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A B S T R A C T

It is demonstrated that a novel multivariate analysis technique can discriminate with accuracies in the range
81–97% between Fourier transform infrared (FTIR) images of esophageal cancer OE19 and OE21 cell lines, and
between esophageal cancer associated myofibroblast (CAM) and adjacent tissue myofibroblast (ATM) cells. The
latter cells are morphologically indistinguishable but are known to have functionally important differences in
their capacity to stimulate cancer cell growth; this report provides the first accurate spectral discrimination
between CAM and ATM cells taken from the same patient. Rapid and accurate discrimination between cell types
was achieved, and key wavenumbers were identified which uniquely discriminate between all four cell types.
This metrics-based analysis (MA) method is shown to be unique for distinguishing between cancer stromal cells
from the same patient. The key wavenumbers differ significantly from those typically found to discriminate
between various esophageal cell and tissue types. A comparison is made between the MA and the established
Random Forest method, and the advantages of the MA are discussed. Crucially the findings suggest a novel
method that allows cancer staging based discrimination of the stromal cell types that provide the niche for tumor
development.

1. Introduction

Esophageal cancer is the sixth most common cause of cancer mor-
tality [1–3] and is the cancer with the fastest rise in incidence in the
western world. There are two main forms of esophageal cancer. One is
squamous cell carcinoma, which is most common in Asia and is asso-
ciated with smoking and poor diet. The other is adenocarcinoma, which
is more common in the west and is associated with the gastro-esopha-
geal reflux of acid and bile salts and the preneoplastic condition of
Barrett’s metaplasia of the esophagus [4,5]. Both cancers consist of
malignant epithelial cells and stroma and the latter is important for
facilitating cancer progression. One of the most important cell types in
the stroma is a specialized fibroblast called the myofibroblast that
produces growth factors and cytokines that promote cancer growth and
metastasis [6,7]. The diagnosis of esophageal cancer follows the stan-
dard approach of examining images of excised tissue, obtained by en-
doscopy, after staining with Haematoxylin and Eosin (H&E). This
highlights the nucleic acid and protein content of the specimen at blue

and red visible wavelengths respectively. Typically, the interobserver
discordance for the diagnosis of the low-grade dysplasia, which is
characteristic of the earliest preneoplastic stage of disease is greater
than 50% [8]. Although this discordance is reduced to ~15% for the
diagnosis of the more serious condition of high-grade dysplasia, there is
a need to improve the accuracy of diagnosis since false positives can
give rise to unnecessary procedures and false negatives can be fatal
[8–13]. As with all cancers, early detection is critical for the best pa-
tient outcome and there is a need for cheaper, more accurate and ide-
ally automated methods for cancer diagnosis and for identification of
those patients with Barrett’s esophagus at most risk of progressing to
dysplasia and cancer.

It has long been recognized that expanding the wavelength range of
images of tissue will convey more information and there has been
considerable progress in the application of infrared (IR) techniques to
the examination of tissue in order to exploit the association of particular
IR wavelengths with specific chemical moieties. Fourier transform in-
frared (FTIR) spectroscopy is one of the most successful techniques
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applied to studies of cancer and has shown considerable promise for
development into a diagnostic tool [14–19]. In particular there have
been a number of previous applications of FTIR spectroscopy to the
study of normal and cancer associated esophageal tissues [8–13]. Wang
et al. [8] applied a partial least-squares fitting procedure to determine
the principal components of the FTIR spectra of squamous, Barrett’s
non-dysplasia, Barrett’s dysplasia and gastric tissue and Maziak et al.
[9] gave a direct comparison of the FTIR spectra of normal and can-
cerous tissue. Quaroni and Casson [10] combined confocal FTIR mi-
croscopy and an analysis of second derivative FTIR spectra to distin-
guish normal and Barrett’s esophageal tissue from adenocarcinoma.
Amrania et al. [11] have developed ‘Digistain’, an instrument for use in
histopathology that simplifies the analysis of IR spectra by comparing
the intensity of two spectral features. Recently Old et al. [12,13] have
developed an automated analysis technique for rapid IR mapping that
identifies Barrett’s dysplasia or adenocarcinoma with high sensitivity
and specificity. The conclusions of this previous work are discussed in
detail later.

