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Abstract—Over the past few years, deep learning has emerged
as an important tool in the fields of volcano and earthquake
seismology. However, these methods have been applied without
performing thorough analyses of the associated uncertainties.
Here we propose a solution to enhance volcano-seismic monitor-
ing systems, through probabilistic Bayesian Deep Learning; we
implement and demonstrate a workflow for waveform classifica-
tion, rapid quantification of the associated uncertainty, and link
these uncertainties to changes in volcanic unrest. Specifically, we
introduce Bayesian Neural Networks (BNNs) to perform event
identification, classification, and their estimate uncertainty on
data gathered at two active volcanoes, Mount St. Helens, USA,
and Bezymianny, Russia. We demonstrate how BNNs achieve
excellent performance (92.08 %) in discriminating both the type
of event and its origin when the two datasets are merged together
and no additional training information is provided. Finally, we
demonstrate that the data representations learned by the BNNs
are transferable across different eruptive periods. We also find
that the estimated uncertainty is related to changes in the state
of unrest at the volcanoes, and propose that it could be used
to gauge whether the learned models may be exported to other
eruptive scenarios.

I. INTRODUCTION

Over the past two decades, the integrated use of methods
and techniques from different disciplines including ground
deformation, geochemistry, satellite remote-sensing and seis-
mology, has allowed scientists to identify and track vol-
canic unrest with increasing confidence. Due to comparatively
low costs and the availability of real-time data with high
temporal resolution, seismology remains the backbone of
most volcano monitoring programmes worldwide. Volcano-
seismic signals are frequently classified based on their fre-
quency content, and source type; one of the most widely
adopted classification schemes ([1]) includes high-frequency
(also known as volcano-tectonic), low-frequency earthquakes,
mixed-frequency (or hybrid) earthquakes, volcanic tremor,
explosions, and other superficial signals (e.g. rockfalls, lahars,
pyroclastic flows). Low-frequency and mixed-frequency earth-
quakes have been attributed to various mechanisms, which
include volumetric sources, magma fracture, stick-slip along
the margins of volcanic conduits, and slow-rupture of soft
material. It has also been shown that the characteristic lack
of high-frequency energy in their waveforms may result from
propagation through strongly attenuating volcanic material
[2], [3]. Separation of source and path effects remains a
challenging task. High-frequency earthquakes are nearly unan-
imously attributed to brittle failure processes locally within
volcanic systems with mechanisms similar to ordinary tectonic

events, hence, the frequently used name of volcano-tectonic.
Volcanic-tremor is a continuous signal, at times with harmonic
frequency spectrum, which is recorded during periods of either
eruption and non-eruptive unrest. Explosion earthquakes are
high-amplitude, short duration, pulses associated with the
sudden and violent ejection of gas and pyroclastic material
from volcanic vents into the atmosphere [4], [5], [6], [7].
A summary of earthquake types, their frequency- and time-
domain characteristics and source mechanisms proposed in the
literature, is presented in Table I.
One of the main goals of volcano seismology and volcanology
is to identify causal relations between the occurrence of earth-
quakes, and the evolution and outcomes of volcanic unrest.
Success depends, clearly, on the ability to identify and track
the evolution of earthquakes during periods of volcano-seismic
unrest. At present, although large amounts of seismic data are
continuously gathered at volcanoes worldwide, much of these
data remain underutilised. Seismic analysts typically focus on
comparatively small subsets of earthquakes. During volcanic
crises, seismic networks can record earthquakes at rates of up
to multiple events/minute over time periods as long as months,
or even years, making manual identification, classification and
location an unfeasible task [3]. Earthquake classification is
often subjective, based on human experience, and analysis of
a small fraction of the available data may result in a partial and
biased interpretation of unrest. For instance, it has been shown
that empirical methods used to forecast volcanic eruptions,
may fail due to the incompleteness of the seismic catalogues
[8].
Over the past decade, large computational resources have
become more widely available at reasonably low cost, and
machine learning and advanced signal processing algorithms
have emerged as tools for use in volcano-seismic monitoring
[9] [10]. This progress is parallel to advances in the investi-
gation of micro-seismicity [11], earthquake detection [12] and
other fields of the Earth Sciences [13]. A wealth of literature
exists on automatic detection and classification of volcano-
seismic signal, including algorithms based on signal properties
[14], dimensionality reduction [15], embedding vectors [16],
Gaussian Mixture Models (GMM) [17], Hidden Markov mod-
els (HMMs) [18] [19] and Artificial Neural Networks [10].
A large body of research has also explored the application
of Deep Learning (DL) algorithms for identification and
classification of earthquake signals. In particular, unsupervised
training has been shown to be effective for use with Deep
Neural Networks (DNN) [20]. Recurrent Neural Networks
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(RNNs) have also been used for the classification of volcano-
seismic data streams [21]. These workflows have, however,
been applied without performing any assessment of their
uncertainty. Reliability in adverse conditions is an important
consideration for real-time applications. Many investigators
have focused their efforts on improving earthquake classifi-
cation in order to increase the accuracy of pattern recognition
methods. Quantification of uncertainty, on the other hand,
can provide direct knowledge on the diversity of source
mechanisms, which ultimately could inform scientific inter-
pretations of volcanic unrest [22]. In this paper, we propose
a workflow for the classification of volcanic earthquakes,
enhanced by the integration of a Bayesian framework that
could provide fast uncertainty quantification at the seismic
waveform level. In particular, we explore the use of Bayesian
Deep Learning, which combines the flexibility of Bayesian
theory with the computational advantages of deep learning,
allowing rapid and robust Bayesian inference. This probabilis-
tic framework is applied to seismic data streams from two
volcanoes, Bezymianny (Kamchatka, Russia) and Mount St.
Helens (Washington, USA). St. Helens and Bezymianny are
two examples of active strato-volcanoes with similar andesitic
composition and morphology, located in similar tectonic en-
vironments, and characterized by intermediate-to-high explo-
sivity [3]. These volcanoes are excellent candidates to asses
whether the patterns detected by Bayesian Neural Networks
(BNNs) on one volcano, could be exported to other eruptive
scenarios. Our initial experiments are directed to understand
the behaviour of BNNs on these two separate volcanoes. After
that, we focus our effort into one unified framework that
is trained jointly, under label sparsity conditions (different
labels for each volcano), but same categorisation scheme.
These experiments would help to evaluate how BNNs classify
events that are related in frequency content but distinct in
seismic nature. For the new eruptive periods, we perform an
uncertainty analysis on the new data ranges to evaluate if
uncertainty estimations could be interpreted as a typical feature
associated to the lack of specific knowledge about the new
volcanological situation. The proposed workflow can capture
this information, yielding higher uncertainties estimates and
reduced recognition accuracy on later eruptive periods. The
framework is enhanced by exploring the complementarity
between transfer learning techniques and uncertainty quan-
tification. Specifically, we examine passing prior weights to
the new seismic period to assess if further improvements can
be obtained by merging knowledge at multiple scales. Our
framework allows the seismological community to tackle the
problem of data scarceness and demonstrates the robustness of
the proposed approach with more extensive seismic catalogues,
and on different volcanological conditions.

