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Historical Background 

The biological activities of the pituitary gland have been recognised for over 120 years. In 1895, Oliver 

and Schäfer discovered that an element of pituitary extract could elevate blood pressure in mammals–the 

so-called ‘pressor effect’.  A few years later, Howell identified that this activity resided from the posterior 

lobe of the pituitary.  In 1906, Sir Henry Dale, while studying the vasopressor action of the extract, found 

that it also possessed a powerful stimulating action on the uterus of a pregnant cat . He termed the agent 

responsible, ‘oxytocin’ from the Greek words ωχνξ, τoχoxξ meaning ‘quick birth’. Shortly afterwards the 

same extract was shown to cause milk secretion from mammary tissue. Around 50 years later, the 

American biochemist, Vincent du Vigneaud determined the chemical structure of oxytocin (OT). He 

characterised and sequenced a peptide of 9 amino acids which formed a 6 amino-acid cyclic ring structure 

via a disulphide bond between two cysteine residues and 3 residue tail. This was followed shortly by its 

synthesis. Oxytocin was in fact the first peptide hormone to be synthesised and for his work, du Vigneaud 

was awarded the Nobel Prize for Chemistry in 1955.   
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As with most endocrine systems however, the physiological actions of hormones are mediated through 

binding to specific receptors on target organs. Despite some of the biological activities of OT and its 

structure being known for some time, it wasn’t until 20 years after its synthesis that the receptor 

responsible for eliciting these effects– the oxytocin receptor (OTR), was identified.  In a 1973 study, 

Soloff and Swartz demonstrated using a pharmacological ligand binding assay, the specific and high 

affinity binding of radio-labelled oxytocin to the mammary gland of the rat.  They proposed that the 

mammary gland possessed ‘oxytocin binding substances which may be the hormone recognition sites of 

an oxytocin-receptor system’. In addition they determined that the binding part of the receptor was a 

protein because it was susceptible to inhibition by trypsin. Similar studies in the uterus of the rat and sow 

and human soon followed.   

It wasn’t until 1992 however that the cDNA encoding the receptor for oxytocin was isolated and 

identified by Kimura. In their study they injected defolliculated oocytes from Xenopus with mRNA 

prepared from the muscle of the uterus (myometrium). Subsequent application of OT under voltage 

clamped conditions caused a large inward membrane current. The receptor mRNA responsible was 

determined to be between 4-5kb in size. Using a size-fractionated sub library of cDNA clones, followed 

by screening of progressively smaller sub libraries, they isolated a single cDNA clone which encoded the 

human OTR. When transcribed in vitro and the RNA injected into oocytes, this clone enabled them to be 

responsive to OT (Kimura et al. 1992).  The molecular cloning of the OTR and determination  of its 

amino acid structure paved the way for studies investigating the regulation of the gene’s expression 

including the development of  total and conditional OTR and OT gene knock out mice (Nishimori et al. 

1996; Takayanagi et al. 2005; Lee et al. 2008). 

 

The OXTR gene is present in single copy in the human genome and is mapped to chromosome 3 at locus 

3p25-26.2 (Inoue et al. 1994) and spans approximately 17 kilobases (kb). In most mammals the gene 

consists of 3 exons however in the human and mouse a third intron interrupts the first exon. Therefore in 



these species the OXTR gene consists of 4 exons and 3 introns (Gimpl and Fahrenholz 2001). Introns 1 

and 2 are relatively short (639 and 166 bp). Intron 3 is the largest intron at approximately 12kb and 

separates the coding region found immediately after the sixth transmembrane spanning domain. Exons 1 

and 2 correspond to the 5’- non-coding region, followed by exons 3 and 4 which contain the amino acids 

that encode the receptor: Exon 3 encodes from 142bp upstream of the translation start site (ATG initiation 

codon) and spans 922bp downstream which includes transmembrane domains 1-6 and beyond. Exon 4 

contains the sequences encoding the seventh transmembrane domain and the C-terminus as well as the 3’ 

non-coding region (Figure 1) (Inoue et al. 1994).   

 

Figure 1. Organisation of the human oxytocin receptor gene. The OTR is located on chromosome 3 at 

position 3p25.3. It is comprised of 4 exons (boxes labelled 1-4). Only exons 3 and 4 encode the amino 

acid sequence for the receptor (areas highlighted in blue, flanked by the start (ATG) and stop codons 

(TGA). The regions encoding the 7 transmembrane-spanning domains are represented by dark blue boxes 

and are numbered by roman numerals I-VII (Adapted from Inoue et al., 1994). 

 

Primer extension analysis identified that the transcription start sites are located 618 and 621 bp upstream 

of the initiation codon. A variety of nucleotide consensus sequences that are typically involved in 

transcriptional regulation in many genes were found in close proximity to this, including a TATA-like 

motif and a potential binding site for SP-1. A number of other transcription factor binding sites are also 

found in the 5’ flanking region including those for AP-1, AP-2 c-Myb and four inverted GATA-1 motifs. 