Imaging FTIR typically yields information at each pixel in a two-
dimensional image at ~1000 wavelengths, with each spectrum con-
taining information on the many excitation modes of the large number
of different molecular species contained in the specimen. Most reported
work has analyzed these large data sets using techniques such as
principal component analysis and the identification of ‘fingerprints’ for
characterizing specimens, rather than at the level of detailed assign-
ments of individual vibrational modes that is possible with simpler
molecular systems.

In this paper the results of applying a novel multivariate analysis
technique to FTIR spectra are described for two esophageal cancer cell
lines, OE19 and OE21, and two esophageal myofibroblast cell lines
derived from the stroma of an esophageal adenocarcinoma patient.
OE19 was derived from an adenocarcinoma from the esophago-gastric
junction and OE21 was derived from a squamous cell esophageal
cancer. Both were purchased from HPA Culture Collections [20] and
maintained as described previously [6,7]. The two myofibroblast cell
lines were cancer associated myofibroblasts (CAM) and adjacent tissue
myofibroblasts (ATM) obtained from the same patient and previously
characterized [6,7].

It is now well recognized that tumor formation requires not just the
acquisition of DNA mutations by cancer cells but also an appropriate
cellular microenvironment (the cancer cell niche) that facilitates tumor
growth and metastasis. Different stromal cell types are implicated in
niche formation including inflammatory and immune cells, micro-
vascular cells and cells of fibroblastic lineages. Myofibroblasts are an
important sub-set of fibroblasts; CAMs are morphologically similar to
ATMs that have been obtained from normal tissue adjacent to the
cancer, but they differ markedly in their biology and in particular are
strong stimulants of aggressive behaviors by cancer cells [6,21]. Tran-
scriptomic, proteomic and miRNA profiling studies have all provided a
basis for understanding the functional differences between CAMs and
ATMs [6,22,23]. However, there remains a pressing need for methods
that allow the rapid and precise identification of these cell types, not
least because this would facilitate the identification of the cellular mi-
croenvironments in which tumor formation occurs.

The analysis technique described in this paper is able to dis-
criminate between all four cell types with high accuracy and speed. This
is particularly important for CAM and ATM cells in view of the much
stronger capacity of the former in stimulating cancer cell growth and
invasion [21–24]. The data therefore support the feasibility of new
staging methods for early tumor development based on identifying the
presence of those myofibroblasts (CAMs) most likely to facilitate cancer
cell growth. Since early diagnosis improves patient outcomes this ap-
proach should bring clear benefits.

2. Materials and methods

Experiments were conducted on two esophageal cancer cell lines
(OE19 and OE21) and two esophageal myofibroblast cells lines denoted
CAM (cancer associated) and ATM (adjacent tissue associated). The
CAM and ATM cells were obtained from the same patient undergoing
surgery for esophageal adenocarcinoma [6,7]. This work was approved
by the Ethics Committee of the University of Szeged, Hungary. Primary
myofibroblast cultures were maintained in Dulbecco’s modified Eagle’s
medium supplemented with 10% fetal bovine serum, 1% penicillin–-
streptomycin, 1% antibiotic–antimycotic and 1% non-essential amino
acid solution as described previously [25] The OE19 and OE21 human
Caucasian esophageal cells were obtained from HPA Culture Collections
(Sigma, Dorset, UK) [20].

OE19 and OE21 cells were cultured at 37˚C in a 5% CO2 atmosphere
in Roswell Park Memorial Institute (RPMI 1640) growth media (Sigma)
supplemented with 2mM glutamine (Sigma), 10% v/v fetal bovine
serum (FBS) (Invitrogen, Paisley, UK) and 1% v/v penicillin/strepto-
mycin (Sigma) until they reached 70–80% confluence. The culture
medium was replenished at two-day intervals. The myofibroblast cells
were cultured at 37˚C in a 5% CO2 atmosphere in Dulbecco’s modified
Eagle medium with L-glutamine containing 10% v/v FBS, 1% v/v
modified Eagle medium nonessential amino acid solution, 1% v/v pe-
nicillin/streptomycin, and 2% antibiotic–antimycotic. Medium was re-
placed routinely every 48–60 h and cells were passaged at confluence,
up to 12 times. CaF2 discs (20mm diameter× 2mm thick, Crystran
Ltd, Poole, UK) were sterilized using ethanol and rinsed with ultra-pure
water and left to air-dry overnight. The discs were irradiated with UV
for 30min to ensure sterility. The sterile discs were then placed in each
well of a tissue culture twelve-well plate (Corning, New York, USA).
The cells (2× 104ml−1) were seeded on each disc and incubated in a
5% CO2 incubator at 37˚C for two-days. After two-days the media was
removed and the cells were fixed with a 4% v/v paraformaldehyde
(PFA) (Sigma) solution and stored in 1x phosphate buffered saline (PBS)
solution at 4 °C until required. Prior to imaging the CaF2 slide con-
taining the fixed cells was rinsed at least three times with Millipore
ultra-pure water (18MΩ cm). The rinsed slide was then removed from
the well plate, the back surface wiped with ultra-pure water to ensure
complete removal of any phosphate residue and then left to dry in the
slide holder for a minimum of 90min.