II. BAYESIAN DEEP LEARNING

A. Deep Neural Networks

Artificial Neural Networks (ANNs) are mathematical al-
gorithms designed for function approximation. We define
D = {(X,Y)} = (xi, yi)

N
i=1 as our dataset containing a

collection of N recorded seismic signals, xi, along with their

annotated labels yi. The output of an ANN, noted as y, is
computed through a non-linear transformation (hidden layer)
of the input data x. ANNs work well on well-defined problems
but lack the flexibility of modern deep learning techniques
to discover statistical regularities in high-dimensional datasets
[23]. Deep neural networks (DNNs) are defined as sets of fully
connected hidden layers, f(·), in which the output y = fW (x)
is parameterized by w = (w1, w2, ..., wn), known as weights.
On multi-class classification problems, class probabilities pc
are derived from the output layer of the DNN as:

pc(y = i|x,w) = f̃(xi;w) (1)

with f̃ the output of the softmax probability layer. The
softmax layer is defined as a normalized exponential function
which computes class probabilities p(c) from the last layer
output, o:

pc =
exp(oc)∑
k

exp(ok)
(2)

where k is the index over all classes and exp, the ex-
ponential function. The training of a deep model typically
consists of finding the optimum set of weights that maximizes
the likelihood distribution, p(y|x,w), that best explains our
observable data. This weights optimization is computed via
the backpropagation algorithm by measuring the discrepancies
between the labels and the predicted outputs [24].

B. Bayesian Neural Networks

In a classification problem, the probability output of softmax
layer alone (equation 2) could lead to over-confident predic-
tions for points out of the data distribution. In this context,
Bayesian neural networks (BNNs) are defined as ”artificial
neural networks in which a probability distribution is placed
over the network weights” [25]. BNNs do not compute a single
estimate of the weights w, but a probabilistic approximation
over all of them. This approximation allows a rigorous ap-
proach to tackle statistical approximation problems. Given a
volcano-seismic dataset, D and the likelihood p(y|x,w), the
posterior distribution of the network weights, p(w|D), can be
approximated using Bayesian inference:

p(w|D) =
p(y|x,w) ∗ p(w)

p(y|x) (3)

With p(y|x) known as the evidence and p(w) the prior
distribution over the weights, on a vector space w ∈ Ω. The
predictive distribution is computed as:

p(y∗|x∗, D) =

∫
Ω

p(y∗|x∗, w)p(w|D,w) (4)

With x∗ and y∗ the new input and output, respectively.
The computation of equation 4 requires the evaluation of an
intractable integral. First work by [26] described a Bayesian
inference framework based on a Laplace approximation of
the posterior. Work by [25] introduced Hamiltonian Monte
Carlo (HMC), an integration of Markov Chain Monte Carlo
(MCMC) and Hamiltonian dynamics to sample from the
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posterior distribution. However, the amount of time required
for computation limited their applicability to volcano-seismic
data. Variational inference (VI) algorithms cast the approxima-
tion of the posterior distribution as an optimisation problem
[27]; first, VI finds a set of variational distributions Q =
{qθ(w)} and select the closest qθ(w) to the true posterior dis-
tribution by computing the Kullback-Leibler (KL) divergence
between the two. This workflow permits the optimisation of
a cost function and batch learning, thus being suitable to be
applied in deep learning.

