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Abstract – Safety critical technology rests on optimized and effective testing techniques for every embedded system 

involved in the equipment. Pattern generator (PG) like linear feedback shift register (LFSR) are used for fault detection and 

useful for reliability and online test. This paper presents an analysis on the LFSR, using a known automatic test pattern 

generator (ATPG) test set. Two techniques are undertaken to target difficult-to-detect faults with their respective trade-off 

analysis. This is achieved using Berlekamp-Massey (BM) algorithm with optimizations to reduce area overhead. The first 

technique (Concatenated) combines all test sets generating a single polynomial that covers complete ATPG set (baseline-C). 

Improvements are found in Algorithm 1 reducing polynomial size through Xs assignment. The second technique uses non-

concatenated test sets and provides a group of LFSRs using BM without including any optimization (baseline-N). This 

algorithm is further optimised by selecting full mapping and independent polynomial expressions. Results are generated 

using 32 benchmarks and 65 nm technology. The concatenated technique provides reductions on area overhead for 90.6% 

cases with a best case of 57% and 39% mean. The remaining 9.4% of cases, non-concatenated technique provides the best 

reduction of 37% with 1.4% mean, whilst achieving 100% test mapping in both cases. 

 

1. Introduction 

The statistics on automotive accidents show that on average, 

more than 6 million crashes are reported every year [1], which 

makes automobiles a major concern for road accidents. The 

evaluation of potential scenarios of hazards and dangers are 

defined by the standard ISO26262, providing safety process 

guidelines for each automotive component.  

The safety classification is specified under the mentioned 

standard as Automotive Safety Integrity Level (ASIL) and 

categorizes safety requirements through various parameters 

e.g. severity, exposure and controllability. The functional 

safety of each automotive component has the goal to avoid 

any threats to the vehicle. The categorization of critical safety 

levels are established by the letters A, B, C and D, where D 

represents the highest safety level (Fig. 1). The demanding 

utilization of embedded systems in safety critical 

environment lead to a requirement of higher level of fault 

coverage for these systems. It is desirable to cover faults that 

are classified as hard to detect and are of high importance.  

This research work has the goal to overcome these challenges 

for BIST technology [2], [3] , which consists of the 

integration of a test pattern generator (TPG) to perform 

internal testing, without requiring the presence of an external 

tester [4].  

To achieve high reliability of electronic systems devices, they 

have to be tested when they are manufactured as well as in 

the field. Typically, test patterns are applied either by an 

external tester or in Built-in-test (BIST) mode by circuits 

internal to a device under test. For field test it is necessary to 

apply tests using BIST. The test patterns applied in BIST can 

be pseudo-random patterns generated typically by an LFSR 

or can be patterns which were generated by a deterministic 

test pattern generator. In practice, one may use a hybrid 

approach. The deterministic patterns will either have to be 

stored or generated by expanding seeds fed to an LFSR. The 

latter approach is popular in modern devices and is the focus 

of our work. In the sequel we first discuss the need for BIST 

in embedded systems followed by details of our proposed 

method to generate deterministic tests on chip using LFSRs. 

We demonstrate that concatenating all tests to be generated 

one can use a single LFSR to generate all tests leading to 

savings in the number of stages of LFSR compared to using 

one LFSR and a seed to generate each test. 

 

The adoption level of electronics in the automotive industry 

has increased along with requirements to assure reliability of 

the embedded electronics. Nowadays the Advanced Driver 

Assistance systems (ADAS) is becoming a reality and the 

electronic systems has the ultimate control of the critical 

system [5]. 

 

 

Fig. 1. ASIL diagram representation of safety categories for 

electronic embedded systems, from ASILA (left) to ASILD 

(right) [1]. 
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The evolution of these automated technologies increase the 

complexity of each part of the system involving aid 

components, e.g. front facing cameras. In addition, existing 

safety critical systems in automotive, such as ABS (anti-lock 

brake systems) demands enhancements to match the pace of 

recent developments. These type of systems are expensive but 

necessary to guarantee the highest reliability levels required 

by automotive industry standards (ASIL-D). 

