
A Little Charity Guarantees Almost Envy-Freeness

Bhaskar Ray Chaudhury∗ Tellikepalli Kavitha† Kurt Mehlhorn∗

Alkmini Sgouritsa∗

Abstract

Fair division of indivisible goods is a very well-studied problem. The goal of this problem
is to distribute m goods to n agents in a “fair” manner, where every agent has a valuation
for each subset of goods. We assume general valuations.

Envy-freeness is the most extensively studied notion of fairness. However, envy-free
allocations do not always exist when goods are indivisible. The notion of fairness we consider
here is “envy-freeness up to any good” (EFX) where no agent envies another agent after
the removal of any single good from the other agent’s bundle. It is not known if such an
allocation always exists even when n = 3.

We show there is always a partition of the set of goods into n+1 subsets (X1, . . . , Xn, P)
where for i ∈ [n], Xi is the bundle allocated to agent i and the set P is unallocated (or
donated to charity) such that we have:

• envy-freeness up to any good,

• no agent values P higher than her own bundle, and

• fewer than n goods go to charity, i.e., |P | < n (typically m� n).

Our proof is constructive. When agents have additive valuations and |P | is large (i.e.,
when |P | is close to n), our allocation also has a good maximin share (MMS) guarantee.
Moreover, a minor variant of our algorithm also shows the existence of an allocation which is
4/7 groupwise maximin share (GMMS): this is a notion of fairness stronger than MMS. This
improves upon the current best bound of 1/2 known for an approximate GMMS allocation.

∗MPI for Informatics, Saarland Informatics Campus, Germany. {braycha, mehlhorn, asgourit}@mpi-
inf.mpg.de
†Tata Institute of Fundamental Research, Mumbai, India. Work done while visiting MPI for Informatics,

Saarland Informatics Campus, Germany. kavitha@tifr.res.in

1

ar
X

iv
:1

90
7.

04
59

6v
2

 [
cs

.G
T

]
 1

2
Ju

l 2
01

9
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/227453437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Fair division of goods among competing agents is a fundamental problem in Economics and
Computer Science. There is a set M of m goods and the goal is to allocate goods among n
agents in a fair way. An allocation is a partition of M into disjoint subsets X1, . . . , Xn where
Xi is the set of goods given to agent i. When can an allocation be considered “fair”? One of
the most well-studied notions of fairness is Envy-freeness. Every agent has a value associated
with each subset of M and agent i envies agent j if i values Xj more than Xi. An allocation
is envy-free if no agent envies another. An envy-free allocation can be regarded as a fair and
desirable partition of M among the n agents since no agent envies another; as mentioned in [26],
such a mechanism of partitioning land dates back to the Bible.

Unlike land which is divisible, goods in our setting are indivisible and an envy-free allocation
of the given set of goods need not exist. Consider the following simple example with two agents
and a single good: one of the agents has to receive this good and the other agent envies her.
Since envy-free allocations need not exist, several relaxations have been considered.

Relaxations. Budish [11] introduced the notion of EF1: this is an allocation of goods that is
“envy-free up to one good”. In an EF1 allocation, agent i may envy agent j, however this envy
would vanish as soon as some good is removed from Xj . Note that no good is really removed
from Xj : this is simply a way of assessing how much i values Xj more than Xi. That is, if i
values Xj more than Xi, then there exists some g ∈ Xj such that i values Xi at least as much
as Xj \ {g}. Going back to the example of two agents and a single good, the allocation where
one agent receives this good is EF1. It is known that EF1 allocations always exist; as shown by
Lipton et al. [25], such an allocation can be efficiently computed.

Caragiannis et al. [13] introduced a notion of envy-freeness called EFX that is stronger than
EF1. An EFX allocation is one that is “envy-free up to any good”. In an EFX allocation,
agent i may envy agent j, however this envy would vanish as soon as any good is removed from
Xj . Thus every EFX allocation is also EF1 but not every EF1 allocation is EFX. Consider this
simple example: there are three goods a, b, c and two agents with additive valuations (defined
in Section 1.1) as described below.

a b c

Agent 1 1 1 2

Agent 2 1 1 2

Both agents value c twice as much as a or b. The allocation where agent 1 gets {a} and
agent 2 gets {b, c} is EF1 but not EFX. On the other hand, the allocation where agent 1 gets
{a, b} and agent 2 gets {c} is EFX. Indeed, the latter allocation seems fairer than the former
allocation. As said in [12]: “Arguably, EFX is the best fairness analog of envy-freeness of
indivisible items”. While it is known that EF1 allocations always exist, the question of whether
EFX allocations always exist is still an open problem (despite significant effort, as per [13]).

Plaut and Roughgarden [26] showed that EFX allocations always exist (i) when there are
only two agents or (ii) when all n agents have the same valuations. Moreover, it was shown in
[26] that exponentially many value queries may be needed to determine EFX allocations even
in the restricted setting where there are only two agents with identical submodular valuation
functions1. It is not known if an EFX allocation always exists even when there are only three
agents with additive valuations. It was remarked in [26]: “We suspect that at least for general
valuations, there exist instances where no EFX allocation exists”.

1These are valuation functions with decreasing marginal values.

1

A relaxation of EFX. Very recently, Caragiannis et al. [12] introduced a more relaxed notion
of EFX called EFX-with-charity. This is a partial allocation that is EFX, i.e., the entire set
of goods need not be distributed among the agents. So some goods may be left unallocated
and it is assumed that these unallocated goods are donated to charity. There is a very simple
allocation that is EFX-with-charity where no good is assigned to any agent—thus all goods are
donated to charity. Obviously, this is not an interesting allocation and one seeks allocations
with better guarantees and one such allocation was shown in [12].

Let X∗ = 〈X∗1 , . . . , X∗n〉 be an optimal Nash social welfare allocation2 on the entire set
of goods. It was shown in [12] that there always exists an EFX-with-charity allocation X =
〈X1, . . . , Xn〉 where every agent receives at least half the value of her allocation in X∗. Inter-
estingly, as shown in [12], Xi ⊆ X∗i for all i. Unfortunately, there are no upper bounds on how
complete this allocation is (wrt bounding the number of unallocated goods) or on the value any
agent has for the set of goods donated to charity.

We believe these are important questions to ask. The ideal allocation is one that is EFX
and complete; so we would like a guarantee that a large number of goods have been allocated
to agents. Moreover, since EFX allocations guarantee envy-freeness once any good is removed
from another agent’s set, it is in the same spirit that we seek an EFX (partial) allocation where
nobody envies the set of unallocated goods. The allocation in [12] gives no guarantee either on
the number of unallocated goods or on whether any agent values the set of unallocated goods
more than her own bundle. Here we consider the notion of EFX-with-bounded-charity. That is,
we seek EFX-with-charity allocations with bounds on the set given to charity, i.e., a bound on
the size and a bound on the value of the set of goods donated to charity.

1.1 Our Results

Let N = [n] be the set of agents. Every agent i ∈ [n] has a valuation function vi : 2M → R≥0,
where M is the set of m goods. We show our main existence result for general valuation
functions, i.e., the only assumptions we make on any valuation function vi is that (i) it is
normalized, i.e., vi(∅) = 0, and (ii) it is monotone, i.e., S ⊆ T implies vi(S) ≤ vi(T). In
contrast, the EFX-with-charity allocation in [12] works only for additive valuations, i.e., vi(S) =∑

g∈S vi({g}).
We show there always exists an allocation3 X = 〈X1, . . . , Xn〉 that satisfies the following

properties:

1. X is EFX, i.e., for any two agents i, j: vi(Xi) ≥ vi(Xj \ {g}) for any g ∈ Xj ;

2. vi(Xi) ≥ vi(P) for all agents i, where P = M \ ∪ni=1Xi is the set of unallocated goods;

3. |P | < n (recall that n is the number of agents).

Our proof is constructive. We start with no goods being allocated to the agents and find
the claimed allocation by at most nmV/∆ applications of three simple update rules. Here, n
is the number of agents, m is the number of goods, V = maxi vi(M) is the maximum valuation
of any agent, and ∆ = mini min{|vi(T)− vi(S)| : S, T ⊆M and vi(S) 6= vi(T)} is the minimum
difference between distinct valuations. The update rules use a minimum-size-valuable-set-oracle:
Given S ⊆M , agent i, and α ∈ R such that vi(S) > α, find a minimum cardinality subset Z ⊆ S
such that vi(Z) > α. If this oracle can be realized by an algorithm, our proof is algorithmic.

