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ABSTRACT   

This paper explores the practical benefits of the recently proposed by the authors tuned mass-damper-inerter (TMDI) vis-

à-vis the classical tuned mass-damper (TMD) for the passive vibration control of seismically excited linearly building 

structures assumed to respond linearly. Special attention is focused on showcasing that the TMDI requires considerably 

reduced attached mass/weight to achieve the same vibration suppression level as the classical TMD by exploiting the 

mass amplification effect of the ideal inerter device. The latter allows for increasing the inertial property of the TMDI 

without a significant increase to its physical weight. To this end, novel numerical results pertaining to a seismically 

excited 3-storey frame building equipped with optimally designed TMDIs for various values of attached mass and 

inertance (i.e., constant of proportionality of the inerter resisting force in mass units) are furnished. The seismic action is 

modelled by a non-stationary stochastic process compatible with the elastic acceleration response spectrum of the 

European seismic code (Eurocode 8), while the TMDIs are tuned to minimize the mean square top floor displacement. It 

is shown that the TMDI achieves the same level of performance as an unconventional “large mass” TMD for seismic 

protection (i.e., more than 10% of attached mass of the total building mass), by incorporating attached masses similar to 

the ones used for controlling wind-induced vibrations via TMDs (i.e., 1%-5% of the total building mass). Moreover, 

numerical data from response history analyses for a suite of Eurocode 8 compatible recorded ground motions further 

demonstrate that optimally tuned TMDIs for top floor displacement minimization achieve considerable reductions in 

terms of top floor acceleration and attached mass displacement (stroke) compared to the classical TMD with the same 

attached mass.  

Keywords: passive vibration control, tuned mass damper, inerter, optimum design, earthquake resistant buildings, non-

stationary stochastic process, Eurocode 8 

 

1. INTRODUCTION  

For several decades, the concept of the tuned mass-damper (TMD) has been considered as a viable solution for the 

protection of building structures exposed to the earthquake hazard in the context of passive vibration control1,2. In its 

simplest form, the linear TMD comprises a mass attached towards the top of the building whose oscillatory motion is to 

be controlled (primary structure) via optimally designed/”tuned” linear stiffeners, or hangers in case of pendulum-like 

TMD implementations, in conjunction with linear energy dissipation devices (i.e., viscous dampers). The effectiveness 

of the TMD relies on “tuning” its stiffness and damping properties for a given primary structure and attached mass, such 

that significant kinetic energy is transferred from the vibrating primary structure to the TMD mass and eventually 

dissipated through the damping devices. No matter what performance criteria are adopted in this design, it is widely 

recognized that the performance of TMDs for the seismic protection of civil engineering structures depends heavily on 

its inertia properties2-4. Practically speaking, the larger the attached TMD mass that can be accommodated, subject to 

structural design and architectural constraints, the more effective and robust the TMD becomes for passive vibration 

control of earthquake induced oscillations.  

 

 

 

*agathoklis@city.ac.uk; phone +44 (0)207040 8104 

mailto:*agathoklis@city.ac.uk


 

Giaralis A and Marian L (2016). Use of inerter devices for weight reduction of tuned mass dampers for seismic 

proterction of multi-storey buildings: the tuned mass-damper-inerter (TMDI). In: Proceedings of SPIE on Active and 

Passive Smart Structures and Integrated Systems 2016  (March 20-24, 2016, Las Vegas, NV, USA), Vol 9799-1G, DOI: 

10.1117/12.2219324. 

 

 

 

 

In this context, various researchers proposed the implementation of unconventionally large mass TMDs by connecting 

the top floor, or the last few top floors, to the rest of the building via isolators and, therefore, by treating the top floor(s) 

of buildings as the “attached” TMD mass3-6. In this manner, the TMD mass may reach up to 50% of the total mass of the 

building or more3,4. Such “exotic” solutions are not only demanding (and costly) from the structural design and 

construction viewpoint, but they also add uncertainty and complexity to the optimum TMD design/tuning since under 

severe ground motions the isolators exhibit non-linear behavior. 

In this regard, this paper explores the potential of the recently proposed by the authors tuned mass-damper-inerter 

(TMDI) configuration7,8 to control earthquake induced vibrations in multi-storey buildings using significantly reduced 

attached mass compared to the previously discussed large mass TMDs, while achieving similar performance levels. 