A large body of literature is devoted to finding fast and
accurate estimates of the posteriors using variational inference
[28]. Previous applications in BNNs include Stochastic Gradi-
ent Langevin Dynamics (SGLD) [29], Bayes by Backprop [30]
and the reparametrisation trick [31]. However, they still suffer
from scalability or computational issues [22]. Bayesian Deep
Learning arises as the intersection of Bayesian methods with
deep learning. They offer principled uncertainty estimates by
combining the hierarchical feature learning of deep networks
with the flexibility of Bayesian theory. Recent work by [32]
links the dropout regularisation technique with variational
learning, enabling an efficient posterior approximation by
sampling from multiple dropout masks.

C. Variational dropout

Dropout is ANN regularization technique based on random
de-activations of the network weights for a given probability
p [33]. The randomness of this technique has been associated
with VI in BNNs: the variational family Q = {qθ(w)} can be
sampled from a Bernoulli distribution to parametrize the neural
network weights, W [32]. Therefore, the cost function of a
BNN can be used to approximate the posterior distribution,
with p, the drop-out probability. Once the network has been
trained, the predictive function can be obtained by running
T stochastics sampling steps from the dropout variational
distribution. In this case, equation 4 can be approximated as:

p(y = c|x) ≈ 1

T

T∑
i=1

f̃ (5)

With f̃ the probabilistic output of the softmax layer. By
randomly dropping weights with probability p at test time,
we ensure that an ensemble of neural networks with weight
dropout distribution q(w|θ) can approximate the posterior
over the weights p(w|D). This approximation is based
on how the dropout strengthen network weights that are
essential during the learning process, modelling uncertainty
throughout the information dropped by de-activated weights
from an ensemble of models [32]. Therefore, deep learning
could improve the learned representation of volcano-seismic
signals whilst gathering uncertainty estimates under a flexible
Bayesian methodology. The prediction of probabilities from
deep networks, when plugged into a Bayesian framework,
allows the fast computation of uncertainty estimation on real
time.

III. VOLCANO-SEISMIC UNCERTAINTY MONITORING

The wealth of seismic-data recorded during an eruption
requires accurate classification. The morphology, tectonic en-
vironment and composition of volcanoes contribute to shap-
ing seismic signal, for example, due to attenuation of high-
frequency energy. Current machine learning monitoring sys-
tems have highlighted topography changes or seismic varia-
tions of the medium as a significant influence on detection
performance. Concretely [37] identified a substantial change
in the physical mechanism of the events recorded at Piton
de La Fournaise as the primary factor influencing the predic-
tive performance. Similarly, [9] describes seismicity changes
over time at Ubinas volcano as the main accuracy decay
across eruptive periods. From a machine learning perspective,
changes within the seismic environment produce probability
distributions that are very distinct from the original training
data. This leads to oversimplified assumptions that do not
reflect the current situation, thus decreasing detection and
classification under-performance. As a result, these statistical
limitations could undermine the capacity to produce an ob-
jective methodology to consistently classify signals with high-
levels of confidence, which ultimately can be extended to more
refined early-warning methodologies [8].

Mathematically, two types of uncertainties can be defined:
epistemic and aleatory. Epistemic uncertainty is associated
with the absence of knowledge about the natural process and
aleatory uncertainty is connected to the natural variability
of volcanic unrest [22]. Quantifying aleatory uncertainty in
a volcanic environment can be very challenging, as it is a
direct consequence of the inherent non-linearity of volcanic
processes. However, epistemic uncertainty could be quantified
from the randomness of statistical parameters and can be
characterised as the uncertainty linked to the neural network
weights θ. Here, we propose to evaluate seismic uncertainty
at a waveform level, using BNNs as stochastic parsers from
raw signals into event probabilities. These probabilities are
sampled from the approximated variational dropout distribu-
tion Q, associating the uncertainty of the statistical parameters
with the current dynamic of a volcano, i.e., the interaction
of the seismic event with the environment. Thus, epistemic
uncertainty for C classes can be computed from the per-class
probability vector pc using the entropy H(p) as generalised
measured of uncertainty [38]:

H(p) = −
C∑

c=1

pc log pc. (6)

For both models, this probability vector pc is the result
of principled sampling from the variational distribution Q.
Therefore, we do not obtain a single point estimate of the
event, but a probabilistic representation associated with the
unknown knowledge of the model for the selected event. In a
multi-classification setting, these estimations provide not only
the annotation (label) of the waveform but also a probabilistic
assessment of how far from the original data distribution our
estimates are. Information of individual events is not missed,
and we can quantify potential seismic variations that are asso-
ciated to changes in the overall data distributions: BNNs can
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Table I
MOST REPRESENTATIVE VOLCANO-SEISMIC SCIENTIFIC LABELS ASSOCIATED WITH THEIR GEOPHYSICAL INTERPRETATION

Mc. Nutt [1] Minakami [34] Other Names [35] [36] Frequency (Hz) [9] Duration
(s) [9] Some Source Models [1] [7] [6] [5] [9]

High Frequency (HF) A-Type Volcano Tectonic Earthquakes,
Tectonic, Short Period Earthquakes >5.0 20-60

Shear failure or slip on faults,
usually as swarms within the

volcanic edifice.