The rat OXTR was also shown to contain a potential oestrogen response element (ERE) but a functional 

ERE has not been found in other species, including human (Kimura et al. 2003).   

 



1- Receptor structure, ligand binding and signalling 

The encoded receptor contains 389 amino acids in its polypeptide chain and belongs to the rhodopsin-type 

class I G protein-coupled receptor (GPCR) superfamily, typically characterized by their highly conserved 

7 transmembrane (TM) alpha helical domains (Figure 2). Data from a number of species including pig, 

rat sheep, bovine, mouse and rhesus monkey have also been identified and show essentially the same 

basic structure. Two different sized messenger RNAs for the receptor were found: 3.6 kb in mammary 

gland and a larger 4.4 kb in ovary, endometrium, and myometrium.  

 

The structure of the receptor, modelling of the ligand docking at the molecular level and subsequent 

activation, as well as the post-oxytocin signalling mechanisms have been well described. In general, when 

activivated, conserved sequence residues in GPCRs leads to signal transduction via the recruitment of G 

proteins. The switching from the inactive to active form of the OTR is assumed to follow that of other 

GPCR models with a change in the relative orientation of the transmembrane domains revealing a G 

protein binding site. Oxytocin is suggested to bind to the extracellular loops and the NH2 terminal 

domain, as well as to residues within the transmembrane domains themselves (Gimpl and Fahrenholz 

2001). Mutagenesis and molecular modelling has suggested that the binding site of OT is located in in a 

narrow cleft buried in the TM core of the receptor, formed by the ring like arrangement of the TM 

domains.  The cyclic portion of the oxytocin peptide interacts with TM 3, 4, and 6 whilst the linear C-

terminal tail region interacts with TM 2 and 3 and the first intracellular loop.  

 

Biochemical studies with the human OTR and OT have identified four key residues that are important for 

ligand binding and agonist selectivity (see Figure 2): Arg34  positioned within an important 12 residue 

sequence within the N terminus, Phe103 positioned in the first extracellular loop and two aromatic 

residues, Tyr209  and Phe284 in TM 5 and 6 respectively, which are thought to bind to residues 2 and 3 of 

OT (Zingg and Laporte 2003). In terms of OTR signalling, site-directed mutagenesis has also identified 



key residues in the OTR sequence that are responsible for conformational changes in the receptor, 

intracellular activation of G proteins and coupling to downstream effectors (see Figure 2). A point 

mutation in the amino acid aspartic acid at position 85 to alanine in TM2 in the human OTR, results in 

receptor inactivity. Changing a lysine to alanine residue at position 270 within the C-terminal part of the 

third intracellular loop of OTR decreases phosphatidyl turnover. In contrast an arginine to alanine 

transition at position 137 which forms part of a conserved glutamate (or aspartate)–arginine–tyrosine 

motif increases basal OTR activity. 

 

The carboxy terminus contains two well conserved cysteine residues, thought to be sites of palmitoylation 

and therefore conferring anchorage of the receptor’s cytoplasmic tail into the membrane lipid bilayer.  

Additionally the NH2-terminal domain of the receptor also contains sites for possible glycosylation 

(Figure 2). These differences in glycosylation patterns may be responsible for differences in the 

molecular masses of the myometrial versus mammary OTRs reported. However, glycosylation does not 

appear to be important for the proper expression of the OTR or its function since receptor binding 

characteristics in deglycosylation mutants involving exchange of Asp for Asn in three positions remained 

unchanged (Gimpl and Fahrenholz 2001). 

 

Figure 2. Schematic structure of the human oxytocin receptor.  Membrane topology of the human 

OTR is shown where each amino acid is denoted by a blue circle and residues involved in ligand 

binding and signal transduction discussed in the text are highlighted. Residues in red indicate those 

identified as being involved in binding of oxytocin to the receptor whilst residues in purple denote 

those sites shown to confer altered receptor activity when mutated. Areas of proposed functional 

importance in the cytoplasmic C-terminal tail, including clusters of serine residues whish are 

thought to be involved in GRK or β-arrestin binding and receptor internalisation and 

desensitisation are highlighted in green. Putative N-glycosylation and palmitoylation sites are also 



highlighted and a putative disulphide bond between the first and second extracellular loops is also 

shown. (adapted from Gimpl and Fahrenholz 2001) 

 

Homology with other GPCRs 

The OTR shares high sequence homology with the vasopressin receptors of which there are 3 subtypes: 

V1aR, V1bR and V2R. The highest homology between the vasopressin (AVP)/OT receptor types is found 

in the extracellular loops (~80%) and the transmembrane helices.  This high sequence similarity 

especially in the extracellular domains can give rise to agonist cross-reactivity.  In regards to AVP/OT 

agonist binding, the OTR is relatively unselective, having only a 10-fold higher affinity for OT over AVP. 