It also follows from our proof that when all agents have the same valuation function, our
allocation is complete. That is, |P | = 0. This is an alternate proof to the existence of complete
EFX allocations for identical (general) valuations, originally shown in [26].

2This is an allocation that maximizes Πn
i=1vi(X

∗
i), where vi is agent i’s valuation function.

3Henceforth, allocations are partial and we will use “complete allocation” to refer to one where all goods are
allocated.

2

Our next result is a pseudo-polynomial time algorithm to find an allocation that obeys
properties 1-3 given above. For this, we assume that all agents have gross substitute valuations
(defined in Section 3). For gross substitute valuations, the minimum-size-valuable-set-oracle can
be realized by a simple greedy algorithm. Every additive valuation is a gross substitute valuation
and gross substitute valuations form a subclass of the set of submodular valuations [22].

• Suppose all agents have gross substitute valuations. Then an EFX allocation with prop-
erties 1-3 can be computed with poly(n,m, V, 1/∆) queries.

1.1.1 Additive valuations

The most well-understood class of valuation functions is the set of additive valuations. We
consider the case when all agents have additive valuations and show that our allocation or very
minor variants of our allocation can guarantee several other notions of fairness.

Ensuring high Nash social welfare. We show that modifying the starting step of our
algorithm ensures that our allocation X, which satisfies properties 1-3 stated above, also has
a high Nash social welfare. That is, vi(Xi) ≥ 1

2 · vi(X
∗
i) as promised in [12], where X∗ =

〈X∗1 , . . . , X∗n〉 is an optimal Nash social welfare allocation.

Number of Unallocated Goods and MMS Guarantee. Another interesting and well-
studied notion of fairness is maximin share. Suppose agent i has to partition M into n bundles
(or sets) knowing that she would receive the worst bundle with respect to her valuation. Then
i will choose a partition of M that maximizes the valuation of the worst bundle (wrt her
valuation). The value of this worst bundle is the maximin share of agent i. An important
question here is: does there always exist an allocation of M where every agent gets a bundle
worth at least her maximin share?

Formally, let N and M be the sets of n agents and m goods, respectively. We define the
maximin share of an agent i as follows: (here X is the set of all complete allocations)

MMS i(n,M) = max
〈X1,...,Xn〉∈X

min
j∈[n]

vi(Xj).

The goal is to determine an allocation 〈X1, X2, . . . , Xn〉 of M such that for every i we have
vi(Xi) ≥ MMS i(n,M). This question was first posed by Budish [11]. Procaccia and Wang [27]
showed that such an allocation need not exist, even in the restricted setting of only three
agents! Thereafter, approximate-MMS allocations were studied [27, 18, 20, 19] and we know
polynomial time algorithms to find allocations where for all i, agent i gets a bundle of value at
least α ·MMS i(n,M); the current best guarantee for α is 3/4− ε by Ghodsi et al. [20] (for any
ε > 0) and this was very recently improved to 3/4 by Garg and Taki [19].

Amanatadis et al. [2] showed that any complete EFX allocation is also a 4
7 -MMS allocation.

We show that our allocation promises better MMS guarantees when the number of unallocated
goods is large. Let X = 〈X1, . . . , Xn〉 be our allocation as described by properties 1-3 above
and let P be the set of unallocated goods. For any agent i ∈ [n], we have:

vi(Xi) ≥
1

2− |P |/n
MMS i(n,M).

Hence, the larger the number of unallocated goods, the better guarantees we get on MMS.
The extreme values are |P | = 0 and |P | = n − 1. When |P | = 0, we have a complete EFX
allocation and when |P | = n− 1, we have an EFX allocation that is an almost-MMS allocation:
vi(Xi) ≥ (1− 1/n) ·MMS i(n,M) for all i.

3

Improved Guarantees for Groupwise MMS. Barman et al. [6] recently introduced a
notion of fairness called groupwise maximin share (GMMS) which is stronger than MMS. An
allocation is said to be GMMS if the MMS condition is satisfied for every subgroup of agents
and the union of the sets of goods allocated to them. Formally, a complete allocation X =
〈X1, X2, . . . , Xn〉 is α-GMMS if for any N ′ ⊆ N , we have vi(Xi) ≥ α · MMS i(n

′,
⋃

i∈N ′ Xi)
where n′ = |N ′|. Every GMMS allocation, i.e. α = 1, is also a complete EFX allocation [6].

It is known [6] that there are instances where GMMS is arbitrarily better than MMS.
Naturally, it is a harder problem to approximate GMMS than MMS. While 3

4 -MMS allocations
always exist, the largest α for which α-GMMS allocations are known to exist is 1

2 [6]. We extend
the result of Amanatadis et al. [2] for MMS to show the following:

• A 4
7 -GMMS allocation always exists and can be computed in pseudo-polynomial time.

In particular, we show that modifying the last step of our algorithm results in a complete
allocation that is 4

7 -GMMS.

1.2 Our Techniques

Envy-Graph. We now give an overview of the main ideas used to find our EFX allocation.
We first recall the algorithm of Lipton et al. [25] for finding an EF1 allocation4. They use the
notion of an envy-graph: here each vertex corresponds to an agent and there is an edge (i, j)
iff i envies j. The invariant maintained is that the envy-graph is a DAG: a cycle corresponds
to a cycle of envy and by swapping bundles along a cycle, every agent becomes better-off and
the number of envy edges decreases. More precisely, if i0 → i1 → i2 → . . . → i`−1 → i0 is a
cycle in the envy graph, then reassigning Xij+1 to agent ij for 0 ≤ j < ` (indices are to be read
modulo `) will increase the valuation of every agent in the cycle. Also if there was an edge s to
some ik where s is not a part of the cycle, this edge just gets directed now from s to ik+1 after
we exchange bundles along the cycle. Thus the number of envy edges in the graph does not
increase and the valuations of the agents in the cycle goes up. Thus cycles can be eliminated.

The algorithm in [25] runs in rounds and always maintains an allocation that is also EF1.
At the beginning of every round, an unenvied agent s (this is a source vertex in this DAG)
is identified and an unallocated good g is allocated to s. The new allocation is also EF1, as
nobody will envy the bundle of s after removing the good g.

The Cut-and-Merge Operation. We now highlight a key difference between an EF1 allo-
cation and an EFX allocation. From the algorithm of Lipton et al. [25], it is clear that given
an EF1 allocation on a set M0 of goods, one can determine an EF1 allocation on M0 ∪M1,
for any M1 ⊆ M \M0, by simply adding goods from M1 one-by-one to the existing bundles
and changing the owners (if necessary) in a clever way. Intuitively, we never need to cut or
merge the bundles formed in any EF1 allocation. We can just append the unallocated goods
appropriately to the current bundles.

The above strategy is very far from true for EFX. Consider the example illustrated below
with three agents with additive valuations and four goods a, b, c, and d.

a b c d

Agent 1 0 1 1 2

Agent 2 1 0 1 2

Agent 3 1 1 0 2

4The algorithm in [25] was published in 2004 with a different property and EF1 was proposed in 2011.

4

An EFX allocation for the first three goods has to give exactly one of a, b, c to each of the
three agents. However an EFX allocation for all the four goods has to allocate the singleton
set {d} to some agent (say, agent 1) and say, {a} to agent 2 and {b, c} to agent 3. Thus
the allocation needs to cut and merged. When there are many agents - each with her own
valuation, figuring out the cut-and-merge operations is the difficult step. Here we implement a
“merge-and-cut” operation as follows.

Improving Social Welfare. Suppose we have an EFX allocation X = 〈X1, . . . , Xn〉 on some
subset M0 ⊂ M . We would now like to add a good g ∈ M \M0. However we will not be able
to guarantee an EFX allocation on M0 ∪ {g}. What we will ensure is that either case (i) or
case (ii) occurs:

(i) We have an EFX allocation X ′ = 〈X ′1, . . . , X ′n〉 on a subset of M0∪{g} such that vi(X
′
i) ≥

vi(Xi) for all i and for at least one agent j we have vj(X
′
j) > vj(Xj). Thus

∑
i∈[n] vi(X

′
i) >∑

i∈[n] vi(Xi); in other words, social welfare strictly improves.

(ii) We have an EFX allocation on M0 ∪ {g} and the social welfare remains unchanged.