FTIR studies of the cell lines were carried out at room temperature
in transmission mode with a Varian Cary 670-FTIR spectrometer in
conjunction with a Varian Cary 620-FTIR imaging microscope produced
by Varian (now Agilent Technologies, Santa Clara CA, USA) with a
128× 128 pixel mercury-cadmium-telluride (MCT) focal plane array
with a pixel size of 5.5 µm. The spectra were corrected for atmospheric
and substrate absorption and the efficiencies of individual pixels in the
array. FTIR images were acquired with a spectral range from 990 cm−1

to 3800 cm−1 with a resolution of 2 cm−1, co-adding 256 scans.
Infrared spectra were initially pre-processed using a principal compo-
nent analysis based noise reduction algorithm. Substantial improve-
ments in signal-to-noise were observed by retaining 10 principal com-
ponents without the loss of biologically significant information. Spectra
were then quality checked to remove those not attributable to the cell
(including blank regions of the sample) or to a high degree of scat-
tering. The quality check utilized a threshold based on the height of the
Amide I band with spectra having absorbance between 0.03 and 1.00
being retained. Finally, infrared spectra were corrected for resonant
Mie scattering with the RMieS-ESMC algorithm using 80 iterations and
a matrigel reference spectrum [26–29].

3. Results

3.1. Data analysis method

An FTIR data cube was acquired for each cell type and was corrected
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for Mie scattering effects [26]. Each FTIR data cube comprises a set of
images of i× j pixels, where typically i× j ~105 and on average ~50%
of pixels pass the quality check and Mie scattering correction. The third
dimension of the data cube is the FTIR spectra of ~1400 data points
covering the range of wavenumbers ν=990 cm−1 to 3800 cm−1 in
2 cm−1 steps. The FTIR image obtained from the OE19 sample is shown
in Fig. 1(a). The FTIR spectra characterizing each cell type [Fig. 1(b)]
over the “fingerprint region” of 1000 cm−1 to 1800 cm−1, were gen-
erated from averaging the spectra obtained from each pixel in the
corresponding FTIR image of that cell type. This average does not in-
clude pixels from blank areas of the image. There are problems in de-
ducing information from a direct comparison of these average profiles.
Firstly, due to variations in the total intensity of the spectra obtained
from each specimen, it is necessary to normalize each profile to the
same area under the curve. Since the effect of the normalization on the
spectral profile depends on the wavelength range used this can hide or
exacerbate differences between the profiles of different specimens.
Secondly, the standard deviation of the absorbance of all pixels at a
given wavenumber is significant and shows significant overlap between
cell types (see Supplementary Fig. 1). Consequently a more sophisti-
cated analysis is required to reveal the differences between the spectral
profiles of the different cell lines. There is considerable interest in the
application of machine learning algorithms and multivariate analysis
techniques to such problems and there are several recent reviews of the
application of such techniques to FTIR spectra [30,31]. In this work a
novel multivariate analysis method hereafter referred to as Metrics
Analysis (MA) is described. The metrics were chosen to be the ratios of
the absorbance for a given pair of wavenumbers. One advantage of this
approach is that the results are independent of absolute absorbance and
thus insensitive to factors such as sample thickness or normalization of
the spectra. Importantly, this MA method treats all the data equally and
does not attribute any biological significance to any particular wave-
number, in contrast to other work such as Fernandez et al. [32,33] in

which discrimination of prostate tissues used metrics that were defined
to have a significance related to tissue biochemistry. By examining
ratios at wavenumbers over the whole range of 1000 cm−1 to
1800 cm−1, the MA demonstrates the existence of biomarkers at wa-
venumbers that have not been identified in previous studies using other
analysis techniques.

