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1Abstract: There has been growing interest in applying 

the artificial neural network (ANN) approach in structural 
system identification and health monitoring. The learning 
process of neural network can be more robust when 
presented in the Bayesian framework, and rational 
architecture of the Bayesian neural network is critical to its 
performance. Apart from number of hidden neurons, the 
specific forms of the transfer functions in both hidden and 
output layers are also crucially important. To our best 
knowledge, however, the simultaneous design of proper 
number of hidden neurons, and specific forms of hidden- 
and output-layer transfer functions has not yet been 
reported in terms of the Bayesian neural network. It’s even 
more challenging when the transfer functions of both layers 
are parameterized instead of using fixed shape forms. This 
paper proposes a tailor-made algorithm for efficiently 
designing the appropriate architecture of Bayesian neural 
network with simultaneously optimized hidden neuron 
number and custom transfer functions in both hidden and 
output layers. To cooperate with the proposed algorithm, 
both the Jacobian of network function and Hessian of the 
negative logarithm of weight posterior are derived 
analytically by matrix calculus. This is much more accurate 
and efficient than the finite difference approximation, and 
also vital for properly designing the Bayesian neural 
network architecture as well as further quantifying the 
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confidence interval of network prediction. The validity and 
efficiency of proposed methodology is verified through 
probabilistic finite element (FE) model updating of a 
pedestrian bridge by using the field measurement data. 
 

1 INTRODUCTION 
 

The FE model updating method has become a prevalent 
technique utilized in structural system identification and 
health monitoring. The accuracy of FE model is essential 
for ensuring its successful implementation. However, due to 
assumption and uncertainty arisen from the theoretical 
hypothesis, boundary condition, and geometric and material 
properties, there is an unavoidable mismatching between 
the measured and model-predicted dynamic characteristics. 
Thus, the FE model must be adjusted to improve its 
matching quality, which is generally an inverse process and 
known as the FE model updating. There is a strong interest 
in developing the FE model updating methods based on 
vibration measurements over the past few decades (Friswell 
and Mottershead, 1995), which have been applied to a 
variety of structural systems and components, such as 
beams (Levin and Lieven, 1998; Teughels et al., 2003; 
Simoen et al., 2015), trusses and frames (Adeli and Cheng, 
1993; Katafygiotis and Beck, 1998; Law et al., 2001; Adeli 
and Jiang, 2006; Yin et al., 2009; Yu and Yin, 2010; Yuen, 
2010; Boulkaibet et al., 2015; Yin et al., 2017; Oh et al., 
2017), bridges (Brownjohn, 2003; Jaish and Ren, 2007; 
Jensen et al., 2014; Shabbir and Omenzetter, 2015; Park, et 
al., 2017), highrise and historic buildings (Jiang and Adeli, 
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2005; Astroza et al., 2016; Torres et al., 2017), railway 
sleepers (Lam et al., 2014), pipelines (Zhu et al., 2008; Yin 
et al., 2017; Yin et al., 2019), aerospace structures 
(Mottershead et al., 2011; Stochino et al., 2017), etc. in 
diverse engineering fields. 

 Most of the methods mentioned above solve the inverse 
problem of adjusting model parameters by minimizing the 
difference between the model-predicted and measured 
dynamic properties. As repeated solution of large scale 
eigenvalue problem is generally required in this process, the 
computational cost will become unaffordable when dealing 
with complex models with large amount of degrees of 
freedom. This inverse problem can, however, be efficiently 
transformed to a forward one that is significantly easier to 
be handled by the ANN approach. Although not specifically 
developed for the model updating problem, the excellent 
capability of pattern matching makes the ANN approach to 
be a very promising tool for this purpose. 