Low Frequency (LF) B-Type Long Period Event, Volcanic,
Long Coda Event, Tornillo 1.0 - 5.0 10-60 Fluid driven cracks, pressurization processes

(bubbles), or attenuated waves.
Mixed Frequency (MX) - Hybrid Event, Medium Frequency 1.0 - 12.0 20-60 Mixture of processes, e.g: cracks and fluids

Explosion Quake (EXP) Explosion Quake Explosion, Volcanic Explosion >10.0 <10.0 Accelerated emission of gas and
debris to the atmosphere

Volcanic Tremor (TRE) Volcanic Tremor Volcanic Tremor,
Harmonic Tremor, 1.0 - 12.0 150 Pressure disturbance, gas emissions,

debris processes or pyroclastic flows

detect and classify the event while providing high uncertainty,
indicating that there is a change in the probability distribution
of seismic events. The association of weight uncertainty to
seismic changes would lead to more refined seismic catalogs
and improved assessment of volcanic hazards: not only the
events are processed, but data distribution shifts can be tracked
between seismic snapshots.

A. Uncertainty and Transfer Learning

Volcano-seismic monitoring systems based on machine
learning are very accurate on selected periods but tend to
decrease its performance given the data distribution shifts over
time, reflecting the evolving volcanic environments [9][37].
This leads to continuous manual analysis of the new eruptive
periods in order to produce datasets large enough to cover
the novel range of data distributions. Hence, the insufficient
amount of new labelled data, along with the time needed to
analyse and retrain monitoring systems are the main factors
that limit the exportability across seismic campaigns in vol-
canological observatories. Transfer Learning could relieve the
data scarcity problem and the time needed to react to these
changes [39]. Successful applications of transfer learning in
a number of disciplines have helped to identify the essential
knowledge that needs to be transferred across domains and
tasks; great improvements in the performance of these systems
have been achieved, for example, in music [40], analyses of
electroencephalograms [41] and geophysical image process-
ing [42]. However, given the extremely dynamic nature of
volcano-seismic sources, it is advisable to not apply brute-
force transfer learning, but a more refined approach to avoid
negative transfer learning, i.e, the decrease of accuracy in the
new domain [43].

In this context, we link transfer learning and epistemic
uncertainty in order to mitigate the generalisation error gap
between data distributions whilst detecting at the same time
subtle differences in the new seismic data. This would yield
more polished monitoring systems, able to quantify uncer-
tainty, detect statistically meaningful changes and help analysts
to build large-scale, high-quality annotated datasets.

IV. SEISMO-VOLCANIC DATASETS

In volcano seismology, there is not a uniform way to classify
earthquake signals. Waveforms are classified based on a set
of properties measured in the time or frequency domain.
Table I shows a summary of earthquake classifications and

Table II
NUMBER OF EVENTS FOR BEZYMIANNY AND ST.HELENS

VOLCANOES, COVERING BOTH ERUPTIVE PERIODS

Labels St. Helens Bezymianny
2004-2005

(pre-eruptive)
2005-2006

(post-eruptive)
2007-2008

(pre-eruptive)
2008-2009

(post-eruptive)
HF 8353 1437 6929 10617
LF 8423 9310 8523 2843
MX 8525 8357 9464 8715

Total 25301 19104 24916 22175

possible source models that have been traditionally attributed
to them. Our Bayesian framework will be focused on the
identification and classification of the three most representative
classes of earthquakes that are encountered in a volcanic en-
vironment, low-, high-, and mixed-frequency events. Figure 1
illustrates the typical frequency content for these three classes
of volcano-seismic signals. We will test the performances of
our Bayesian workflow on data from two volcanoes, Mt. St.
Helens, USA, and Bezymianny, Russia. In Table II, we show
the composition and per-class distribution of events for the
selected volcanoes. In summary, our database includes:

1) Low frequency events (LF) (Figure 1.a): This type of
earthquakes deliver energy mainly in the 0.5-5 Hz band,
and have typical durations of ≈25.0 seconds.

2) High frequency events (HF) (Figure 1.b): They are char-
acterized by broadband spectra, with significant energy
delivered well above 5Hz, clear P and S waves onsets,
and typical durations of less than 25.0 seconds.

3) Mixed frequency events (MF) (Figure 1.c): They are
characterized by energy delivered across the spectrum of
both LF and HF events, across the 1-20 Hz band.

This compact classification scheme allows avoiding label
sparsity. Other events such as tremor, explosions, rockfalls,
ice-quakes or regional earthquakes are not considered in this
work.

We focus our study on Mount St. Helens and Bezymianny
volcanoes, during the eruptive periods of 2004-2005 and 2007-
2008, respectively. Prior waveform analysis at Bezymianny
and Mount St. Helens, [44] suggests similar seismic patterns
at the two volcanoes prior to explosive activity, and similar
waveform characteristics in terms of amplitude, duration and
standard deviation from the average signal.

Following previous work of [44] and [3], we used, for initial
classification, data from stations BELO, BESA and BERG
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Figure 1. Waveform and spectrograms for three of the most representative volcano-seismic signals [1]. The frequency content of the events shifts from higher
(a) to lower (c) frequencies. In the Mixed Frequency (MX) case (b), notice frequencies are mixed between lower and higher part of the frequency bands,
with a broad spectra.

at Bezymianny, and from stations S02, S06 and S15 (dome
reactivation) at St. Helens. In order to assess how BNNs
could transfer seismic knowledge across eruptive crisis, and
if uncertainty can be quantified during unrest periods and
post-eruptive crisis, we analysed BELO, BESA and BERG
stations from 2008-2009 at Bezymianny volcano and S03
and S07 and S15 stations from the 2005-2006 eruption at
St. Helens (spine destruction, stations S02 and S06 were not
available during this period).

