we formulate the LFC of multi-area power systems as a large-scale optimal control
problem in the absence of state and input constraints. An arbitrary number of identical areas is
considered. The multi-area power system is represented as a multi-agent network composed of
identical dynamically coupled linear time-invariant systems. These dynamical couplings can be
expressed in a state-space form of a certain structure and represent interconnections between areas
through tie-lines. In our case, each agent representing an area can produce LFC signals independently
and is dynamically coupled with a certain number of its peers referred to as neighboring agents (areas)
with whom it can exchange state information. Effectively, we assume that the topology of physical
couplings (tie-lines) and the topology of information exchange among agents (areas) coincide and are
described by the same graph.

Linear quadratic regulator (LQR) control design has been successfully utilized in frequency
regulation problems, mostly due to large stability margins of its stabilizing solution, with
the fundamental work of [34] being a benchmark approach to LQR-based LFC of multi-area power
systems. Ever since, considerable research has been carried out on this topic; [35–38] represent
some recent works. Over the past few years, there has been a renewal of interest in control of
networks composed of a large number of interacting systems. The fundamental work of [39,40]
in this field discusses distributed LQR design for a set of identical decoupled dynamical systems.
Unfortunately, there is no documented distributed LQR-based approach to networked systems with
dynamical couplings and, consequently, no distributed LQR-based LFC has been noticed in literature so
far. The research of this paper motivated by the structure of a multi-area power system with dynamical
couplings between interconnected areas, attempts to cover this particular gap in literature. We believe
that this is the major contribution of our work the design description of which is summarized in the
following paragraph.

We follow a top-down method to approximate a centralized LQR optimal controller by
a distributed control scheme. It is shown that overall network stability is guaranteed via a stability test
applied to a convex combination of Hurwitz matrices. The validity of this condition is consistent with
the stability of a class of network interconnection structures which is identified. Sufficient condition
for stability of convex combination of Hurwitz matrices can be found in [41]. Our approach was
inspired by the powerful results proposed in [39]. Therein, the subsystems constituting the network
are dynamically decoupled, and the stability of the distributed scheme designed relies on the stability
margins of LQR control. A complementary distributed LQR method has also been proposed in [40],
which consists of a bottom-up approach in which optimal interactions between self-stabilizing agents
are defined so as to minimize an upper bound of the global LQR criterion. A major assumption of
our work is that the dynamical models of each area are identical. Although this assumption may be
unrealistic in practice, it simplifies the design problem considerably, which is especially hard due to the
coupling terms appearing in the model. Future work will attempt to eliminate or relax this assumption.
Preliminary results in this direction can be found in [42,43]. The simulation results presented in
Section 6.2 were carried out under considerable perturbations and suggest that this hypothesis is valid
and that our results can be extended to the non-identical case.

In this paper, our interest in distributed LFC arises from the necessity to avoid centralized schemes
when these become computationally prohibitive. We wish to tackle the LFC problem of geographically
sparse power grids following a distributed control approach, the main advantage of which is that it
can replace the conventional centralized controller, which has high communication and processing
costs and suffers from a single-point-of-failure drawback [23]. Faults caused by interconnection
losses might give rise to an unacceptable frequency deviation and may accelerate a cascading failure
event. The proposed distributed LFC controller is stabilizing even if tie-line interconnections and
communication links are added to or removed from the overall system, as long as this does not
violate the stability condition given in Sections 4 and 5. This powerful feature gives integrity to the
control subsystem of each area and enhances the resilience of the power system in the presence of
interconnection variations. The main contributions of this paper are summarized as follows:
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a. We propose a novel distributed-LQR algorithm for networked systems with dynamical couplings
applied to LFC of large-scale multi-area power systems.

b. The control scheme is obtained by optimizing an LQR performance index with a tuning parameter
which can be used to emphasize/de-emphasize relative state difference between interconnected
areas. In effect, this parameter controls the magnitude of tie-line power exchange and frequency
synchronization between interconnected areas.

c. Our approach enhances power system modularity and leads to a simple and verifiable
stabilizability condition for a class of network topologies. Extensive simulations presented
in this work support our conjecture that this stabilization criterion can be extended to more
general LFC control network problems.

The remaining of the paper is organized in seven sections. In Section 2, preliminaries on graph
theory are presented which are utilized in the control design contained in Sections 4 and 5. In Section 3,
we model a multi-area power system and describe the control problem of this paper. The main results
of our work are presented in Sections 4 and 5, which involve large-scale LQR problems. Section 6
presents simulation results, and Section 7 summarizes the main conclusions of the work. A discussion
of the main results and suggestions for future work are also included in this section.

2. Preliminaries

A graph G is defined as the ordered pair G = (V , E), where V is the set of nodes (or vertices)
V = {1, · · · , N} and E ⊆ V ×V the set of edges (i, j) with i ∈ V , j ∈ V . The degree dj of a graph vertex
j is the number of edges which start from j. Let dmax(G) denote the maximum vertex degree of the
graph G. We denote byA(G) the (0, 1) adjacency matrix of the graph G. In particular, the (ij)th element
of A, Aij = 1 if (i, j) ∈ E ∀ i, j = 1, · · · , N, i 6= j and zero otherwise. Let j ∈ Ni if (i, j) ∈ E and i 6= j.
We call Ni the neighborhood of node i. The adjacency matrix A(G) of undirected graphs is symmetric.
We define the Laplacian matrix as L(G) = D(G) − A(G), where D(G) is the diagonal matrix of
vertex degrees di (also called the valence matrix). Let S(L(G)) = {λ1(L(G)), · · · , λN(L(G))} be the
spectrum of the Laplacian matrix L associated with an undirected graph G arranged in nondecreasing
semi-order. The following two results are standard.

Proposition 1. Let G be a complete graph (with all possible edges) with NL vertices and L(G) be the
corresponding Laplacian matrix. Then, S(L(G)) = {0, NL, · · · , NL}.

Proposition 2. Let A, B be matrices of appropriate dimensions and L be Laplacian matrix with spectrum
S(L(G)) = {λ1(L(G)), · · · , λN(L(G))}. Then, the spectrum S(IN ⊗ A + L ⊗ B) can be reduced to⋃

i∈[1:N] S(A + λiB) with λi ∈ S(L).

An extensive survey on the spectrum of the Laplacian matrix of graphs can be found in [44].

3. Multi-Area Power System Design

Power system networks can be decomposed into multiple distinct dynamical subsystems, referred
to as control areas, each area having two primary characteristics; (1) It comprises of either a single
generator or a group of generators, and (2) it maintains a single frequency across its geographical
expanse. The areas are responsible for meeting the demand of their own consumers and are
interconnected with each other through transmission lines, referred to as tie-lines, over which they
exchange certain amount of power normally scheduled over a contracted value for each interconnection.
In this paper, we consider a multi-agent representation of power systems where each agent/area has
autonomous actuation capacity and is dynamically coupled with certain neighboring agents/areas
with which it exchanges state-information. We assume that the topology of the physical links (tie-lines)
and the communication scheme coincide. This multi-agent approach to multi-area power systems
is illustrated in Figure 1, where physical structure of the network (solid lines) and communication
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links (dotted lines) are incorporated into one unified entity, representing a modern large-scale power
system. The mapping of a cyber network to a physical grid, as shown in Figure 1, facilitates the
data-exchange between the control subsystems of interconnected areas and allows for control schemes
with distributed architecture. As mentioned earlier, each distinct area consists of a group of generating
units, the aggregate power generation of which should match the demand of the consumers spanned
across the geographical expanse covered by the corresponding area. The aggregate generation may
comprise thermal power stations, hydroelectric plants, wind turbine farms, photovoltaic and battery
storage power stations, and, in general, any type of conventional and renewable energy sources. In this
work, to avoid further complications in designing distributed control schemes, the power generation
of each area is limited to thermal and hydroelectric power stations.