For system identification and health monitoring of 
structures, the multi-layer neural networks are widely 
utilized in the literature (Adeli 2001; Sohn, et al., 2004; 
Lam and Ng, 2008; Adeli and Jiang, 2009; Arangio and 
Beck, 2012; Sirca & Adeli, 2012; Hakim et al., 2015; 
Chang et al., 2018; Yin and Zhu, 2018), and currently, deep 
learning neural networks have also begun to be applied in 
this area (Abdeljaber et al., 2017, Cha et al., 2017, Lin et al., 
2017, Grande et al., 2017; Gao et al., 2018; Wang et al., 
2018; Yang et al., 2018). In this paper, the commonly used 
multi-layer feedforward neural networks are investigated, 
and they have been confirmed to be able to approximate 
any functional relationship between inputs and outputs with 
a single hidden layer (Cybenko, 1989). It’s also well 
recognized that, for the complexity of network with single 
hidden layer, the number of hidden neurons have a 
significant impact on the ANN training process and the 
performance of trained ANN, especially for complex 
function fittings, such as the FE model updating problem. 
Too small a hidden neuron number will result in a poor-
quality network that fails to reveal the essential 
characteristics of training data, whereas too large a number 
might cause the output of the neural network to fluctuate 
within the area between training data points. Thus, 
reasonably designing the network architecture with an 
appropriate complexity is essential to guarantee the 
successful implementation of ANN-based model updating. 
However, in practice, the ANN architecture is generally 
determined only by rule of thumb or experience, and few 
publications addressed the ANN design issue in the area of 
structural system identification and health monitoring  
(Lam, et al., 2006; Yuen and Lam, 2006; Lam and Ng, 2008; 
Arangio and Beck, 2012; Yin and Zhu, 2018). 

It is noted that the traditional ANN approach simply 
minimizes the sum of squared errors between the network 
output and the target variables to estimate the network 
weights and biases from the training data. In order to get 

better performance, the learning process in a neural network 
can be elaborated in the Bayesian statistical framework by 
incorporating the prior information about the network 
parameters, leading to the concept of Bayesian neural 
network that is more robust in both the training and 
prediction process than the traditional ANN. Beginning 
with the early research activities relevant to the Bayesian 
neural network (Buntine and Weigend, 1991; MacKay, 
1992), the application of Bayesian inference to the area of 
neural network research has received more and more 
attention (MacKay, 1994; Neal, 1996; Lampinen and 
Vethari, 2001; Barber, 2002; Lee, 2004; Arangio and Beck, 
2012; Yin and Zhu, 2018). Due to the importance of neural 
network design, attention has been paid to the reasonable 
choice of the number of hidden neurons for the Bayesian 
neural network (Arangio and Beck, 2012). Apart from the 
number of hidden neurons, specific forms of transfer (or 
activation) functions and hyperparameters also have a non-
negligible effect on the network performance (Lam and Ng, 
2008; Snoek et al. 2012; Yin and Zhu, 2018). To the best of 
our knowledge, however, for Bayesian neural network, the 
simultaneous design of appropriate hidden neuron number, 
together with the specific forms of transfer functions in 
both the hidden and output layers has not been reported yet 
in previous research works. The goal becomes quite 
cumbersome and more challenging when the transfer 
functions of both layers are generalized to be a family of 
parameterized functions as compared to the fixed shape 
forms. In addition, the most of publications related to the 
predictive output distribution from Bayesian neural 
networks only considered the case of univariate output 
(Bishop, 2006; Iruansi, et al., 2012; Kocadağlı, 2014), while 
the predictive distribution with multivariate output was 
rarely involved. But the single-target network is not 
applicable for structural model updating as the number of 
candidate parameters to be refined should definitely exceed 
one. Furthermore, accurate estimation of the posterior 
probability of network architecture and the predictive 
distribution over trained network outputs is very dependent 
on the Hessian of the negative logarithm of the posterior of 
weight vectors as well as the Jacobian of network function. 
But the commonly used finite difference method does not 
meet the requirements of computational accuracy and 
efficiency, which is also vital for properly designing the 
architecture of the Bayesian neural network and further 
quantifying the uncertain of network prediction.  