The MA method can be divided into three main parts: Stage 1:
Training, Stage 2: Testing, and Stage 3: Analysis. For the results re-
ported here, training was completed using 75% of the number of
spectra in the data set, which were chosen at random, and testing was
undertaken on the remaining 25%. Stage 1 parameterizes each cell type
via the calculation of the absorbance ratio at two wavenumbers - the
metric. This was done for all wavenumber combinations at a chosen
step size over the range 1000 cm−1 to 1800 cm−1. The step size was
6 cm−1, as anything smaller has been shown [34] to be unnecessary. As
a consequence there are a total of ~18000 metrics. In Stage 2 a score
was then associated with each metric to quantify how well the metric
was able to discriminate between cell types. For each cell type, scores
were calculated by making distribution histograms for the metrics (one
for the cell type and one for each of the other cell types in the analysis)
where a high score is obtained for distributions that are distinct and
hence have relatively little overlap. The score is defined by

= × −score success rate (1 mislabeling rate)2

where the success rate (often referred to as the sensitivity) is the rate at
which the cell type is labeled correctly and the mislabeling rate (often
referred to as the false positive rate) is the rate at which other cell types
are labeled incorrectly as this cell type. Given that for the 25% of
spectra used in this testing phase, the cell type is known, a success rate
can be calculated and the probabilities of identifying the other cell
types are used to determine the mislabeling rate. The scores for each
metric are used to rank the ability of that metric to distinguish a given
cell type. Stage 3 determines the number of metrics that are needed by a
voting system to give the best overall success rate for cell type dis-
crimination. The overall success rate is plotted as a function of the
number of metrics used which indicates the optimal number of metrics
required to achieve the best discrimination.

3.2. Discrimination between cell types

The wavenumbers that the MA method finds to be most important
for discrimination can be visualized in a plot of the metric scores
against ν1 and ν2, hereafter referred to as a Butterfly Plot. Two such
plots, for CAM and ATM, are shown in Fig. 2.

All possible metrics are shown in these plots. The color-bar scale
ranges from the least important (blue) to most important (red) metrics
for discrimination. For the CAM and ATM samples, very different be-
havior is seen in the Butterfly plots, which highlights the clear dis-
crimination achieved between these two cell types. This is a significant
result since histopathologists find it difficult to distinguish between
these cell types using the current standard method of optical micro-
scopy on H&E stained samples [22]. For CAM, high scoring metrics are
those that contain at least one high wavenumber around 1750 cm−1

(the red regions in Fig. 2(a)). The opposite situation is found for ATM,
where high scoring metrics are often associated with at least one low
wavenumber around 1150 cm−1 (the red regions in Fig. 2(b)).

While the scores for all the possible metrics (at the chosen step size)
are evaluated and shown in Fig. 2, further insight can be obtained by
limiting the results to a visualization of the best (highest-scoring) 100
metrics, hereafter referred to as Manhattan Plots. The plots for CAM
and ATM are shown in Fig. 3, where the highest-ranked metrics for each
cell type are shown plotted for ν1 (red) and ν2 (blue). These plots il-
lustrate the combinations of wavenumbers that are used as a function of
an increasing number of metrics from 1 to 100. It is clear that there are
significant differences in the wavenumbers used for discrimination
between these two cell types.
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Fig. 1. (a) FTIR image of OE19 cells (~5000) integrated over all wavelengths,
(b) the average FTIR spectra over all pixels for OE19 (green line), OE21 (red
line), CAM (purple line) and ATM (blue line). The image is 2.8 mm×1.4mm.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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In addition to visualizing the metric scores by Butterfly and
Manhattan Plots, the success rate can be presented in a plot (Fig. 4) that
shows how, for each cell type, the success rate varies with increasing
number of metrics used in the analysis. In general, the success rate will
eventually diminish due to poor metrics being added that compromise
the success rate. Different variation is seen for the different cell types.
For example, the success rate for ATM increases with the number of
metrics used up to 24 metrics and subsequently decreases. In contrast,
the success rate for OE19 is high for a low number of metrics and de-
creases as more metrics are used. For each cell type, the optimum
number of metrics required for discrimination is given by the position
of the maximum success rate.