Area 4

Area 3

Area 2

Area 1

Area 5

Area N

Tie-Line 23
Tie-Line 12

Tie-Line 34

Tie-Line 5N

Tie-Line 13

Tie-Line 24

Tie-Line 15

Control 4

Control 3

Control 2

Control 1

Control N

Control 5

Figure 1. Tie-line interconnections (solid lines) and communication scheme (dotted lines) in large-scale
multi-area power system.

3.1. Modeling

Let multi-area power system be composed of N areas the topology of which is modeled by
undirected graph G = (V , E). Each node i ∈ V represents an area and an edge (i, j) ∈ E between
two nodes denotes interaction between the two nodes/areas. We note that the edge (i, j) of the graph
determines coupling terms in the dynamics of area i and j and also indicates information exchange
between node i and j. Let also all j ∈ V with j 6= i such that (i, j) ∈ E be denoted by Ni. In the
sequel, all j ∈ Ni are referred to as adjacent or neighboring nodes/areas to i. At steady-state operation
the power sharing via tie-line interconnection between two areas i and j is denoted by Ptie,i,j and is
given by:

Ptie,i,j =
ViVj

Xij
sin (δi − δj). (1)

Here, Xij is the reactance of the tie-line which connects the two areas, δi, δj represent the power
angles of equivalent machines of area i and j, respectively, and Vi, Vj are the voltages at equivalent
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terminals of area i and j, respectively. Tie-line interconnection in a two-area system is depicted in
Figure 2.

Vi 6 δi

Gi

Loadi

Xij

Vj 6 δj

Gj

Loadj

Figure 2. Tie-line interconnection of two-area system.

For small deviations of (δi, δj) from equilibrium (δo
i , δo

j ), the power flow deviation over tie-line ij
from the nominal value is given by the linear equation:

∆Ptie,i,j = Tij(∆δi − ∆δj), (2)

where the synchronizing torque coefficient Tij =
|Vi ||Vj |

Xij
cos (δo

i − δo
j ), [10]. Notation ∆ indicates

deviation from steady-state operation conditions; differentiating (2) with respect to time results in:

∆Ṗtie,i,j = Ktie,i,j
(
∆ fi − ∆ f j

)
, (3)

where Ktie,i,j = 2πTij is referred to as synchronization coefficient between area i and j, while ∆ fi and
∆ f j represent the frequency deviation of each area from their common nominal value, denoted here
by f o. According to (3), the linearized dynamics of the total power inflow to the i-th area from all
interconnected areas j ∈ Ni, denoted by ∆Ptie,i is given by:

∆Ṗtie,i = ∑
j∈Ni

Ktie,i,j(∆ fi − ∆ f j). (4)

The open-loop linearized dynamics of the i-th interconnected area is represented by a model
widely used in literature [2,10], the block diagram of which is shown in Figure 3.

∆PC,i

∆Pf ,i

Σ
∆utot,i Kt,i

sTt,i+1
∆PG,i Σ

−∆Ptie,i

−∆PL,i

Kp,i
sTp,i+1 ∆ fi

− 1
Ri

Figure 3. Single block representation of the i-th interconnected area.

The total control signal of the i-th area is the sum of two components: ∆utot,i = ∆Pf ,i + ∆PC,i,
namely the primary frequency control action, defined as ∆Pf ,i = − 1

Ri
∆ fi and the AGC signal ∆PC,i to

be designed. The first is a fixed static linear control law performed by the speed governor which is
a regulating unit attached on the prime mover. Detailed description of this topic can be found in [2].
The static gain Ri is referred to as speed droop or speed regulation and expresses the ratio of the
frequency deviation ∆ fi to a change in output generated power by ∆PG,i assuming the AGC signal
∆PC,i = 0. A typical droop characteristic of a single generator actuated by primary frequency control
is shown in Figure 4.
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PG,i[MW]

fi[Hz]

Ri

Po
G,i PG,i

f o
i

fi

∆ fi

∆PG,i

Figure 4. Droop characteristic.

The signal ∆utot,i is assumed to be subjected to a component-wise saturation hard constraint of
the form:

∆utot,i,min ≤ ∆utot,i ≤ ∆utot,i,max, (5)

where ∆utot,i,max is taken greater than the maximum expected load deviation ∆PL,i,max; otherwise,
zero frequency deviation error is not guaranteed. Negative values of ∆utot,i allow for handling of
negative values of ∆PL,i in case of load reduction. The rate of change of power generation due to the
limitation of the thermal and mechanical movements in the generating unit of each area, as well as
the speed governor dead band, are important issues in power system modeling. For simplicity, these
constraints will be ignored in the linear stability analysis carried out in Sections 4 and 5, and they will
only be considered in simulation results in Section 6.

The corresponding state-space form of each area can be written as:

 ∆ ḟi
∆ṖG,i
∆Ṗtie,i

 =


− 1

Tp,i

Kp,i
Tp,i

−Kp,i
Tp,i

− Kt,i
RiTt,i

− 1
Tt,i

0

0 0 0


︸ ︷︷ ︸

A1,i

 ∆ fi
∆PG,i
∆Ptie,i


︸ ︷︷ ︸

xi

+ ∑
j∈Ni

 0
0

Ktie,i,j(∆ fi − ∆ f j)


︸ ︷︷ ︸

Ei

+

 0
Kt,i
Tt,i

0


︸ ︷︷ ︸

Bu,i

∆PC,i︸ ︷︷ ︸
ui

+

−
Kp,i
Tp,i

0
0


︸ ︷︷ ︸

Bw,i

∆PL,i︸ ︷︷ ︸
wi

, (6)

for i = 1, · · · , N, where we have used the state-space differential equations with respect to block
diagram Figure 3, along with (4). Note that Ei corresponds to the dynamic coupling between the i-th
area and its adjacent peers and gives rise to a state-space model of non-standard form. A standard
state-space model for the complete network will be derived in the sequel. The variables ∆ fi and ∆Ptie,i
in the state-vector have been already defined; variable ∆PG,i in (6) is the deviation from equilibrium
value of the electrical power generated by the aggregate generating units of each area and is taken
equal to the mechanical power produced in the output of the turbines. All parameters involved in (6),
along with basic power system terminology, are summarized in Table 1. The disturbance signal ∆PL,i
denotes time-varying demand of the consumers of the i-th area and is assumed to correspond to
unknown, piece-wise constant power load deviations with known upper and lower bounds. Here, we
study the case where ∆PL,i,min ≤ ∆PL,i ≤ ∆PL,i,max for i = 1, · · · , N.
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Table 1. Parameters and power system terminology.

Parameter, Symbol Value Units

Nominal Frequency, f o 50 Hz
Power Base, PB,i 2000 MW

Load Dependency Factor, Di 16.66 MW/Hz
Speed Droop, Ri 1.2× 10−3 Hz/MW

Generator Inertia Gain, Hi 5 s
Turbine Static Gain, Kt,i 1 MW/MW

Turbine Time Constant, Tt,i 0.3 s
Area Static Gain, Kp,i 0.06 Hz/MW

Area Time Constant, Tp,i 24 s
Tie-line Coefficient, Ktie,i 1090 MW/Hz

3.2. State-Augmentation for Integral Action

A well-established technique for tackling step-disturbances with zero steady-state error is to
include integral action into the state-space model. For the i-th area, consider performance variable
expressed as a summation of frequency deviation ∆ fi multiplied by a bias factor βi and total tie-line
power inflow ∆Ptie,i, or zi = βi∆ fi + ∆Ptie,i. This quantity is referred to as “Area Control Error” (ACE)
and a usual choice for βi is Di +

1
Ri

, [10]. Parameters Di and Ri are defined in Table 1. Take now
zi = Cz,ixi with xi given in (6) and Cz,i = [βi 0 1] and consider the augmented state-vector:

xa,i =
[

x′i
∫

zi

]′
. (7)

The augmented state-space form of the i-th area can then be written as:

ẋa,i =

[
A1,i 03×1

Cz,i 0

]
xa,i +

[
Bu,i
0

]
ui +

[
Ei
0

]
+

[
Bw,i

0

]
wi, (8)

where A1,i, Bu,i, Ei and Bw,i are as given in Equation (6). If the coupling term Ei in Equation (8) is
neglected, due to state-augmentation by the integral of the ACE signal of each area, a stabilizing
control signal ui would lead automatically to zero steady-state frequency and tie-line power inflow
deviations provided these are driven by step disturbances wi = ∆PL,i. However the term [E′i 0]′

involving state-coupling between the i-th area and its neighboring counterparts cannot be neglected,
and therefore the disturbance rejection task for the complete network becomes more challenging.