In this paper, an efficient and tailor-made algorithm is 
developed for Bayesian neural network with multiple target 
variables in terms of designing suitable class of network 
architectures for FE model updating. By treating the 
network design procedure as a combinatorial optimization 
problem, the proposed algorithm is intended to 
simultaneously determine the proper hidden neuron number 
and the suitable forms of parameterized hidden- and output-
layer transfer functions. The analytically derived the 
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By utilizing the neural network method, the FE model 
updating problem investigated in the study is equivalent to 
predict multiple target variables  representing the model-
updating parameters from a vector  of inputs representing 
the modal characteristics by adjusting the adaptive network 
parameters . The network input , i.e., the modal 
properties, is obtained through eigenvalue analysis based on 
the structural FE model as follows 

 (6) 

where :	 →  denotes the FE model that accepts the 
model parameters  extracted from the model parameter 
space generated with uniform-distribution assumption to 
predict the modal parameters . ∈  is the sample 
noise vector, coming from a zero-mean Gaussian with 
varying levels of standard deviations 0, ,⋯ , 	 , added 
into the calculated modal parameters  for ensuring a robust 
network after training.  is the total number of noise levels 

considered. Let , , ⋯ , ,  denote M 

sets of input-output training samples obtained by FE 
analysis without noise, the full set of training data is the 
gathering of training data generated by imposing various 
levels of noise on the noise-free training input samples, i.e., 

, , ⋯ ,  (7) 

where , , ⋯ , ,  for 1,⋯ , , 

and 1 . In this study, the design of Bayesian 
neural network aims to identify the most probable 
architecture class by utilizing the expanded training data 

 from  prescribed classes of network architectures. 
To begin with, the target vector  are approximated as 

independent Gaussian distribution, which is conditional on 
the input vector  and network weights , with an -
dependent mean provided by the network function in Eq. (3) 
and shared Gaussian noise parameter  (Bishop, 2006). In 
this note, the conditional distribution of the target vector in 
terms of the architecture class , ,  is defined as 

| , , , , , | , ; , , ,  
(8) 

where ∈  is an identity matrix. In addition, the 
prior distribution for the uncertain network parameters  is 
chosen as a Gaussian: 

 | , | ,  (9) 

where ∈  is also an identity matrix.  
denotes the dimension of the weight vector for this class of 
network architectures. Based on the conditional distribution 
of the target vector provided by Eq. (8), the likelihood 
function is conveniently constructed by utilizing the full set 
of input-output training data  as 

, , , ,

| , ; , , ,  
(10) 

By employing the Bayes’ theorem, the posterior 
distribution of the uncertain weight vector  with the 
network architecture , ,  is given by 

| , , , , ,

| , , , , | ,

| , , , ,
 

(11) 

It is seen from Eq. (11) that the Bayesian neural network 
in this paper is related to the concept of automatic relevance 
determination (ARD) (Yuen and Mu, 2015; Mu and Yuen, 
2016). For the investigated problem, there is only one 
hyperparameter utilized as a regularization factor, instead of 
associating each model parameter with an individual 
hyperparameter. It is noted that the posterior distribution in 
Eq. (11) is not Gaussian since the network function given in 
Eq. (3) is nonlinearly dependent on weight parameters . 
However, one can achieve a local Gaussian approximation 
by employing the Laplace approximation as 

 | , , , , ,

| , ; , , , ,  
(12) 

where  is the local maximum obtained through the usual 
nonlinear optimization algorithm by maximizing the 
logarithm of the posterior distribution in Eq. (11), i.e., 

argmax ln | , , , , ,  

∝ argmax ; , , ‖ ‖  
(13) 

and 	 ; , ,  denotes the sum-of-squares error 
function between the neural network output and target, i.e., 

; , , ; , ,  (14) 

where ; , , 	 , ; , , , and 
‖∙‖  represents the usual Euclidean norm. The matrix 

; , , , , ∈  represents the Hessian of 
the negative logarithm of the posterior evaluated at the 
maximum of the posterior  for the given class of network 
architectures , , , i.e., 

; , , , ,

ln | , , , , ,

1/2 ; , ,

(15) 

where ; , , ∈  is the Hessian matrix of 
	 ; , ,  evaluated at , i.e., 
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; , ,

sym

 (16) 

where ∈ , ∈ , ∈
, ∈ , ∈ , ∈

, ∈ , ∈ , ∈
 and ∈  are the submatrices of the 

symmetric Hessian and derived analytically in the 
Appendix by using Kronecker products and matrix calculus. 
It’s much more accurate and efficient than using the finite 
difference method to approximated the Hessian, which is 
vital important for network architecture selection. 