Hence in each step of our algorithm, we either increase the number of allocated goods or we
increase social welfare—thus we always make progress. This is similar to the approach used by
Plaut and Roughgarden [26] to guarantee the existence of 1

2 -EFX5 when agents have subadditive
valuations. We now outline how we ensure one of case (i), case (ii) has to happen:

For simplicity of exposition, we assume the envy-graph corresponding to our starting EFX
allocation X has a single source s. Add g to s’s bundle: if nobody envies s up to any good then
we are in an easy case as we have an EFX allocation on M0∪{g}. In this case, we “decycle” the
envy-graph (if cycles are created) and continue. Observe that swapping bundles along a cycle
in the envy-graph increases social welfare.

Most Envious Agent. So assume there are one or more agents who envy s up to any good
after g is allocated to s. To resolve this, we introduce the concept of a most envious agent. Let
i be an agent who envies s up to any good, so vi(Xi) < vi(S

′) for some S′ ⊂ Xs ∪ {g}. Let
Si be the subset of Xs ∪ {g} with the minimum cardinality such that vi(Xi) < vi(Si). So for
any Ti ⊂ Si, we have vi(Xi) ≥ vi(Ti). The agent i with the smallest value of |Si| (break ties
arbitrarily) is the most envious agent of s. Call this agent t.

The crucial observation is that no agent envies St up to any good—otherwise it would
contradict t being the agent with the smallest value of |St|. Recall the assumption that s is the
only source, so there is a path s → i1 → · · · → ik−1 → t in the envy-graph. We do a leftwise
shift of bundles along this path: so s gets i1’s bundle, and for 1 ≤ r ≤ k − 1: ir gets ir+1’s
bundle (where ik = t), and finally t gets St. The goods in Xs ∪ {g} \ St are thrown back into
the pool of unallocated goods.

Observe that every agent in this path is strictly better-off now than in the allocation X and
nobody is worse-off. Moreover, by the definition of St, there are no agents envying any agent
up to any good. Thus we have a desired EFX allocation X ′. When there are multiple sources,
we can adapt this technique provided there are enough unallocated goods; in particular, the
number of unallocated goods must be at least the number of sources in the envy-graph. We
describe this in detail in Section 2.

We would like to contrast the above approach with other EFX algorithms [26, 12]. The 1
2 -

EFX algorithm by Plaut and Roughgarden [26] either merges g (the new good) with an existing
bundle or allocates the singleton set {g} to an agent while the EFX-with-charity algorithm by
Caragiannis et al. [12] takes an allocation of maximum Nash social welfare as input and then
permanently removes some goods from the instance. We regard the notion of “most envious

5An allocation X = (X1, . . . , Xn) is 1
2
-EFX if for any two agents i, j: vi(Xi) ≥ 1

2
· vi(Xj \ {g}) for all g ∈ Xj .

5

agent” that shows a natural way of breaking up a bundle to preserve envy-freeness up to any
good as one of the innovative contributions of our work.

Our Other Results. Regarding our result with approximate MMS guarantee, the larger the
number of unallocated goods in our EFX allocation, the larger are the number of sources: these
are unenvied agents. Moreover, no agent envies the set of unallocated goods. Suppose for now
that |P | = n − 1. This means every agent is a source. So no agent envies the bundle of any
other agent and also the set of unallocated goods. Thus for each agent i, we have:

vi(Xi) ≥
vi(M)

n+ 1
≥ (1 + 1/n)−1 · vi(M)

n
≥ (1− 1/n) ·MMS i(n,M),

where the constraint that vi(M)/n ≥ MMS i(n,M) holds for additive valuations. We show
our result for approximate-MMS allocation and our improved bound for approximate-GMMS
allocation in Section 4.

1.3 Related Work

Fair division of divisible resources is a classical and well-studied subject starting from 1940’s [28].
Fair division of indivisible goods among competing agents is a young and exciting topic with
recent work on EF1 and EFX allocations [13, 8, 26, 9, 12], approximate maximin share alloca-
tions [11, 10, 3, 7, 23, 20, 18], and approximation algorithms for maximizing Nash social welfare
and generalizations [16, 15, 14, 4, 17, 5]. As mentioned earlier, Caragiannis et al. [13] intro-
duced the notion of EFX: whether such allocations always exist is an enigmatic open problem.
It was shown in [13] that there always exists an EF1 allocation that is also Pareto-optimal6 and
Barman et al. in [8] showed a weakly-polynomial time algorithm to compute such an allocation.

Applications. Fair division of goods or resources occurs in many real-world scenarios and
this is demonstrated by the popularity of the website Spliddit (http://www.spliddit.org)
that implements mechanisms for fair division where users can log in, define what needs to be
divided, and enter their valuations. This website guarantees an EF1 allocation that is also
Pareto-optimal and since its launch in 2014, it has been used tens of thousands of times [13].
We refer to [21, 26] for details on the diverse applications for which Spliddit has been used: these
range from rent division and taxi fare division to credit assignment for an academic paper or
group project. Another such website is Fair Outcomes, Inc. (http://www.fairoutcomes.com).
Another interesting application is Course Allocate used at Wharton School that guarantees
certain fairness properties to allocate courses among students [26].

2 Existence of an EFX-Allocation with Bounded Charity

We prove our main result on EFX-with-bounded-charity allocations in this section. We will
define three update rules. Each update rule takes a pair (X,P) consisting of an allocation X
and a set P of unallocated goods (we will call P the pool) and returns a modified pair (X ′, P ′).

Each application of an update rule will ensure that either (i) the social welfare φ(X) =∑
i∈[n] vi(Xi) of the current allocation increases or (ii) the size of the pool decreases and the

social welfare is left unchanged, so |P ′| < |P | in this case. Hence the update process will
terminate. The overall structure of the algorithm is given in Algorithm 1.

In order to define our update rules, we need the concepts of envy-graph and the most envious
agent for a bundle of goods. These were discussed in Section 1.2 and we formally define them
below.

6An allocation X = 〈X1, . . . , Xn〉 is Pareto-optimal if there is no allocation Y = 〈Y1, . . . , Yn〉 where vi(Yi) ≥
vi(Xi) for all i ∈ [n] and vi(Yj) > vi(Xj) for some j.

6

http://www.spliddit.org
http://www.fairoutcomes.com

Algorithm 1 Algorithm for Computing an EFX-Allocation

Postcondition: X is EFX, |P | < n and vi(P) ≤ vi(Xi) for all i ∈ [n].

1: Xi ← ∅ for i ∈ [n]; P ←M ;
2: while one of the update rules shown in Algorithm 2 is applicable do

Invariant: X is EFX and the envy-graph GX is acyclic
3: Let U` be an applicable update rule;
4: (X,P)← U`(X,P);
5: Decycle the envy-graph;
6: end while

Definition 1. The envy-graph GX for an allocation X = 〈X1, X2, . . . , Xn〉 has the set of agents
as vertices and there is a directed edge from agent i to agent j if and only if vi(Xi) < vi(Xj).

The notion of envy-graph was introduced in [25] and it is well-known that cycles can be
removed from the envy-graph without destroying desirable properties (see Lemma 2). Thus
we can maintain GX as a DAG. For an agent s, the reachability component C(s) consists all
agents reachable from s in the envy-graph. The sources in the envy-graph are the vertices with
indegree zero.

For ease of notation, we will use B \g and B∪g to denote B \{g} and B∪{g}, respectively.

Lemma 2. Let i0 → i1 → · · · → ik−1 → i0 be a cycle in the envy-graph. Consider the
allocation X ′ where X ′i` = Xi`+1

(indices are modulo k) for ` ∈ {0, . . . , k − 1} and X ′j = Xj for
j /∈ {i0, . . . , ik−1}. If X is EFX, then X ′ is also EFX. Moreover, φ(X ′) > φ(X).

Proof. Consider any agent i. We have vi(X
′
i) ≥ vi(Xi) with strict inequality if i lies on the

cycle. So
∑

i∈[n] vi(X
′
i) >

∑
i∈[n] vi(Xi). Thus φ(X ′) > φ(X).

Since X ′ is just a permutation of X, for any agent j there exists some agent j′ such that
X ′j = Xj′ . Therefore, since X is EFX, for any good g ∈ Xj′ (or equivalently X ′j) we have
vi(X

′
j \ g) = vi(Xj′ \ g) ≤ vi(Xi) ≤ vi(X ′i). Thus X ′ is also EFX.

Definition 3. Let X be an allocation and S ⊆ M . For an agent i with vi(S) > vi(Xi), let
κX(i, S) be the minimum k such that there is a set Z ⊆ S of size k with vi(Z) > vi(Xi). We
define κX(S) = mini∈[n] κX(i, S).

The following definition formalizes the notion of “most envious agents”. Let S ⊆ M , then
we define

AX(S) = {i ∈ [n] : κX(i, S) = κX(S)}.