3.3. Problem Statement

Possible power load change in the i-th area of an interconnected power system causes the electrical
frequency fi to deviate from its nominal value. Due to interconnections among the areas through
power transmission tie-lines and the dependence of the power exchange between the i-th and j-th area
upon the respective difference ∆ fi − ∆ f j, any power load deviation occurring in the i-th area will also
affect the linked j-th area, causing a transient alternation in its frequency f j. Here, we formulate the
LFC of multi-area power systems as a large-scale optimal control problem in the absence of state and
input constraints. The special case of N identical areas is considered. The aggregate dynamics in this
case can be represented by a state-space model of the form:

˙̃x = (IN ⊗ A1 + L⊗ A2)x̃ + (IN ⊗ Bu)ũ + (IN ⊗ Bw)w̃. (9)
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Here, x̃ = [x′a,1 · · · x′a,N ], ũ = [u′1 · · · u′N ]
′, w̃ = [w′1 · · · w′N ]

′ and:

A1 =


− 1

Tp

Kp
Tp

−Kp
Tp

0

− Kt
RTt

− 1
Tt

0 0
0 0 0 0
β 0 1 0

 , A2 =


0 0 0 0
0 0 0 0

Ktie 0 0 0
0 0 0 0

 , Bu =


0
Kt
Tt

0
0

 , Bw =


−Kp

Tp

0
0
0

 , (10)

where the subscript i has been neglected from all entries of A1, A2, Bu, and Bw since areas are assumed
to have identical dynamics. The LQR design proposed in the next section is presented first from
a general multi-agent perspective. This is then extended to the multi-area power system framework.

4. Large-Scale LQR for Dynamically Coupled Systems

Consider a network of NL dynamically coupled LTI systems referred to as agents. At local level,
the dynamics of the i-th agent is represented in state-space form as:

ẋi = A1xi + A2

NL

∑
j=1,j 6=i

(xi − xj) + Bui, x0,i = xi(0), (11)

where xi ∈ Rn, ui ∈ Rm are states and inputs of the i-th system, respectively. A complete graph
(with all possible edges) G = (V , E) with Laplacian matrix Lc is utilized to model the topology of the
physical links among the agents. Node i ∈ V of G corresponds to local state xi, while edge (i, j) ∈ E
corresponds to the xi − xj term in (11). Now construct the aggregate state x̃ ∈ RnNL and input vector
ũ ∈ RmNL by stacking all state and input vectors, respectively, of all NL systems taken in ascending
order depending on their label in graph G. The aggregate state-space of the network becomes:

˙̃x = Ãx̃ + B̃ũ, x̃0 = x̃(0), (12)

with:
Ã = INL ⊗ A1 + Lc ⊗ A2, B̃ = INL ⊗ B. (13)

Consider now LQR control problem for the network of NL coupled systems:

min
ũ

J(ũ, x̃0) s.t. ˙̃x = Ãx̃ + B̃ũ, x̃0 = x̃(0), (14)

where the cost function:
J(ũ, x̃0) =

∫ ∞

0
x̃′Q̃x̃ + ũ′R̃ũ dt, (15)

with:
Q̃ = INL ⊗Q1 + Lc ⊗Q2 and R̃ = INL ⊗ R. (16)

Here, the weighting matrices Q1 = Q′1 ≥ 0 and R = R′ > 0 penalize local states and inputs of
each node, respectively, while the matrix Q2 = Q′2 ≥ 0 is chosen to weigh relative state differences
between subsystems. The following stabilizability and observability assumptions guarantee a solution
to LQR problem (14).

Assumption 1. Let C′1C1 = Q1. The pair (A1, B) is stabilizable and (A1, C1) is observable.

Assumption 2. Let C′12C12 = Q1 + NLQ2. The pair (A1 + NL A2, B) is stabilizable and (A1 + NL A2, C12)

is observable.
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Under Assumption 1,2, problem (14) has a unique stabilizing solution ũ = K̃x̃, which gives finite
performance index (15) equal to x̃′0P̃x̃0. The optimal state-feedback gain K̃ = −R̃−1B̃′ P̃, where P̃ is the
symmetric positive definite (s.p.d.) solution to the (large-scale) Algebraic Riccati Equation (ARE):

Ã′ P̃ + P̃Ã− P̃B̃R̃−1B̃′ P̃ + Q̃ = 0. (17)

Due to special formulation of (14), K̃ and P̃ retain certain structure, which will prove essential for
designing stabilizing distributed controllers in the next section. The specific structure of these matrices
is proved in Theorem 1. In the following, we set X = BR−1B′.

Theorem 1. Assume P̃ is the s.p.d solution to (17) associated with the optimal solution to (14). Let P̃ ∈
RnNL×nNL be decomposed into N2

L blocks of dimension n × n, each denoted by P̃ij and referred to as the
(i, j)-block of P̃. Then, the following statements hold.

I. ∑NL
j=1 P̃ij = P where P = P′ ≥ 0 is the stabilizing solution to single-node ARE:

A′1P + PA1 − PXP + Q1 = 0. (18)

II. P̃ij = P̃kl = P̃2 for all j 6= i, l 6= k where P̃2 is symmetric matrix associated with the node-level ARE:

(A1 + NL A2)
′(P− NL P̃2) + (P− NL P̃2)(A1 + NL A2)− (P− NL P̃2)X(P− NL P̃2)

+Q1 + NLQ2 = 0. (19)

Proof. First, we prove part I of the Theorem. The equations corresponding to the diagonal blocks
of (17) are:

(A1 + (NL − 1)A2)
′ P̃ii − A′2

NL

∑
j=1
j 6=i

P̃ij + P̃ii(A1 + (NL − 1)A2)−
NL

∑
j=1
j 6=i

P̃ij A2 −
NL

∑
k=1

P̃ikXP̃ik

+Q1 + (NL − 1)Q2 = 0, (20)

for i = 1, · · · , NL. Note that P̃ij = P̃ji due to symmetry of P̃ in (17). Now let:

Fii = P̃ii +
NL

∑
j=1
j 6=i

P̃ij. (21)

Substituting (21) to (20) gives:

(NL − 1)(A′2Fii + Fii A2)− NL A′2
NL

∑
j=1
j 6=i

P̃ij −
NL

∑
j=1
j 6=i

P̃ijNL A2 (22a)

+A′1(Fii −
NL

∑
j=1
j 6=i

P̃ij) + (Fii −
NL

∑
j=1
j 6=i

P̃ij)A1 −
NL

∑
k=1

P̃ikXP̃ik + Q1 + (NL − 1)Q2 = 0. (22b)

Using (21), the equations corresponding to the off-diagonal blocks of (17) can be written as:
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(NL − 1)(A′2P̃ij + P̃ij A2)− A′2(Fii −
NL