In the evidence framework, following the similar 
procedure as Bishop (2006), the point estimates for 
hyperparameters  and  can be obtained with the Laplace 
approximation by maximizing the log evidence 

ln | , , , ,

≃ ln ; , ,

ln 2 ln ‖ ‖
ln ; , , , ,  

(17)

at  with respect to  and , and one can obtain 

/ ‖ ‖ tr ; , , , ,  
‖ ‖ / ; , ,  

Instead of marginalizing over all possible values of 
hyperparameters, the evidence , ,  can be 
conveniently approximated by substituting their point 
estimates into the evidence	 | , , , ,  as 

 , , ≃ 
| , , , , | ,  

2 / ; , , , ,
/

 

(18)

Following the Bayes’ theorem, the probability of network 
architecture class , ,  conditional on the training data 

 can be calculated to determine the most plausible 
architecture class for Bayesian neural network within the 
full set of potential architecture classes, and this yields: 

 
, , ,

, , , , ,

∑ , , , , ,

 
(19)

where  denotes the judgment on the initial plausibility of 
the network architecture class, and	  is the index of one of 
the  candidate network architecture classes. As there is 
generally no idea about the suitable network architecture for 
a given problem at the beginning, it’s just assumed that 
each class of architectures has an equal prior possibility 
1/ . In this study, the optimal class of network 

architectures is achieved by maximizing the posterior 

, , , , which is equivalent to maximizing the 
evidence , , ,  with respect to the number of 
hidden neurons , and scaling parameters  and  of 
hidden- and output-layer transfer functions simultaneously. 
By assuming further that the probability distribution is 
solely specified by the class of network architectures 

, , , the user’s preference  can thus be dropped from 
the notation hereafter for brevity. Instead of directly 
utilizing the evidence in Eq. (18), it’s more convenient to 
maximize the following log-evidence form 

ln | , , ≃ ln ln 2 1  

ln ln ; , , , ,  
(20)

which depends solely on the hyperparameter estimates and 
the corresponding Hessian matrix. In this study, for the 
given training data , the class of network architectures to 
be selected from the entire prescribed set is the one having 
the highest value of log-evidence given in Eq. (20).  

It is noted that the evidence of network architecture class 
given in Eq. (18) is conceptually equivalent to that given in 
Beck and Yuen (2004) with respect to a set of 
parameterized FE models, and both includes two terms. The 
first term named as likelihood factor favors more complex 
model parameterization scheme, whereas the second term, 
i.e., the Ockham factor, ensures a resultant model that fits 
the data with a suitable complexity by imposing a penalty 
against such parameterization complexity. In this note, 
however, it seems to be some counterintuitive that why the 
present study intends to select the proper values for scaling 
parameters ,  of hidden- and output-layer transfer 
functions besides of the number of hidden neurons , as 
the complexity of network architecture solely depends on 

 but not on  and . This is understandable that, 
although  and  do not affect the network complexity, 
they do have a direct impact on the maximum a posteriori 
estimation of network parameters  as seen from Eq. (13), 
the Hessian in Eq. (16), and the point estimation of the 
hyperparameters  and . As a result, the values of so-
called likelihood factor, Ockham factor as well as the log 
evidence are obviously dependent on both  and  as well. 
Thus, instead of the penalty on model complexity, the 
Ockham factor should be more generally understood as a 
penalty against the uncertainty of identified model 
parameters, which will be explained later. This also clearly 
interprets the importance and significance of this study to 
simultaneously select the hidden neuron number and proper 
scaling parameters of transfer functions in both layers. 

Algorithm 1  Proposed architecture design algorithm for 
Bayesian neural network 
1. Input: Initialize the temporary maximum number of hidden 

neurons to be , the hidden- and output-layer scaling 
parameters , 1 and , 1. 