If there is no i with vi(S) > vi(Xi), then AX(S) is empty. We make a simple observation.

Lemma 4. Consider an agent i ∈ AX(S) and let Z ⊆ S be such that |Z| = κX(S) and
vi(Z) > vi(Xi). Then for any agent j (incl. i) we have that vj(Z \ g) ≤ vj(Xj) for all g ∈ Z.

Proof. Let j be any agent. There are two cases: either vj(Xj) ≥ vj(S) or vj(Xj) < vj(S). In
the former case, we have vj(Xj) ≥ vj(Z \g) by monotonicity. In the latter case, vj(Xj) ≥ vj(Z ′)
for all sets Z ′ ⊆ S of size at most κX(j, S) − 1 (by definition of κX(j, S)). Note that the set
Z \ g has size κX(S)− 1 ≤ κX(j, S)− 1 since κX(S) ≤ κX(j, S) (by definition of κX(S)). Thus
vj(Z \ g) ≤ vj(Xj).

We are now ready to present our three update rules U0, U1, and U2, see Algorithm 2.

Rule U0 : Rule U0 is the easiest of the update rules. It is applicable whenever adding a good
from the pool to some source of GX does not destroy the EFX-property (see Algorithm 2).

Lemma 5 (Rule U0).

7

Algorithm 2 The Update Rules

1: function U0(allocation X, pool P)
Precondition: There is a good g ∈ P and an agent i such that allocating g to i

results in an EFX allocation.
2: Allocate g to i, i.e., X ′i ← Xi ∪ g, P ′ ← P \ g, and X ′j = Xj for j 6= i.
3: return (X ′, P ′).
4: end function

5: function U1(allocation X, pool P)
Precondition: There is an agent i such that vi(P) > vi(Xi).

6: Let i be an agent inAX(P) and let Z ⊆ P be a set of size κX(P) such that vi(Z) > vi(Xi).
7: Set X ′i = Z and X ′j = Xj for j 6= i.
8: Set P ′ = Xi ∪ (P \ Z).
9: return (X ′, P ′).

10: end function

11: function U2(allocation X, pool P)
Precondition: There is an ` ≥ 1, distinct goods g0, g1, . . . , g`−1 in P , distinct

sources s0, s1, . . . , s`−1 of GX and distinct agents t1, t2,. . . , t` such
that ti ∈ C(si) ∩AX(Xsi−1 ∪ gi−1) for 0 ≤ i ≤ `− 1 (indices are to
be interpreted modulo `).

12: Let Zi ⊆ Xsi∪gi of size κX(Xsi∪gi) be such that vti+1(Zi) > vti+1(Xti+1) for 0 ≤ i ≤ `−1.

13: Set P ′ = (P \ {g0, . . . , g`−1})
⋃`−1

i=0((Xsi ∪ {gi}) \ Zi).
14: Let ui0 → · · · → uimi

be the path of length mi from si = ui0 to ti = uimi
in C(si) for

0 ≤ i ≤ `− 1.
15: Set X ′

ui
k

= Xui
k+1

for all k ∈ {0, . . . ,mi − 1} and all i ∈ {0, . . . , `− 1}.
16: Set X ′ti = Zi−1 for all i ∈ {1, . . . , `}.
17: Set X ′j = Xj for all other j.
18: return (X ′, P ′).
19: end function

a) Rule U0 returns an EFX allocation. An application of the rule does not decrease social
welfare and decreases the size of the pool.

b) If rule U0 is not applicable then for any source i of GX and good g ∈ P , there will be an
agent j 6= i such that vj(Xi ∪ g) > vj(Xj). In particular, AX(Xi ∪ g) will not be empty, and
κX(j,Xi ∪ g) ≤ |Xi| for all j ∈ AX(Xi ∪ g).

Proof. The first part of a) follows directly from the precondition of the rule. The second part
holds since the valuations are monotone and because |P ′| = |P | − 1.

The first two sentences in part b) are obvious. We come to the third sentence. Since adding
g to Xi destroys the EFX-property, there must be some g′ ∈ Xi ∪ g and some j ∈ [n] such that
vj(Xi ∪ g \ g′) > vj(Xj). Thus κX(j,Xi ∪ g) ≤ |Xi|.

Rule U1 : Rule U1 is applicable whenever there is an agent that values the pool higher than
her current bundle (see Algorithm 2).

Lemma 6 (Rule U1). Rule U1 increases the social welfare and returns an EFX allocation.

Proof. Since there is an agent that values the pool higher than her own bundle, AX(P) is non-
empty. Choose i from AX(P) arbitrarily. Let X ′ be the allocation defined in Algorithm 2,
line 7. Then vi(X

′
i) > vi(Xi) and vj(X

′
j) = vj(Xj) for j 6= i. Thus φ(X ′) > φ(X).

It remains to show that the allocation X ′ is EFX, i.e., for every pair of agents j and k
and any good g ∈ X ′k, we have vj(X

′
k \ g) ≤ vj(X

′
j). Since X is EFX, this is obvious if

8

neither j nor k is equal to i. If j = i, then vi(X
′
i) > vi(Xi) ≥ vi(Xk \ g) = vi(X

′
k \ g) for all

g ∈ X ′k (or equivalently g ∈ Xk). Finally, we consider k = i. Since k = i ∈ AX(P), we have
vj(X

′
j) = vj(Xj) ≥ vj(Z \ g) = vj(X

′
i \ g) for any g ∈ Z (where Z is defined in Algorithm 2,

line 6) by Lemma 4.

Rule U2 : Rule U2 is our most complex rule. It is applicable if for some ` ≥ 1, there are distinct
goods g0, g1, . . . , g`−1 in P , distinct sources s0, s1, . . . , s`−1 of GX and distinct agents t1,
t2,. . . , t` (indices are to be interpreted modulo `) such that for each i: (1) ti is a most envious
agent when gi−1 is added to si−1 and (2) ti is reachable from si. We first show that rule U2 is
applicable if rule U0 is not applicable and the pool contains at least n goods.

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

s0 s1

t1

t3

t2

s2

Xs2
∪ g2Xs1

∪ g1Xs0
∪ g0

C(s0) C(s2)C(s1)

Figure 1: We have ti ∈ AX(Xsi−1 ∪ gi−1)). Moreover, ti 6∈ C(s0)∪ . . .∪C(si−1) for i = 1, 2 and
t3 ∈ C(s0) ∪ . . . ∪ C(s2). j = 1 is largest such that t3 ∈ C(sj). The cycle is defined by s1, s2,
g1, g2, t2 and t3.

Lemma 7. If |P | ≥ n and rule U0 is not applicable then there is an ` ≥ 1, distinct goods
g0, g1, . . . , g`−1 in P , distinct sources s0, s1, . . . , s`−1 of GX , and distinct agents t1, t1, . . . , t`
such that ti ∈ C(si) ∩AX(Xsi−1 ∪ gi−1) for i ∈ {0, . . . , `− 1} (indices are modulo `).

Proof. Since rule U0 is not applicable, AX(Xs ∪ g) is non-empty for every source s of GX

and every good g ∈ P . Construct a sequence of triples (si, gi, ti+1), i ≥ 0 defined as follows.
Let s0 be an arbitrary source of GX and let g0 be an arbitrary good in P . Assume we have
defined si−1 and gi−1. Let ti ∈ AX(Xsi−1 ∪ gi−1) be arbitrary. If ti ∈ C(s0) ∪ · · · ∪ C(si−1)
then stop the construction of the sequence and let j be maximum such that ti ∈ C(sj). Set
` = i− j and return sj , . . . , si−1, gj , . . . , gi−1 and tj+1, . . . , ti; see Figure 1 for an illustration. If
ti 6∈ C(s0) ∪ · · · ∪ C(si−1), let si be such that ti ∈ C(si). Also, let gi be a good in P distinct
from g0 to gi−1.

The construction is well-defined since |P | ≥ n and hence we cannot run out of goods. The
sources and goods are pairwise distinct by construction. The agents t1 to ti−1 are distinct by
construction. The agent ti is distinct from tj+1 to ti−1 since tk ∈ C(sk) \ (C(s0) ∪ . . . ∪ Csk−1

)
for k < i and j is maximum such that ti ∈ C(sj).

For each i, let ui0 → ui1 → · · · → uimi
be the path of length mi from si = ui0 to ti = uimi

in
C(si). Rule U2 assigns (i) X ′

ui
k

= Xui
k+1

for all k ∈ {0, . . . ,mi − 1} and all i ∈ {0, . . . , ` − 1}
and (ii) X ′ti = Zi−1 for all i ∈ {1, . . . , `}, where Zi is defined in Algorithm 2 (see line 12). For
all other j, we have X ′j = Xj .

