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Sub-phenotyping Metabolic Disorders Using Body 
Composition: An Individualized, Nonparametric  
Approach Utilizing Large Data Sets
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Objective: This study performed individual-centric, data-driven calculations of propensity for coronary 
heart disease (CHD) and type 2 diabetes (T2D), utilizing magnetic resonance imaging-acquired body  
composition measurements, for sub-phenotyping of obesity and nonalcoholic fatty liver disease (NAFLD).
Methods: A total of 10,019 participants from the UK Biobank imaging substudy were included and analyzed 
for visceral and abdominal subcutaneous adipose tissue, muscle fat infiltration, and liver fat. An adaption 
of the k-nearest neighbors algorithm was applied to the imaging variable space to calculate individualized 
CHD and T2D propensity and explore metabolic sub-phenotyping within obesity and NAFLD.
Results: The ranges of CHD and T2D propensity for the whole cohort were 1.3% to 58.0% and 0.6% to 
42.0%, respectively. The diagnostic performance, area under the receiver operating characteristic curve 
(95% CI), using disease propensities for CHD and T2D detection was 0.75 (0.73-0.77) and 0.79 (0.77-0.81). 
Exploring individualized disease propensity, CHD phenotypes, T2D phenotypes, comorbid phenotypes, 
and metabolically healthy phenotypes were found within obesity and NAFLD.
Conclusions: The adaptive k-nearest neighbors algorithm allowed an individual-centric assessment of 
each individual’s metabolic phenotype moving beyond discrete categorizations of body composition. Within 
obesity and NAFLD, this may help in identifying which comorbidities a patient may develop and conse-
quently enable optimization of treatment.
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Introduction
Biobanks have become an important resource in medical research 
and personalized medicine. The number of biobank studies including 
advanced imaging techniques, such as magnetic resonance imaging 
(MRI), is growing larger (1-4), enabling extraction of standardized non-
invasive biomarkers describing body composition. With a large num-
ber of participants enrolled, a population-based analysis is tractable, 
yet the great detail with which individuals are described makes highly 
individual-centric analysis approaches possible. The transition to per-
sonalized medicine requires networking across disciplines, whereby 
detailed assessment of body composition could greatly enhance our 
understanding of obesity and metabolic health.

Among adiposity-related biomarkers currently used for health eval-
uation, BMI is recommended to identify individuals at an elevated 

risk of coronary heart disease (CHD) and type 2 diabetes (T2D) (5). 
While a higher BMI correlates with future health risks and predicts 
morbidity and death on a population scale, it is a poor descriptor 
of the individual’s health status. Anthropometric measurements, 
such as BMI, roughly group individuals with a similar body size. 
However, the use of discrete categories (e.g., underweight, normal 
weight, overweight, obesity, morbid obesity, or even low or high liver 
fat) to describe the individual should be questioned. A broader cat-
egory increases the likelihood of grouping individuals with others 
of little resemblance to them, while giving the converse impression. 
Furthermore, it has been shown that specific body fat distributions 
are significantly linked to adverse outcomes (6-9), something BMI 
fails to capture. The aim of this study was (1) to perform individual- 
centric, data-driven disease predictions, utilizing multiple stan-
dardized body composition measurements, to explore metabolic  
sub-phenotyping in the UK Biobank Imaging Study and (2) to 
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investigate the range of sub-phenotypes in individuals with obesity 
and nonalcoholic fatty liver disease (NAFLD).

Methods
Study design and study population
This research has been conducted using the UK Biobank Resource 
Project ID 6569. The UK Biobank is a population-based biobank study, 
begun in 2006, that has followed 502,682 participants (4) and was  
approved by the North West Multicenter Research Ethics Committee. 
Written informed consent was given prior to study entry.

The first 10,019 participants from the cross-sectional imaging substudy 
were included. The participants’ MRI scans were analyzed for visceral 
adipose tissue (VAT), abdominal subcutaneous adipose tissue (SAT), 
thigh muscle volumes, muscle fat infiltration (MFI) in the anterior 
thighs, and liver proton density fat fraction (PDFF) (10-14). Following 
visual inspection of those with high MFI or left-right asymmetry, the 
MFI values of seven individuals with suggestive neuromuscular disease 
were excluded.