Yin & Zhu. 6 

2. Generate two sequences of scaling parameters , , ⋯ , ,

, , ⋯ , , ∈  and , , ⋯ , , , , ⋯ , , ∈
. 

3. Set the index of the main loop 1. 
4. While convergence criterion is not satisfied (main loop) 
5. For  = 1 to  (inner loop 1) 

6. Calculate the log evidence ln , , , ,
 with  hidden 

neurons and scaling parameters , , , . 

7. Update  to 1, and calculate ln p , , , ,
, which 

is compared with ln , , , ,
. 

8. If ln , , , ,
ln , , , ,

, output 
 for the given , , , , and end this inner loop. 

9. Otherwise, if , increase  by 1 and go to Step 5. 
10. If , set  and end this inner loop. 
11. End for 
12. Set hidden neuron number and output-layer scaling parameter 

to be  and ,  recorded in the previous inner loop, and 
initialize the hidden-layer scaling parameter as , . 

13. For  = 1 to  (inner loop 2) 

14. Define an integer number 1, and calculate  consecutive 
log-evidence values for , ⋯ , 1 hidden neurons, 
respectively, 

ln , , , ,
, ⋯ , ln , , , ,

 

15. End for 
16. Find both the optimized  and ,  with respect to the 

maximum log-evidence value: 

, , , :

arg max
, ,

	 ln , , , ,
, for	

, ⋯ , 1	and	 , , , , , ⋯ , ,  

17. Set hidden neuron number and hidden-layer scaling parameter 
to be ,  and ,  recorded in the previous inner loop, 
and initialize the output-layer scaling parameter as , . 

18. For  = 1 to  (inner loop 3) 

19. Calculate  ( 1 ) consecutive log-evidence values for 

, , ⋯ , , 1 hidden neurons, respectively, 

ln
, , , , ,

, ⋯ 	 ,

ln
, , , , ,

 

20. End for 
21. Find both the optimized  and ,  wth respect to the 

maximum log-evidence value: 

, , , :

arg max
, ,

	 ln , , , ,
, for	

, ⋯ , 1	and	 , , , , , ⋯ , ,  

22. If 1 , test if the condition , , , and ,

,  is met; If yes, stop the while loop and go to Step 28. 
23. Otherwise, save the optimized scaling parameters in the current 

main loop, i.e., , , , and , , . 
24. Set the main loop index 1. 
25. Update the temporary maximum hidden neuron number to be 

max , , . 
26. Update the scaling parameters to be , , , ,

, , and go to Step 5. 
27. End while 
28. Output: simultaneously optimized hidden neuron number 

, , and hidden- and output-layer scaling parameters 

,  and , . 

It should be pointed out that if the ‘best’ class of network 
architectures is identified by directly comparing log-
evidence for all classes with Eq. (20), the computational 
burden for such an exhaustive way would be unaffordable. 
Thus, instead of directly picking up the ‘best’ one, this 
paper formulates the selection process as an optimization 
problem, which is solved very efficiently by a properly 
designed algorithm tailor-made for handling this issue, 
where the number of hidden neurons together with the 
scaling parameters of transfer functions in both layers is 
simultaneously identified. Considering a sequence of 
discrete sample values with a total number of  and  
assigned to the scaling parameters  and , respectively, 
the proposed algorithm consists of one main loop and three 
inner loops. The main loop controls the convergence of the 
whole algorithm, and the three inner loops correspond to 
sequential estimation for , and the combinations ,  
and , , respectively. One can refer to Algorithm 1 for 
more detailed information. It is also illustrated in a 
flowchart as shown in Figure 2, providing a more intuitive 
representation of the entire flow of the proposed algorithm. 
In this figure, the main steps of Algorithm 1 are identified, 
and the inner loops are referred by different colors for 
clarity. It is also noted that the order of last two inner loops 
can be exchanged, leading to two different search strategies 
I and II, i.e., , → ,  and , → , , 
which are also indicated in the flowchart. 