V. EXPERIMENTAL SETUP

In this section, we aim to establish if BNNs are suitable
for volcano-seismic monitoring and, for each volcano, if
epistemic uncertainty could offer insights into volcanic and
seismic unrest. Figure 2 summarises the implemented data
pre-processing workflow and experiments. We implemented
the same probabilistic framework as described in section II
with St. Helens and Bezymianny data from Table II. We
evaluate transfer learning and uncertainty quantification on
a new eruptive period by selecting only the best model, on
both 6 classes from previous trained periods.

A. Data pre-processing and feature extraction

The raw continuous data streams for each volcano, at
each of the selected stations, were pre-processed in order to
extract events of interest using the REMOS (Recursive Entropy
Method of Segmentation) algorithm [45]. Each extracted event
is later characterised using a well-tested set of features already
investigated by us in several volcanic-scenarios, including
Deception Island [18], Etna [14] and Stromboli [46]. The
REMOS algorithm performs data segmentation and semi-
supervised categorisation of events into classes based on their

frequency index (FI), the ratio of energy within low- and high-
frequency bands:

FI = log10

(
Ehigh
Elow

)
(7)

where Ehigh and Elow are the spectral energy in the, high
([6−12]Hz) and low ([1−5]Hz) frequency bands. All events
detected and classified by REMOS were visually inspected
using a custom Python Graphical User Interface (GUI) to
confirm or modify the initial label of the event. As a result,
complete and annotated catalogues are generated (see Table
II). Data pre-processing and feature extraction pipelines are
implemented using the signal processing modules in the well-
known Obspy seismic toolbox [47] on the detected waveform.
Following the same procedure as defined in previous work
by [14], we derived a set of 13 cepstral coefficients on a
logarithmic scale for the data; first, using a Hamming window
(4.0s), the spectrum of the seismic signal is computed, and an
log-spaced filterbank (16 triangular weighting function, 50%
adjacency) is designed to yield an individual average of the
spectral frequencies. Cepstral analysis is performed and 13
cepstral coefficients are then derived for each earthquake in
the database [48].

B. Evaluation metric

Here we use confusion matrices and accuracy (Acc) to
evaluate the performance of the BNNs to classify volcano-
seismic events. We compute the Acc as:

Acc (%) =
Number of Correct Predictions

(Total Number of Events)
∗ 100 (8)



6

!!!

St.  Helens
(2004-2005)

Bezymianny
(2007-2008)

Feature 
Extraction

Feature 
Extraction

Selected Lables
High Frequency (HF)
LowFrequency (LF)

MixedFrequency (MF)

St. Helens (SH_XX)

Bezymianny (_XX)

General 
Performance

SH_0405
{HF,LF,MX}

BZ_0708
{HF,LF,MX}

Joint Datasets

All_3_ Classes
{HF,LF,MX}

All_6_ Classes
{HF_SH,LF_SH,
MX_SH,HF_BZ,
LF_BZ, MX_BZ}

BNN Training and Testing
Transfer Learning and Uncertainty

BNN
Best Model

All_6_classes

Feature
Extraction

Feature
Extraction

* BNN trained with MC-Dropout.
For each datasets, independent 

experiments are performed St.  Helens
(2005-2006)

Bezymianny
(2008-2009)

Figure 2. Experimental framework implemented in this work. For each volcano, frequency features are computed from pre-processed raw signals. Four
datasets are created: SH (St.Helens), BZ (Bezymianny), similar labels (both 3 classes) and separately (both 6 classes). Best models from joint datasets are
tested with different eruptive periods to evaluate transfer learning and uncertainty quantification capabilities of the BNN.

The Acc is the standard measure of overall effectiveness for
a classifier. Moreover, we compute precision (PR) and recall
(RC) metrics as:

Precision (PR) =
TruePositives

(TruePositives+ False Positives)
(9)

Recall (RC) =
TruePositives

(TruePositives+ FalseNegatives)
(10)

For a given model, these metrics can diagnose how many
events are correctly detected and classified. In practice, recall
measures the proportion of relevant detected seismic events,
i.e, how good the model can detect events from a given class.
Precision measures the refinement of statistical model, i.e,
how good the classifier can discriminate specific instances
[49]. Both metrics offer more explicit information about the
number of miss-classified events than accuracy alone and are
accepted performance measures in volcano-seismic monitoring
[46]. The weighted average of precision and recall, known as
F1 score, can be computed as:

F1 =
2 ∗ (RC ∗ PR)

(RC + PR)
∗ 100% (11)

F1 score provides an informative trade-off measure between
the PR and RC. These metrics are of particular interest in
seismology, as RC is related to a sensitivity of the system (how
many earthquakes is able to detect), and PR to specificity (how
many earthquakes are correctly classified), thus offering more
global information than accuracy itself.