AVP can act as a partial agonist at OTR but requires 100-fold greater concentration to induce the same 

response as OT. In fact much of our understanding about the functional structure of OTRs including the 

determination of the important binding domains which confer different ligand affinities comes from 

chimeric ‘gain of function mutants’ in which different domains or residues of the OTR have been 

exchanged for the equivalent regions on the different AVPRs . 

 

Oxytocin receptors are functionally coupled to the heterotrimeric G-proteins, comprised of three subunits 

Gα, Gβ and Gγ which cycle between active and inactive signalling states in response to guanine 

nucleotides. Together they can stimulate a number of signalling pathways that regulate a diverse number 

of cellular processes.  Oxytocin receptors have been shown to recruit and activate the Gq and Gi subfamily 

(Gi1, Gi2 and Gi3) as well as the two members of the Go family (GoA and GoB) of G proteins (Busnelli et al. 

2012). There is less evidence however to suggest that OTR activation results in the recruitment or 

activation of Gαs. 

 

Classically, the activation of Gαq/11 results in the activation of phospholipase C-β (PLC-β) which in turn, 

controls the hydrolysis of phosphatidylinositol 4,5-bispohosphate (PIP2) into inositol-tris-phosphate (IP3) 



and diacylglycerol (DAG). Inositol-tris-phosphate controls the mobilisation of Ca2+ from intracellular 

stores such as the sarcoplasmic reticulum (SR) thereby raises intracellular Ca2+ and promoting cell 

contraction, whilst DAG leads to activation of protein kinase type C (PKC). OTR activation linked to Gq 

signalling also leads to the stimulation of phospholipase A2 production and an increase in 

cyclooxygenase 2 (COX-2) levels, both resulting in increased prostaglandin production. Other signaling 

pathways activated include the MAP-kinase (MAPK) cascade and induction of c-fos and c-jun which are 

linked to the proliferative effects of OT.  Signalling through Gαi/o results in the inhibition of adenylate 

cyclase activity and a reduction in levels of cAMP. In addition, inhibition of cell growth is reported to be 

Gi-mediated. 

 

In in vitro assays using HEK293 cell lines stably transfected with human OTR cDNA, the Gαi and Gαo 

isoforms were found to be activated by OT with an EC50 10-fold greater than that required to activate Gαq, 

suggesting that the Gi and Go-mediated pathways are activated at much higher concentrations of oxytocin 

than the Gq pathway (Busnelli et al. 2012). How this is translated into a physiological response in vivo 

however, will depend on the local concentration of OT as well as the relative expression of the individual 

G protein subunits. In addition, that OTRs can activate multiple G proteins can give rise to heterogeneity 

in the overall cellular response following their activation.  The signalling pathways may therefore act 

synergistically or may have opposite effects on the same cell function.  

 

Many GPCRs, including the OTR have also been shown to associate and form dimers which can be  

homo- or heterodimers in nature. OTR heterodimerisation reported includes in vitro dimerisation with the 

highly related V1aR and V1bRs and heterodimerisation with the dopamine  D2 and adrenergic β2 

receptors in vivo. 



2- Expression, localisation and regulation  

Oxytocin has both central and peripheral actions, with roles in many physiological and pathological 

processes including reproduction, for example; parturition and lactation, maternal behaviour, erectile 

dysfunction and ejaculation. Oxytocin can also modulate social behaviour via increasing empathy, trust 

and pair bonding.  Not surprisingly therefore, the OTR has been found to be expressed in humans 

throughout the body; in reproductive structures including myometrium, endometrium, gestational tissues 

(amnion and decidua) ovary, testes and breast, as well as other  organs including kidney, heart, adrenal 

gland and in neural regions of the brain, such as the frontal cortex, amygdala, hypothalamus and olfactory 

nucleus. 

 

The localisation of receptors to the plasma membrane was determined by investigating the distribution of 

[3H] oxytocin binding sites amongst various subcellular fractions of rat myometrium obtained by 

differential centrifugation. More specifically, OTRs have been found to be localised to the cholesterol-

rich and caveolin-containing membrane domains of the plasma membranes known as caveolae which is 

Latin for ‘little caves’(Gimpl and Fahrenholz 2001). These form small omega shaped cell surface 

invaginations.  The localisation of the receptors to these domains may be conveyed by a cholesterol-

binding motif within the extracellular domains of the receptor .  In contrast to most other GPCRs, the 

OTR undergoes quite large and cell-specific up- and down-regulation of expression.  A number of factors 

have been shown to regulate OTR expression. 

 

Sex steroids:  In uterus, brain and kidney, oestrogens are a major stimulant of OTR expression. However 

OTR mRNA levels in the mammary gland remain unaffected by oestrogen  administration. Studies of the 

rat and human OXTR promoter identified a potential but non-classical oestrogen responsive element 

(ERE) but there are doubts over its functionality (Kimura et al. 2003).  Oestrogen’s effects may not 

follow the classical ER- ERalpha-ERE- target gene pathway. Instead, the mechanism through which 



oestrogen regulates expression is likely to involve multiple factors acting indirectly or via other promoter 

elements with the OTR.  Progesterone (P4) on the other hand is inhibitory towards OTR expression.  