Specifically, the TMDI benefits from the mass amplification property of an inerter: a two-terminal device developing a 

resisting force proportional to the relative acceleration of its terminals having a constant of proportionality, termed 

inertance, in mass units9. Remarkably, the inertance can be orders of magnitude larger than the physical mass in typical 

inerter device prototypes10. In this respect, it was shown analytically and numerically that optimally designed TMDIs 

outperform the classical TMD for the same attached mass in terms of relative displacement variance of linear primary 

structures under broad-band (white noise) and narrow-band stationary stochastic base excitations8. Furthermore, the 

TMDI is linear and constitutes a generalization of the classical TMD. Therefore, all standard optimum design techniques 

for the classical TMD are also applicable to the TMDI, with certain modifications, as shown by Marian and Giaralis for 

both stochastically8 and harmonically11 base-excited primary structures. Moreover, the manufacturing cost of inerter 

devices, which are not yet commercially available for earthquake engineering applications despite the recent research 

interest12,13, is expected to be similar to the cost of the various passive energy dissipation devices widely used in such 

applications. This is because inerter devices are relatively easy and cost-efficient to build exploiting either simple 

mechanical gearing arrangements10 or fluid mechanics principles14,15. In this regard, the TMDI may circumvent the 

previously identified practical shortcomings of large mass TMDs once inerter devices for large-scale civil engineering 

applications become available. 

The remainder of the paper is organized as follows. First, a brief review of the TMDI system for ground excited multi-

storey building structures is provided, followed by the description of the herein adopted numerical approach for optimum 

design of TMDI equipped buildings under earthquake excitation modeled as a non-stationary stochastic process. Next, 

novel numerical results involving a 3-storey frame building structure excited by a non-stationary process compatible 

with the elastic response spectrum of European seismic code provisions16 (Eurocode 8) are provided to gauge the level of 

mass/weight reduction achieved in the optimum design of the TMDI vis-à-vis the classical TMD. Finally, the 

performance of the optimally designed TMDI vis-à-vis the classical TMD is assessed in terms of top floor displacement 

and acceleration and attached mass displacement by means of response history analyses for a suite of Eurocode 8 

spectrum compatible accelerograms. 

 

2. THE TMDI FOR BASE EXCITED MULTI-STOREY SHEAR FRAME BUILDINGS  

Conceptually introduced by Smith9, the ideal inerter is a linear two terminal device of negligible mass/weight developing 

an internal (resisting) force F proportional to the relative acceleration of its terminals which are free to move 

independently. Its resisting force is expressed as 

 1 2
( - )F b u u= , (1) 

where u1 and u2 are the displacement coordinates of the inerter terminals as shown in the inlet of Figure 1 and, hereafter, 

a dot over a symbol signifies differentiation with respect to time. In the above equation, the constant of proportionality b 

is the so-called inertance and has mass units; it fully characterizes the behavior of the ideal inerter. Importantly, the 

physical mass of actual inerter devices can be two or more orders of magnitude lower than b. This has been 

experimentally validated by testing several flywheel-based prototyped inerter devices incorporating rack-and-pinion or 

ball-screw mechanisms to transform the translational kinetic energy into rotational kinetic energy “stored” in a relatively 

light rotating disk10. More recently, fluid inerters achieving inertance values b that are almost independent of the physical 

device mass were also built and experimentally verified14,15. In this regard, the ideal inerter can be construed as an 

inertial amplification device, since by “grounding” any one of its terminals, the device acts as a “weightless” mass b9. 
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This property of the inerter is exploited by the herein considered TMDI (tuned mass-damper-inerter) to enhance the 

vibration suppression capabilities of the classical TMD7,8.  

