
Learning to Evaluate Neural Language Models

James O’Neill
University of Liverpool, UK.

Email: James.O-Neill@liverpool.ac.uk

Danushka Bollegala
University of Liverpool, UK

Email: danushka@liverpool.ac.uk

Abstract—Evaluating the performance of neural network-
based text generators and density estimators is challenging
since no one measure perfectly evaluates language quality.
Perplexity has been a mainstay metric for neural language
models trained by maximizing the conditional log-likelihood.
We argue perplexity alone is a naive measure since it does not
explicitly take into account the semantic similarity between
generated and target sentences. Instead, it relies on measuring
the cross-entropy between the targets and predictions on the
word-level, while ignoring alternative incorrect predictions
that may be semantically similar and globally coherent, thus
ignoring quality of neighbouring tokens that may be good
candidates. This is particularly important when learning from
smaller corpora where co-occurrences are even more sparse.
Thus, this paper proposes the use of pretrained model-based
evaluation, which assesses semantic and syntactic similarity
between predicted sequences and target sequences. We argue
that this is an improvement over perplexity which does not
distinguish between incorrect predictions that vary in semantic
distance to the target words. We find that models that outper-
form other models on perplexity, do not necessarily perform
better on measures that evaluate using semantic similarity.

Keywords-machine learning; language modelling; model-
based evaluation

I. INTRODUCTION

Language modelling is an important task in natural lan-
guage processing and is partly responsible for many of
the recent successess of transferable pretrained models that
require very little fine-tuning to perform well on a host of
various downstream tasks [1], [2], [3], [4]. However, lan-
guage models are currently evaluated using perplexity, which
is directly proportional to the log-likelihood. Although log-
likelihood is efficient in that it only evaluates the loss of each
token and the corresponding predicted probability for that
token, it fails to account for incorrect predictions that may be
synonymous with the token, or share some semantic equiv-
alence between predicted sentences and target sentences
as a whole. Other conditional language modelling tasks
use n-gram overlap measures, such as BLEU in machine
translation [5] and CIDEr [6] for image captioning.

We argue that an evaluation measure that takes semantic
and syntactic similarities into account results in a measure
that reflects human judgements better than perplexity given
that model-based evaluators are learned from human anno-
tations of sentence similarity. This also results in generated

text that allows for more diverse predictions since it is not
restricted to word-level cross-entropy loss.
Contribution: This paper proposes to transfer pretrained
models from semantic textual similarity tasks which can
be used for evaluating text generation models. Pretraining
on semantic textual similarity tasks allows us to optimize
for generated sentences that are semantically similar to the
ground truth tokens. This becomes particularly important for
words that lie in the long-tail of the unigram distribution that
have less context to disambiguate from. In such cases, the
perplexity is likely to increase given that alternative incorrect
predictions are ignored. Concretely, an evaluation measure
that accounts for incorrectly predicted alternatives to the tar-
get token are is critically important for less frequent tokens.
Moreover, we are indirectly leveraging the readily available
annotations of semantic similarity between sentences that we
argue should be considered for evaluating text generation
models.

We also include a simpler non-parametric embedding
evaluation measures such as average cosine similarity and
Word Mover’s Distance (WMD) [7] between the embeddings
corresponding to the predicted and target sequences. These
model-free embedding similarity measures are relatively fast
to compute, and evaluates embedding similarities at the
word-level.

II. RELATED WORK

A. Sentence Representations

We briefly introduce recent research on learning universal
sentence representations before introducing the correspond-
ing models that can be used for evaluation.

SkipThought: These representations are widely used and
have shown good performance for semantic relatedness,
paraphrase classification, question classification, sentiment
analysis, among many other pairwise sentence tasks, as
shown when used as input to simple linear classifiers [8].

QuickThought: Quick-thought vectors [9] reformulate
Skipthought training by treating the prediction of the next
sentence given the past sentence as a classification problem
where the decoder is replaced with a classifier that chooses
between a set of candidate sentences. This is less precise
than the generative formulation, however it drastically re-
duces the output dimensionality, leading to faster computa-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/227453479?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tion and improved scalability. This is particularly noteworthy
in the context work if model-based evaluators are also to
be used for optimization of neural language models, in the
reinforcement learning setting.

InferSent: Infersent [10] use RNNs with supervision from
natural language inference sentence-pairs provided in the
Stanford Natural Language Inference (SNLI) [11] dataset.
They showed that this InferSent model generalized well to
other tasks, and in some cases outperforms the unsupervised
SkipThought model. We include this in our analysis as to
compare how this supervised pretrained model compares to
SkipThought in evaluation.