Diagnosis information was gathered through inpatient electronic health 
care records (Hospital Episode Statistics downloaded November 2016, 
available from 1995-2015) and questionnaires followed by interviews 
performed by trained nurses. Participants were categorized as CHD 
case, control, or status unknown and T2D case, control, or status 
unknown (definitions in online Supporting Information).

Individual-centric disease predictions based on 
body composition
One adaption out of several variations, which have been developed 
to improve the k-nearest neighbors (kNN) algorithm (15,16) to suit 
particular situations, was used to produce predictions based on local 
neighborhoods of observations. Neighborhoods were gender specific 
and defined by VAT index (VATi; VAT divided by height squared) 
to compensate for participant size (17), abdominal SAT index (aSATi; 
abdominal SAT divided by height squared), liver PDFF, and MFI. 
Normalization was performed using the Euclidean distance. This set 
of variables was chosen to give a broad description of adipose tissue 
and ectopic fat throughout the body while describing the distribution 
of adipose tissue in the body without physical overlap.

To adapt to the degree of sparseness in the imaging variable space and 
disease data, an additional parameter was included: the local neighbor-
hood had to satisfy both a minimum neighborhood size (k = 50) and a 
minimum number of diseased individuals (n = 20). If a neighborhood 
of size k = 50 did not include 20 diseased individuals, it was increased 
to include a sufficient amount of disease data (n = 20 cases) for dis-
ease prediction. The prediction value was the percentage of CHD or 
T2D cases within the respective neighborhoods of each individual. This 
method will be referred to as the adaptive kNN (A-kNN), the corre-
sponding disease prediction values as “CHD propensity” and “T2D 
propensity,” and the individuals included in the adapted neighborhood 
as the individual’s “virtual control group.” Figure 1 provides a visual 
description of the A-kNN algorithm.

To produce measures of uncertainty around the propensity values, the 
nonparametric bootstrap (18,19) was used. The prediction model was 
trained to each bootstrap data set and applied to the full data set to 

produce an associated set of bootstrap predictions, one for each boot-
strap data set (N = 500). For each propensity value, the standard devia-
tion (SD) was calculated as a measure of prediction uncertainty.

Only individuals with known disease status and no missing values for 
VATi, aSATi, liver PDFF, or MFI were used for prediction.

Receiver operating characteristic (ROC) analyses for disease detection 
were performed using CHD and T2D propensity. The area under the 
ROC curve (AUROC) with 95% confidence interval (CI) was calculated 
and compared with AUROC using BMI for prediction for reference.

Assessment of A-kNN algorithm
Methods comparison.  The A-kNN algorithm was compared with 
global logistic regression (20)  (logistic regression denoted “global” to 
differentiate it from local logistic regression), local logistic regression 
(21), classic kNN algorithm (15,16), and a second modification of 
the kNN algorithm in which a regression-based estimation using 
the participants in the neighborhood was performed (15). Disease 
predictions were made with each of the body composition profile 
(BCP) variables (VATi, aSATi, liver PDFF, and MFI) as dependent 
variables separately.

Diagnostic performance evaluation.  The “full data set” 
(N = 10,019) was randomly split into a “training data set” (N = 6,679) 
and a “test data set” (N = 3,340). CHD and T2D propensities were 
calculated using the A-kNN algorithm for each participant in the test 
data set using the training data set. ROC analysis was performed using 

Figure 1 Visual description of the A-kNN algorithm with neighborhood requirements 
of minimum size k = 10 and minimum number of diseased participants (disease 
cases) n = 4 in a two-dimensional imaging variable space. Parameters k = 10 and 
n = 4 used to allow simplified visualization. (1) Create a virtual control group including 
the k = 10 participants closest to the individual (dashed circle). (2) If these do not 
include n = 4 disease cases, increase the neighborhood size to include n = 4 disease 
cases (solid circle). (3) The disease prevalence in the resulting virtual control group 
(including both disease cases and disease controls) gives the disease propensity.