∑
k=1
k 6=i

P̃ik)− (Fii −
NL

∑
k=1
k 6=i

P̃ik)A2 − A′2
NL

∑
l=1
l 6=i
l 6=j

P̃il −
NL

∑
l=1
l 6=i
l 6=j

P̃il A2 (23a)

+A′1P̃ij + P̃ij A1 −
NL

∑
k=1

P̃ikXP̃kj −Q2 = 0. (23b)

Summing up (23a) for all j 6= i block-wise and adding this summation to (22a) gives:

(NL − 1)A′2Fii + Fii(NL − 1)A2 − (NL − 1)A′2Fii − Fii(NL − 1)A2 − NL A′2
NL

∑
j=1
j 6=i

P̃ij

−
NL

∑
j=1
j 6=i

P̃ijNL A2 + (NL − 1)A′2
NL

∑
j=1
j 6=i

P̃ij +
NL

∑
j=1
j 6=i

P̃ij(NL − 1)A2 + (NL − 1)A′2
NL

∑
k=1
k 6=i

P̃ik

+
NL

∑
k=1
k 6=i

P̃ik(NL − 1)A2 − (NL − 1)A′2
NL

∑
l=1
l 6=i
l 6=j

P̃il −
NL

∑
l=1
l 6=i
l 6=j

P̃il(NL − 1)A2 = 0 (24)

where all the terms associated with A2 cancel out. Summing up (23) over all j 6= i block-wise and
adding this summation to (22) gives:

A′1Fii + Fii A1 − FiiXFii +
NL

∑
k=1
k 6=i

(
P̃ikX

(
Fii − Fkk

))
+ Q1 = 0. (25)

Equation (25) has been established in Theorem 1 of [39]. It is true also here due to (24).
Adding up (25) over all i = 1, · · · , NL, we get:

NL

∑
i=1

(
A′1Fii + Fii A1 − FiiXFii + Q1

)
= 0, (26)

which is sum of NL identical ARE’s, i.e.,

NL(A′1Fii + Fii A1 − FiiXFii + Q1) = 0. (27)

Equation (21) implies Fii = ∑NL
i=1 P̃ij which, along with (27), proves part I.

Since B̃, R̃ are block diagonal and Ã, Q̃ have a repetitive pattern, the ARE (17) can essentially
be decomposed into NL identical equations. This implies that all P̃ij with i, j = 1, · · · , NL and j 6= i
are equal to each other. Let P̃2 be symmetric matrix representing the off-diagonal blocks P̃ij of P̃.
Setting P = Fii for i = 1, · · · , NL and P̃2 = P̃ij for i, j = 1, · · · , NL and j 6= i and substituting these
matrices into (23) gives:

(NL − 1)A′2P̃2 + (NL − 1)P̃2 A2 − A′2P− PA2 + (NL − 1)A′2P̃2 + (NL − 1)P̃2 A2

−(NL − 2)A′2P̃2 − (NL − 2)P̃2 A2 + A′1P̃2 + P̃2 A1 − P̃2X(P− (NL − 1)P̃2)

−(P− (NL − 1)P̃2)XP̃2 − (NL − 2)P̃2XP̃2 −Q2 = 0, (28)

which after rearranging some terms and multiplying both sides by −NL becomes:
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(A1 + NL A2)
′(−NL P̃2) + (−NL P̃2)(A1 + NL A2) + NL A′2P + PNL A2 − (−NL P̃2)XP

−PX(−NL P̃2)− (−NL P̃2)X(−NL P̃2) + NLQ2 = 0, (29)

or

(A1 + NL A2)
′(−NL P̃2) + (−NL P̃2)(A1 + NL A2) + NL A′2P + PNL A2 + PXP

−(P− NL P̃2)X(P− NL P̃2)X + NLQ2 = 0. (30)

Adding now (18) to (30) results in:

(A1 + NL A2)
′(−NL P̃2) + (−NL P̃2)(A1 + NL A2) + (A1 + NL A2)

′P + P(A1 + NL A2)

−PXP + PXP− (P− NL P̃2)X(P− NL P̃2)X + Q1 + NLQ2 = 0, (31)

or

(A1 + NL A2)
′(P− NL P̃2) + (P− NL P̃2)(A1 + NL A2)− (P− NL P̃2)X(P−NL P̃2)

+ Q1 + NLQ2 = 0, (32)

which proves part II.

By assumption, the matrices R̃ and B̃ are selected block diagonal. Consequently, the state-feedback
gain K̃ = −R̃−1B̃′ P̃ associated with the optimal solution to (14) retains the same structure with P̃.
This leads to the following Corollary.

Corollary 1. Assume K̃ = −R̃−1B̃′ P̃ is the optimal state-feedback gain obtained from the solution to (14)
which gives minimum performance index x̃′0P̃x̃0 with P̃ being the s.p.d solution to (17). Let K̃ ∈ RmNL×nNL and
P̃ ∈ RnNL×nNL be decomposed into N2

L blocks of dimension m× n and n× n denoted by K̃ij and P̃ij, respectively
each referred to as (i, j)-block of the respective matrix. Then, the following are true;

I. P̃ = INL ⊗ P−Lc ⊗ P̃2.

II. ∑NL
j=1 K̃ij = −R−1B′P for i = 1, · · · , NL.

III. K̃ii = −R−1B′P + (NL − 1)R−1B′ P̃2 for i = 1, · · · , NL.
IV. K̃ij = −R−1B′ P̃2 for i, j = 1, · · · , NL and j 6= i.
V. K̃ = −INL ⊗ R−1B′P + Lc ⊗ R−1B′ P̃2.

Theorem 1 states that due to special formulation of the cost function (15) and the structure of the
aggregate state-space form (12), the large-scale LQR problem (14) under Assumption 1,2 can effectively
be reduced to finding the solution of two node-level ARE’s. This feature may be highly beneficial for
problems involving networks, the topology of which is modeled by graph with an excessively large
number of vertices (NL).

Applying the stabilizing optimal state-feedback control ũ = K̃x̃ to (12) results in a closed-loop
matrix, which is Hurwitz and is written as:

Acl = INL ⊗ (A1 − XP) + Lc ⊗ (A2 + XP̃2). (33)

Due to Proposition 2, the spectrum of Acl can be decomposed into:

S(Acl) =
NL⋃
i=1

S
(

A1 − XP + λc,i(A2 + XP̃2)
)
, (34)
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where λc,i ∈ {0, NL, · · · , NL}.

Remark 1. The matrix A1 − XP + αNL(A2 + XP̃2) is Hurwitz for α = 0 and α = 1.

In the sequel, we require that:

Condition 1. The matrix A1 − XP + αNL(A2 + XP̃2) is Hurwitz for all α ∈ [0, 1].

Condition 1 states that all convex combinations of two Hurwitz matrices,

µĀ1 + (1− µ)Ā2 with µ ∈ [0, 1], (35)

are Hurwitz, where Ā1 = A1 − XP + NL(A2 + XP̃2) and Ā2 = A1 − XP. Sufficient conditions for
Hurwitz stability of convex combination of Hurwitz matrices can be found in Theorem 2.2 in [41].
In essence, Condition 1 characterizes a class of LQR problems (14) which admit of solutions for which
the Condition 1 holds. This will be used later for the design of distributed stabilizing controllers.
For a given selection of weighting matrices (Q1, Q2, R) of the LQR problem (14), the validity of
Condition 1 can be verified by searching for a symmetric positive definite matrix P̄ for which the
following LMI, −(Ā′1P̄ + P̄Ā1) 0n×n 0n×n

0n×n −(Ā′2P̄ + P̄Ā2) 0n×n

0n×n 0n×n P̄

 > 0, (36)

is feasible. Obviously, if matrix P̄ exists then premultiplying and postmultiplying (36) by
[
√

µIn
√

1− µIn 0n×n]′ and [
√

µIn
√

1− µIn 0n×n], respectively, for µ ∈ [0, 1] leads to
Lyapunov inequality:

(µĀ1 + (1− µ)Ā2)
′ P̄ + P̄(µĀ1 + (1− µ)Ā2) < 0, (37)

which admits of a solution P̄ = P̄′ > 0. This demonstrates that µĀ1 + (1− µ)Ā2 is a Hurwitz matrix
for all µ ∈ [0, 1]. Alternatively, the stability of µĀ1 + (1− µ)Ā2 can be examined via a simple graphical
test by plotting the eigenvalue with the maximum real part of the matrix µĀ1 + (1− µ)Ā2 for µ ∈ [0, 1].