Lemma 8 (Rule U2). Rule U2 increases social welfare and returns an EFX allocation.

Proof. We first observe that the valuations of the agents for their bundles have either increased
or remained the same (since either the agents are left with their old bundles or assigned bundles

9

that they envied). In particular, the valuations of all the agents in
⋃`−1

i=0

⋃mi
k=0{uik} are strictly

larger, where the vertices uik are defined above. Thus φ(X ′) > φ(X).
It remains to show that the allocation X ′ is EFX, i.e., for every pair of agents j and k and

any good g ∈ X ′k we have vj(X
′
k \ g) ≤ vj(X

′
j). Let T = {t1, t2, . . . , t`}. For every agent r /∈ T

we have X ′r = Xr′ for some r′. Now consider two cases depending k:

– k /∈ T : Note that valuations of the agents for their current bundles (in X ′) is at least as
good as their old bundles (in X). We have vj(X

′
j) ≥ vj(Xj) ≥ vj(Xk′ \ g) = vj(X

′
k \ g) for

any g ∈ X ′k (or equivalently g ∈ Xk′).

– k ∈ T : Let k = ti. We have vj(X
′
j) ≥ vj(Xj) ≥ vj(Zi−1 \ g) for any g ∈ Zi−1 (by

Lemma 4) and vj(Zi−1 \ g) = vj(X
′
ti \ g) = vj(X

′
k \ g) for any g ∈ X ′k.

We can now summarize. Let V = maxi vi(M) be the maximum valuation of any agent and
let ∆ = mini min{|vi(T) − vi(S)| : S, T ⊆ M and vi(S) 6= vi(T)} be the minimum difference
between distinct valuations. Each application of rule U1 or rule U2 increases the social welfare
by at least ∆ and hence there can be no more than nV/∆ applications of these rules. Each
application of rule U0 decreases the size of the pool by one and hence there cannot be more
than m successive applications of this rule. We conclude that the number of iterations is at
most nmV/∆. Thus we have shown the following theorem.

Theorem 9. For normalized and monotone valuations, there is always an allocation X and a
pool P of unallocated goods such that

• X is EFX,

• vi(Xi) ≥ vi(P) for all agents i, and

• |P | is less than the number of sources in the envy-graph; in particular, |P | < n.

Algorithm 1 determines such an allocation in at most nmV/∆ iterations.

We also claimed in Section 1 that our algorithm gives another proof that when all the agents
have identical (general) valuations then an EFX allocation with P = ∅ always exists. This proof
is given in the appendix

3 Finding the Desired Allocation in Pseudo-Polynomial Time

In this section we describe how to find in time polynomial in n, m, V , and 1/∆, the EFX-
with-bounded-charity allocation described in Theorem 9 for all gross substitute valuations. A
minimum-size-valuable-set-oracle will be used here; it is defined as : given S ⊆M , agent i, and
α ∈ R such that vi(S) > α, find a minimum cardinality subset Z ⊆ S such that vi(Z) > α.7

For additive valuations, the oracle is easy to realize. We initialize Z to the empty set and
as long as vi(Z) ≤ α, we select g ∈ S \ Z with maximum vi(g) and add g to Z.

We now show that the oracle can also be realized for gross substitutes valuations. For the
definition of the gross substitutes property, we use the notion of demand correspondence.

7Alternatively, a size-constrained-optimal-valuation oracle would suffice too, where given a set S, agent i and
an integer k, find Z ⊆ S such that |Z| ≤ k and vi(Z) is maximum. We can simulate the minimum-size-valuation-
oracle with the size-constrained-optimal-valuation oracle : All we need to do is to determine the smallest k ∈ [n0]
(where n0 = |S|) such that the valuation of agent i for the optimal set returned by the size-constrained-optimal-
valuation oracle is larger than α. This can be realized with n0 queries of this oracle (enumerating over all
k ∈ [n0]).

10

Definition 10. (Demand Correspondence D(v, p)) Given a valuation function v : 2M → R≥0
and a price vector p ∈ Rm

≥0, define the demand correspondence as

D(v, p) =

S ⊆M : v(S)−
∑
g∈S

pg ≥ v(S′)−
∑
g∈S′

pg for all S′ ⊆M

 .

That is, the demand correspondence is the family of sets that maximize the utility under prices
p.

Definition 11. (Gross Substitutes (GS) [1]) A valuation function v : 2M → R≥0 satisfies the
gross substitutes (GS) property if for any price vectors p, p′ ∈ Rm

≥0 with p ≤ p′ (i.e. pg ≤ p′g for
all g ∈ [m]) and any set S ∈ D(v, p), there is a set T ∈ D(v, p′) such that S∩{g : pg = p′g} ⊆ T .

A useful consequence of the GS property [24] is that the greedy approach shown in Algo-
rithm 3 computes a set S ∈ D(v, p). It considers goods in order of non-increasing incremental
value of v(g|S)− pg where v(g|S) = v(S ∪ g)− v(S) and S is the current set. The algorithm is
non-deterministic in the choice of g∗ in line 4 and whether to terminate in line 6.

Algorithm 3 Greedy Demand Oracle

1: Input: v : 2M → R≥0 (v satisfies GS), p ∈ Rm
≥0

2: Initialize S = ∅
3: Repeat
4: Let g∗ ∈M \ S maximize ∆g = v(g|S)− pg
5: If ∆g∗ > 0 then set S = S ∪ g∗
6: If ∆g∗ = 0 then either set S = S ∪ g∗ or return S
7: If S = M or ∆g∗ < 0 then return S

If all prices are the same (equivalently, zero), the greedy approach (Algorithm 4) computes
for each cardinality k, a set Sk of maximum value (this is Z after k rounds of Algorithm 4).

Algorithm 4 Most Valuable Sets

1: Input: α ≥ 0, v : 2M → R≥0 (v satisfies GS)
2: Initialize Z = ∅
3: While Z 6= M do
4: Let g∗ ∈ arg maxg∈M\Z{v(g|Z)}
5: Z = Z ∪ g∗

Lemma 12. Let gk be the good added in the k-th round of Algorithm 4 and let Sk = {g1, g2, . . . , gk}.
Then Sk is a set of cardinality k of maximum value, i.e., v(Sk) ≥ v(T) for every set T with
|T | ≤ k.

Proof. Consider any k. If v(gk+1|Sk) = 0, then v(g ∪ Sk) = v(Sk) for every g 6∈ Sk and hence
v(Sk) = v(M) by the submodularity8 of v [22]. Thus Sk is a most valuable set of size k. This is
also true for k = m. So assume k < m and v(gk+1|Sk) > 0. Then v(gk|Sk−1) ≥ v(gk+1|Sk−1) ≥
v(gk+1|Sk) > 0, where the first inequality holds since gk is chosen in round k and the second
inequality follows from the submodularity of v. Let p be a price vector with pg = v(gk|Sk−1)
for all g ∈ M ; we abuse the notation and use also p for the common price. We will show that
Sk ∈ D(v, p).

Claim 13. Sk ∈ D(v, p).

8So v(S ∪ g)− v(S) ≥ v(T ∪ g)− v(T) whenever S ⊆ T .

11

Proof. We will use Algorithm 3 to derive that Sk ∈ D(v, p). Observe that the price is the same
(this is p) for all goods. So in each round, Algorithm 3 chooses a good g that maximizes v(g|S).
This is also what Algorithm 4 does. We may assume that ties are broken in the same way and
hence both algorithms add goods in the same order. We need to guarantee that Algorithm 3
can return the set Sk. This holds because v(gk|Sk−1) − p = 0, so we can add this item and
terminate the algorithm in the next round where ∆gk+1

≤ 0.

We are now ready to show that v(T) ≤ v(S) for any set T of size at most k. We have

v(T)−
∑
g∈T

pg ≤ v(Sk)−
∑
g∈Sk

pg = v(Sk)− kp,

for every set T ⊆M since Sk ∈ D(v, p). Hence we have:

v(T) ≤ v(Sk) + (|T | − k)p ≤ v(Sk)

for every set T with |T | ≤ k.

The minimum-size-valuable-set oracle is now readily realized. We simply run Algorithm 4
on the set S until a set of value greater α is obtained. We can conclude the following theorem.

Theorem 14. For gross substitute valuations, the allocation defined in Theorem 9 can be de-
termined with poly(n,m, V, 1/∆) value queries.