ObesityOriginal Article
EPIDEMIOLOGY/GENETICS

www.obesityjournal.org � Obesity | VOLUME 00 | NUMBER 00 | MONTH 2019         3

the resulting disease propensities, and actual outcome was recorded in 
the test data set. AUROC was compared with those calculated without 
using separate data sets.

Exploration of individualized disease associations 
and phenotypes
Disease propensity values were visualized in a two-dimensional 
plot, and six subgroups spanning the space were visually selected 
for illustration of body composition variations. Body composition 
variations were illustrated using the BCP plot, previously described 
by Linge et al. (9) and exemplified in Supporting Information 
Figure S1. Differences in ectopic fat variables (VATi, liver PDFF, 
MFI) between subgroups were tested using the Mann-Whitney U 
test.

Metabolic sub-phenotyping in individuals with obesity and fatty liver 
(liver PDFF > 5%) were explored by visualization of disease propensi-
ties and investigation of diagnostic performance. The population with 
fatty liver was further stratified for NAFLD using alcohol consump-
tion. Thresholds were 14 and 21 units per week for females and males, 
respectively (22). Online Supporting Information includes a description 
of the calculation of alcohol units per week.

Computations were performed using the R language for statistical com-
puting and graphics (R Foundation for Statistical Computing, Vienna, 
Austria). Nearest neighbor methods were implemented in house. Base 
or contributed R packages were used to implement regression models 
and hypothesis tests. Online Supporting Information lists the packages 
used.

Results
Table 1 summarizes characteristics of the cohort (52% female; mean 
age 62.6 [SD 7.5] [44.5-79.3] years; mean BMI 26.7 [SD 4.4] [14.2-
58.0] kg/m2) and disease groups (CHD prevalence 4.7%; T2D preva-
lence 4.5%). Figure 2 presents disease propensity results. The range 
of CHD and T2D propensity values for the whole cohort were 1.3% 
to 58.0% and 0.6% to 42.0%, respectively. High T2D propensity 
was not directly associated with high CHD propensity: some par-
ticipants had more than twice as high a T2D propensity compared 
with CHD propensity, and some participants with CHD propensities 
between 30% and 40% had T2D propensities below 10%. Females 
had a higher density of low propensity values, and the male popu-
lation exhibited higher CHD propensity values overall. Supporting 
Information Figure S5 presents gender-specific results.

TABLE 1 Summary of characteristics of full cohort

All Females Males CHD T2D

N, participants 10,019 5,202 4,817 472 455
Age, y 62.60 (7.51) 61.90 (7.35) 63.36 (7.61) 67.21 (6.12) 65.45 (6.82)
Weight, kg 75.86 (15.14) 68.67 (12.92) 83.63 (13.42) 82.15 (15.95) 87.77 (16.47)
BMI, kg/m2 26.67 (4.40) 26.24 (4.75) 27.13 (3.94) 28.46 (4.76) 30.30 (5.38)
Waist circumference, cm 87.47 (12.18) 81.92 (11.32) 93.47 (10.03) 93.93 (11.83) 98.95 (12.38)
CHD prevalence (cases/

controls/unknown)
472/6,178/3,369 141/3,553/1,508 331/6,178/1,861 472/–/– 70/0/385

T2D prevalence (cases/
controls/unknown)

455/9,424/140 149/4,972/81 306/9,424/59 70/390/12 455/–/–

CHD propensity, % [range] 7.79 (7.30)  
[1.31-58.0]

3.85 (3.21)  
[1.31-20.83]

12.04 (8.07)  
[3.86-58.0]

13.24 (10.24)  
[1.36-52.0]

15.22 (10.77)  
[1.46-58.0]

T2D propensity, % [range] 4.33 (5.16)  
[0.68-42.0]