Distributed LQR Design for Dynamically Coupled Systems

Let sparse network be formed of N identical and dynamically coupled LTI systems. We note here
that the index N differs from NL employed for networks modeled by complete graph in the previous
section, and in the sequel, we use index N to refer to schemes with sparse structure. Let the couplings
among the systems be modeled by graph GN = (V , E) with Laplacian matrix LN . The neighborhood
of the i-th system is denoted byNi ⊂ V and comprises all j ∈ V with j 6= i, for which (i, j) ∈ E . Let the
dynamics at local level of the i-th system be:

ẋi = A1xi + A2 ∑
j∈Ni

(xi − xj) + Bui, x0,i = xi(0), (38)

where xi ∈ Rn and ui ∈ Rm. The aggregate state-space of the network becomes:

˙̃x = Ãx̃ + B̃ũ, x̃0 = x̃(0), (39)

where x̃ ∈ RnN , ũ ∈ RmN and:

Ã = IN ⊗ A1 + LN ⊗ A2, B̃ = IN ⊗ B. (40)
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Note that the Laplacian matrix LN in (40) does not necessarily correspond to a complete graph
in contrast to (13) and generically the matrix Ã in (40) is sparse. A stabilizing distributed controller
for (39) is constructed in the following Theorem. For convenience, we set X = BR−1B′.

Theorem 2. Consider a network of N coupled systems with dynamics described in (38). The network topology is
modeled by graph GN with Laplacian matrix LN . Let λN be the maximum eigenvalue of LN and denote by dmax

the smallest integer which is greater than or equal to λN . Consider LQR problem (14) for NL = dmax, define P
and P̃2 via (18) and (19), respectively, and assume Condition 1 is true. Define also distributed state-feedback gain:

K̂ = −IN ⊗ R−1B′P + LN ⊗ R−1B′ P̃2. (41)

Then, the closed-loop matrix,

Acl = IN ⊗ (A1 − XP) + LN ⊗ (A2 + XP̃2), (42)

is Hurwitz.

Proof. Consider the spectrum S(Acl) = S(IN ⊗ (A1 − XP) + LN ⊗ (A2 + XP̃2)). Let VN ⊗ In be
state-space transformation, where VN ∈ RN×N is an orthogonal matrix whose columns consist of
the eigenvectors of LN . In the transformed coordinates, Ācl = IN ⊗ (A1 − XP) + ΛN ⊗ (A2 + XP̃2),
where ΛN = diag(0, λ2, · · · , λN) with λN ≤ dmax. The spectrum of Ācl is:

S(Ācl) =
N⋃

i=1

(A1 − XP + λi(A2 + XP̃2)), (43)

where λi for i = 1, · · · , N are the eigenvalues of LN . Condition 1 holds, hence (A1−XP) + αdmax(A2 +

XP̃2) is Hurwitz for all α ∈ [0, 1]. Consequently, Ācl is also Hurwitz since λi ∈ [0, dmax] for all
i = 1, · · · , N. This proves the Theorem.

Remark 2. For a time-varying graph G(t) = (V , E(t)) with fixed number of vertices (N) and
time-varying edges the maximum eigenvalue of the time-varying Laplacian matrix L(t) is bounded by 2N.
Consequently, solving (14) for NL = 2N and assuming Condition 1 holds leads to a distributed controller K̂,
which stabilizes the network for all possible couplings among the N systems. Naturally, this does not imply
stability of switching between stable network interconnections.

5. Large-Scale LQR for LFC

In this section, we consider LQR problem (14) for a multi-area power system. Recall that we
denote by NL the number of areas of power network, the topology of which is modeled by complete
graph and by N the number of areas corresponding to sparse networks. Let the aggregate state-space
model of NL-area power system be written as:

˙̃x = (INL ⊗ A1 + Lc ⊗ A2)x̃ + (INL ⊗ Bu)ũ + (INL ⊗ Bw)w̃, (44)

where x̃ = [x′a,1 · · · x′a,NL
], ũ = [u′1 · · · u′NL

]′, w̃ = [w′1 · · · w′NL
]′ with xa,i, ui, wi for i = 1, · · · , NL

defined in (8) and:

A1 =


− 1

Tp

Kp
Tp

−Kp
Tp

0

− Kt
RTt

− 1
Tt

0 0
0 0 0 0
β 0 1 0

 , A2 =


0 0 0 0
0 0 0 0

Ktie 0 0 0
0 0 0 0

 , Bu =


0
Kt
Tt

0
0

 , Bw =


−Kp

Tp

0
0
0

 . (45)
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Parameters in (A1, A2, Bu, Bw) can be found in Table 1. In view of Assumption 1, LQR problem (14)
for Ã = INL ⊗ A1 + Lc ⊗ A2 and B̃ = INL ⊗ Bu with (A1, A2, Bu) given in (45) initially fails to
admit a solution since (18) cannot be solved. This stems from the fact that the pair (A1, Bu) has
an uncontrollable mode at the origin, and the realization (44) is non-minimal. The non-minimality is
due to a redundant equation related to the sum of the total power inflow ∆Ptie,i to each area, which
equals zero or ∑NL

i=1 ∆Ptie,i = 0. Now, we show how to reformulate the system matrices and derive
a stabilizing controller for the network.

Define permutation matrix:

T =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (46)

where T = T′ = T−1 and consider Kalman decomposition of the pair (A1, Bu) applying
state-space transformation Txa,i for i = 1, · · · , NL. Let the system matrices (Ā1, Ā2, B̄u, B̄w) =

(TA1T′, TA2T′, TBu, TBw) in the new coordinates be written as:

Ā1 =


− 1

Tp

Kp
Tp

0 −Kp
Tp

− Kt
RTt

− 1
Tt

0 0
β 0 0 1
0 0 0 0

 , Ā2 =


0 0 0 0
0 0 0 0
0 0 0 0

Ktie 0 0 0

 , B̄u =


0
Kt
Tt

0
0

 , B̄w =


−Kp

Tp

0
0
0

 , (47)

where B̄u = Bu, B̄w = Bw. The controllable part of (Ā1, B̄u) is denoted by (Ac, Bc) with:

Ac =

−
1

Tp

Kp
Tp

0

− Kt
RTt

− 1
Tt

0
β 0 0

 , Bc =

 0
Kt
Tt

0

 . (48)

The zero in the (4, 4) entry of Ā1 stands for the uncontrollable mode at the origin of (A1, Bu).
Now, construct perturbation matrix:

E =

[
03×3 03

0′3 e

]
, (49)

for e < 0 with |e| sufficiently small and define:

A1e = Ā1 + E =

[
Ac A12

0′3 e

]
, A2e = Ā2 −

1
NL

E =

[
03×3 03

a21 − 1
NL

e

]
, (50)

where A12 = [− Kt
RTt

0 1]′ and a21 = [Ktie 0 0]. Since e < 0, the pair (A1e, Bu) is stabilizable.
According to Theorem 1, LQR problem (14) with parameters (A1e, A2e, Bu, Q1, Q2, R) is reduced to two
node-level ARE:

A′1ePe + Pe A1e − PeXPe + Q1 = 0, (51)