The topology of the TMDI system proposed by the authors7,8 for planar base-excited n-storey shear frame building 

primary structures modeled as lumped-mass multi-degree-of-freedom (MDOF) “chain-like” linear damped systems is 

shown in Figure 1. It involves a classical TMD (tuned mass-damper) located at the top floor of the primary structure 

comprising a mass md attached to the structure via a linear spring of stiffness kd and a linear dashpot of damping 

coefficient cd. The TMD mass is linked to the penultimate frame floor by an inerter device with inertance b. The n+1 

equations of motion of the resulting MDOF system subject to a lateral ground motion represented by an acceleration 

stochastic process αg(t) are written in matrix form as 

 ( ) ( ) ( ) ( )o gt t t a tMx +Cx + Kx = -M δ , (2) 

where δ is the (n+1)-length unit column vector, and M, C, K, x are the mass matrix, the damping matrix, the stiffness 

matrix, and the response displacements vector expressed as  
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respectively, while Mo is coincides with M for b=0. In the above expressions, mi, ki, and ci are the mass, lateral stiffness, 

and damping of floor i (i=1,2,…,n) and md, kd, cd, and b are the TMDI mass, stiffness, damping, and inertance 

coefficients (see also Figure 1). Further, xi (i=1,2,…,n) are the lateral floor deflections and xd is the displacement of the 

attached TMDI mass relative to the ground displacement.  

 

 
Figure 1. The tuned mass-damper-inerter (TMDI) system for multi-storey frame buildings7,8 
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Note that for b=0, the Eqs. (2) and (3) govern the response of a seismically excited multi-storey shear frame building 

equipped with the classical TMD attached to its top floor. The latter TMD topology is widely considered to control the 

first mode of vibration of multi-storey buildings which, for regular in elevation structures, dominates their dynamic 

response to broadband earthquake excitations1. The inclusion of the inerter device alters the mass matrix which is no 

longer diagonal. However, the overall structural system remains linear and, from a practical viewpoint, the same well-

established computational methods for optimal design of the classical TMD to control the seismic response of multi-

storey buildings according to their first mode1,17 can be readily applied for the optimal design of the TMDI system. 

Moreover, Eq. (3) suggests that the total inertia of the TMDI is equal to (md+b). This observation motivates the definition 

of the following dimensionless frequency ratio υTMDI and damping ratio ζTMDI 
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,  
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+
= =

+
, (4) 

to characterize the design of the TMDI, where ω1 is the first (fundamental) natural frequency of the primary structure. 

The following section presents the adopted optimum TMDI design strategy which seeks to determine the above 

parameters given the properties of the primary structure (assumed to behave linearly), the attached mass md and the 

inertance b such that the displacement variance of the top floor is minimized under a given stochastic seismic excitation. 

 

3. OPTIMAL DESIGN OF THE TMDI FOR MULTI-STOREY SEISMICALLY EXCITED 

SHEAR FRAME BUILDING STRUCTURES  

Since the input seismic excitation is represented by a stochastic process and the TMDI equipped system is linear, it is 

convenient to cast the optimum design problem in the frequency domain to benefit from random vibrations input-output 

relationships of linear systems. To this end, the following transfer function can be defined relating the (input) support 

excitation in terms of acceleration to the (output) relative displacement of the top floor mass m1 of the primary structure 

 ( )
1

1 2 2
( ) ( )

n
G s s −

+
=  −

O
C I A B , (5) 

where Co is the (2n+2)-length measurement row vector given by [0 1 0 0 … 0], I(p) is the square identity matrix of 

dimension p, the superscript (-1) denotes matrix inversion, and A and B are the system matrix and the input matrix given 

by 
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respectively. Further, in the previous expression 0(p) is the zero matrix of dimension p and s is the standard Laplacian 

coordinate on the complex plane. Evaluation of G1(s) along the imaginary axis s= jω where j=(-1)1/2 yields the frequency 

response function denoted henceforth as G1(ω). 

In this study, the input seismic excitation is modeled by an evolutionary power spectral density function (EPSD) S(ω,t) 

representing a non-stationary seismic stochastic process18,19. Therefore, optimal design values for the frequency ratio 

υTMDI, the damping ratio ζTMDI are sought to minimize the mean square displacement of the top floor of the primary 

structure, at the time when the input EPSD is maximized for a given primary structure, inerter coefficient b, and modal 

mass ratio µ. The latter quantity is defined as 

 dm
 =

T

1 p 1
φ M φ

, (7)

where Mp is the mass matrix of the primary structure (uncontrolled), the superscript “T” denotes matrix transposition and 

φ1 is the fundamental mode shape vector (eigenvector) of the primary structure normalized by the modal coordinate 

corresponding to the top floor mass (see also Rana and Soong1). Under the above assumptions, the following non-

dimensional performance index (PI) is considered in the optimization problem (cost function) 
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In the above equation, J0 denotes the variance of the top floor displacement of the uncontrolled primary structure. Note 

that, notation-wise, for b=0: JTMDI= JTMD and for b=µ=0: JTMDI=J0. 