As the data were sampled from a single image for each cell line,
there was concern over whether spectra from adjacent pixels, which
may be correlated due to the finite spatial resolution of the imaging
system, could potentially bias the analysis and hence result in un-
realistically high scores. To check this, the spatially ordered spectra
were split into training and testing sets in such a way that the vast
majority of the training spectra were not adjacent to the testing spectra.
This analysis returned results that were indistinguishable from the
original sets, demonstrating that any such pixel correlations do not
contribute any significant bias to the results.

To aid the interpretation of the wavenumbers that are found to be
important in this analysis, the wavenumbers in the top five metrics
were examined for each cell type. Five metrics were chosen to give an

apposite number of wavenumbers to allow meaningful comparisons
between values for different cell types. These wavenumbers are shown
in Fig. 5 and summarized in Table 1, and will be discussed further in the

Fig. 2. Butterfly plots showing metric scores against wavenumbers ν1 and ν2 for
(a) CAM and (b) ATM cell lines. Red (blue) indicates a relatively high (low)
score. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 3. Manhattan plots showing the combinations of wavenumbers, ν1 (red)
and ν2 (blue), that are used as a function of an increasing number of metrics
from 1 to 100 for (a) CAM and (a) ATM cell lines. (For interpretation of the
references to color in this figure legend, the reader is referred to the web ver-
sion of this article.)
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Discussion section.

3.3. Comparison of metrics analysis with random forest

In order to compare the MA method with existing classification
methods we chose a quantitative comparison with the well-established
random forest (RF) method. This is the most appropriate comparison as
RF encapsulates both feature extraction and classification, and is
commonly used for FTIR data analysis in the biomedical field. The same
data sets were analyzed using both techniques for the four cell lines.
The RF method used was a standard RF classification algorithm [35]
available from https://github.com/tingliu/randomforest-matlab that
was used to construct a classifier to discriminate between the different
samples. Table 2 compares the MA and RF analysis results for the cell
lines. The key wavenumbers found to be necessary for discrimination in
both techniques showed some similarities. Little improvement in ac-
curacy was seen when running the RF analysis for greater than ~30 s or
by increasing the number of trees from 10 to 500. In general the MA
method achieves greater accuracy in discrimination (particularly for
ATM) in a shorter time (Table 2) than RF. For example, the MA of OE21
achieves a success rate of 79% within one minute whereas RF is limited
to ~50%. It appears that RF is unable to distinguish ATM, with success
rates no higher than would be expected from random chance (25%)
when choosing one cell type from four possible types. These low success
rates for the RF method are a consequence of the size of the data sets
(the number of spectra) associated with each of the cell lines. The MA
method gives high success rates regardless of whether the data sets are
balanced and of comparable sizes, whereas the RF method is sensitive
to this balance and gives poor success rates unless the data sets are
rebalanced or the input data are reweighted.

4. Discussion

There have been significant advances in the application of FTIR to
the study of normal and cancerous esophageal tissues [8–13]. Maziak
et al. [9] compared FTIR profiles of normal and cancerous tissue and
revealed prominent absorption changes at certain wavenumbers. In
particular, changes at 964 cm−1 and 1237 cm−1 were assigned to in-
creased nucleic acid content in malignant tissue, and changes in the
bands at 1024 cm−1 and 1049 cm−1 indicated that glycogen was
clearly present in healthy tissue but almost completely depleted in
cancerous tissue [9]. Wang et al. [8] showed using a partial least-
squares fitting procedure that the principal components of the FTIR
spectra of squamous, Barrett’s non-dysplasia, Barrett’s dysplasia and
gastric tissue in the range 950 cm−1 to 1800 cm−1 arose from

variations in the concentration of DNA, protein, glycogen and glyco-
protein. They established that dysplasia was characterized by an in-
crease in glycoprotein and DNA. A subsequent imaging study by
Quaroni and Casson [10] using a combination of confocal FTIR mi-
croscopy and a hierarchical cluster analysis of second derivative FTIR
spectra was able to distinguish normal and Barrett’s esophageal tissue
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Fig. 4. Success Rate plot for each cell type, the optimum number of metrics
required for discrimination of OE19 (green line), OE21 (red line), CAM (purple
line) and ATM (blue line) are given by the position of the maximum success
rate. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 5. Discrimination plot showing the histograms for the wavenumbers that
are found to be important in discriminating between the four cell lines for the
top five metrics: OE19 (green), OE21 (red), CAM (purple) and ATM (blue). (For
interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this article.)
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from adenocarcinoma. They confirmed Wang et al.’s [8] association of
glycoprotein bands with Barrett’s and located these at the edge of
crypts. Recently Old et al. [13] have developed a rapid IR mapping
automated analysis technique that identifies Barrett’s dysplasia or
adenocarcinoma with 95.6% sensitivity and 86.4% specificity. Their
analysis of second derivative FTIR spectra confirmed that normal
squamous tissue had a high glycogen content, Barrett’s tissue a high
glycoprotein content and Barrett’s dysplasia and adenocarcinoma a
high DNA content.