(A1e + NL A2e)
′(Pe − NL P̃2e) + (Pe − NL P̃2e)(A1e + NL A2e)− (Pe − NL P̃2e)X(Pe − NL P̃2e)

+ Q1 + NLQ2 = 0, (52)

where Pe, P̃2e are e-dependent and X = BuR−1B′u. Note that the solution Pe−NL P̃2e to ARE (52) remains
invariant under e-perturbation. Theorem 3, next, summarizes the method of solving large-scale LQR
problem (14) with one uncontrollable mode at the origin.
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Theorem 3. Consider NL-area power system with aggregate state-space form given as in (44). Consider Kalman
decomposition of (A1, Bu) and define (Ā1, Ā2, B̄u, B̄w) given in (47). Choose e < 0 with |e| sufficiently
small and define perturbed matrices A1e, A2e as given in (50). Solving LQR problem (14) with parameters
(A1e, A2e, Bu, Q1, Q2, R) and defining Pe and P̃2e from (51) and (52), respectively, leads to the following
argument: the matrix,

Ā1 − XPe + α(NL Ā2 + XP̃2e), (53)

I. is Hurwitz for α = 1.
II. has n− 1 eigenvalues in the left-half-plane and one at the origin for α = 0.

Proof. In view of the special structure of A1e and A2e, it can easily be seen that:

Ā1 + NL Ā2 = A1e + NL A2e. (54)

Due to (52), the matrix A1e + NL A2e − XPe + NLXP̃2e is Hurwitz and because of (54) the matrix
Ā1 + NL Ā2 − XPe + NLXP̃2e is also Hurwitz. This proves part I.

Now, let the matrix Pe in (51) be decomposed into blocks of appropriate dimensions according to
the Kalman decomposition (48). Then, ARE (51) can be written as:[

Ac A12

0′3 e

]′ [
P11e P12e
P′12e P22e

]
+

[
P11e P12e
P′12e P22e

] [
Ac A12

0′3 e

]

−
[

P11e P12e
P′12e P22e

] [
Bc

0

]
R−1

[
B′c 0

] [P11e P12e
P′12e P22e

]
+

[
Q11 Q12

Q′12 Q22

]
= 0. (55)

The first diagonal block of (55) gives:

A′cP11e + P11e Ac − P11eBcR−1B′cP11e + Q11 = 0, (56)

and implies that the matrix Ac − BcR−1B′cP11e is Hurwitz where the symmetric positive definite matrix
P11e does not depend on parameter e. The two remaining blocks P12e and P22e of Pe are e-dependent
and given by:

P12e = −(A′c − P11eBcR−1B′c + eIn−1)
−1(P11e A12 + Q12), (57)

P22e =
1
2e

[(P′12eBcR−1B′c − 2A′12)P12e −Q22]. (58)

The matrix A′c − P11eBcR−1B′c + eIn−1 in (57) is invertible since Ac − BcR−1B′cP11e is Hurwitz and
e < 0. Now, the closed-loop matrix A1e − BuR−1B′uPe is Hurwitz and can be written as:

A1e − BuR−1B′uPe =

[
Ac − BcR−1B′cP11e A12 − BcR−1B′cP12e

0′3 e

]
. (59)

Since (59) is in canonical form, its spectrum can be decomposed in:

S(A1e − BuR−1B′uPe) = S(Ac − BcR−1B′cP11e) ∪ e. (60)

Setting e = 0 in (60) proves the Theorem.

Similarly to Condition 1, we impose the following stability requirement.

Condition 2. The matrix Ā1 − XPe + α(NL Ā2 + XP̃2e) is Hurwitz for all α ∈ (0, 1].
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In the next paragraph, we propose distributed stabilizing LFC controllers for multi-area power
systems with sparse topology based on Condition 2.

5.1. Distributed LQR-Based LFC

Let undirected graph GN = (V , E) with Laplacian matrix LN(GN) models the interconnection
topology of a multi-area power system formed of N identical areas with aggregate state-space form
written as: ˙̃x = (IN ⊗ A1 + LN ⊗ A2)x̃ + (IN ⊗ Bu)ũ + (IN ⊗ Bw)w̃. (61)

The matrices A1, A2, Bu, and Bw are given as in (45). The aggregate vectors x̃, ũ, and w̃ are
constructed by stacking the augmented state-vector xa,i, input-vector ui, and disturbance-vector wi,
respectively, shown in (8) of each area with ascending order depending on graph GN . Now, define
perturbation matrix:

E =


0 0 0 0
0 0 0 0
0 0 e 0
0 0 0 0

 , (62)

where e < 0 and |e| sufficiently small, and also define perturbed matrices A1e and A2e as:

A1e = A1 + E, A2e = A2 −
1

NL
E, (63)

where NL is as defined in Theorem 2. A distributed LFC controller for (61) is constructed next, in
Theorem 4.

Theorem 4. Consider power system of N identical areas with network topology modeled by graph GN with
Laplacian matrix LN and aggregate state-space form given by (61). Let λN be the maximum eigenvalue of LN
and denote by dmax the smallest integer which is greater than or equal to λN . Set NL = dmax, specify e < 0
with |e| sufficiently small and define perturbed matrices A1e and A2e as in (63). Consider LQR problem (14)
for NL = dmax perturbed systems (A1e, A2e, Bu), define Pe and P̃2e via (51) and (52), respectively, and assume
Condition 2 holds. Define also distributed state-feedback gain:

K̂ = −IN ⊗ R−1B′uPe + LN ⊗ R−1B′u P̃2e. (64)

Then, the closed-loop matrix of the original system,

Acl = IN ⊗ (A1 − XPe) + LN ⊗ (A2 + XP̃2e), (65)

has 3N − 1 eigenvalues in the left-hand-plane and one at the origin.

The proof follows similar arguments stated for proving Theorem 2 and is omitted here.
The conclusions as far as the stability of the network is concerned still hold, even if the controllability
Assumption 1 is no longer valid. The distributed state-feedback gain (64) can be used for stabilizing
the network despite the fact that the closed-loop matrix (65) has a single eigenvalue at the origin.
This mode corresponds to the trivial differential equation ∑NL

i=1 ∆Ṗtie,i = 0, which implies 0̇ = 0 and
can be easily derived via an appropriate state-space transformation.

In the following section, the distributed LQR controller constructed above is employed to drive
the LFC of a six-area power system. We show that network stability is guaranteed for a class of
tie-line interconnection structures via a single tuning of the LFC controller. In the simulations, we
consider three different interconnection schemes. We also include certain input and state constraints
in the linear model of each area in order to assess the stability margins of the proposed control
scheme. A robust stability test has also been carried out as a separate case study involving parametric
uncertainties in the parameters of each area. We stress here that robust stability and nonlinear analysis
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are beyond the scope of this paper. Nonlinearities and parameter perturbations considered in the next
section are only used for simulation purposes where the performance of the proposed control scheme
is also tested under more intense conditions.

6. Simulation Case Studies

We consider a power system of six identical areas, the parameters of which are summarized
in Table 1. Three interconnection schemes are considered; each graph shown in Figure 5a–c, with
corresponding Laplacian matrix given in (66), models the network topology of one of the three schemes
(S1, S2, S3), respectively.

1 2

3

45

6

(a) Interconnection scheme S1

with Laplacian matrix L1.

1 2

3

45

6

(b) Interconnection scheme S2

with Laplacian matrix L2.

1 2

3

45

6

(c) Interconnection scheme S3

with Laplacian matrix L3.
Figure 5. Three different tie-line interconnection schemes of six control areas.