Weighted Meta-Embeddings: Meta-embeddings with
a weighted combination of multiple pretrained word-
embeddings are used in either an unsupervised way prior to
a task, or learned directly for a supervised task on multiple
intrinsic and downstream tasks [12]. In the latter case, a
reconstruction loss for an autoencoder is used as an auxiliary
loss. Similarly, pretrained sentence meta-embeddings can be
obtained when used in a Siamese network for the sentence-
based pairwise tasks e.g semantic relatedness, paraphrasing
etc.

B. Learning The Evaluation Measure

Prior work [13] has argued that current n-gram overlap
based evaluation measures are biased and insufficiently
correlate with human judgements of the generated response
quality. They propose to use an evaluation model that learns
to predict the manually annotated scores using a proposed
human response dataset. They found that the predictions
from the evaluation model had better correlations with
human judgements than an n-gram overlap measures such
as BLEU.

Novikova et al. [14] have also considered alternative
measures for evaluating natural language generation sys-
tems. They include a comprehensive evaluation using word-
based metrics (tf-idf frequency), n-gram overlap metrics
(BLEU, ROUGE, CIDEr), semantic similarity between La-
tent Semantic Analysis (LSA) word representations with
WordNet measures and grammar based metrics (readability,
grammaticality). Importantly, they report that metric per-
formance is both data and system-specific, but find that
automated metrics reliably work at the system-level. This
also reinforces the idea of considering a range of different
word-level and sentence-level evaluation metrics, including
automated model-based measures.

The difference in our work is that we are proposing
pretrained neural network model-based evaluation that not
only includes models that are trained on semantic similarity
tasks (such as their use of LSA) but other tasks such as para-
phrasing and natural language inference, leading to universal
sentence representations. We also propose faster model-free
alternatives such as WMD and Average Cosine Similarity

between word embeddings. Additionally, the model-based
scores obtained when computing similarity between sentence
representations indirectly takes into account the readily
available human scores that were used for supervision, thus,
avoiding extra manual annotations.

C. Evaluating Language Models

Chen et al. [15] compare perplexity and word error rate
for n-gram models on language modelling and surprisingly
find a strong Pearson correlation between both quantities.
They suggest that a linear combination of both may lead to
a stronger measure. This is one of the first papers that draw
attention to alternatives to perplexity and its relation to other
measures. Similarly, we analyze perplexity with respect to
other measures for neural language models instead of n-gram
language models

Marvin and Linzen [16] focus on evaluating syntax in
language models by proposing a dataset that assesses the
grammaticality of predictions. They pair minimally different
grammatical and ungrammatical sentence pairs and train
an LSTM language model to analyze whether the LSTM
performs better on grammatical sentences as expected. They
conclude that although multi-task learning with a syntactic
objective can improve performance, there still remains a
considerable gap compared to human performance.

Chaganty et al. [17] propose control variates to debias
metrics such as BLEU with the help of human judgements,
as a tradeoff between improved correlation and labor.

III. METHODOLOGY

A. Language Models

Recurrent Neural Network Language Model: For a
sequence pair pX,Y q where X “ tx1, ..xt, ..xT u is the input
sequence and Y “ ty1, ..yt, ..yT u is the target sequence, for
t P T timesteps, xt is passed to a parametric model along
with the previous hidden state vector ht´1 to produce an
output from its last layer h̃ “ fθpxt, ht´1q. Here, θ are the
parameters of the sequential parametric model (e.g RNN),
ht “ fθpht´1, yt´1q is an encoded hidden state vector.
The probability Pθpyt|htq is then computed using a linear
projection, leading to a prediction ŷ “ argmaxφph¨W`bq,
where φ is a softmax function that normalizes the output
to calibrate Pθpyt|htq, W are the decoder weights and the
predicted token is retrieved via the argmax operator. The
log probability P pY |Xq is maximized as shown in Equation
1, to directly minimize the perplexity in Equation 2.

For unconditional generation (i.e language modelling)
X “ txstartyYY1:t´1u, which is the case this paper focuses
on. Although, this also applies for conditional generation
such as machine translation, question answering and other
such sequence-to-sequence problems.

logP pY t1 |Xq “
T
ÿ

t“1

logP pyt|y
t´1
1 , Xq

P pyt|y
t´1
1 , X; θq “ logP pyt|ht; θq

(1)

2´
1
T logP px1,..,xT q “

T

g

f

f

e

T
ź

i“1

1

P pwi|w1..wi´1q
(2)

The standard way to train the aforementioned RNN lan-
guage model is to maximize the word-level log likelihood by
minimizing the cross entropy loss Lcepθq shown in Equation
3.