Pregnant rats treated with P4 failed to show the same upregulation of OTR mRNA at parturition as 

controls.  Ovariectomy of pregnant rats in mid gestation results in a significant increase in myometrial 

OTR mRNA levels compared to sham-operated controls and induces preterm labour. The elevation in 

OTR mRNA levels associated with ovariectomy-induced preterm labour was completely blocked by the 

administration of progesterone (Ou et al. 1998).  

 

Cholesterol: Cholesterol is one of the most abundant lipids within the lipid bilayer and therefore its 

concentration can regulate the function and organization of many membrane proteins including GPCRs. 

The OTR is known to favour residing within cholesterol rich portions of the membrane (Gimpl and 

Fahrenholz 2001).  It is within these cholesterol rich domains that they confer a higher affinity for agonist 

binding. OTRs are said to be sensitive to levels of membrane cholesterol and disruption of cholesterol 

content affects OTR signalling. 

 

Stretch: Mechanical stretch e.g. of the myometrium (smooth muscle of the uterus) during pregnancy has 

also shown to be involved in the upregulation of OTR expression and it suggested that this may contribute 

to the higher rates of preterm birth in multiple pregnancy. In studies of unilaterally pregnant rats in which 

the non-gravid uterine horn was mechanically stretched, the non- gravid stretched horn shows equivalent 

OTR upregulation as the gravid horn at parturition (Ou et al. 1998).  The non-gravid, non-stretched uterus 

however shows low expression suggesting that both endocrine signals and stretch are a contributing factor 

to OTR expression in pregnancy and labour. 

 

Internalisation and desensitisation: A further dimension to the regulation of OTR signalling is via its 

capacity, like other GPCRs, to desensitise and internalise. In the setting of persistent agonist binding, 

desensitisation is initiated by phosphorylation of the receptor by G-protein-coupled receptor kinases 



(GRKs). These phosphorylate GPCRs which increases their affinity for β- arrestins.  β-arrestins contain 

motifs which allow them to function as scaffold proteins linking the receptor to components of the 

clathrin-dependent endocytic machinery and hence prompts receptor endocytosis. The OTR has been 

shown to recruit β-arrestin following OTR stimulation and has been shown to co-localise with  β-arrestins 

in endocytic vesicles. Removal of the receptor from the membrane therefore uncouples it from further G 

protein signalling.  The recruitment of β-arrestin to the OTR is dependent upon a highly conserved region 

within its carboxy terminal containing a series of serine clusters. Mutations within this region lead to 

unstable OTR-β-arrestin interactions and prevent agonist-mediated receptor internalisation  (Smith et al. 

2006). There is also evidence to suggest that OTR can undergo receptor desensitisation via a non-β-

arrestin pathway involving PKC.  

  

Epigenetics and OXTR methylation: The OXTR gene contains a CpG island that stretches through exon 

1 to exon 3 from about 20 to 2350 bp downstream of the transcription start site. Luciferase reporter gene 

assays showed that this CpG region has significant promoter activity (Kusui et al. 2001). A specific 

region of this CpG island (termed MT2) appears to be responsible for the majority of DNA methylation-

induced silencing of OTR. 

 

3- Physiological functions in labour and lactation  

Oxytocin is most widely known for its ability to contract the uterus and for milk ejection during lactation. 

In the uterus, oxytocin stimulates and maintains uterine contractions by elevating intracellular Ca levels.  

Binding of oxytocin to OTRs primarily leads to the activation of Gαq/11 resulting in the PLC mediated 

hydrolysis of PIP2, increased IP3 formation and hence increased intracellular Ca via release of Ca2+ from 

the SR (Figure 3). In smooth muscle cells such as myometrium, elevated Ca brings about contraction via 

stimulation of Ca2+-dependent calmodulin which in turn, activates myosin light chain kinase (MLCK). 



Subsequent phosphorylation of the regulatory myosin light chains by MLCK brings about cross-bridge 

cycling and generation of force  (Arrowsmith and Wray 2014).   Relaxation is brought about by 

dephosphorylation of myosin via MLC phosphatase (MLCP) and restoring normal intracellular Ca levels. 

 

There is also evidence to suggest that Ca2+ from extracellular sources also contributes to the oxytocin-

induced rise in intracellular Ca2+.  Oxytocin-induced intracellular Ca2+ increase is greater in the presence 

of extracellular Ca2+ than that in its absence, suggesting that activation of OTR also affects Ca influx 

mechanisms. One mechanism is via voltage gated i.e. L-type channels or receptor operated channels.  