2.59 (3.63)  
[0.68-38.46]

6.2 (5.87)  
[1.48-42.0]

7.48 (7.19)  
[0.71-35.09]

10.45 (8.42)  
[0.70-40.0]

Visceral adipose tissue, L 3.72 (2.24) 2.63 (1.51) 4.89 (2.31) 5.19 (2.69) 5.97 (2.59)
Abdominal subcutaneous 

adipose tissue, L
7.02 (3.20) 8.05 (3.41) 5.91 (2.52) 7.37 (3.41) 8.60 (3.96)

Thigh muscle volume, L 10.33 (2.56) 8.35 (1.18) 12.52 (1.77) 10.85 (2.36) 11.09 (2.33)
Weight-to-muscle ratio, kg/L 7.50 (1.32) 8.25 (1.24) 6.68 (0.83) 7.67 (1.35) 8.03 (1.57)
Liver proton density fat  

fraction, %
4.16  

(1.50-4.61)
3.65  

(1.34-3.74)
4.71  

(1.75-5.71)
3.05  

(1.71-6.63)
6.24  

(2.77-11.69)
Fat ratio, % 49.37 (11.30) 53.82 (10.59) 44.44 (9.94) 51.80 (11.26) 55.19 (10.23)
Visceral adipose tissue index, L/m2 1.27 (0.72) 1.00 (0.57) 1.58 (0.74) 1.76 (0.86) 2.03 (0.84)
Abdominal subcutaneous  

adipose tissue index, L/m2
2.50 (1.23) 3.04 (1.3) 1.90 (0.80) 2.58 (1.31) 3.00 (1.51)

Total abdominal adipose  
tissue index, L/m2

3.77 (1.64) 4.04 (1.78) 3.48 (1.42) 4.34 (1.82) 5.03 (1.93)

Muscle fat infiltration, % 7.41 (1.86) 7.93 (1.84) 6.84 (1.71) 8.14 (2.25) 8.62 (2.37)

Data given as mean (SD). For liver proton density fat fraction, median and interquartile range are shown.
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The diagnostic performance was greater using disease propensities 
as predictors compared with using BMI for CHD and T2D detection. 
Supporting Information Table S1 presents AUROC values.

Assessment of A-kNN algorithm
Methods comparison.  Figure 3 illustrates the method comparison 
(using MFI and liver PDFF for females). The A-kNN algorithm 
followed the local regression trend. When body composition data 
were dense, it varied more closely with the regression within kNN, 
and when data were sparse, it was more similar to the fixed kNN, not 
extrapolating disease associations to high or low prediction values. 
Supporting Information Figures S2-S4 present results for VATi and 
aSATi for females, as well as MFI, liver PDFF, VATi, and aSATi for 
males.

Diagnostic performance evaluation.  AUROC (95% CI) for CHD 
detection based on CHD propensity using test and training data sets 
was 0.75 (0.71-0.79) for all participants, 0.73 (0.65-0.81) for females, 
and 0.68 (0.63-0.74) for males versus 0.75 (0.73-0.77), 0.73 (0.69-0.78), 
and 0.69 (0.66-0.72) without using separate data sets. Corresponding 
values for T2D detection were 0.78 (0.74-0.82) for all participants, 

0.84 (0.79-0.89) for females, and 0.71 (0.66-0.77) for males versus 
0.79 (0.77-0.81), 0.81 (0.77-0.85), and 0.73 (0.71-0.76) without using 
separate data sets.