Lcepθq “ ´
T
ÿ

t“1

yt log
`

pθpyt|yt´1, ..y0q
˘

(3)

In our experiments, we use a standard 2-hidden layer
LSTM sequence model [18] and a 2-hidden layer GRU
network [19] with an embedding dimension and hidden
state dimension size of |e| “ |h| “ 400. Xavier uniform
initialization is used with pµ “ 0, σ “ 0.1q and gradients
are clipped at 0.5 threshold if exceeded at each update, for
a batch size |Xs| “ 56.

Transformer-Based Language Model: We consider the
decoder of a multi-layer multi-attention head Transformer
language model [3] which uses language model attention
heads [3]1 as another evaluation based model. We include
this in the analysis for completeness, as the Transformer-
based models have recently shown improved performance
when compared to recurrent-based models in language mod-
elling and conditional generation tasks such as machine
translation [3].

Instead of recurrent connections, Transformers use self-
attention over the input context tokens, layer normalization
(LayerNorm) and positional embeddings. The output of each
attenttion head is concatenated and fed to batch-normalized
feedforward layer to generate an output probability distribu-
tion for the next target token t P T .

Assume that we have a sequence of vectors x1, ..., xn
where each vector xi P Rd. We define E P Rnˆd to be
a matrix representing the sequence. We define parameters
We P Rdˆl,Wp P Rdˆl and Wo P Rdˆo. Z is defined in
Equation 4 where EC is an nˆo matrix of new embeddings.
EWeW

T
p E

T is an nˆn matrix representing the inner prod-
ucts in a new l-dimensional space. softmax

`

EWeW
T
p E

T
˘

is matrix where each row entry is positive and sums to 1.

Z “ softmax
`

EWeW
T
p E

T
˘

EWo (4)

In our experiments we set, d “ 512, o “ 64, and the
parameters W j

e ,W
j
p P Rdˆl, W j

o P Ro for j “ 1, ..., 8.

1we follow the hugging face implementation available here: https://
github.com/huggingface/pytorch-openai-transformer-lm

Therefore, for the multi-head attention expressed in Equation
5 we use Zj P Rnˆ64 and once outputs are concatenated to
form Znˆ512.

Zj “ softmax
`

EW j
e pW

j
p q
TET

˘

EW j
o

Z “ concatpZ1, ...Z8q

Z1 “ FeedforwardpLayerNormpZ ` Eqq

(5)

We use 8-hidden layers with embedding dimension and
hidden state dimensions respectively |e| “ |h| “ 512 with
8 attention heads. An adaptive softmax [20] is used to
normalize the output to a probability distribution which we
denote as φaspZ1q, splitting based on term frequency into
top 1/10 of words w P V , 1/10 - 4/10 for the second bin
and the remaining 4/10 - 1 for the third bin. Lastly, input,
hidden layer and attention dropout is set to 0.1.

B. Pretrained Models for Evaluation

InferSent Evaluation: Conneau et al. [10] use the
scoring function in Equation 6 between two encoded sen-
tence pairs ph1, h2q where h1, h2 P Rd, correspond to
the two sentences pS1,S2q. This scoring function showed
to be useful for universal representations, not only natural
language inference. We also use the same scoring function
for the pretrained InferSent model.

φ
`

rh1, h2, |h1 ´ h2|, h1 ¨ h2s ¨W ` b
˘

(6)

The model is a Bidirectional-GRU (or BiLSTM) with max
(or mean) pooling, as in Equation 7 where g represents the
pooling function and e; is the embedding corresponding to
word xi.

h “ gmax-pool
`

r
ÝÝÑGRUpe1, .., eT q,

ÐÝÝGRUpe1, .., eT qs
˘

(7)

We also use the self-attentive variation in Equation 8,
where the max-pooling operation g is replaced with self-
attention that produces a weighted average where gavgp¨q sum
the weights to 1 @t P T . Hence, attention focuses on the
hidden states of important tokens prior to using the scoring
function.

h “
T
ÿ

t“1

gavgptanhpWht ` bqqht (8)

SkipThought: The original Skipthought [8] paper in-
cludes a comprehensive evaluation of CNN-RNN, RNN-
RNN and LSTM-LSTM and GRU-GRU encoder-decoder
architectures. In our evaluation, we use a Bidirectional
GRU encoder decoder architecture which is called bi-skip.
SkipThought vectors provide a good unsupervised baseline
for model-based text generation evaluation, as they have
shown competitive performance against supervised models
on the aforementioned tasks of semantic relatendess and
paraphrase detection [8].