L1 =



2 −1 0 0 −1 0
−1 2 −1 0 0 0
0 −1 3 −1 0 −1
0 0 −1 2 −1 0
−1 0 0 −1 2 0
0 0 −1 0 0 1


, L2 =



1 0 0 0 −1 0
0 1 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 3 −1 −1
−1 0 0 −1 2 0
0 0 0 −1 0 1


, L3 =



3 0 −1 0 −1 −1
0 1 0 −1 0 0
−1 0 1 0 0 0
0 −1 0 2 −1 0
−1 0 0 −1 3 −1
−1 0 0 0 −1 2


. (66)

In the simulations, one scenario is considered in which the areas are assumed to be subjected
to step disturbances. These represent power load variations of the consumers of each area and
are depicted in Figure 6. For the control design, we also assume that there is a communication
cyber-layer, the topology of which is identical with this of the tie-line interconnection scheme
considered. The distributed LFC controller designed in Theorem 4 was tested in three case studies,
which are summarized below:

1. We test closed-loop stability of topology S1, S2, and S3, respectively, applying LFC controller
derived by solving a single LQR problem. This stability test is performed for two different
tunings of the LQR performance index. The transients of frequency and total power inflow of the
linear model of each area is compared to the corresponding responses, including saturation hard
constraint on the total input signal of each area.

2. We consider parametric uncertainty in the linear model of each area, and we show closed loop
stability of topology S2 for two different tunings of the LFC controller. Perturbations have been
carried out on the following parameters: turbine time constant (Tt,i), area time constant (Tp,i) of
each area, respectively, and tie-line coefficient (Ktie,i,j) of each tie-line interconnection.

3. For a certain tuning of the LFC controller, we demonstrate frequency recovery for topology S1, S2,
and S3, respectively, including generation rate constraint (GRC) and saturation hard constraint on
the total input signal of each area.

6.1. Case Study 1

Block representation of the linear dynamics of each control area at local level is given in Figure 3.
The corresponding augmented state-space form of each area is shown in (8), where the integral of
the ACE signal has also been included in the state-vector. We construct the collective state-space of
the network as in (61), where matrices A1, A2, Bu, and Bw are given in (45). The Laplacian matrix L
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corresponds to one of those given in (66) according to the topology considered. Parameter values are
given in Table 1. The distributed LQR controller presented in Section 5.1 is proposed here to drive the
AGC signal ∆PC,i of each area. The control objective is to meet the load demand at each area shown in
Figure 6 and recover the nominal operating conditions of each area for three possible interconnections.
Stabilizing distributed state-feedback controller is constructed as follows.
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Figure 6. Power demand deviation ∆PL,i for i = 1, · · · , 6.
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Figure 7. Stability test and validity of Condition 2.

The maximum eigenvalue of each matrix (L1,L2,L3) in (66) is 4.3028, 4.3028, and 4.3928,
respectively. We take the smallest integer denoted by dmax which is greater or equal to the maximum of
these (4.3928), i.e., dmax = 5. We select perturbation parameter e = −0.01, and we alter matrices A1 and
A2 to A1e and A2e, respectively, according to (63). We solve optimal problem (14) for NL = dmax = 5
systems with matrices (A1e, A2e, Bu) for two different selections of the weights Q̃, R̃. In the first,
Q̃ = I5 ⊗ Q1, with Q1 = diag(100, 10, 10, 5000) and R̃ = I5 ⊗ 100, while in the second, R̃ is kept the
same and Q̃ = I5 ⊗ Q1 + L5 ⊗ Q2, where Q2 = 200Q1 and L5 is Laplacian matrix corresponding to
complete graph (all possible edges) with 5 nodes. The matrix Q2 penalizes the relative state-difference
(xi − xj) between neighboring areas in (15). We evaluate Pe and P̃2e from (51), (52), and we define the
respective K = −R−1B′uPe and K2 = R−1B′u P̃2e state-feedback gains for each tuning. These are:

K =
[
−2502.857 −1.203 −1.757 −7.071

]
K2 =

[
−342.491 −0.104 0.225 0.000

] (67)

for the first tuning where Q2 = 0 and:
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K =
[
−2502.857 −1.203 −1.757 −7.071

]
K2 =

[
−12084.071 −2.356 −6.374 −43.329

] (68)

for the case where Q2 = 200Q1. Note that K = −R−1B′uPe is the same for both cases since Pe is
the solution to a single node-level ARE with parameters (A1e, Bu, Q1, R). We also test the validity of
Condition 2, which can be seen to hold. Figure 7 displays the real part of the eigenvalue of the matrix
(A1 − BuR−1B′uPe) + αdmax(A2 + BuR−1B′uP̃2e) with the maximum real part with α ∈ [0, 1] for both
tuning choices. In essence, this implies stable operation of the network under both control schemes for
all possible interconnections corresponding to Laplacian matrices with maximum eigenvalue bounded
by dmax.

At network level, the distributed stabilizing controller K̂ takes the form:

K̂ = I6 ⊗ K + Ls ⊗ K2, (69)

where Ls, s = 1, 2, 3, is given in (66) according to the topology. Node-wise, the AGC signal at each area
is derived from:

∆PC,i = Kxi + K2 ∑
j∈Ni

(xi − xj), (70)

with i = 1, · · · , 6, j 6= i and j ∈ Ni. In effect, each area requires local state and state-information from its
neighboring areas be accessible for measuring in order to construct its control signal. In the following
simulations, we show the transients of frequency and total power inflow of each area resulting from
the corresponding power demand deviation ∆PL,i, i = 1, · · · , 6 of each area. Comparison with the
response of the corresponding model of each area which includes saturation hard constraint on the
total input signal of each area is also illustrated in the simulation results. Block representation of each
area with saturating input constraint is shown in Figure 8, where the symmetric saturator models the
lower and upper bound of the magnitude of the total control signal of each area. Here, we consider
−220 [MW] ≤ ∆utot,i ≤ 220 [MW], i = 1, · · · , 6.

∆PC,i

∆Pf ,i

Σ
∆utot,i

umin

umax
Kt,i

sTt,i+1
∆PG,i Σ

−∆Ptie,i

−∆PL,i

Kp,i
sTp,i+1 ∆ fi

− 1
Ri

Figure 8. Single block representation of the i-th interconnected area with saturation hard constraint on
the total input signal.

Figures 9–12 show the transient response of frequency and total power inflow deviation,
respectively, of each area from the equilibrium operation for two control schemes given in (67), (68).
Stable operation is guaranteed and the nominal working conditions for all three interconnection
schemes are recovered via both LFC control choices. For the given choices of weighting matrices
(Q1, Q2, R), this is guaranteed from the validity of Condition 2, which was checked graphically in
Figure 7. Note also, the magnitude of the total power flow over the tie-lines is significantly limited
in the case where the controller is designed as in (68). This stems from the large weighting matrix
Q2 selection in the performance index (15). In this case, since the relative state-difference between
neighboring areas is highly penalized, the areas tend to acquire same frequencies deviations during
the transients (see Figure 11), thus the total power flow over the tie-lines given in (4) is kept low.
Comparing Figures 10 and 12, the same behavior is observed for the case in which saturating input
constraint is included in the model of each area. Despite the strong nonlinearity introduced by the
saturator, total power inflow of each area is significantly reduced when the relative state-difference
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(xi − xj) is penalized heavily in the LQR performance index. This powerful feature to control the
magnitude of tie-line power exchange enhances the applicability of the proposed controller and might
prove highly beneficial for networks composed of weak tie-line interconnections.

Figure 9. Frequency transients of the six-area power system for three tie-line interconnection schemes
(S1, S2, S3). Zero penalty on the relative state-difference between interconnected areas. Solid lines
depict transients of the linear model; dashed lines depict transients of the model with saturator
(Figure 8).