Exploration of individualized disease associations 
and phenotypes
Figure 4 illustrates the exploration of metabolic phenotypes in the 
disease propensity space. Table 2 presents the characteristics of all 
subgroups (A-F). The groups showed differently skewed body fat distri-
butions: for Groups A and F, CHD propensities were of the same magni-
tude as T2D propensities. Group A (low CHD and T2D propensity) was 
characterized by a star shape in the BCP plot. The body fat distribution 
was similar to the metabolic disease-free reference, with especially low 
VAT values. Group F (high CHD and T2D propensity) expressed an 
inflated BCP with high values of all ectopic fat variables. Groups B 
and C showed skewed metabolic phenotypes with CHD propensities 
notably higher than T2D propensities. Group B (elevated CHD and low 
T2D propensity) exhibited skewed body fat distributions characterized 
by high VAT, somewhat elevated liver PDFF (median 3.12%), and low 
MFI. Group C was similar, but with higher VAT, similar liver PDFF  
(median 3.46%), and higher MFI compared with Group B. Groups D 

Figure 2 Scatterplot of propensity for coronary heart disease (CHD) and type 2 diabetes (T2D) (calculated using 
the adaptive kNN [A-kNN]) for the full data set (N = 10,019) with disease propensity distributions alongside each 
corresponding axis.
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and E also showed skewed metabolic phenotypes, but with CHD pro-
pensities notably lower than T2D propensities. Group D (low CHD and 
elevated T2D propensity) exhibited differently skewed body fat dis-
tributions characterized by high VAT, especially high liver PDFF, and 
low MFI. Group E was similar, with the most notable difference being 
higher MFI compared with Group D. The differences in ectopic fat 
variables (VATi, liver PDFF, MFI) between subgroups were statistically 
significant for all comparisons except for MFI between Groups C and E.

Figure 5 presents disease propensity results for individuals with obe-
sity (BMI > 30 kg/m2; N = 1,906), and Figure 6  presents disease pro-
pensity results for individuals with fatty liver (N = 2,278) and NAFLD 
(N = 1,253). Individuals with obesity and fatty liver presented with a 
range in metabolic phenotypes comparable to that of the full cohort 
and were prevalent in all subgroups (Table 2). Substratification of 
individuals with obesity showed similar ranges and distributions inde-
pendent of BMI interval. Compared with individuals with obesity, 

Figure 3 Comparison of methods for disease predictions on the female population made for coronary heart disease Pr(CHD) and type 2 diabetes Pr(T2D) with muscle fat 
infiltration (MFI) in the anterior thighs and liver proton density fat fraction (PDFF) as dependent variables separately.
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Figure 4 Individualized BCP assessment of 10,019 participants scanned by UK Biobank. Top left: Scatterplot of propensity for CHD 
and T2D for all participants with six (A-F) visually stratified subgroups highlighted in different colors. Top right: Group visualization of 
each corresponding group in the propensity space using the BCP plot (9). Fields are 25th to 75th percentile, and the dashed line is 
the median of a metabolically disease-free population (5). Center: Six individuals, one from each subgroup in the propensity space, 
presented with a coronal slice from their MRI scan with VAT (pink) and aSAT (blue) segmentations, and a transversal slice with thigh 
muscle segmentations colored. Bottom: T2D and CHD propensity values for each participant. Error bars are estimates of uncertainty 
derived from bootstrapping. aSAT, abdominal subcutaneous adipose tissue; BCP, body composition profile; CHD, coronary heart 
disease; FR, fat ratio; MFI, muscle fat infiltration; PDFF, proton density fat fraction; T2D, type 2 diabetes; TAATi, total abdominal 
adipose tissue index; VATi, visceral adipose tissue index; WMR, weight-to-muscle ratio.
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individuals with fatty liver were less prevalent in Groups B and C 
and more prevalent in Groups D and E. The distributions of CHD and 
T2D propensity were shifted to higher values both for individuals with 
obesity and for those with fatty liver compared with the whole cohort. 
The NAFLD population presented with results similar to those with 
fatty liver.

ROC analysis showed that the diagnostic performance was maintained 
after stratification based on BMI. For all subgroups, the diagnostic per-
formance was greater using disease propensity as a predictor compared 

with BMI or liver PDFF (for fatty liver or NAFLD). Supporting 
Information Table S1 presents AUROC values.