 

In all ensuing numerical work a MATLAB® built-in “min-max” constraint optimization algorithm employing a 

sequential programming method is used to minimize the PI in Eq. (8) for the design parameters υTMDI and ζTMDI
17. The 

algorithm is initialized using the following “seed” values for the design  
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=
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, (10) 

where β= b/md. The latter two expressions yield optimally designed TMDI parameters minimizing JTMDI for an undamped 

linear single degree of freedom primary structure under white noise base excitation as derived by Marian and Giaralis8. 

As a final note, the following constraints are imposed to the sought design parameters relying on physical considerations: 

0.5≤ υTMDI≤ 1.10 and 0≤ ζTMDI≤1.0. 

 

4. LIGHTWEIGHT TMDI OPTIMUM DESIGN FOR SHEAR FRAME BUILDING 

STRUCTURES 

This section presents novel numerical results to demonstrate the potential of the TMDI to achieve a significantly more 

lightweight passive vibration control solution for the seismic protection of building structures compared to the classical 

TMD. A 3-storey building frame is used as the test-bed primary structure. The properties of the structure are given in 

Table 1 with the note that the damping matrix is taken as proportional to the stiffness matrix with coefficient of 

proportionality equal to 2ζ1/ω1, where ζ1= 2% is the critical damping ratio of the fundamental mode shape and ω1= 4π 

(rad/s) is the fundamental natural frequency corresponding to a natural period of T=0.5s. Also reported in Table 1 is the 

fundamental mode shape normalized to the top floor displacement as required in Eq. (7). 

 
Table 1. Inertial and elastic properties of the considered primary structure 

Floor Mass (kg) 
Stiffness 

(N/m) 

Damping 

(Ns/m) 

Fundamental mode 

shape φ1 (T1= 0.5s) 

1 (top) 30 x 10^3 10 x 10^5 3183 1 

2 30 x 10^3 30 x 10^5 9549 0.527 

3 30 x 10^3 30 x 10^5 9549 0.286 

 
The Eurocode 8 pseudo-acceleration response spectrum for peak ground acceleration 0.36g (g=981cm/s2), ground type 

“B” (gray thick curve in Figure 2(a)), and damping ratio ζ=5% is assumed to represent the seismic action. Note that the 

damping ratio of the input response spectrum corresponds to a higher damping ratio than the considered (presumably 

bare steel) primary structure. This choice is made to account for the fact that the TMDI equipped structure will have an 

overall higher level of viscous/linear damping due to the presence of the viscous damper with (a priori unknown) 

damping coefficient cd. A uniformly modulated non-stationary stochastic process compatible, in the mean sense, with the 

above EC8 spectrum is used as the ground excitation ag(t) in Eq. (2). The considered process has been derived as detailed 

in Giaralis and Spanos19 and is defined by means of the EPSD  

 ( ) ( )
( ) ( )

4 2 2 2 4
2 2

2 2
2 2 2 2 2 2 2 2 2 2

4
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4 4
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with ωg=10.73 rad/s, ζg=0.78, ωf= 2.33 rad/s, ζf=0.90, C= 17.76 cm/s2.5, and b=0.58 s-1. The above EPSD is plotted in 

Figure 2(b) on the time-frequency plane and the time instant 3.44s at which the above function attains its maximum 

value is indicated. Further, the median response spectrum of an ensemble of 100 realizations (i.e., non-stationary 

artificial accelerograms) compatible with the EPSD in Eq.(11) is plotted in Figure 2(a) to illustrate the good level of 

mean sense compatibility achieved by the underlying stochastic process with the considered Eurocode 8 spectrum. These 

realizations have been generated using an auto-regressive-moving-average (ARMA) filtering technique as outlined in 

Giaralis and Spanos18.  

 

  

Figure 2: (a) Considered Eurocode 8 response spectrum and median response spectrum of 100 realizations compatible with 

the EPSD of Eq.(11) plotted in (b).  

