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Abstract—Ensuring that autonomous space robot control
software behaves as it should is crucial, particularly as software
failure in space often equates to mission failure and could
potentially endanger nearby astronauts and costly equipment.
To minimise mission failure caused by software errors, we
can utilise a variety of tools and techniques to verify that the
software behaves as intended. In particular, distinct nodes in
a robotic system often require different verification techniques
to ensure that they behave as expected. This paper introduces
a method for integrating the various verification techniques
that are applied to robotic software, via a First-Order Logic
(FOL) specification that captures each node’s assumptions and
guarantees. These FOL specifications are then used to guide
the verification of the individual nodes, be it by testing or the
use of a formal method. We also outline a way of measuring
our confidence in the verification of the entire system in terms
of the verification techniques used.
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I. INTRODUCTION

Robotic systems combine many hardware and software
components, usually represented as node-based architec-
tures. Each node in a robotic system may require different
verification techniques, ranging from software testing to
formal methods. In fact, integrating (formal and non-formal)
verification techniques is crucial for the robotics domain [2].
Verification should be carried out using the most suitable
technique or formalism for each node. However, linking
heterogeneous verification results of individual nodes is
difficult and the current state-of-the-art for robotic software
development does not provide an easy way of achieving this.

In Fig. 1, we consider a simple space robotic system: a
planetary rover undertaking a remote inspection task. Here,
we have nodes representing the Vision system, a Planner
that returns a set of potential plans between the current
location and the next point to inspect, an autonomous Plan
Reasoning Agent that selects a plan, and a Hardware
Interface that sends commands to the rover’s actuators.

As illustrated by Fig. 1, we could use logical speci-
fications (e.g. temporal logic), model-based specifications
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(e.g. Event-B or Z), or algebraic specifications (e.g. CSP
or CASL) amongst others to specify the nodes in a robotic
system. Each of these formalisms offers its own range of
benefits, and each tends to suit the verification of particular
types of behaviour. However, in some cases we may only
have access to the black-box or white-box implementation
of a node and so, we must use (simulation-based) testing
techniques for verification.

Our approach facilitates the use of heterogeneous veri-
fication techniques for the nodes in a robotic system. We
achieve this by specifying Assume-Guarantee [3] properties
in FOL, as high-level node specifications, and we employ
temporal logic for reasoning about the combination of these
FOL specifications. Thus, we attach the assumptions (A(i))
and guarantees (G(o)) to individual nodes (shown in Fig. 1).
This abstract specification can be seen as a logical prototype
for individual nodes and thus the entire robotic system.

II. FOL ASSUME-GUARANTEE SPECIFICATIONS

For each node, N , we specifyAN (iN ) and GN (oN ) where
iN is a variable representing the input to the node, oN is a
variable representing the output from the node, and AN (iN )
and GN (oN ) are FOL formulae describing the assumptions
and guarantees, respectively, of this node.
Each individual node, N , obeys the following implication

∀iN , oN · AN (iN )⇒ ♦GN (oN )
where ‘♦’ is LTL’s [4] “eventually” operator. So, this
implication means that if the assumptions, AN (iN ), hold
then eventually the guarantee, GN (oN ), will hold. Note that
our use of temporal operators here is motivated by the
temporal nature of robotic systems and will be of use in
later extensions of this work.

Consider the autonomous Plan Reasoning Agent in Fig.
1, we can specify the following simple assumption, A3(i3):

A3(i3) = ∀p · p ∈ PlanSet⇒ goal ∈ p

which ensures that every plan that is returned by the Planner
contains the goal location. Then, we might specify the
guarantee that the agent chooses the shortest plan as follows:

G3(o3) = plan ∈ PlanSet

∧ ∀p · p ∈ PlanSet ∧ p 6= plan

⇒ length(plan) ≤ length(p)
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Figure 1. We specify the Assume-Guarantee properties for each node (denoted by A(i) and G(o) respectively). These are then used to guide the verification
approach applied to each node, denoted by dashed lines, such as software testing for a black-box implementation of the Vision node. The solid arrows
represent data flow between nodes and that the assumptions of the next node should follow from the guarantee of the previous.

Testing
Simulation-
Based
Testing

Formal
Methods

Vision X 7 7
Planner X X X
Plan Reasoning
Agent X X X

Hardware Inter-
face X X 7

Table I
VERIFICATION TECHNIQUES APPLIED TO EACH NODE.

Once the FOL assumption and guarantee are specified,
then we use these high-level specifications as properties to
be verified of the individual nodes. For the autonomous Plan
Reasoning Agent, we can use a number of techniques for
verifying that it meets its associated FOL specification. For
example, we can specify the node using the GWENDOLEN
agent programming language and then use the AJPF model-
checker to verify that it behaves as specified [1].

Nodes in a modular robotic architecture are linked to-
gether and transmit data between them so long as their
types/requirements match. Similarly, we can compose the
assume-guarantee specifications of individual nodes in a
number of ways and we are working towards a calculus
of inference rules that capture this behaviour. To this end,
we are developing rules for sequentially composing, joining,
branching and looping between nodes.

III. MEASURING CONFIDENCE IN VERIFICATION

A key question is how using these different verification
techniques affects our confidence in the verification of the
whole system. One might think that a formal proof of
correctness corresponds to a higher level of confidence
than simple testing methods (especially over unbounded
environments). However, formal verification is usually only
feasible on an abstraction of the system whereas testing can
be carried out on the implemented code. Therefore, it is
our view that we achieve higher levels of confidence in
verification when multiple verification methods have been
employed for each node in the system [5].

We have broadly partitioned current verification tech-
niques into three categories: testing, simulation-based testing
and formal methods. We have determined which of these
techniques might be employed for each node in our simple
example as shown in Table I. We then provide a score for our

level of confidence in the verification of the whole system as
9/12, resulting in a confidence measure of 75%. Examining
how this metric can be calculated for more complex systems
with loops is a future direction for this work.

IV. CONCLUSIONS

When verifying complex robotic systems, it is clear that
no single verification technique is suitable for every node in
the system [2] and so a logical framework that allows us to
integrate the results from distinct verification techniques is
needed. We have outlined an initial approach to specifying
assumptions and guarantees using FOL for individual nodes
in robotic systems and we have used a simple, illustrative
example of a planetary rover to convey our approach. Once
the FOL specifications have been constructed, they are
then used to guide the more detailed verification of each
node. Furthermore, we introduce the notion of confidence in
verification techniques and provide a broad categorisation.

Our current work involves developing a calculus for
reasoning about and combining the Assume-Guarantee spec-
ifications of individual nodes. In the future, we plan to
provide tool support for this and to evaluate it using a set
of more complex robotic space missions. We also intend to
further investigate the suitability of the confidence levels that
we have proposed in this paper.
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