Discussion
This study applied a data-driven method to calculate CHD and T2D 
propensity using individualized virtual control groups created by clus-
tering MRI-based body composition data. This allowed an individual- 
centric assessment of each individual’s metabolic disease profile 

TABLE 2 Summary of characteristics of six subgroups (A-F) visually stratified in disease propensity space (Figure 4)

A B C D E F Other

N, participants 3,429 249 147 192 119 97 5,786
Gender, female/male 3,429/0 249/247 0/147 192/102 119/70 0/97 1,632/4,164
Age, y 60.92 (7.39) 64.61 (6.72) 68.8 (6.31) 61.82 (7.27) 62.04 (6.99) 65.77 (6.50) 63.34 (7.44)
Weight, kg 63.70 (9.27) 84.81 (9.96) 89.71 (10.79) 84.54 (11.22) 99.71 (16.94) 107.20 (14.76) 81.03 (13.09)
BMI, kg/m2 24.14 (3.06) 27.90 (2.21) 29.64 (2.67) 29.76 (4.22) 34.92 (6.11) 35.38 (4.51) 27.63 (4.24)
Waist circumference, cm 76.72 (7.70) 95.36 (6.59) 100.74 (7.12) 95.53 (7.55) 107.39 (10.78) 113.43 (10.43) 92.07 (9.71)
CHD prevalence, 

(cases/controls/
unknown)

46/2,603/780 19/121/109 17/36/56 11/97/84 9/51/59 21/23/53 342/3,238/2,206

CHD propensity 2.00 (0.52) 15.10 (2.04) 33.08 (7.30) 9.82 (1.32) 16.18 (3.58) 36.74 (5.99) 9.53 (5.72)
T2D prevalence, 

(cases/controls/
unknown)

29/3,354/46 13/231/5 16/93/0 16/171/5 32/83/4 31/64/2 306/5,405/75

T2D propensity 0.95 (0.26) 4.09 (0.58) 11.38 (4.75) 12.68 (1.64) 22.23 (4.03) 28.26 (5.32) 5.11 (4.18)
N, participants with 

obesity
142 37 36 71 93 83 1,444

N,  participants with 
fatty liver

130 19 29 191 119 86 1,704

N,  participants with 
NAFLD

52 9 19 86 50 36 760

Visceral adipose  
tissue, L

1.86 (0.86) 6.32 (1.13) 8.05 (1.58) 5.31 (1.24) 7.78 (1.73) 10.00 (1.94) 4.36 (1.91)

Abdominal subcutane-
ous adipose tissue, L

6.59 (2.38) 6.17 (1.41) 6.71 (1.78) 8.73 (3.99) 11.39 (5.2) 10.35 (3.10) 7.12 (3.49)

Thigh muscle volume, L 8.27 (1.16) 12.33 (1.75) 11.84 (1.53) 11.22 (2.47) 11.52 (2.62) 12.72 (1.96) 11.37 (2.45)
Weight-to-muscle 

ratio, kg/L
7.76 (0.92) 6.89 (0.57) 7.56 (0.69) 7.77 (1.52) 8.92 (2.10) 8.46 (1.10) 7.32 (1.48)

Liver proton density fat  
fraction, %

1.59  
(1.19-2.32)

3.12  
(2.28-4.08)

3.46  
(2.52-5.27)

15.03 
(11.80-18.64)

19.41 
(16.77-24.56)

11.53 
(7.73-14.46)

2.95  
(1.79-5.92)

Fat ratio, % 49.11 (9.43) 50.11 (4.16) 55.08 (4.33) 55.01 (10.21) 61.74 (8.91) 61.13 (4.53) 48.74 (12.42)
Visceral adipose tissue 

index, L/m2
0.70 (0.32) 2.05 (0.32) 2.63 (0.49) 1.84 (0.40) 2.68 (0.51) 3.26 (0.61) 1.47 (0.62)

Abdominal subcutane-
ous adipose tissue 
index, L/m2

2.47 (0.89) 2.01 (0.43) 2.20 (0.57) 3.15 (1.67) 4.06 (2.06) 3.37 (1.00) 2.47 (1.36)