 

The optimization procedure described in the previous section is used to derive optimum TMDI parameters for both b=0 

(i.e., classical TMD) and b>0 while considering pre-specified attached md mass values within a wide range: 1% to 50% 

of the total mass of the primary structure. Numerical results from the optimization algorithm in terms of optimum 

frequency ratio, optimum damping ratio, and achieved performance index are plotted in Figures 3(a), 3(b), and 3(c), 

respectively, as functions of the attached md mass and for various values of inertance b. These numerical data show that 

for attached mass md up to 10% of the mass of the primary structure, an increase of the attached masses md for fixed 

inertance b has similar effects to an increase of the inertance b for a fixed attached mass. That is, the optimum frequency 

ratio decreases, the optimum damping ratio increases and a better performance index (reduction of top floor 

displacement variance compared to the uncontrolled primary structure) is achieved. These observations are in accordance 

to what has been previously reported by the authors7,8.  

 

However, not the same trends are observed for md mass higher than 10% of the mass of the primary structure (i.e., large 

mass TMD(I)s). Specifically, in this range of attached mass, the optimum damping ratio tends to saturate. The level of 

saturation depends on the values of the inertance. In fact, for inertance values above 50% of the mass of the primary 

structure, the optimum damping ratio remains constant or even slightly decreases with an increase as a function of the 

attached mass md. Accordingly, the decrease of the frequency ratios tend to saturate as well with increasing attached 

mass and asymptotically converge to a value of about 0.30. More importantly, the convexity of the curves of 

performance index vs attached mass md change for inertance values above 50%. As a result, it appears that the classical 

TMD becomes more effective than the TMDI to suppress the top floor displacement (fundamental mode shape) for md 

greater than about 12% of the mass of the primary structure. This result verifies engineering intuition that the physical 

mass may only be replaced by the inertance up to a certain level, above which, a larger mass TMD will always 

outperform the TMDI. Indeed, the inclusion of the inerter appears to be more beneficial for relatively small attached md 

mass. Nevertheless, it is herein pointed out that perhaps the most remarkable practical benefit of the TMDI for 

earthquake engineering applications is that it can achieve the same level of performance for significantly reduced 

attached md mass (and thus reduced overall additional weight to the structure). This point can be appreciated by taking 

horizontal stripes in Figure 3(c) corresponding to a fixed performance and read the value of the attached mass required to 

achieve this performance for different values of the inertance b. To facilitate this interpretation, Figure 4(d) reports the 

value of the attached mass required to achieve different levels of performance for the classical TMD and for a TMDI 

with inertance equal to about 55% the mass of the primary structure. The reductions noted are dramatic and indicate that 

TMDIs with very high inertance values perform equally well with unconventional large mass TMDs for attached masses 

considered for wind vibrations mitigation (about 1%-5%)20. 
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Figure 3: (a) Optimum frequency ratio; (b) Optimum damping ratio; (c) Performance index; (d) mass reduction for a given 

performance index, for various values of inertance b and attached mass md. 

 

5. PERFORMANCE ASSESSMENT FOR RECORDED GROUND MOTIONS 

This section furnishes further numerical results to assess the effectiveness of the TMDI vis-à-vis the classical TMD for 

passive vibration control of seismically excited building structures. To this aim, the peak top floor deflection and 

acceleration, as well as the peak relative displacement of the attached mass for the previously considered 3-storey 

primary structure equipped with a TMD with md=900 kg (10% of the total mass of the structure) and with a TMDI with 

the same attached mass and inertance b=68000 kg is obtained for a suite of 7 field recorded ground motions reported in 

Table 2. These ground motions have been chosen out of a larger ground motion data-bank constructed for the design and 

assessment of passively controlled building structures21. The two controlled structures considered are optimally designed 

as discussed in the previous section for the Eurocode 8 spectrum of Figure 2(a). To this end, the field recorded 

accelerograms have been non-uniformly scaled by means of the harmonic wavelet based approach proposed by Giaralis 

and Spanos18, such that they comply to the Eurocode 8 compatibility criteria. Specifically, their average response 

spectral ordinates are greater than 90% of the target spectrum within a [0.2T1 2T1] period interval where T1=0.5s is the 

fundamental natural period of the considered primary structure (Figure 4(a)). This numerical study is motivated by the 

fact that Eurocode 8 prescribes the use of the average of pertinent peak response quantities for design purposes when at 

least 7 response history analyses are performed for spectrum compatible accelerograms. Pertinent results for the 

uncontrolled primary structure are also included in Table 2. 