However, this Ca2+ influx was found  to be insensitive to the L-type channel blocker nifedipine.  It is 

therefore suggested that oxytocin augments Ca2+ entry via a process known as capacitative Ca2+ entry or 

store-operated Ca2+ entry (SOCE) – a process which is independent of voltage-operated Ca entry. Instead 

the lowering of SR Ca concentration triggers Ca entry. It is likely that oxytocin affects L-type channel 

activity indirectly such as via the opening of other cation channels (e.g. Ca2+-activated Cl- channels) or 

SOCE, which would then lead to membrane depolarisation and subsequent opening of voltage-operated 

channels.  The evidence to suggest that oxytocin can affect Ca extrusion mechanisms e.g. by inhibition of 

Ca2+-ATPases and Ca efflux from cells, thus prolonging the elevation of Ca2+  is limited. 

 

Oxytocin binding to its receptor can also lead to activation of Rho proteins (likely via Gα12/13 proteins) 

which can regulate the interaction between actin and myosin independently of Ca2+. Rho activation leads 

to activation of Rho kinase and subsequent phosphorylation and inhibition of MLC phosphatase (MLCP).  

Inhibition of MLCP therefore removes the inhibitory break on contraction and allows for modulation of 

force production without the need for a change in intracellular Ca concentration. This process is known as 

Ca sensitisation (Somlyo et al. 1999). In rats, pre-treatment with a specific inhibitor of Rho-kinase 

decreased the level of oxytocin-induced MLC phosphorylation, suggesting that the RhoA/Rho kinase 

cascade is involved in the contraction response mediated by oxytocin. When examined in human 

myometrium however, the inhibition of RhoA-Rho kinase pathway produced only moderate effects. 



Additionally, OTR activation leading PKC-mediated production of DAG can also contribute to 

sensitisation via inhibition of MLCP directly, or via a smooth muscle specific inhibitor of MLCP known 

as  C-kinase-activated protein phosphatase-1 inhibitor 17 kDa (CPI-17) (see Figure 3). 

 

Figure 3. Proposed signalling pathways activated by oxytocin binding to the OTR in myometrium 

and other uterine tissues including decidua and amnion (from Arrowsmith and Wray 2014). 

Binding of oxytocin to its receptor activates Gαq/11, which activates phospholipase C-β, which in 

turn hydrolyses phosphoinositide-bis-phoshate (PIP2) into inositol-tris-phosphate (IP3) and 

diacylglycerol (DAG). IP3 causes release of Ca from the sarcoplasmic reticulum (SR) and DAG 

activates protein kinases type C (PKC). Activation of Gαq/11 is also suggested to cause the opening of 

voltage-operated Ca2+ channels (VOCCs) and Ca2+ entry.  This may be as a result of direct 

activation or indirect activation of channel opening e.g. via receptor operated channel (ROC) 

opening.  Inhibition of the Ca exit from the cell by inhibition of Ca2+-ATPase also promotes 

increased [Ca2+]
i. The reduction in lumenal SR [Ca2+] is considered to trigger store-operated Ca2+ 

entry (SOCE).  The elevation in [Ca2+]i leads to formation of the Ca2+-calmodulin complex which 

then activates myosin light-chain kinase (MLCK), resulting in acto-myosin cross-bridge cycling and 

myometrial contraction.  In addition, DAG activation of PKC activates the mitogen-activated 

protein kinase (MAPK) cascade resulting in increased phospholipase A2 (PLA2) activity and 

prostaglandin E2 (PGE2) production, which also contributes to contraction (mechanism not 

shown). DAG-activated PKC also signals for phosphorylation of C-kinase-activated protein 

phosphatase-1 inhibitor 17 kDa (CPI-17), whereas oxytocin binding to OTR also activates Rho-A 

which in turn activates RhoA-associated protein kinase (ROCK). Both phosphorylated CPI-17 and 

ROCK inhibit myosin light chain phosphatase (MLCP), leading to increased MLC phosphorylation 

and is the proposed mechanism of Ca2+ sensitisation in the myometrium.  Oxytocin receptor 

signalling in other uterine tissues (e.g. decidua and amnion) also signals for production of 

prostaglandins and pro-inflammatory cytokines (not shown), which may mediate local paracrine 



signalling with the myometrium. Red pathways indicate signalling pathways with direct influences 

on [Ca]i, whereas purple and turquoise lines indicate Ca2+-independent pathways to contraction, 

including Ca2+ sensitisation (purple lines) and the production of prostaglandins (turquoise 

pathways). Dotted lines indicate where mechanisms are not yet fully determined. 

 

OTR signalling in cultured myometrial and amnion cells (cells of the fetal membranes) also activates 

NFκB and MAPK signalling and stimulates the production of pro- inflammatory cytokines such as IL-6 

and  IL-8, and prostaglandin production via up-regulation of  cyclooxygenase type 2 (COX-2) (Figure 3).  

This inflammatory signalling and upregulation of prostaglandin synthesis is known to play roles in 

parturition including fetal membrane remodelling, cervical ripening and myometrial activation. 

Additionally OT is also implicated in the achievement of co-ordinated, synchronous myometrium 

contractions required for labour.  This is via its role in promoting upregulation of connexin proteins, 

including connexin 43 which is a major protein involved in the formation of gap junctions providing 

communication  between myometrial cells. Activation of MAPK signalling pathways in myometrium, 

which is thought to be mediated by Gαq-11 and βγ release, may also lead to MAPK mediated induced 

myometrial cell proliferation.   