Figure 10. Total power inflow response of the six-area power system for three tie-line interconnection
schemes (S1, S2, S3). Zero penalty on the relative state-difference between interconnected areas.
Solid lines depict transients of the linear model; dashed lines depict transients of the model with
saturator (Figure 8).
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Figure 11. Frequency transients of the six-area power system for three tie-line interconnection schemes
(S1, S2, S3). Large penalty on relative state-difference between interconnected areas. Solid lines depict
transients of the linear model; dashed lines depict transients of the model with saturator (Figure 8).

Figure 12. Total power inflow response of the six-area power system for three tie-line interconnection
schemes (S1, S2, S3). Large penalty on relative state-difference between interconnected areas. Solid lines
depict transients of the linear model; dashed lines depict transients of the model with saturator
(Figure 8).

6.2. Case Study 2

To assess the stability margins of the LFC controller constructed in the previous case study,
we introduce uncertain parameters in the model of each area, and we carry out simulations for
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the interconnection topology S2 shown in Figure 5b. Both tunings of the LQR performance index
considered in the previous section are also employed here. We consider parametric uncertainties in:
turbine time constant Tt,i, area time constant Tp,i and tie-line coefficient Ktie,i,j for i, j = 1, · · · , 6 and
j ∈ Ni. The perturbation magnitude of each parameter is shown in Table 2.

Table 2. Parametric uncertainties in Tt,i, Tp,i and Ktie,i,j, i = 1, · · · , 6, j ∈ Ni.

Parameter Area 1 Area 2 Area 3 Area 4 Area 5 Area 6

Turbine Time Constant, Tt,i +20% −20% −30% +30% +25% −25%
Area Time Constant, Tp,i −25% +30% +25% +20% −20% +30%

Parameter Tie-Line 15 Tie-Line 23 Tie-Line 34 Tie-Line 45 Tie-Line 46

Tie-line coefficient, Ktie,i,j +20% −20% −25% +30% −25%

The frequency and total power inflow deviation of each area driven by step disturbances (Figure 6)
are depicted in Figures 13–16. The robustness of the proposed distributed LQR-based LFC scheme is
validated, and it can be seen that stable operation is maintained even for magnitude of parametric
uncertainties taken equal to 30%.
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Figure 13. Frequency deviation ∆ fi response for i = 1, · · · , 6, topology S2, control tuning with Q2 = 0,
uncertain parameters.
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Figure 14. Frequency deviation ∆ fi response for i = 1, · · · , 6, topology S2, control tuning with
Q2 = 200Q1, uncertain parameters.
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Figure 15. Total power inflow deviation ∆Ptie,i response for i = 1, · · · , 6, topology S2, control tuning
with Q2 = 0, uncertain parameters.
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Figure 16. Total power inflow deviation ∆Ptie,i response for i = 1, · · · , 6, topology S2, control tuning
with Q2 = 200Q1, uncertain parameters.

6.3. Case Study 3

In this simulation study, the linear model of each area is augmented by saturation hard constraint
on the total control signal and generation rate constraint (GRC). The first is formulated as hard input
constraint and is taken equal to this considered in the first case study,−220 [MW] ≤ ∆utot,i ≤ 220 [MW],
i = 1, · · · , 6. The second constraint (GRC) can be cast as state constraint imposed on the state variable
∆PG,i, = 1, · · · , 6. Here, we consider GRC equal to 10% of the power base of each area per minute
(i.e., 3.4 [MW/s]). The augmented block diagram of each area is depicted in Figure 17.
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1
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− 1
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Figure 17. Single block representation of the i-th interconnected area with saturation hard constraint
on the total input signal and nonlinear turbine model with GRC.
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Each area is subjected to step disturbances shown in Figure 6. The three tie-line interconnection
schemes depicted in Figure 5 are considered in the simulations. In this case study, in order to construct
the proposed LFC controller, the weighting matrices of the LQR performance index have been chosen
according to Bryson’s rule [45]. For a standard LQR problem with weights (Q, R), this rule specifies
that Q and R are taken diagonal with diagonal entries defined as:

Qii =
1

(xi,max)2 and Rii =
1

(ui,max)2 , (71)

where |xi,max| and |ui,max| represent the maximum required values of the state and control variables,
respectively. Here, the matrices (Q1, Q2, R) are selected as: Q1 = diag( 1

0.0012 , 1
4502 , 1

2002 , 1
1002 ), Q2 =

diag( 1
0.12 , 1

502 , 1
4002 , 1

50002 ) and R = 10000
3502 . The frequency transient of the closed-loop system of each

area is illustrated in Figure 18.

Figure 18. Frequency transients of the six-area power system for three tie-line interconnection schemes
(S1, S2, S3). Input and state constraints are included in the model of each area (Figure 17). Selection of
weighting matrices according to Bryson’s rule.

As it can be seen, the same LFC controller stabilizes the network for topology S1, S2, and S3

and nominal frequency for each area is recovered. The frequency transient in this case has become
considerably slower than in previous studies due to the state constraint GRC, which significantly limits
the rate of power generation (3.4 [MW/s]). Despite the strong nonlinearities introduced by the input
and state constraint, the closed-loop stability is maintained via the proposed LFC controller.

7. Conclusions

A stabilizing distributed state-feedback LFC scheme for multi-area power systems was proposed
based on the solution of a large-scale LQR optimal problem under the assumption that the dynamic
models of each area are identical. This method has originally been proposed in [39] for the decoupled
case and was extended here to include couplings between the subsystems representing power
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system areas. First, a fully centralized controller was designed which was subsequently substituted
by a distributed state-feedback gain with sparse structure. The control scheme was obtained by
optimizing an LQR performance index with a tuning parameter utilized to emphasize/de-emphasize
relative state difference between interconnected areas. We showed that this parameter controls the
magnitude of tie-line power exchange and frequency synchronization between interconnected areas.
Our approach enhances power system modularity and leads to a simple and verifiable stabilizability
condition for a class of network topologies. Extensive simulations presented in this work support our
conjecture that this stabilization criterion can be extended to more general LFC control network
problems. The assumption of identical dynamics is clearly restrictive but simplifies the design
problem considerably and leads to the derivation of a stability condition which can be easily tested.
Attempts to eliminate or relax this assumption will be the topic of future work. Preliminary results
in this direction can be found in [42,43]. The simulation results in Section 6.2 carried out under
considerable perturbations suggest that this hypothesis is valid and that our results can be extended to
the non-identical case.

Author Contributions: All authors have contributed equally to the derivation of the results of this work.
All authors have approved the publication of this paper.

Funding: L. Dritsas acknowledges financial support from the Special Account for Research of ASPETE through
the funding program “Strengthening research of ASPETE faculty members”.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Iracleous, D.P.; Alexandridis, A.T. A multi-task automatic generation control for power regulation.
Electr. Power Syst. Res. 2005, doi:10.1016/j.epsr.2004.06.011. [CrossRef]

2. Kundur, P. Power System Stability And Control; McGraw-Hill, Inc.: London, UK, 1993.
3. Tielens, P.; Van Hertem, D. The relevance of inertia in power systems. Renew. Sustain. Energy Rev. 2016,

55, 999–1009, doi:10.1016/j.rser.2015.11.016. [CrossRef]
4. Ulbig, A.; Borsche, T.S.; Andersson, G. Impact of low rotational inertia on power system stability and

operation. IFAC Proc. Vol. 2014, 47, 7290–7297. [CrossRef]
5. Masood, N.A.; Modi, N.; Yan, R. Low inertia power systems: Frequency response challenges and a possible

solution. In Proceedings of the 2016 Australasian Universities Power Engineering Conference (AUPEC),
Brisbane, Australia, 25–28 September 2016. doi:10.1109/AUPEC.2016.07749335.

6. Tielens, P.; van Hertem, D. Grid Inertia and Frequency Control in Power Systems with High Penetration of
Renewables. In Proceedings of the Young Researchers Symposium in Electrical Power Engineering, Delft,
The Netherlands, 16–17 April 2012.
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