The first thing to note from the results of the MA is that the wa-
venumbers that are found to discriminate between the different cell
types (Table 1) differ significantly from the wavenumbers that have
previously been used to characterize esophageal tissue types. For ex-
ample, none of the glycogen, glycoprotein or DNA wavenumbers
identified by Wang et al. [8] and Quaroni and Casson [10] or any of the
ten characteristic wavenumbers identified in Table 7 of Old et al. [13]
appear in Table 1. Also, only four of the twenty characteristic wave-
numbers identified as distinguishing normal tissue from adenocarci-
noma by Maziak et al. [9] appear in Table 1. This does not mean that
the wavenumbers identified in previous work [8–10,13] are not valid
discriminants (indeed, they are found by the MA when more metrics are
included) but that they are not as significant as those found from the
top five metrics.

The four wavenumbers common to this work and Maziak et al. [9]
provide discriminants, to an accuracy of± 1 cm−1, of the following
cells from all other cells; ATM (1049 cm−1), OE19 and ATM
(1399 cm−1), OE19 and ATM (1465 cm−1) and OE21 (1545 cm−1).
These wavenumbers are attributed, respectively, by Maziak et al. [9] to
glycogen, lipids, lipids and proteins. The meaning of the wavenumbers
found to discriminate between cell types in the MA is subtle since they
are derived from a blind pair wise comparison of all the wavenumbers
in the FTIR spectra of all the cell types. Consequently the discriminating
wavenumbers must be interpreted with care. What is clear is that when
used in combination with other metrics they provide excellent dis-
crimination between all the cell types (Fig. 5). An analysis at the level of
five metrics reveals twenty-four discriminating wavenumbers and as
described in detail above, only four of these wavenumbers have been
used in previous work to characterize differences between esophageal
tissue types. Five of these discriminating wavenumbers in Table 1 are
common to more than one cell type. A wavenumber that is common to
two cell types means that it discriminates between those cells and all
the others. This means that it is a characteristic of a chemical moiety

that is either present or absent in those cells in a concentration that is
significantly different to its concentration in all other cells.

The finding from previous work [8–10,13] that malignancy is
characterized by an increase in DNA and a large decrease in glycogen
suggests that changes in the concentration of these molecules should
provide important discriminants between the ATM cells, which can be
taken to be representative of healthy tissue, and the CAM cells and two
malignant cell lines. This draws attention to the region between
1000 cm−1 and 1200 cm−1 where there is significant overlap between
strong contributions from both molecules [9,36] and Table 1 and Fig. 5
show a strong concentration of discriminating wavenumbers in this
spectral region. Fig. 6 shows an overlay of the normalized spectral
profiles of Fig. 1 for each cell type in this spectral region. As explained
earlier such comparisons of spectra can be misleading due to the de-
pendence of the profiles on the wavelength range over which the nor-
malization is carried out. However by taking a third power derivative of
the spectra obtained from normal and malignant tissue Maziak et al. [9]
identified four key wavenumbers in this region, 1024 cm−1,
1049 cm−1, 1080 cm−1 and 1155 cm−1 which they attributed to gly-
cogen, glycogen, nucleic acids and proteins, respectively. Only one of
these wavenumbers, 1049 cm−1, occurs in the list of discriminating
wavenumbers of Table 1 and Fig. 5. A deeper analysis of the data at the
optimum number of metrics, twenty-four, reveals a large increase in the
number of discriminating wavenumbers in this range as shown in Fig. 6.
None of these additional wavenumbers correspond to the wavenumbers
identified by Maziak et al. [9]. It is possible that some of the dis-
criminating wavenumbers shown in Fig. 6 arise from particular che-
mical or structural effects in the DNA of the OE19, OE21 and CAM cell
lines which could not be identified from tables of wavenumbers known
to arise from particular chemical moieties.