 

In late pregnancy and preterm labour, the expression of myometrial OTRs significantly increases shifting 

the myometrium towards increased sensitivity to OT.  After parturition, OTR expression in myometrium 

rapidly declines, whereas mammary gland OTR expression remains raised throughout lactation. This 

tissue-specific regulation of OTR expression is suggested to be the one mechanism which enables 

circulating OT to switch its target organ and therefore its physiological function i.e. from to inducing and 

augmenting uterine contractions during parturition to milk ejection during lactation.  

 



The milk-ejection reflex describes a process whereby oxytocin is released in response to neonatal 

sucking.  During this process, pulsatile waves of OT are released from the posterior pituitary causing the 

myoepithelial cells surrounding mammary gland alveoli to contract, allowing the collected milk to be 

released into ducts and open into nipple pores. The signaling pathway leading to contraction of the 

myoepithelial cells is largely attributed to receptor coupling to Gαq-11 and the activation of the PLC/Ca2+ 

signalling pathways. Unlike myometrium however, the increased Ca2+ in myoepithelial cells induced by 

OT is only transient and not sustained, which is indicative of Ca release from intracellular stores and not 

Ca influx mechanisms. The release of OT also occurs in most women before the tactile stimulus of 

suckling. A second release of OT follows in response to the suckling stimulus itself, highlighting other 

OTR signalling roles such as on maternal behaviour. 

 

4- Physiological functions within the brain  

The widespread distribution of OTRs within the brain has firmly established OT as a central 

neurotransmitter.  However, whilst the peripheral role of oxytocin in labour and lactation is well known 

and the signalling pathways activated by OTR are well established, much remains to be understood 

regarding the behavioral and cellular mechanisms of OT’s functions in the brain.  

 

In rodents, receptors for OTR are abundantly expressed throughout the brain whilst in humans expression 

is more restricted.  Receptor autoradiography studies and immunostaining for OTR found it to be highly 

expressed in in the basal nucleus of Meynert, diagonal band of Broca and lateral septal nucleus as well as 

the hypothalamus, anterior cingulate cortex, olfactory nucleus, and amygdala (Boccia et al. 2013). Many 

of these regions are associated with the central control of stress, anxiety and social behaviour including 

pair bonding, parental care, aggression and social memory. Therefore, in the brain, OT is suggested play a 

key role in the regulation of social cognition and behavior including roles in attachment, social 

exploration, and social recognition as well as having roles in the fear and stress response.  



 

Following release from dendrites within the hypothalamic neurons, OT is suggested to reach other regions 

of the brain by diffusion. The precise signalling pathways elicited by OTR activation in these neuronal 

cells however is not fully understood. In immortalised neuronal cells OTR coupling to Gq or to Gi/o 

resulted in opposite effects on cell excitability. Gq activation inhibits inwardly rectifying potassium 

channel conductance whilst Gi/Go coupling was shown to promote inwardly rectifying currents (Gravati et 

al. 2010). The balance of signaling between the different G-proteins will therefore determine cell function 

and hence affect behavioural outcomes.  

 

5- Pathophysiological implications  

The pathophysiological functions of OT and OTR in reproduction has been demonstrated in mouse gene 

ablation studies (Nishimori et al. 1996; Young et al. 1996; Lee et al. 2008).  Interestingly however, 

neither OT nor its receptor appear necessary for labour. Oxytocin-deficient females are fertile, display 

normal mating behaviour, become pregnant and deliver their offspring on time without complications and 

show normal maternal behaviour. However their pups die within 24 hours due to the mothers’ inability to 

eject milk and nurse them. The mammary glands of the OT-deficient mice were shown to contain milk 

and re-administration of exogenous OT was able to restore milk ejection, confirming that OT is required 

for milk ejection but not its production. Similarly, normal parturition has been noted in the absence of OT 

in cases of women with clinical pituitary gland dysfunction. 

 

OTR-null mice are also viable and show no obvious defects in fertility, sexual behaviour or parturition.  

However, they show defects in lactation due to lack of milk ejection and also reduced maternal nurturing.  

OTR-and OT-knockout females postpartum were shown to retrieve fewer pups when scattered compared 

to their wildtypes and those that do retrieve pups gather fewer pups.   OTR knock-out female mice also 

groom themselves and their pups less than their wildtype counterparts.  Additionally, OTR-null male pups 



show increased aggressive behaviours compared to their wildtype littermates, further confirming that the 

OTR is also important in the regulation of development of social behaviour.   

 

Labour dystocia, postpartum haemorrhage and preterm birth 

Oxytocin is one of the most frequently used drugs in obstetrics, for promoting uterine contractions for 

labour induction and augmentation and to prevent postpartum haemorrhage. OTR antagonists have also 

been developed to inhibit preterm labour contractions and treating dysmenorrhea. The goal of labour 

augmentation is to enhance inadequate contractions to achieve vaginal delivery. Oxytocin is given 

intravenously and the rate of administration is tailored to the rate of contraction. Paradoxically, prolonged 

OT infusion results in decreased uterine contractility due to receptor desensitisation and internalisation. 