 

On average (Table 2), the TMD achieves more than 50% peak response displacement and acceleration reduction 

compared to the uncontrolled primary structure. The TMDI achieves a further 30% average reduction in terms of peak 

top floor deflection. Less expected is the fact that the TMDI achieves about 3 times reduced peak top floor acceleration 

and attached mass displacement compared to the classical TMD system. The former response quantity is associated with 

the vulnerability of secondary systems, while the latter quantity is important in the practical design of the TMDI and is 

related to the required “stroke” of the damping device. The above observations in terms of peak response are confirmed 

from the time-histories of response quantities as those shown in Figures 4(b) and 4(c) for illustration. 
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Figure 4: (a) Response spectra of the considered Eurocode 8 compatible ground motions listed in Table 2; (b) and (c) Top 

floor deflection and acceleration for the Century City ground motion component.  

Table 2: Peak response quantities for a suite of 7 Eurocode 8 compatible ground motions 

Earthquake 

Component 

(Seismic event) 

Peak top floor  

displacement (cm) 

Peak top floor  

acceleration (g) 

Peak attached mass 

displacement (cm) 

Primary 

structure(1) 
TMD(2) TMDI(3) Primary 

structure(1) 
TMD(2) TMDI(3) TMD(2) TMDI(3) 

Petrolia- 90o 

(Petrolia,1992) 
14.92 5.58 3.98 2.25 1.15 0.28 11.11 4.09 

Corralitos- 90o 

Eureka Canyon 

(Loma Prieta, 1989) 

10.36 5.90 3.73 1.67 1.03 0.32 11.43 3.80 

El Centro #6-230o 

Huston Rd. 

(Imperial Val., 

1979) 

11.28 6.79 4.86 2.04 0.99 0.47 13.92 4.20 

Hollister-90o 

South St & Pine Dr 

(Loma Prieta,1989) 

10.02 6.93 4.09 1.79 1.14 0.37 13.87 4.43 

Oakland-35o 

Outer harbor wharf 

(Loma Prieta1989) 

11.54 5.30 4.15 1.82 1.22 0.33 12.56 4.47 

Century City-90o 

LACC North 

(Northridge, 1994) 

12.43 6.46 4.28 2.06 1.10 0.34 11.51 4.58 

Sylmar- 90o 

County Hospital 

(Northridge, 1994) 

14.45 5.54 5.05 2.57 1.23 0.3 11.01 5.60 

Average 12.05 6.07 4.31 2.03 1.12 0.35 12.20 4.45 
(1) Uncontrolled structure; (2) TMD with md= 9000Kg; (3) TMDI with md= 9000Kg and b=68000Kg  
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6. CONCLUDING REMARKS 

Novel numerical results have been reported shedding new light to the potential practical benefits of the recently proposed 

by the authors tuned mass-damper-inerter (TMDI) vis-à-vis the classical tuned mass-damper (TMD) for the seismic 

protection of building structures. It is noted that the TMDI constitutes a generalization of the TMD incorporating a mass 

amplification inerter device in addition to the spring and viscous damper elements of the TMD to link an attached mass 

to the primary building structure. The considered results pertain to optimally designed TMDIs for various attached 

masses and values of inertance minimizing the mean square top floor displacement of a specific 3-storey frame building 

structure base-excited by a non-stationary acceleration stochastic process compatible with the elastic design spectrum of 

Eurocode 8. It is concluded that although the classical TMD outperforms the TMDI for large values of attached mass, 

similar to those proposed by some researchers for the seismic protection of building structures, a TMDI can achieve the 

same level of performance as the classical TMD for significantly reduced attached mass/weight of the same order to 

those used for wind-induced vibrations mitigation. This advantage of the TMDI may arguably be the most significant 

one in practical terms and warrants further numerical investigation, currently undertaken by the authors. Furthermore, 

numerical data from response history analyses for a suite of Eurocode 8 compatible recorded ground motions have been 

also reported to demonstrate that optimally tuned TMDIs achieve considerable reduction compared to the classical TMD 

with the same attached mass not only to the top floor displacement, but also to the top floor acceleration and to the 

displacement of the attached oscillating mass (stroke).  
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