Model Ò Ò Ò Ó

BLEU2 BLEU3 BLEU4 Cosine WMD InferSent SkipThought Transformer Perplexity

GRU 24.12/25.98 11.54/12.76 7.71/7.83 69.63/68.20 78.31/79.53 80.52/82.59 87.10/91.23 83.02/81.48 91.45/86.12
GRU-SS 26.40/26.11 12.79/13.14 8.56/9.51 72.59/74.19 80.93/80.16 88.48/90.10 92.14/93.72 85.09/82.02 87.21/82.08
LSTM 26.09/26.20 12.56/12.24 8.34/8.91 68.91/70.08 81.04/80.23 82.01/84.91 84.02/84.33 82.77/82.03 89.32/83.27

LSTM-SS 27.90/28.63 13.15/13.87 8.80/9.04 73.59/72.48 81.43/82.78 84.42/85.06 90.28/91.70 86.10/86.24 84.71/81.11
Transformer 31.49/30.29 14.08/14.82 9.12/9.35 72.09/71.16 79.20/76.25 90.63/91.52 88.02/89.50 84.10/84.55 82.07/79.83

Table I: Language Modelling Evaluation on Penn Treebank (Validation/Test Scores scaled [0, 100]), omitting perplexity

Model Ò Ò Ò Ó

BLEU2 BLEU3 BLEU4 Cosine WMD InferSent SkipThought Transformer Perplexity

GRU 16.24/16.63 7.02/7.71 4.09/4.68 65.30/63.08 74.95/75.49 76.91/78.02 81.27/79.43 80.22/82.76 148.62/132.90
GRU-SS 16.90/17.07 7.56/7.98 4.35/4.85 67.01/65.48 75.22/75.86 83.78/85.93 84.11/86.03 81.27/79.43 141.31/127.80
LSTM 16.58/16.84 7.31/7.76 4.09/4.68 64.15/61.59 76.71/78.03 80.02/76.37 81.90/79.68 81.26/81.52 150.02/137.11

LSTM-SS 17.82/17.49 8.18/8.02 4.09/4.68 69.42/71.09 77.22/80.11 82.01/83.17 83.20/85.41 83.15/85.79 141.66/135.19
Transformer 17.49/17.83 7.25/7.70 3.59/3.85 69.24/72.47 76.95/78.20 82.12/88.28 80.43/84.69 87.35/85.71 120.31/117.98

Table II: Language Modelling Evaluation on WikiText-2 using Model-Based (InferSent & SkipThought) and Model-Free
Evaluation Measures

Transformer Evaluation: We also use the original
Transformer model [21] for a non-recurrent neural network
model-based evaluation, which can also be compared to
SkipThought, an RNN-based model that is also trained using
unsupervised(-self) learning. To compute scores we use the
inner product between the hidden representations of the K
most upper layers of the decoder, and compute mean over
all K dot products, followed by a Sigmoid non-linearity to
normalize s̃ P r0, 1s.

s̃ps1, s2q “ σ

˜

1

N

K
ÿ

i“1

xhi1, h
i
2y

¸

(9)

C. Model-Free Embedding Evaluation
Word Mover’s Distance Sentence Similarity: We also

include the (WMD) [7] for measuring semantic similarity
between `2 normalized embeddings associated with pre-
dicted and target words. We also include the average cosine
similarity between sentences, which can be considered as
an approximation to the optimal transport in WMD. Model-
free in this sense means that we do not require a pretrained
network for evaluation, only word-level vectors correspond-
ing to predictions and the corresponding targets. Word-level
embedding similarities offer a faster alternative to model-
based sentence-level evaluation, hence we include it for our
experiments.