C. Model Implementations

For each of the volcano-seismic datasets in Table II, we
perform data pre-processing as described in subsection V-B.
Once the features are extracted, we divide each dataset into
training (80%), and test (20%) sets, and different BNNs are
trained independently. Further, joint datasets with events from
both volcanoes are used to train two independent BNNs: a
mixed (Both 3 dataset) and sparse (Both 6 dataset). All

BNNs models are initialised with Glorot Initialization. Hyper-
parameter fine-tuning is based on a Bayesian optimisation
towards best configurations, followed by a random search
over the most promising hyperparameters [50]. All models are
optimised with Adam [51], initial learning rate of 0.01, ReLU
activation function, mini-batch size set of 32, and dropout
probability at (p = 0.25). The cross-entropy loss is used as
cost function. The training stage is set to 50 epochs, with
early-stopping set to a patience interval of 5 epochs in order
to mitigate overfitting. MC-Dropout has been implemented
as described in Section II. The transfer learning setting fol-
lows a similar procedure: Using the best obtained models,
volcano-seismic events from 2008 at Bezymianny and 2005
at St. Helens are pre-processed and extracted as described in
subsection V-B. Our BNN framework is implemented entirely
in Tensorflow, and simulations executed in an NVIDIA Tesla
P40 GPU, 24 GB GPU memory and 32 GB RAM.

VI. RESULTS AND DISCUSSIONS

Our data analysis is divided into three steps (see Figure
2). Firstly, we analyse each volcano independently, i.e., we
test the performance of the BNN to classify the three selected
types of volcano-seismic events (LF, MF and HF) separately
for each volcano. In the second step, we explore how the BNN
is able to recognise the signals when all labelled signals from
both volcanoes scenarios are merged together. Finally, after
a second joint training of all events from. both volcanoes,
we investigate the associated uncertainties. Since we use data
that change over time from the two volcanoes, pre and post
an eruption, we assess how these signals changed, and the
associated uncertainty in the recognition that can be interpreted
as a change in the seismic source mechanisms.

A. General performance of the system

After the pre-processing analysis performed in the previous
section, we selected a large, high-quality and balanced dataset
for each volcano. For St. Helens we identified 25,301 seismic
events, and for Bezymianny 24,916. The size of the two
datasets is similar, allowing to generalise our observations.
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Table III
AVERAGED CONFUSION MATRICES AND PERFORMANCE (PR, RC, F1) FOR

ST.HELENS (a) AND BEZYMIANNY (b) VOLCANOES

(a)

True
Pred. HF LF MX PR RC F1

HF 2025 0 82 0.97 0.96 0.96
LF 0 1986 88 0.98 0.96 0.96
MX 52 48 2043 0.92 0.95 0.93
Overall Accuracy: 95.7%, Mean Epistemic Unc.: 0.10

(b)

True
Pred. HF LF MX PR RC F1

HF 1628 0 87 0.95 0.95 0.95
LF 0 2305 75 0.96 0.97 0.96
MX 93 84 2214 0.93 0.93 0.93
Overall Accuracy: 94.5%, Mean Epistemic Unc.: 0.12

Table IV
AVERAGE CONFUSION MATRIX (a) AND PERFORMANCE (PR, RC, F1) (b)

FOR BOTH VOLCANOES, SAME LABELS

(a) (b)

True
Pred. HF LF MX PR RC F1

HF 3681 0 172 0.94 0.96 0.95
LF 0 4035 151 0.97 0.96 0.96
MX 224 130 4153 0.93 0.92 0.92

Overall Acc,: 94.6 % Mean Epistemic Unc.: 0.13

Table III (a) and (b) presents the averaged Acc, confu-
sion matrix, PR, RC and F1 metrics for St. Helens and
Bezymianny volcano, respectively. The overall mean of the
epistemic uncertainty is also reported. Being this our baseline
system, notice that all optimised architectures result in high-
performance when the datasets are independently studied. The
accuracy remains high, with 95.7% for St. Helens (SH 0405)
and 94.1% for Bezymianny (BZ 0506). Precision (PR) and
recall (RC) remain high for all classes in both datasets,
which highlights that the feature vector fed to the neural
network carries rich information to exploit. From Table III,
the confusion matrix reveals that MX events are the only
events that present fluctuations among the classes. Due to their
spectral characteristics, LF and HF were never misclassified
at both volcanoes, demonstrating the high quality of the
characterization process. In general MX events, also known as
hybrid events, (see Table I) share characteristics of both HF
and LF events. We infer that the observed confusion matrix
is associated with both attenuation effects and source effects,
rather than incorrect initial labelling.

B. Performance on joint datasets

In this section, we explore the exportability of the labelled
database and assess whether it is necessary to re-train the
systems with new data when it is used at a new volcano. For
this purpose, we merge our test datasets and perform again
the BNN analysis.

In the first stage of this analysis, we merged the two
datasets (SH 0405 and BZ 0809) in order to train a unique
BNN, independently of the origin of the signal. In Table IV
(a) we report the confusion matrix, PR, RC, F1, averaged
accuracy (Acc.) and epistemic uncertainty for both datasets,

when labels are unified (Both 3 classes). It is interesting to
note that the previous trend is maintained when labels from
both volcanoes are merged together, with a slight decrease
in accuracy and an increment in uncertainty: more events
are incorporated from distinct sources, forcing the network
to learn a more complex data distribution. We note that
RC and PR are elevated for HF and LF events, whereas
the MX events present a lower RC but higher PR. These
results reveal that only events that are correctly detected are
classified with great precision, which can be translated into
a decreased number of false positives for the three classes.
This idea is highlighted by the LF events, as they can be
discriminated with higher RC and PR. Therefore, the first
observation is the demonstration that BNN is a powerful
tool to discriminate distinct seismic events, even if they
have a different origin: the only condition is to perform an
accurate pre-processing and data labelling. Hence, we can
infer that the system is exportable, i.e. the experience from
one volcano is transferable to a new one, if the seed database
was generated with high-quality and large number of data.