An FPTAS to Determine an “Almost” Desired Allocation. Our algorithm is pseudo-
polynomial, since the increase in individual valuations of the agents when we perform the
update rules could be very small. Suppose we just wanted an “almost” EFX property, i.e., for
every pair of agents i and j, we are happy to ensure that (1 + ε) · vi(Xi) ≥ vi(Xj) and also
(1 + ε) · vi(Xi) ≥ vi(P) for every i. Then we have an algorithm that runs in poly(n,m, 1ε , log V)
time and finds a desired allocation.

Theorem 15. For normalized and gross substitute integral valuations, given any ε > 0, in
time poly(n,m, 1ε , log V), we can determine an allocation X = 〈X1, X2, . . . , Xn〉 and a pool of
unallocated goods P such that

• for any pair of agents i and j we have (1 + ε) · vi(Xi) ≥ vi(Xj \ g) for all g ∈ Xj,

• for any agent i, we have (1 + ε) · vi(Xi) ≥ vi(P), and

• |P | < n.

The proof follows in a straightforward manner from the proof of Theorem 9 in Section 2. The
key idea is that the “almost” EFX property is violated if and only if (1 + ε) · vi(Xi) < vi(Xj \ g)
for some i, j ∈ [n] or (1+ε) ·vi(Xi) < vi(P) for some i ∈ [n]. So every time we apply the update
rules U1 or U2 there is a multiplicative improvement (by a factor of 1+ε) in the valuation of some
agents. Since these valuations are upper-bounded by V we get a bound of poly(n,m, log(1+ε) V)
on the number of iterations.

4 Guarantees on Other Notions of Fairness

In this section we assume that all agents have additive valuations. We show that a minor variant
of our algorithm finds an allocation with a good guarantee on Nash social welfare and groupwise
maximin share (GMMS).

12

Guarantee in Terms of Nash Social Welfare. We claimed in Section 1 that for additive
valuations, it can also be ensured that for each i, we have vi(Xi) ≥ 1

2 · vi(X
∗
i) where X∗ =

〈X∗1 , . . . , X∗n〉 is an optimal Nash social welfare allocation and X is the allocation in Theorem 9.
This is easy to see from Algorithm 1: rather than initialize Xi = ∅, we will initialize Xi to
the bundle corresponding to the allocation determined by the algorithm in [12]. So we have
vi(Xi) ≥ 1

2 · vi(X
∗
i), to begin with. As the algorithm progresses, our invariant is that vi(Xi)

never decreases for any i. So if X ′ = 〈X ′1, . . . , X ′n〉 is the final allocation computed by our
algorithm, then we have vi(X

′
i) ≥ 1

2 · vi(X
∗
i) for i ∈ [n].

Lemma 16. Given a set N of agents with additive valuations and a set M of goods, there exists
an allocation X = 〈X1, . . . , Xn〉 and a pool P of unallocated goods that satisfy all the conditions
of Theorem 9 and vi(Xi) ≥ 1

2vi(X
∗
i) for all i ∈ N , where X∗ = 〈X∗1 , . . . , X∗n〉 is an optimal Nash

social welfare allocation.

4.1 An Approximate MMS Allocation for Large |P |

We now show that if |P | (the number of unallocated goods in our allocation) is sufficiently
large, then our EFX allocation X has a very good MMS guarantee. Recall that our algorithm
continues till |P | is smaller than the number of sources in the envy-graph GX and recall that
sources are unenvied agents. In particular, if |P | = n − 1, then the number of sources in GX

is n; so no agent envies another. That is, for each i, we have vi(Xi) ≥ vi(Xj) for all j ∈ [n].
Moreover, vi(Xi) ≥ vi(P). So we have

vi(Xi) ≥
vi(M)

n+ 1
≥
(

1 +
1

n

)−1
· vi(M)

n
≥
(

1 +
1

n

)−1
·MMS i(n,M),

where for every agent i, the inequality MMS i(n,M) ≤ vi(M)/n holds for additive valuations.
We formalize the above intuition in Theorem 18. The following proposition will be useful.

Proposition 17 ([18]). Let N be a set of n agents with additive valuations and let M be a set
of m goods. If N ′ ⊆ N and M ′ ⊆ M are such that |N \ N ′| ≥ |M \M ′| then for any agent
i ∈ N ′, we have MMS i(n

′,M ′) ≥ MMS i(n,M) where n′ = |N ′|.

Theorem 18. Given a set N of n agents with additive valuations and a set M of m goods,
there exists an allocation X = 〈X1, X2, . . . , Xn〉 and set P of unallocated goods that satisfies:

• the 3 conditions stated in Theorem 9;

• vi(Xi) ≥ 1
2vi(X

∗
i) for all i ∈ N , where X∗ is an optimal Nash social welfare allocation;

• vi(Xi) ≥ MMS i(n,M)/
(
2− k

n

)
for every i ∈ N , where k = |P |.

Proof. Let (X,P) be the allocation guaranteed by Lemma 16. Hence the first two conditions
given in the theorem statement are satisfied by (X,P). So what we need to show now is that
for any agent i, we have vi(Xi) ≥ MMS i(n,M)/

(
2− k

n

)
.

Let N ′ ⊆ N be the set of agents j for which either vi(Xj) ≤ vi(Xi) or |Xj | ≥ 2. Then i ∈ N ′
and all sources of GX belong to N ′. Also, |Xj | = 1 and vi(Xj) > vi(Xi) for j ∈ N \N ′. Let M ′

be the set of goods allocated to the agents in N ′. The agents in N \N ′ are allocated the goods
in M \ (M ′ ∪P). Observe that every agent in N \N ′ is allocated at most one good. So we have
|N \N ′| ≥ |M \(M ′∪P)|. We know from Proposition 17 that MMS i(n

′,M ′∪P) ≥ MMS i(n,M)
where n′ = |N ′|. Thus it suffices to show that vi(Xi) ≥ MMS i(n

′,M ′ ∪ P)/
(
2− k

n

)
.

Consider any j ∈ N ′ with vi(Xj) > vi(Xi). So |Xj | ≥ 2. Since valuations are additive and
vi(Xi) ≥ vi(Xj \ {g}) for all g ∈ Xj , we have

vi(Xi) ≥
(

1− 1

|Xj |

)
· vi(Xj) ≥

1

2
· vi(Xj).

13

We know the following inequalities hold:

vi(Xi) ≥ vi(P), (1)

vi(Xi) ≥ vi(Xj) for all j that were sources in GX , (2)

2vi(Xi) ≥ vi(Xj) for all other j ∈ N ′. (3)

Recall that the number of sources is at least |P | + 1 = k + 1. Summing up all inequalities in
(1)-(3) and using the fact that vi is additive, we have (2(n′−(k+1))+k+2)·vi(Xi) ≥ vi(M ′∪P).
Hence we have

vi(Xi) ≥
vi(M

′ ∪ P)

2n′ − k

≥ vi(M
′ ∪ P)

n′
· n′

2n′ − k

≥ MMS i(n
′,M ′ ∪ P) · n′

2n′ − k
since vi is additive

= MMS i(n
′,M ′ ∪ P)/

(
2− k

n′

)
≥ MMS i(n

′,M ′ ∪ P)/
(
2− k

n

)
since n′ ≤ n.

4.2 An Improved Bound for Approximate-GMMS

As mentioned in Section 1, a new notion of fairness called groupwise maximin share (GMMS)
was recently introduced by Barman et al. [6]. We formally define a GMMS allocation below.

Definition 19. Given a set N of n agents and a set M of m goods, an allocation X =
〈X1, X2, . . . , Xn〉 is α-GMMS if for every N ′ ⊆ N , we have vi(Xi) ≥ α ·MMS i(n

′,
⋃

i∈N ′ Xi)
where n′ = |N ′|.

Observe that a GMMS allocation is also an MMS allocation. Since MMS allocations do not
always exist in a given instance [27], GMMS allocations also need not always exist. Interestingly,
1
2 -GMMS allocations always exist [6]. We now describe how to modify our allocation so that
the resulting allocation is 4

7 -GMMS.
Let X = 〈X1, . . . , Xn〉 be the allocation and let P be the pool of unallocated goods that

satisfy the conditions of Lemma 16. Without loss of generality, assume that agent 1 is a source
in the envy-graph GX . Define the complete allocation Y = 〈Y1, . . . , Yn〉 as follows:

∗ Y1 = X1 ∪ P and Yi = Xi for all i 6= 1.