Average Cosine Similarity: Alternatively, a faster
method to evaluate pŶ , Y q is to compute the average cosine
similarity which can be achieved by one of two ways. The
first is a straightforward similarity between adjacent word
pairs cospYi, Ŷiq @t P T as shown in Equation 10.

spEY , EY q “ σ

˜

1

|Y |

T
ÿ

t“1

cospYt, Ŷtq

¸

(10)

We also considered decayed k-pairwise cosine similarity
where k is a sliding window span that compares embeddings
corresponding to n-gram groupings with a decay factor
γ P r0, 1s that depends on the distance such that γpi,jq “
dpYi, Yjq{k @i, j P T .

s̃pY, Ŷ q “
1

Tk

T
ÿ

t“1

t`k
ÿ

j“i´k

γpi,jqcospYi, Ŷjq

s.t, t ď i ď T ´ k (11)

Dealing with Skewed Scores: Since we are optimizing
to exactly predict the target tokens in language modelling,
the predicted sequences often result in high embedding
similarities by the end of training. Therefore, the differences
in [0, 1] normalized scores can appear to be minuscule. To
address this we allocate exponentially scaled scores ỹ, shown
in Equation 12, so that smaller changes of highly similar
sentences are distinct, yet still bounded in r0, 1s, analogous
to perplexity in that it exponentiates the cross entropy loss.

s̃ “ 1´ p1´ sq2s “ 1` 2ss´ 2s (12)

We also note that for the average cosine similarity be-
tween predicted and target embeddings (denoted as Cosine
in Table I and Table II), we pass the similarity as input to a
logistic unit σp¨q in Equation 13 in order for Cosine scores
(s P r´1, 1s) to be comparable with others in r0, 1s.

s̃ps1, s2q “
1

`

1` expp´s{τ ` bq
˘ (13)

In our experiments τ “ 0.1 and the bias is manually set
b “ 8, as shown in Figure 3 e.g s̃ “ 0.8 corresponds to an
average cosine similarity of s “ 0.82.

Figure 1: Correlation Matrix of PTB Validation and Test Evaluation
Metrics

Figure 2: Correlation Matrix of WikiText-2 Validation and Test
Evaluation Metrics

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
Cosine Similarity

0.0

0.2

0.4

0.6

0.8

Si
m

ila
rit

y
Sc

or
e

Logit function

Figure 3: Scaled Similarity Score sÑ s̃ for Average
Cosine Similarity (COS) Evaluation

IV. RESULTS

Table I and Table II show the results evaluated on both
n-gram overlap based measures, word-level (WMD, Average
Cosine Similarity) and sentence-level embedding based eval-
uation measures (Infersent, SkipThought and Transformer),
and lastly perplexity. We consider n-gram overlap to be a
strict measure of text generation quality, compared to the
embedding-based measures that account for word-level or
sentence-level semantic similarity.

The model-based measures that use unsupervised training
(SkipThought, transformer) tend to produce high similar-
ity measures between pŶ , Y q on average, when compared
to model-based measures that use supervision (InferSent
trained on NLI data).

Interestingly, using scheduled sampling [22] with LSTMs
(LSTM-SS) leads to improvements over LSTM without SS,
this is similarly found for GRU-SS as well. This is somewhat

surprising considering this has been used in the context of
language modelling where ground truth tokens are given at
test time, unlike text generation, where SS can help mitigate
compounding errors. We view SS as inducing noisy samples
for language modelling that empirically shows to improve
generalization, similar to how multiplicative Gaussian noise
on input embeddings achieves superior performance over
models without input embedding dropout [23].

We also find that the similarity between Ŷ and Y is
generally lower across each model for pretrained evaluators
that use supervised learning. Concretely, it is more difficult
to score well on semantic similarity with InferSent in com-
parison to SkipThought and Transformer evaluators. This
can be explained by the fact that the supervision provided
by humans in InferSent can be more difficult for a neural
language model to learn from scratch without any labels.

From these findings, we posit that standard conditional
log-likehood training is limited in accounting for semanti-
cally similar sentences since cross-entropy is evaluated at
each target token which does not consider good alternative
predictions. Moreover, averaging word-level losses does
ignores the global coherence of each sentence or paragraph.

Lastly, we note that scaling functions allow for useful
comparisons across each measure and lead to better separa-
tion between relatively low performing and high performing
models on sentence-level semantic similarity metrics, such
as the two presented in Equation 12 and Equation 13.
Perplexity itself can be considered an exponential scaling
of CE loss and is often used to compare language models,
as small CE loss alone make it difficult to assess the
performance differences between each model.