In order to explore differences between volcanoes, we
performed the same test, but differentiating the labelled
seismic classes according to their origin, here separating them
between the two test volcanoes. Table V (a) and (b) show
the recognition performance when labels are separated for
each volcano. These results highlight an important property:
increasing label sparsity could decrease performance, but
provide geophysical insight about the seismic events. From
Table V (b), whilst the overall performance of the BNN is
good in terms of PR, RC and F1, the trend with respect
the unified dataset presents subtle differences. First, RC and
PR remains high for LF events. Second, MX events have
similar recall at both volcanoes, 0.91, but lower precision at
Bezymianny volcano. Similarly, the recall and precision of
HF events at Bezymianny volcano is lower when compared
to St. Helens. This could indicate that this seismic classes
share frequency properties across the two volcanoes, as RC
magnitudes are influenced by the seismic events, yielding
a less sensitive system in the case HF events, but with
increased PR. Similarly, PR and RC in the mixed frequency
events, BZ MX and SH MX , are lower when compared
to the combined dataset: the system detects less mixed
frequency events, but classify them with higher precision,
and can discern their origin.

The confusion matrix for the sparse labels
(Both 6 classes) in Table V (a) suggests that even if
the BNN was able to merge classes previously when applied
separately, is able to determine at which volcano the seismic
signal was generated. In general HF events are interpreted
as the result of brittle failure as a consequence of stress
accumulation. Source depth and its mechanisms, and path
effects, influence the final characteristic of the recorded
waveform; this allows differentiating HF earthquakes with
different sources, even at the same volcano.

C. Epistemic Uncertainty
In this section we introduce how uncertainties can be

interpreted as a consequence of similarities and differences
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Table V
AVERAGED CONFUSION MATRIX a, AND PERFORMANCE (PR, RC, F1) (b) FOR JOINT DATASET, SPARSE LABELS.

(a) (b)

True
Pred. HF SH LF SH MX SH HF BZ LF BZ MX BZ PR RC F1

HF SH 2003 0 63 63 0 1 0.94 0.94 0.94
LF SH 0 1959 66 0 18 1 0.95 0.96 0.95
MX SH 88 66 1927 10 2 28 0.90 0.91 0.90
HF BZ 33 0 25 1533 0 157 0.91 0.88 0.89
LF BZ 0 39 6 0 1961 117 0.95 0.93 0.93
MX BZ 2 2 48 88 69 2180 0.88 0.91 0.89

Overall Accuracy: 92.08% Mean Epistemic Unc.: 0.20

Volcano-Seismic Labels

SH_HF SH_LF SH_MX BZ_HF BZ_LF BZ_MX
0.0

0.2

0.4

0.6

0.8
St. Helens 2005-2006
Bezymianny 2008-2009

Pr
ob

ab
ili

tie
s

Figure 3. Per-class overall mean and variance within predictions for (a) St.Helens 2005-2006 new eruptive period, blue line (b) Bezymianny 2008-2009
post-eruptive period, red line. The axis order is the same as the assigned categorical labels in our training data. By following the lines, notice that the
probability of assignment between volcanoes is very low, but high in the case of the same volcano.

between volcanoes, specific seismic source, and the general
character of unrest.

As described in the previous sections, we used seismic
signals from two similar volcanoes during pre- and post-
eruption periods. In the previous analysis, we used for each
volcano the whole data set and observed a high degree of
success of the BNN to recognise and classify seismic events,
i.e. BNN is a powerful tool both for all data from each volcano,
and for exporting knowledge for both and separated labels.
A deep and detailed frequency analysis of the seismic signals
shows that some characteristics of the seismic signals changed
after eruptive activity took place. We focus our analysis on the
FI. Figure 3 depicts the per-class overall mean and variance
within predictions, and in Figure 4, we plot the frequency
index distribution before and after eruption for both volcanoes
and the whole data set. In Table VI we report the accuracy,
along with the epistemic uncertainty, for the new eruptive
periods, before and after the application of the transfer learning
methodology. From Figure 4, the differences are obvious;
these differences are likely associated with changes within
the volcanoes. Thus, the BNN is able to quantify variations
in the seismic signals, assigning greater variance in their
predictions, even if labels are kept the same. Moreover, despite
the recognition results at Table VI, higher accuracy on blind-
test in a new volcano-seismic dataset does not imply greater

Table VI
EPISTEMIC UNCERTAINTY AND ACCURACY (%) FOR THE NEW ERUPTIVE

DATASETS

Dataset Blind Test After Transfer Learning
Acc (%) Epistemic Acc (%) Epistemic

Both post-eruptive 84.90 0.27 93.39 0.16
Bezy 0809 90.82 0.23 93.88 0.17

St.Helens 0506 80.08 0.32 95.13 0.14

class probability. Therefore, the models are able to correctly
classify events, but they do yield per-class greater variances
and lower probabilities. Epistemic uncertainty has two roles:
quantification of dataset distribution, and its association to
volcano-seismic changes, such as those reported in [3] and
[44]. In Figure 3, we plotted the evolution of the main
frequency indices for each class and volcano during both,
pre- and post-eruptive stage. The shift in the frequency index
according to activity is a clear consequence of a change in the
physical properties of the sources and medium.