Theorem 20 shows that Y is our desired allocation. The proof of Theorem 20 is similar to [2,
Proposition 3.4].

Theorem 20. Given a set N of n agents with additive valuations and a set M of m goods,
there exists a complete allocation Y = 〈Y1, Y2, . . . , Yn〉 of M such that

• Y is 4
7 -GMMS.

• vi(Yi) ≥ 1
2vi(X

∗
i) for all i ∈ N where X∗ is the optimal Nash social welfare allocation.9

Proof. Observe that the bound on Nash social welfare holds for allocation X and thus for
allocation Y (since vi(Yi) ≥ vi(Xi) for all i ∈ [n]). So what we need to show now is the

9In private communication we are aware that Jugal Garg and Setareh Taki have obtained independently
related results. For additive valuations, they can show that there is an EFX-allocation after donating at most
n − 1 goods to charity. However, there is no bound on the value of the goods donated to charity. Thus they
obtain a 4/7-GMMS-allocation after removing n− 1 goods from the original set of goods.

14

guarantee on GMMS. That is, we need to show that for every Ñ ⊆ N and all i ∈ Ñ , we have
vi(Yi) ≥ 4

7MMS i(ñ, M̃) where ñ = |Ñ | and M̃ =
⋃

j∈Ñ Yj .

Fix some i ∈ Ñ . Define N ′ as the subset of Ñ that contains i and all other agents that have
been allocated at least two goods in Y , i.e., j ∈ N ′ ⇐⇒ j = i or |Yj | ≥ 2. Let M ′ =

⋃
j∈N ′ Yj .

Note that Y allocates all goods in M̃ \ M ′ to agents in Ñ \ N ′. Since every agent in
Ñ \ N ′ has been allocated at most one good, we have |Ñ \ N ′| ≥ |M̃ \M ′|. Proposition 17
tells us that MMS i(n

′,M ′) ≥ MMS i(ñ, M̃) where n′ = |N ′|. Thus it suffices to show vi(Yi) ≥
4/7 ·MMS i(n

′,M ′).

Let j ∈ N ′ \ {1, i}. Call Yj a bad bundle if |Yj | = 2 and and the goods in Yj will be called
bad goods. Call all the remaining bundles good bundles and analogously, call the goods in these
bundles good goods. We make some helpful observations below.

Observation 21. For any bad good g, we have vi(g) ≤ vi(Yi).

Proof. Let g ∈ Yj , where Yj is a bad bundle. So |Yj | = 2, let Yj = {g, g′}. Since j 6= 1 (by
definition of a bad bundle), we have vi(Yi) ≥ vi(Xi) ≥ vi(Xj \ g′) = vi(Yj \ g′) = vi(g).

Observation 22. For any i ∈ N ′, we have vi(Yi) ≥ 1
2vi(Y1).

Proof. Since agent 1 was a source, we have vi(Xi) ≥ vi(X1). By Theorem 9, we have vi(Xi) ≥
vi(P). Therefore, we have vi(Y1) = vi(X1 ∪P) = vi(X1) + vi(P) ≤ vi(Xi) + vi(Xi) = 2vi(Xi) =
2vi(Yi).

Observation 23. Let j 6= 1. If Yj is not a bad bundle then vi(Yj) ≤ 3
2vi(Yi) for any i ∈ N .

Proof. Let j 6= 1. If Yj is not a bad bundle then |Yj | ≥ 3. Since j 6= 1 we have vi(Yi) ≥ vi(Xi) ≥
vi(Xj \ {g}) = vi(Yj \ g) for any g ∈ Yj . In particular, let g ∈ Yj be such that vi(g) is the least.
Then we have:

vi(Yi) ≥ (1− 1

|Yj |
) · vi(Yj) ≥ (1− 1

3
) · vi(Yj) =

2

3
· vi(Yj).

Now we are ready to show the bound on GMMS. Let x be the number of bad goods in M ′.
Then we have x/2 bad bundles and n′ − x/2 good bundles. We first assume x ≤ n′. For any
good bundle Yj we have:

vi(Yi) = vi(Yj) when j = i,

vi(Yi) ≥
1

2
· vi(Yj) when j = 1 (by Obs. 22),

vi(Yi) ≥
2

3
· vi(Yj) otherwise (by Obs. 23).

Thus the total valuation agent i has for the good goods is at most 3
2(n′− x

2 −2) ·vi(Yi)+vi(Yi)+
2vi(Yi) = 3

2(n′ − x
2) · vi(Yi). Also, the total valuation agent i has for the bad goods is at most

x · vi(Yi) (since there are x many bad goods and each bad good is worth at most vi(Yi) by
Obs. 21). Therefore we have

vi(M
′) = vi(bad goods) + vi(good goods)

≤ x · vi(Yi) +
3

2
(n′ − x

2
) · vi(Yi)

= (x+
3

2
n′ − 3x

4
) · vi(Yi)

=
6n′ + x

4
· vi(Yi)

≤ 7n′

4
· vi(Yi) (since x ≤ n′)

15

So vi(M
′) ≤ 7n′

4 · vi(Yi), which gives us the desired bound: vi(Yi) ≥ 4
7MMS i(n

′,M ′) since
MMS i(n

′,M ′) ≤ vi(M)/n′.

We come to the case x > n′. In that case we will prune M ′ into M ′′ and N ′ into N ′′ so that
M ′′ has at most x′ ≤ n′′ bad goods, n′′ − x′

2 many good bundles of Y where n′′ = |N ′′|, and
MMS i(n

′,M ′) ≤ MMS i(n
′′,M ′′).

Let Z = 〈Z1, Z2, . . . Zn′〉 be an optimal MMS partition for agent i on the set M ′ of goods.
Since there are more than n′ bad goods in M ′, there is a set Zk with at least two bad goods:
let g1, g2 ∈ Zk be a pair of bad goods. The following observation will be useful.

Observation 24. MMS i(n
′,M ′) ≤ MMS i(n

′ − 1,M ′ \ {g1, g2}).

Proof. Distribute the goods in Zk \ {g1, g2} arbitrarily among the other sets in Z. So we have
a partition of the set M ′ \ {g1, g2} of goods into n′ − 1 many sets corresponding to agents in
N ′ \ {j} for some j ∈ N ′ and j 6= i (note that we can choose any j ∈ N ′ such that Yj is a bad
bundle). The value of any set for agent i is at least MMS i(n

′,M ′).

So let us update N ′ to N ′ \ {j} and M ′ to M ′ \ {g1, g2}. By Obs. 24, the MMS value for
i does not decrease. We keep repeating this reduction until M ′ has at most |N ′| bad goods.
Since each step decreases |N ′| by 1 and the number of bad goods in |M ′| by 2, there will be a
step when M ′ has at most |N ′| bad goods.

5 Conclusions and Open Problems

We studied the existence of EFX allocations when agents have general valuations. We showed
that we can ensure such an allocation always exists when we donate a small number of goods
that nobody envies to charity. The major open problem here is whether EFX allocations always
exist. Our main result implies that among the n agents, if there is just one agent who is “beyond
the feeling of envy” (say, for some i, we have vi(S) = vi(T) for all non-empty S, T ⊆M) then an
EFX allocation always exists for general valuations. Plaut and Roughgarden [26] remarked that
an instance with no EFX allocation may be easier to find in the setting of general valuations.
Our result on “almost-EFX” allocations for general valuations allows one to hope that EFX
allocations always exist, at least for more structured valuations such as additive.

Plaut and Roughgarden [26] showed that an exponential number of “value queries” are
required to determine an EFX allocation even for two agents with identical submodular val-
uations. From our proof it is evident that we can determine a (1 − ε) EFX allocation (as in
Theorem 15) with polynomially many size-constrained-optimal-valuation queries (where for a
given k, S and agent i we need to find the subset of S of size at most k that maximizes agent i’s
valuation). Studying the complexity of determining approximate EFX allocations under other
queries is a line of direction for future work.

We also showed that we get guarantees in terms of other notions of fairness when agents
have additive valuations. To the best of our knowledge, allocations with good guarantees (i.e.,
constant factor approximation) on Nash social welfare and MMS (as well as GMMS) were not
known prior to our work. It would also be interesting to investigate whether these guarantees
can be improved or if instances can be constructed where our guarantees are tight. We believe
that our work is just the beginning towards determining an allocation that gives good guarantees
with respect to several notions of fairness: an allocation that is universally fair.

References

[1] Jr. Alexander S. Kelso and Vincent P. Crawford. Job matching, coalition formation, and
gross substitutes. Econometrica, 50(6):1483–1504, 1982.