Denote , ,
∗  to be the class of Bayesian neural 

network architectures with the simultaneously optimized 
hidden neuron number, transfer-function scaling parameters 
for both hidden and output layers obtained through the 
proposed design algorithm. By substituting the point 
estimate of hyperparameters ∗  and ∗  achieved at the 
maximum a posteriori estimation ∗ corresponding to the 
optimized class of network architectures into Eq. (13), the 
posterior probability distribution of network parameters can 
be approximated as Gaussian: 

∗| , ∗, ∗, , ,
∗  

∗| ∗, ∗; ∗, ∗, , ,
∗    (21) 

where the superscript * denotes the quantities corresponding 
to the optimized Bayesian neural network architecture. 

The predictive distribution of network output can be 
further achieved by marginalizing over the posterior 
distribution of network weights provided in Eq. (21) as 

, , , ,
∗ , ∗, ∗, , ,

∗  
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∗| , ∗, ∗, , ,
∗ d ∗  (22)

It is worth noting that the integration form in Eq. (22) is 
analytically difficult to handle because of the nonlinear 
dependence of network model , ; , ,  on the 
high-dimensional network weights . To make progress, an 
approximation approach is generally employed to 
approximate the integral with a finite sum as 

| , , , ,
∗ ≃

1
, ∗, ∗, , ,

∗  

(23) 

where ∗  denotes a sample of network parameters drawn 
from the posterior distribution ∗| , ∗, ∗, , ,

∗ . 
It is noted that drawing such sample of parameter vectors 
representative of the posterior distribution is generally not 
easy. To fulfill this purpose, a Markov chain Monte Carlo 
technique is generally employed. However, the main 
shortcoming of this method is the considerable amount of 
computational cost especially for the situation of high-
dimensional network parameter space. 

In this paper, the predictive distribution given in Eq. (22) 
is achieved in a significantly more efficient way as 
compared to the Monte Carlo method. Assuming that the 
covariance of posterior distribution of uncertain network 
weights to be small (Bishop, 2006), the linear 
approximation of the nonlinear network function is 
achieved through taking a Taylor series expansion around 
the maximum a posteriori estimation ∗ and solely keeping 
the linear terms, i.e., 

 , ∗, ∗, , ,
∗

≃ | , ∗; , ,
∗

, ∗; , ,
∗ Δ ∗, ∗	  

(24)

where Δ ∗ ∗ ∗ , and the x-dependent Jacobian 
matrix , ∗; , ,

∗  of network function analytically 
evaluated at ∗ is expressed as following: 

, ∗; , ,
∗ | ∗ ∗ (25)

∈ , ∈ , ∈ , and 
∈ are the submatrices of the x-dependent 

Jacobian matrix and given analytically in Appendix. 
Thus, the predictive distribution over the Bayesian neural 

network output with optimized architecture given in Eq. (22) 
can be further approximated as a multivariate Gaussian: 

, , , ,
∗  

| , ∗; , ,
∗ , ∗	 , ∗; , ,

∗  
∗; ∗, ∗, , ,

∗ , ∗; , ,
∗     (26) 

 (29)

whose mean is given by the network function 
, ∗; , ,

∗  for the optimized Bayesian neural 
network architecture with the most probable network 

weights ∗. It should be noted that the covariance matrix in 
Eq. (26) is the combination of the uncertainty arisen from 
intrinsic noise on target variable and uncertainty of network 
parameters. 

Within the framework of the proposed methodology, the 
procedure for performing the probabilistic FE model 
updating is straightforward. When the measured modal 
parameters 	 are available, the distribution of updated 
model parameters can be conveniently achieved with the 
predictive distribution over the trained network output 
provided in Eq. (26). Then, one can further obtain the 
mathematical expectation of modal parameters predicted 
from the updated model by an integral with respect to the 
predictive distribution of updated model parameters as 

E ; , , ,
∗ | , , , ,

∗ d  

(27) 

where  represents the modal properties calculated from 
the structural model by accepting model parameters  
through modal analysis procedure.  denotes the measured 
modal properties employed for the model updating, and  
is the model parameter space of the updated model. 