Total abdominal adipose 
tissue index, L/m2

3.17 (1.14) 4.06 (0.56) 4.83 (0.82) 4.99 (1.79) 6.74 (2.12) 6.64 (1.32) 3.94 (1.73)

Muscle fat infiltration, % 7.05 (1.10) 6.79 (0.84) 9.62 (1.80) 7.43 (1.30) 9.62 (2.41) 11.15 (3.20) 7.49 (2.07)

Data given as mean (SD). For liver proton density fat fraction, median and interquartile range are shown.
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Figure 5 Left: Scatterplot of propensity for coronary heart disease (CHD) and type 2 diabetes (T2D) (calculated using the adaptive kNN [A-kNN]) for the full data set 
(N = 10,019) with the population with obesity (BMI > 30 kg/m2) highlighted. Right: Distributions of CHD and T2D propensity values for different BMI intervals within the 
population with obesity.

Figure 6 Scatterplot of propensity for coronary heart disease (CHD) and type 2 diabetes (T2D) (calculated using the adaptive kNN [A-kNN]) for the full data set (N = 10,019) 
with population-specific disease propensity distributions alongside each corresponding axis. Left: Fatty liver population highlighted. Right: Nonalcoholic fatty liver 
disease (NAFLD) population highlighted.
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moving beyond discrete categorizations commonly made, for exam-
ple using BMI. In the exploration of individualized disease associa-
tions, CHD phenotypes (higher CHD propensity than T2D propensity 
[Group B and Group C]), T2D phenotypes (higher T2D propensity 
than CHD propensity [Group D and Group E]), comorbid phenotypes 
(both high CHD and T2D propensity [Group F]), and more met-
abolically healthy phenotypes (both low CHD and T2D propensity 
[Group A]) were found. Among individuals with obesity, fatty liver, 
and NAFLD, all of these metabolic phenotypes were prevalent. This 
illustrates the metabolic diversity expressed in these clinically rele-
vant populations and the possibility to effectively sub-phenotype using 
body fat distribution.

Individual-centric body composition-based 
disease prediction methods
An individual-centric analysis should preferably be based on partic-
ipants similar to the individual. However, the method should not be 
too sensitive to local variations and, in addition, be restrictive when 
data are sparse, not overestimating the disease associations because 
of outliers.

The A-kNN increased k until n diseased individuals were included, 
creating individualized virtual control groups. This ensures the 
inclusion of individuals who can be the basis for disease predictions, 
makes the algorithm adaptive to the amount of information present 
for different conditions, and allows for lower prediction values to 
be estimated at higher resolution. In addition, the method will make 
more individualized predictions when it is applied to larger data sets. 
Figure 3 shows that, when data were available, the A-kNN varied 
closely together with the regression within kNN, and where data 
were sparse, it was more similar to the fixed kNN, not extrapolating 
disease associations to high (or low) prediction values. Algorithm 
discussion for global logistic regression, local logistic regression, 
classic kNN, and regression-based kNN can be found in online 
Supporting Information.

Strengths and limitations
A strength of this study is that the analysis was centered around each 
and every individual. Clustering using continuous imaging variables 
enabled a straightforward calculation of distances as similarity mea-
sures between all individuals. In contrast, the inclusion of categorical 
variables does not allow calculation of distances and prompts simi-
larity assumptions. In investigating disease associations with body fat 
distribution, gender could arguably be excluded from the clustering 
variables because individuals will still be compared with those with 
more similar body fat distribution. Applying logistic regression, for 
example, potential (global) differences in body composition between 
females and males have to be accounted for. Furthermore, in a logis-
tic regression model, age is commonly included. As the data were 
cross-sectional, age was highly correlated with disease prevalence 
and therefore was not suitable to include when investigating associa-
tions between body composition and metabolic diseases with cluster-
ing techniques. Longitudinal data are needed to investigate predictive 
power and perform risk calculations. With updated electronic health 
care records, the potential for individualized risk predictions can be 
evaluated.