16

[2] Georgios Amanatidis, Georgios Birmpas, and Vangelis Markakis. Comparing approximate
relaxations of envy-freeness. In Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, (IJCAI), pages 42–48, 2018.

[3] Georgios Amanatidis, Evangelos Markakis, Afshin Nikzad, and Amin Saberi. Approxima-
tion algorithms for computing maximim share allocations. ACM Transactions on Algo-
rithms, 13(4):52:1–52:28, 2017.

[4] Nima Anari, Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. Nash social welfare,
matrix permanent, and stable polynomials. In Proceedings of the 8th Innovations in The-
oretical Computer Science (ITCS), pages 36:1–12, 2017.

[5] Nima Anari, Tung Mai, Shayan Oveis Gharan, and Vijay V Vazirani. Nash social welfare
for indivisible items under separable piecewise-linear concave utilities. In Proceedings of the
29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2274–2290,
2018.

[6] Siddharth Barman, Arpita Biswas, Sanath Kumar Krishna Murthy, and Yadati Narahari.
Groupwise maximin fair allocation of indivisible goods. In AAAI, pages 917–924. AAAI
Press, 2018.

[7] Siddharth Barman and Sanath Kumar Krishnamurthy. Approximation algorithms for max-
imin fair division. In Proceedings of the 18th ACM Conference on Economics and Compu-
tation (EC), pages 647–664, 2017.

[8] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding fair and
efficient allocations. In Proceedings of the 19th ACM Conference on Economics and Com-
putation (EC), pages 557–574, 2018.

[9] Vittorio Biló, Ioannis Caragiannis, Michele Flammini, Ayumi Igarashi, Gianpiero Monaco,
Dominik Peters, Cosimo Vinci, and William S. Zwicker. Almost envy-free allocations with
connected bundles. In Proceedings of the 9th Innovations in Theoretical Computer Science
(ITCS), pages 305–322. LIPIcs, 2018.

[10] Sylvain Bouveret and Michel Lemâıtre. Characterizing conflicts in fair division of indivisible
goods using a scale of criteria. In Autonomous Agents and Multi-Agent Systems (AAMAS)
30, 2, pages 259–290, 2016.

[11] Eric Budish. The combinatorial assignment problem: Approximate competitive equilibrium
from equal incomes. Journal of Political Economy, 119(6):1061–1103, 2011.

[12] Ioannis Caragiannis, Nick Gravin, and Xin Huang. Envy-freeness up to any item with high
nash welfare: The virtue of donating items. In EC, pages 527–545. ACM, 2019.

[13] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg Shah, and
Junxing Wang. The unreasonable fairness of maximum Nash welfare. In Proceedings of the
17th ACM Conference on Economics and Computation (EC), pages 305–322, 2016.

[14] Bhaskar Ray Chaudhury, Yun Kuen Cheung, Jugal Garg, Naveen Garg, Martin Hoefer, and
Kurt Mehlhorn. On fair division for indivisible items. In Proceedings of the 38th IARCS An-
nual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), pages 25:1–25:17, 2018.

[15] Richard Cole, Nikhil R Devanur, Vasilis Gkatzelis, Kamal Jain, Tung Mai, Vijay V Vazirani,
and Sadra Yazdanbod. Convex program duality, Fisher markets, and Nash social welfare.
In Proceedings of the 18th ACM Conference on Economics and Computation (EC), pages
459–460, 2017.

17

[16] Richard Cole and Vasilis Gkatzelis. Approximating the Nash social welfare with indivisible
items. In Proceedings of the 47th ACM Symposium on Theory of Computing (STOC), pages
371–380, 2015.

[17] Jugal Garg, Martin Hoefer, and Kurt Mehlhorn. Approximating the Nash social welfare
with budget-additive valuations. In Proceedings of the 29th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 2326–2340, 2018.

[18] Jugal Garg, Peter McGlaughlin, and Setareh Taki. Approximating maximin share alloca-
tions. In Proceedings of the 2nd Symposium on Simplicity in Algorithms (SOSA), volume 69,
pages 20:1–20:11. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019.

[19] Jugal Garg and Setareh Taki. An improved approximation algorithm for maximin shares.
CoRR, abs/1903.00029, 2019.

[20] Mohammad Ghodsi, Mohammad Taghi Hajiaghayi, Masoud Seddighin, Saeed Seddighin,
and Hadi Yami. Fair allocation of indivisible goods: Improvements and generalizations.
In Proceedings of the 2018 ACM Conference on Economics and Computation (EC), pages
539–556, 2018.

[21] Jonathan R. Goldman and Ariel D. Procaccia. Spliddit: unleashing fair division algorithms.
In SIGecom Exchanges 13(2), pages 41–46, 2014.

[22] Faruk Gul and Ennio Stacchetti. Walrasian equilibrium with gross substitutes. Journal of
Economic Theory, 87(1):95–124, 1999.

[23] David Kurokawa, Ariel D. Procaccia, and Junxing Wang. Fair enough: Guaranteeing
approximate maximin shares. Journal of ACM, 65(2):8:1–27, 2018.

[24] Renato Paes Leme. Gross substitutability: An algorithmic survey. Games and Economic
Behavior, 106:294–316, 2017.

[25] Richard J. Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. On approxi-
mately fair allocations of indivisible goods. In Proceedings of the 5th ACM Conference on
Electronic Commerce (EC), pages 125–131, 2004.

[26] Benjamin Plaut and Tim Roughgarden. Almost envy-freeness with general valuations. In
Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2584–2603, 2018.

[27] Ariel D. Procaccia and Junxing Wang. Fair enough: guaranteeing approximate maximin
shares. In Proceedings of the 15th ACM Conference on Economics and Computation (EC),
pages 675–692, 2014.

[28] Hugo Steinhaus. The problem of fair division. Econometrica, 16(1):101–104, 1948.

Appendix: New Proof of a Result from [26]

For agents with identical (general) valuations, it was shown by Plaut and Roughgarden [26]
that an allocation that maximizes the the minimum valuation, then maximizes the size of this
bundle, then maximizes the second minimum valuation, then maximizes the size of this bundle,
and so on is EFX. We now show that Algorithm 1 gives another proof that when all the agents
have identical valuations, a complete allocation that is EFX always exists.

Recall that Algorithm 1 consists of applying 3 update rules: U0, U1, U2 – whichever of these
is applicable. Moreover, if a certain precondition is satisfied (see Algorithm 2), then rule U2 is
applicable.

18

We will now show that when all the agents have identical valuations and rule U0 is not
applicable, then the precondition of rule U2 is satisfied as long as there is some unallocated
good. Let X = 〈X1, . . . , Xn〉 be the current allocation and let P = M \ ∪ni=1Xi be the set of
unallocated goods in X.

Lemma 25. Let s be any source vertex in the envy-graph GX . If |P | ≥ 1 and rule U0 is not
applicable then s ∈ AX(Xs ∪ g) for any g ∈ P .

Proof. Let g ∈ P and s be any source in the envy-graph GX . Since rule U0 is not applicable,
AX(S) 6= ∅, where S = Xs ∪ g. Let t ∈ AX(S). So v(Xt) < v(S), where v is the common
valuation function of all agents. Let Z ⊆ S be the subset of size κX(S) such that v(Xt) < v(Z).
Since s is a source in GX , we have v(Xs) ≤ v(Xt). So v(Xs) < v(Z); thus κX(s, S) ≤ κX(S).
Hence s ∈ AX(Xs ∪ g).

Lemma 25 implies that while P 6= ∅, either rule U0 or rule U2 is applicable. Whenever
we apply rule U2, we add any good g in P to the bundle of a source s in GX and determine
Z ⊆ Xs∪g of size κX(Xs∪g) such that v(Z) > v(Xs). We then throw the goods in (Xs∪g)\Z
back into the pool P and set Xs = Z.

This makes agent s strictly better-off and no agent is worse-off: thus we have made progress.
So when Algorithm 1 terminates, we have an EFX allocation with P = ∅. Thus we have a
complete allocation X = 〈X1, . . . , Xn〉 that is EFX.

19

	1 Introduction
	1.1 Our Results
	1.1.1 Additive valuations

	1.2 Our Techniques
	1.3 Related Work

	2 Existence of an EFX-Allocation with Bounded Charity
	3 Finding the Desired Allocation in Pseudo-Polynomial Time
	4 Guarantees on Other Notions of Fairness
	4.1 An Approximate MMS Allocation for Large |P|
	4.2 An Improved Bound for Approximate-GMMS

	5 Conclusions and Open Problems