It is apparent that Eq. (27) depending on the predictive 
distribution in Eq. (26) is generally difficult to handle 
analytically. To make progress, the Monte Carlo simulation 
technique is adopted herein to predict the distribution of 
modal properties. The integral in Eq. (27) is approximated 
with the Monte Carlo sampling technique by generating a 
sequence of vectors , ⋯ ,  which forms a stationary 
Markov chain. Thus, the expected value in Eq. (27) and 
corresponding variance-covariance matrix can be 
approximated as, respectively, 

E ; , , ,
∗ 1

	 (28)

and 

; , , ,
∗ 1

E ; , , ,
∗ E ; , , ,

∗  

(29)

where 	 represents a model parameter sample drawn 
from the predictive distribution over the trained network 
output 	 , , , ,

∗ with optimized Bayesian 
neural network architecture based on the updated FE model. 
From Eqs. (28) and (29), the statistical properties of 
predicted modal parameters from updated model is 
achieved, which can be utilized for assessing the validity of 
updated model. 
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Initialize the number of hidden 
neurons: i=1

6. Calculate the log evidence with i 
hidden neurons: ln[p(DN│A(i,c1,k,c2,k))]

i=i+1

If ln[p(DN│A(i+1,c1,k,c2,k))]<
ln[p(DN│A(i,c1,k,c2,k))] ?

8. Output the number of hidden 
neurons: nH0=i

Yes

No

3. Main loop: Initialize k=1

i=i+1

12. Initialize scaling parameter of the 
hidden-layer transfer function: c1,i=c1,1

14. Calculate Np (Np>1) log-evidence 

values for nH0,…, nH0+Np-1 hidden 
neurons, respectively:

ln[p(DN│A(nH0,c1,i,c2,k))], …, 

ln[p(DN│A(nH0+Np-1,c1,i,c2,k))]

16. Find both nH1 and c1,i wth respect 
to the maximum log-evidence value: 

(nH1,best,c1,best):=
arg max{ln[p(DN│A(nH1,c1,i,c2,k))]} for

nH1=nH0,…, nH0+Np-1, i=1,…,Nc1

If i = Nc1?
No

Yes

Start

1. Initialize the maximum number of 
hidden neurons, scaling parameters: 

NH0, c1,0=1, c2,0=1

If k>1 & 
c1,best=c1,old & c2,best=c2,old ?

k=k+1

28. Output the optimal hidden neuron 
number nH2,best, scaling parameters of 
hidden-layer and output-layer transfer 

functions c1,best, c2,best

No

Yes

End

i=i+1

17. Initialize scaling parameter of the 
output-layer transfer function: c2,i=c2,1

19. Calculate Np (Np>1) log-evidence 

values for nH1,best,…, nH1,best+Np-1
hidden neurons, respectively:

ln[p(DN│A(nH1,best,c1,best,c2,i))], …, 

ln[p(DN│A(nH1,best+Np-1,c1,best,c2,i))]

21. Find both nH2 and c2,i with respect 
to the maximum log-evidence value: 

(nH2,best,c2,best):=
arg max{ln[p(DN│A(nH2,c1,best,c2,i))]} for 

nH2=nH1,best,…, nH1,best+Np-1, i=1,…, Nc2

If i = Nc2?
No

Yes

23. Save best scaling parameters of 
the current iteration:

c1,old=c1,best and c2,old=c2,best

25. Update the maximum number of 
hidden neurons: 

NH0=max{NH0,nH2,best}

26. Update the scaling parameters:
c1,k+1=c1,best and c2,k+1=c2,best

If i=NH0 ?