Radioligand studies in cultured cells have shown consistently that OT exposure results in decreased OT -

OTR binding and leads to receptor internalisation. Clinical studies have shown a loss of uterine activity, 

measured by intrauterine pressure catheter recordings, with OT infusion. Desensitisation of the receptor 

can increase the risk of caesarean section delivery due to dysfunctional labour and also poses the risk of 

uterine atony leading to postpartum haemorrhage as forceful uterine contractions are also required to 

clamp the uterine blood vessels to stem bleeding after delivery. Therefore prolonged OT administration 

may be counterproductive to the augmentation of uterine contractions. In fact, OT is released from the 

pituitary in a pulsatile manner. The pulse frequency increases during labour reaching its maximum during 

the second stage. This pulsatile release may in fact be a mechanism to prevent agonist mediated 

desensitization.  In contrast, uterine hyperstimulation (or hypertony) in which contractions become too 

strong or too frequent following OT administration can also occur which can be detrimental to the fetus. 

 

Preterm birth (<37 weeks gestation) accounts for the majority of neonatal morbidity and mortality.  As 

premature uterine contractions are one of the most recognised signs and causes of spontaneous preterm 

labour, there has been much effort in developing anti-contraction medications (known as tocolytics) to 



inhibit preterm labour contractions to prolong pregnancy. This includes the development of OTR 

antagonists. The OTR-antagonist, atosiban, is widely used clinically to reduce uterine activity in 

threatened preterm labour. Atosiban, is a peptide analogue of oxytocin which competes with oxytocin for 

binding at the OTR, thus preventing oxytocin-induced rises in intracellular calcium and promoting 

relaxation of the myometrium.  Atosiban is however a biased ligand that antagonises Gαq/11 signalling but 

acts as a Gαi agonist in a number of cell lines. Its coupling to Gαi signalling may in fact contribute to a 

pro-labour effect by activation of inflammatory pathways.  

 

Additonally, owing to its similarity in structure to oxytocin and vasopressin, atosiban is also an antagonist 

at the vasopressin 1a receptor (V1aR) and has higher efficacy at the V1aR over OTRs. The role of 

vasopressin receptors in human myometrium is less clear – the uterus is responsive to AVP and it 

expresses V1aR.  Interestly, a more selective OTR anatagonist barusiban was no better then placebo in 

inhibiting in vivo preterm labour contractions. There is much research interst in developing more effective 

OTR antagoinsits with greater selectivity and efficiacy for inhibiting preterm labour contractions. 

 

Behavioural disorders 

Research across species has shown that OT plays key roles modulating social perception, social 

cognition, and social behaviour, thereby promoting social approach, affiliation and promoting the 

maintenance of social relationships.  Not surprisingly then, a dysfunction of OT or impairment of OTR 

signalling has been associated with a number of mental disorders including autism spectrum disorders and 

schizophrenia, as well as involvement in a collection of mood and anxiety disorders (Cochran et al. 2013).   

 

Variations in the OTR gene may partly explain individual differences in OT-related social behavior. Two 

single nucleotide polymorphisms (SNPs) in the third intron have been suggested to be particularly 

promising candidates to explain differences in oxytocinergic functioning (Meyer-Lindenberg et al. 2011): 



Genetic association studies have revealed reproducible and significant links of some OTR gene 

polymorphisms to specific social traits and behaviours. Rs225498 (G-A transition) has been linked to 

emotional deficits and females heterozygous for this polymorphism with a familial history of depression 

were found to have the highest levels of depression and anxiety. Whilst those with rs53576 (G-A 

transition) polymorphisms showed a deficit in social behaviours including empathy and mother’s 

sensitivity towards her child’s behaviour.  However the effects of these SNPs are thought to be small and 

do not change the amino acid sequence of the receptor. Polymorphisms in the OXT and OXTR genes have 

also  been associated with schizophrenia and autism. Downregulation of OTR mRNA and binding sites 

for OT have also been detected in a number of brain regions involved in social cognition in schizophrenic 

patients. OXTR methylation may be associated with autism, highcallous- unemotional traits, and 

differential activation of brain regions involved in social perception. Therefore both genetic and 

epigenetic factors, may have a large impact on defining social personalities and traits. 

 

Exogenous OT administration has been reported to rescue social deficits in preclinical animal models 

characterised by autistic-like symptoms in which OTR expression was completely or partially absent. 

Some human studies have evaluated the therapeutic value of endogenously applied neuropeptides such as 

OT, typically administered via a nasal spray, in ameliorating social dysfunction in patients affected by 

many different psychiatric or neurodevelopmental disorders.  But the evidence for consistency in their 

therapeutic potential is limiting. One factor being that only a small fraction of these peptides can pass 

through the blood brain barrier. 