Comparisons between disease propensity and commonly used risk pre-
diction tools were not possible because key data (such as biochemistry 

assays) have not yet been released by the UK Biobank. Future stud-
ies should focus on investigating the potential value of adding detailed 
descriptions of body fat distribution to further personalize today’s risk 
predictions.

This study benefitted from a large well-characterized data set including 
detailed, standardized descriptions of body fat distribution, measured 
with high accuracy and precision. However, rare body fat distributions 
cause sparsity in the imaging variable space in which both partici-
pants similar to the individual, as well as disease data, might be scarce. 
Potential sparsity in data motivates the reporting of prediction uncer-
tainty. The coupling of disease propensity and an uncertainty measure 
enables individualized disease predictions that may be used in clinical 
situations with transparency.

CHD and T2D data were less prevalent among females, which might be 
why females exhibited a different pattern of disease propensities com-
pared with males (Supporting Information Figure S5). Alternatively, 
females rarely express the skewed body fat distribution driving the phe-
notype with higher CHD propensity than T2D propensity (Figure 4, 
Groups B and Group C).

Implications
To effectively treat metabolic diseases, categorizations of individuals 
are generally made, causing the loss of the individual’s perspective. 
The use of body composition to create individualized virtual control 
groups centered the analysis around each specific individual while 
still allowing investigations of disease patterns and metabolic pheno-
types at population scale. That participants with obesity, fatty liver, 
and NAFLD presented with all metabolic phenotypes (exemplified 
by Groups A-F) indicates that individualization of metabolic profiles 
is possible also within these subpopulations. The range of propensity 
values within the CHD and T2D subgroups (Table 1) indicates that 
these disease categories also include heterogeneous populations in 
which some individuals exhibit disease profiles with strong associ-
ations to body fat distribution whereas others do not. Recognizing 
which patients exhibit CHD phenotypes, T2D phenotypes, comorbid 
phenotypes, or more metabolically healthy phenotypes, as well as 
in which patients this is manifested in differences in fat accumula-
tion patterns, could affect treatment decisions and consequently the 
overall health of the patient. Detailed descriptions of body compo-
sition and fat distribution could play an important part in further-
ing our understanding of metabolic disorders, but networking across  
disciplines is needed for a complete transition to precision medi-
cine. For example, studies have investigated the links between body 
composition and genetics (23,24), and suggestions have been made 
on how to relate body composition to body function and metabolic  
processes (25).

This study showed that both obesity and NAFLD include a wide 
range of metabolic sub-phenotypes. Some had strong disease asso-
ciations, whereas others had seemingly healthy body compositions 
with little to no association with CHD and T2D. On a population 
level, fatty liver was associated with CHD and T2D, but liver fat 
alone clearly did not imply a strong disease association for the indi-
vidual. However, patients suffering from NAFLD may develop a 
range of comorbidities, such as T2D, hepatocellular carcinoma, and 
CHD (26). Disease propensity analysis may aid in identification of 
which comorbidities NAFLD patients are more likely to develop and 
consequently enable optimization of their treatment. A detailed body 
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composition assessment could also be beneficial in clinical trials to 
assess downstream and/or whole-body effects associated with candi-
date therapies.

Anthropometric measures, such as BMI, could be effectively used in 
prestratification or screening to find patients who would benefit from 
MRI-based body composition assessment. Within obesity, metabolic 
phenotyping based on body composition could (in addition to what has 
already been mentioned for NAFLD) provide new information useful 
in treatment decisions for bariatric surgery, in that some patients with 
unfavorable body fat distribution are not eligible today.

Conclusion
This study suggested a data-driven method to calculate CHD and 
T2D propensity using individualized virtual control groups created 
by clustering MRI-based body composition data. This allowed an  
individual-centric assessment of each individual’s metabolic pheno-
type moving beyond discrete categorizations of body composition. 
The method allowed sub-phenotyping in clinically relevant popula-
tions, within obesity and NAFLD, that may help in identifying which  
comorbidities a patient is more likely to develop and consequently  
enable optimization of treatment plans.O
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