No

10. Output the number of 
hidden neurons: nH0=NH0

7. Calculate the log evidence with i+1 
hidden neurons: 

ln[p(DN│A(i+1,c1,k,c2,k))]

Yes

2. Generate two sequences 
{c1,1,…,c1,Nc1} and {c2,1,…,c2,Nc2}

Search 
Strategy I

Search 
Strategy II

 

Fig. 2. Flowchart of the proposed architecture design algorithm for the Bayesian neural network. 
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On the other hand, to investigate the effect of optimizing 
the two transfer-function scaling parameters, Figure 18 
shows the histogram plot of mean value of standard 
deviations of all identified model updating parameters for 
NET-12 and NET0-12, which possess the same complexity 
in terms of same hidden neuron number. It is very obvious 
that the standard deviation values of NET-12 with 
optimized  and  are less than those of NET0-12 without 
optimization, implying that the uncertainty of updated 
model parameters for NET-12 is reduced. It is mainly due 
to the contribution of simultaneously optimized  and  to 
the uncertainty reduction of network weight parameters 
according to Eq. (26). This also reinforces the statement 
made above that the Ockham factor actually imposes 
penalty on the uncertainty of identified model parameters. 
Although not shown here, it is also found that the 
uncertainty of updated parameters of NET0-12 is larger 
than NET0-6. This is expected, as the increase of  or 
network architecture complexity leads to an increase in the 
Ockham factor, which is reflected in the amplified 
uncertainty of the updated model parameters. Thus, by 
optimizing the hidden neuron number  together with the 
hidden- and output-layer scaling parameters  and , the 
accuracy and uncertainty of the updated structural model 
can be improved, respectively. 
 

4 CONCLUSIONS 
 
For probabilistic FE model updating based on dynamic 

measurements, this paper develops an efficient and tailor-
made algorithm utilized for designing the architecture of 
Bayesian neural network through simultaneous 
determination of the proper hidden neuron number and the 
specific forms of parameterized hidden- and output-layer 
transfer functions. The validity and efficiency of the 
proposed methodology is fully demonstrated through the 
FE model updating conducted for a pedestrian bridge with 
the field testing data. 

The obtained results clearly reveal that the proposed 
design algorithm allows one to achieve the optimized 
architecture of Bayesian neural network with appropriate 
hidden neuron number and suitable forms of transfer 
functions in both hidden and output layers simultaneously, 
through a very effective and mathematically rigorous way. 
It is emphasized herein that this algorithm is far more 
effective than that used in the authors’ recent publication 
(Yin and Zhu, 2018), which essentially follows an 
exhaustive search strategy. It is also noted that the proposed 
method is not intended to find a unique global maximum by 
searching the entire parameter space, but rather to locate the 
‘optimal’ result within a specified parameter range 
efficiently. By applying the optimized network achieved 
through the proposed algorithm to the structural model 
updating, the accuracy as well as uncertainty of the updated 
structural model is found to be both improved. In addition, 

it is clear from the results of predicted natural frequencies 
based on the updated model that the refined FE model is 
more precise than its initial form. One can further find out 
that the higher the mode order, the larger the associated 
uncertainty. This coincides with the common knowledge 
that the high-order modes are generally more uncertain than 
the low-order ones, indicating the rationality of the model 
updating results obtained by the proposed methodology. 
Furthermore, it is shown that the obtained standard 
deviations of predicted modal parameters can be further 
utilized to predict error bars that quantify the confidence 
intervals for the updated structural models, which provides 
a key reference point for evaluating the quality of the 
refined FE model. Also, the uncertainty of the predicted 
modal parameters is especially critical for structural health 
monitoring and damage detection based on FE model 
updating. This is because excessive prediction uncertainty 
would overwhelm the changes of modal parameters induced 
by the actual damage and significantly reduce the reliability 
of damage detection results. Moreover, it should be pointed 
out that although this paper mainly concentrates on the 
neural network with a single hidden layer, in principle, the 
proposed design algorithm should be extended to the neural 
networks with multiple hidden layers, such as the deep 
neural networks. This is deserved to be further investigated 
in the future. 
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APPENDIX 

 
The submatrices of the Hessian in Eq. (16) is derived 

analytically by 
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where	 , , 	and	  denote the derivative with respect 
to weight vectors vec , , vec ,  and , 
respectively. The derivatives of transfer functions can be 
obtained analytically from Eqs. (1) and (2). ⊗ denotes the 
Kronecker products. 

The submatrices of the Jacobian in Eq. (25) are given 
analytically as 
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