D. Transfer Learning

In this last experiment, we test the capabilities of the BNN
(Both 6 classes) to learn with data from new eruptive peri-
ods, aiming to investigate if by fine-tuning the weights of the
pre-trained network we could classify new events whilst de-
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Figure 4. Frequency distribution variations for the two selected eruptive periods on Bezymianny (upper part) and St. Helens (lower part) volcanoes. Notice
that, after the main eruptions, the frequency content in all selected events changes, shifting the frequency index distribution.

Table VII
AVERAGED CONFUSION MATRIX BEFORE (A) AND AFTER (B) TRANSFER LEARNING, FOR THE POST-ERUPTIVE JOINT DATA TEST DISTRIBUTION (70%)

(a) (b)

True
Pred. SH HF SH LF SH MX BH HF BH LF BH MX SH HF SH LF SH MX BH HF BH LF BH MX

SH HF 716 29 38 14 178 4 810 0 46 123 0 0
SH LF 2 5201 250 0 979 7 0 6061 349 0 29 0
SH MX 114 2087 2480 4 817 226 39 218 5405 30 2 34
BH HF 340 8 47 3834 312 2830 56 0 56 7061 1 197
BH LF 1 34 1 0 1953 28 0 36 19 0 1661 301
BH MX 24 23 53 88 1620 4300 3 0 83 459 76 5487

creasing the uncertainty of the models. Transfer learning was
implemented following procedures similar to those described
in Section V. Table VI reports the accuracy and the epistemic
uncertainty on both post-eruption data (see Table II), on a
blind test prediction, and after the transfer learning procedure.
Firstly, we notice that as the frequency distribution of the
events has changed, the accuracy drops in our dataset, and
uncertainty remains high. When the seismic source changes
(see Figure 3), the overall uncertainty increases, for each
volcano, and on both datasets. Therefore, given that our feature
vector is trained on pure frequency attributes, changes within
the frequency bands of the events can be perceived through
the uncertainties associated with the BNN model, resulting in
higher uncertainties. The frequency characteristics previously
learnt by the probabilistic weights of the BNNs are transferable
to the new eruptive period, helping the BNN to adapt itself
to the new changes in frequency bands. This yields higher
accuracy and lower epistemic uncertainty. Additionally, Table
VI (b), the confusion matrix, demonstrates the transfer learning
capabilities of the BNN, trained on 25% of the training data,
and 75 % test partition. This simulates the condition in which
only a small subset of the new data is available for re-training,
which is often the situation during a new eruptive crisis. Note

that the sparsity of the matrix is reduced, and more events are
correctly classified. Additionally, the exportability is manifest
given that many of the errors are placed on similar type of
events (MX , HF , LF ), but at different volcanoes. Only
the recognized LF events at Bezymianny are lower when
compared to the blind-test case, being confused with LF of
Mt. St. Helens. This is indicative that some of these events
share similar properties at the two volcanoes, which was also
reported by [44].

The lower number of miss-classified events, jointly with
lower epistemic uncertainty, and higher recognition accuracy
highlights an important point: there is no need to train an
early-warning system from scratch, but it is possible to export
systems that are related in other to simplify the deployment.
Considering the dynamics of learning, the selective reuse of
the prior model to unlearn irrelevant information from the
previous datasets help the new model to exploit at least some
common structure on the new datasets (new eruptive periods).
Therefore, this new fine-tuning helps to improve recognition
results (see Table VI) and to decrease data uncertainty, and
thus, to mitigate issues with volcano-seismic data scarcity. We
are proving that BNN are a powerful tool that, allow exporting
knowledge from one volcano, or one stage to another and,
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simultaneously, are capable of tracking how signals evolve
over time from a probabilistic perspective, even for mixed,
sparse, datasets.

VII. CONCLUSION AND FUTURE WORK

In this work, we investigated a new Bayesian approach for
application to volcano-seismic monitoring. We focused our
research on finding new ways to exploit uncertainties derived
from a Bayesian deep learning framework as a realistic unrest
detector. Two different eruptive periods at two volcanoes,
Mount St. Helens and Bezymianny, were studied. Results
demonstrate that BNNs are able to detect and recognise
volcano-seismic signals with outstanding performance for the
two volcanoes, separately. Moreover, when the two datasets are
combined, the BNN attains an excellent performance in terms
of PR, RC and Accuracy, and is able to classify events from
the two volcanoes, based on their frequency characteristics.
Additionally, when the datasets are separated according to their
volcanic origin, the BNN is able to detect the volcano where
signals were generated.

The proposed approach provides uncertainty representation
related to changes in the dynamics of both volcanoes. Further,
the flexibility of Deep Learning, when viewed through the
lens of Bayesian theory, allow us to tackle the problem of
data scarcity from monitoring networks with no prior data
available. We illustrated frequency content variations during
pre- and post-eruptive periods, which are well-sensed by the
epistemic uncertainty associated to the BNNs a-priori weights.
The epistemic uncertainty derived from the BNN weights has
two main implications: it stands not only as a feature to be
considered as an unrest precursor, but also as a threshold level
to determine when transfer learning algorithms should be used.

The exploration of monitoring systems from the perspective
of Bayesian theory has highlighted the advantages of their
deployment, and how the transfer of learned features with
appropriate datasets could mitigate the data scarcity problem,
even under intense volcanic activity. Our results can be ex-
ported to other volcanoes worldwide.
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