V. CONCLUSION

This paper proposed to reconsider how we evaluate neu-
ral language models by advocating the use of sentence-
based similarity measures between generated sequences
and predicted sequences using pretrained pairwise learned

models. These models can be trained on supervised tasks
such as natural language inference and semantic textual
similarity (InferSent) or trained in an unsuperised fashion
(SkipThought and Transformer). We argue that this approach
can be used in conjunction with perplexity and word-overlap
measures, or as an alternative for evaluating text generation
systems, along with other model-free embedding similarity
measures used and defacto metrics such as perplexity and
BLEU. We conclude that neural language models should be
evaluated with a variety of different metrics since there is
not a clear correlation between them.

REFERENCES

[1] J. Howard and S. Ruder, “Universal language model
fine-tuning for text classification,” arXiv preprint
arXiv:1801.06146, 2018.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert:
Pre-training of deep bidirectional transformers for language
understanding,” arXiv preprint arXiv:1810.04805, 2018.

[3] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever,
“Improving language understanding by generative pre-
training,” URL https://s3-us-west-2. amazonaws. com/openai-
assets/research-covers/languageunsupervised/language
understanding paper. pdf, 2018.

[4] M. E. Peters, W. Ammar, C. Bhagavatula, and R. Power,
“Semi-supervised sequence tagging with bidirectional lan-
guage models,” arXiv preprint arXiv:1705.00108, 2017.

[5] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a
method for automatic evaluation of machine translation,” in
Proceedings of the 40th annual meeting on association for
computational linguistics. Association for Computational
Linguistics, 2002, pp. 311–318.

[6] R. Vedantam, C. Lawrence Zitnick, and D. Parikh, “Cider:
Consensus-based image description evaluation,” in Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 4566–4575.

[7] M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger, “From
word embeddings to document distances,” in International
Conference on Machine Learning, 2015, pp. 957–966.

[8] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Ur-
tasun, A. Torralba, and S. Fidler, “Skip-thought vectors,” in
Advances in neural information processing systems, 2015, pp.
3294–3302.

[9] L. Logeswaran and H. Lee, “An efficient framework
for learning sentence representations,” arXiv preprint
arXiv:1803.02893, 2018.

[10] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and
A. Bordes, “Supervised learning of universal sentence
representations from natural language inference data,” in
Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing. Copenhagen, Denmark:
Association for Computational Linguistics, September 2017,
pp. 670–680. [Online]. Available: https://www.aclweb.org/
anthology/D17-1070

[11] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning,
“A large annotated corpus for learning natural language
inference,” arXiv preprint arXiv:1508.05326, 2015.

[12] J. O. Neill and D. Bollegala, “Semi-supervised multi-task
word embeddings,” arXiv preprint arXiv:1809.05886, 2018.

[13] R. Lowe, M. Noseworthy, I. V. Serban, N. Angelard-Gontier,
Y. Bengio, and J. Pineau, “Towards an automatic turing
test: Learning to evaluate dialogue responses,” arXiv preprint
arXiv:1708.07149, 2017.

[14] J. Novikova, O. Dušek, A. C. Curry, and V. Rieser, “Why
we need new evaluation metrics for nlg,” arXiv preprint
arXiv:1707.06875, 2017.

[15] S. F. Chen, D. Beeferman, and R. Rosenfeld, “Evaluation
metrics for language models,” 1998.

[16] R. Marvin and T. Linzen, “Targeted syntactic evaluation of
language models,” arXiv preprint arXiv:1808.09031, 2018.

[17] A. T. Chaganty, S. Mussman, and P. Liang, “The price of
debiasing automatic metrics in natural language evaluation,”
arXiv preprint arXiv:1807.02202, 2018.

[18] M. Sundermeyer, R. Schlüter, and H. Ney, “Lstm neural net-
works for language modeling,” in Thirteenth annual confer-
ence of the international speech communication association,
2012.

[19] Y. Miyamoto and K. Cho, “Gated word-character recurrent
language model,” arXiv preprint arXiv:1606.01700, 2016.

[20] E. Grave, A. Joulin, M. Cissé, H. Jégou et al., “Efficient
softmax approximation for gpus,” in Proceedings of the 34th
International Conference on Machine Learning-Volume 70.
JMLR. org, 2017, pp. 1302–1310.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is
all you need,” in Advances in Neural Information Processing
Systems, 2017, pp. 5998–6008.

[22] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Sched-
uled sampling for sequence prediction with recurrent neural
networks,” in Advances in Neural Information Processing
Systems, 2015, pp. 1171–1179.

[23] S. Merity, N. S. Keskar, and R. Socher, “Regulariz-
ing and optimizing lstm language models,” arXiv preprint
arXiv:1708.02182, 2017.