 

Summary 

 

Activation of OTRs results in signalling via a number of pathways; the main pathway being the 

Gq/PLC/IP3 pathway which results in increased intracellular Ca2+. In myometrium this leads to 



contraction and in mammary cells this contributes to milk ejection.   Additionally OTR signaling in 

decidua and fetal membranes leads to increased prostaglandin synthesis and production of pro-

inflammatory cytokines which can potentiate OT’s actions and aid labour onset. A number of agonists 

and antagonists to the OTR have been developed for their therapeutic potential, including the antagonist 

atosiban which has tocolytic qualities and is used for inhibiting preterm labor contractions.   

 

Oxytocin also plays a central role in social behavior and impairment of OTR signaling is indicated in a 

number or behavioral pathologies. Oxytocin analogues and OTR antagonists are therefore also useful 

research tools in furthering our understanding of OTR signaling and OT functions in systems such as the 

CNS.  The therapeutic potential of OT analogs in the treatment of pathophysiological behaviors is still 

under examination but targeting the OTR brings hope for alleviating these social disorders.    
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Figure 1 

Organisation of the human oxytocin receptor gene. The OTR is located on chromosome 3 at position 

3p25.3. It is comprised of 4 exons (boxes labelled 1-4). Only exons 3 and 4  encode the amino acid sequence 

for the receptor (areas highlighted in blue) flanked by the start (ATG) and stop codons (TGA). The regions 

encoding the 7 transmembrane-spanning domains are represented by dark blue boxes and are numbered I-

VII. (adapted from Inoue et al., 1994) 

 



 

 

 

Figure 2 

Schematic structure of the human oxytocin receptor.  Membrane topology of the human OTR is shown 

where each amino acid is denoted by a blue circle and residues involved in ligand binding and signal 

transduction discussed in the text are highlighted. Residues in red indicate those identified as being involved 

in binding of oxytocin to the receptor whilst residues in purple denote those sites shown to confer altered 

receptor activity when mutated. Areas of proposed functional importance in the  cytoplasmic C-terminal tail, 

including clusters of serine residues whish are thought to be involved in GRK or β-arrestin binding and 

receptor internalisation and desensitisation are highlighted in green. Putative N-glycosylation and 

palmitoylation sites are also highlighted and a putative disulphide bond between the first and second 

extracellular loops is also shown. (adapted from Gimpl and Fahrenholz 2001) 

 



 

Figure 3 

OTR (Oxytocin Receptor), Fig. 3 Proposed signalling pathways activated by oxytocin binding to the OTR in 
myometrium and other uterine tissues including decidua and amnion (from Arrowsmith and Wray 2014). 
Binding of oxytocin to its receptor activates Gaq/11, which activates phospholipase C-b, which in turn 
hydrolyses phosphoinositide-bis-phoshate (PIP2) into inositol-trisphosphate (IP3) and diacylglycerol (DAG). 
IP3 causes release of Ca from the sarcoplasmic reticulum (SR) and DAG activates protein kinases type C 
(PKC). Activation of Gaq/11 is also suggested to cause the opening of voltage operated Ca2+ channels 
(VOCCs) and Ca2+ entry. This may be as a result of direct activation or indirect activation of channel 
opening, e.g., via receptor-operated channel (ROC) opening. Inhibition of the Ca exit from the cell by 
inhibition of Ca2+_ATPase also promotes increased [Ca2+]i. The reduction in lumenal SR [Ca2+] is 
considered to trigger store-operated Ca2+ entry (SOCE). The elevation in [Ca2+]i leads to formation of the 
Ca2+-calmodulin complex which then activates myosin light-chain kinase (MLCK), resulting in acto-myosin 
cross-bridge cycling and myometrial contraction. In addition, DAG activation of PKC activates the mitogen-
activated protein kinase (MAPK) cascade resulting in increased phospholipase A2 (PLA2) activity and 
prostaglandin E2 (PGE2) production, which also contributes to contraction (mechanism not shown). DAG-
activated PKC also signals for phosphorylation of C-kinase-activated protein phosphatase-1 inhibitor 17 kDa 
(CPI-17), whereas oxytocin binding to OTR also activates Rho-A which in turn activates RhoAassociated 
protein kinase (ROCK). Both phosphorylated CPI-17 and ROCK inhibit myosin light chain phosphatase 
(MLCP), leading to increased MLC phosphorylation and is the proposed mechanism of Ca2+ sensitization in 
the myometrium. Oxytocin receptor signaling in other uterine tissues (e.g., decidua and amnion) also signals 
for production of prostaglandins and pro-inflammatory cytokines (not shown), which may mediate local 



paracrine signaling with the myometrium. Red pathways indicate signalling pathways with direct influences on 
[Ca]i, whereas purple and turquoise lines indicate Ca2+-independent pathways to contraction, including Ca2+ 
sensitization (purple lines) and the production of prostaglandins (turquoise pathways). Dotted lines indicate 
where mechanisms are not yet fully determined 