A comparison of the other wavenumbers that discriminate between
the different cell types and with the signatures of known chemical
moieties [37,38] provides other insights into differences in chemical
structure of the cells and tissues. For example the OE19 and CAM cells,

Table 1
Summary of Cell Line Metrics. Data on the optimum number of metrics, success rate at the optimum number of metrics and wavenumbers that discriminate between
the four cell lines for the top five metrics.

Cell Type Optimum Number of Metrics Success Rate (%) Wavenumbers for the top five metrics (cm−1)

OE19 2 97 1375, 1381, 1400, 1406, 1418, 1692, 1697
OE21 1 81 1443, 1449, 1466, 1472, 1539, 1545, 1551
CAM 64 92 1443, 1508, 1522, 1678, 1684, 1692
ATM 24 91 1049, 1103, 1146, 1200, 1206, 1400, 1424, 1466, 1472

Table 2
Comparison of MA and RF. Success rates (%) obtained by the metrics analysis
(MA) and random forest (RF) approaches, for the cell lines.

Random Forest Metrics Analysis

Number of trees 10 500 N/A N/A
Resolution (cm−1) 20 20 20 6
Time (s) 27 1278 12 87
OE19 (%) 94 96 85 97
OE21 (%) 51 54 79 81
CAM (%) 94 96 83 92
ATM (%) 18 10 79 90
Mean of the four cell types (%) 64 64 81 90
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Fig. 6. Comparison of Spectral Profiles: the average spectra for the OE19 (green
line), OE21 (red line), CAM (purple line) and ATM (blue line) cell lines in the
region 1000–1200 cm−1 and histograms showing the wavenumbers that are
found to be important in discriminating between the CAM (purple) and ATM
(blue) cells for the optimum number of metrics. (For interpretation of the re-
ferences to color in this figure legend, the reader is referred to the web version
of this article.)
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which are both derived from adenocarcinoma, share a discriminant at
1692 cm−1 associated with nucleic acids [37], which is absent from
OE21 cells, which arise from squamous carcinoma. This wavenumber
may be a moiety that is specific to adenocarcinoma. The OE21 and ATM
cells share discriminating wavenumbers of 1466 cm−1 and 1472 cm−1,
which have been identified as characteristics of lipids [36–38].

It is particularly notable that the metrics approach provides ex-
cellent discrimination between cells derived from adenocarcinoma
(OE19) and squamous cell carcinoma (OE21) and that ATM and CAM
cells do not share a single one of the fifteen wavenumbers that dis-
criminate between them and the other cell types. Clearly the identifi-
cation of discriminating wavenumbers between the various cells types
contain a wealth of information that is worthy of further study and may
produce significant new insights into the chemical structure of eso-
phageal and other cancers.

5. Conclusions

To summarize, we have demonstrated that a novel multivariate
statistical analysis technique can discriminate with accuracies in the
range 81% to 97% between FTIR images of OE19, OE21, CAM and ATM
cell lines. This provides the first accurate spectral discrimination be-
tween CAM and ATM myofibroblast cells taken within 3 cm of tissue
from the same patient. It should be stressed that these cell types are not
readily distinguished by routine morphological approaches even
though it is established that they have important biochemical differ-
ences that are relevant to the stimulation of cancer cell behavior [6].
The findings have potential clinical application in early diagnosis by
identification of putative cancer cell microenvironments and by al-
lowing the demarcation between tumor and adjacent tissue stroma
without recourse to the analysis of biomarkers or extensive tissue
processing. This is a significant result since histopathologists find it
difficult to distinguish between these cell types using the current
standard method of optical microscopy on H&E stained samples [22].
Moreover, the data indicate that it is now justified to conduct a much
larger, appropriately powered, trial directed at the spectral dis-
crimination of the important clinical groups, not least those Barrett’s
patients most at risk of progression including those with dysplastic le-
sions.

The MA method offers a new way of interpreting FTIR data. It has
revealed wavenumbers which uniquely discriminate between all four
cell types, many of which have not previously been identified with
chemical moieties found in healthy tissue. The method discriminates
between cells types with high accuracy and speed and has significant
advantages over the RF approach. The method is expected to be widely
applicable to other cell types and tissues.
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