Multiples techniques have been developed for this purpose, 

for instance the linear feedback shift register (LFSR) [6] has 

been used in a variety of forms e.g. as part of a fault tolerant 

system in space environment, where the authors provide 

insightful information about systems design for fault 

avoidance in a space environment [7]. In addition, LFSR has 

been applied for pseudorandom binary sequence generator, 

where the generation of pseudorandom-numbers with a 

Gaussian distribution [8] is taken as the starting point for the 

PG implementation. Reseeding for higher coverage [9]-[11] 

is another approach, where the update of the initial value of 

the registers in LFSR generates more specific bit sequences 

for fault detection, this technique has also being utilized along 

with encoding of patterns for the optimization of switching 

activities when unknown values are introduced in the test 

pattern [12], [13].  

 

In continuation of PGs on chip, Smax+20, is a popular 

approach [14] based on reduction of the probability of linear 

dependencies among neighbour bits of the LFSR sequence. 

In recent methods the Berlekamp-Massey (BM) algorithm 

[15], [16] is applied as the mathematical method for accurate 

calculation of LFSR and the use of recurrence relation model 

for bit generation [17]. The use of BM provides a set of seeds 

for a test set, giving one seed per test pattern. The utilization 

of seeds, results in occupation of memory as big as the size of 

the LFSR multiplied by the number of test patterns. Along 

with improvements in fault coverage, approaches for suitable 

use in automotive applications has been proposed, 

performing various testing techniques through Stellar BIST 

[18], as well as further reduction of test pattern can be 

achieved by compressing and decompressing bit patterns 

[19], [20]. 

 

This paper addresses the aforementioned challenges on 

electronic embedded systems for safety critical domains. 

Improvements on the PG calculation methodology is 

provided, as well as hardware overhead optimization. A novel 

technique on the pattern reorganization for LFSR is proposed, 

utilizing ATPG patterns as input that makes it suitable for set-

reset flip-flop (FF) implementation, putting aside the 

utilization of memory for seed storage. In addition, this 

provides a full mapping of the target patterns. This novel 

technique of test pattern reorganization requires just an initial 

binary value for the shift register. This is based on the 

principle that test sets can be generated following one another 

in uninterrupted succession, constructing a concatenated bit 

pattern with the length resulting from the size of number of 

patterns (m) multiplied by the number of bits (n).  

Unlike the existing techniques, this technique utilizes only the 

set of an initial binary value for the full mapping of ATPG 

test set. Furthermore, the test bit mapping process is 

optimized due to avoidance of reseeding, being this is 

unnecessary in the concatenation approach of all the test 

patterns in one, this provides benefits for the speed and power 

due to the relation with mapping process. In consequence, the 

proposed technique generates ATPG test patterns in a 

sequential manner, optimizes the total area overhead and 

maintains full test coverage.  

 

The rest of this paper is organized as follows. In Section 2, 

the proposed technique of concatenated ATPG set for LFSR 

is described along with results of LFSR size. Section 3 

presents the calculation for non-concatenated patterns, 

improving the polynomial set required for the total mapping 

of the ATPG patterns. A trade-off analysis is presented in 

section 4, providing results on the area overhead from both 

methods, concatenated and non-concatenated test set for 

LFSR. Conclusions are drawn in section 5. In Appendix 1 we 

give a detailed example to illustrate the two algorithms 

studied in Sections 2 and 3.  

2. Concatenated Technique 

The integration of effective PG for embedded electronic 

systems has been explored from various approaches. The 

evolution of the external test set generator was crucial and 

established the starting point for on-chip pattern generators. 

The literature shows techniques with the goal to assure higher 

test coverage, utilizing test point insertion [5], [21], [22] and 

reseeding techniques for the LFSR [9], [10], as well as a 

combination of both. The strategy of applying a number of 

test vectors as inputs and output analysis has increased the 

efficiency of fault detection. The fault coverage is defined as 

the number of detected faults over total detectable faults. 

The proposed technique prioritizes high fault coverage 

through a novel approach removing storage of patterns and 

improves the calculation process of LFSR. 

2.1. Proposed Technique 

As previously mentioned, many approaches utilize a test set 

organization where patterns remain separate and PG 

generates them individually [14], [16], [23]. These techniques 

have been developed in order to improve test coverage. On 

the other hand, these techniques make use of a set of seeds 

equal to the number of patterns, which keeps the utilization 

of memory for the storage of seed. In the proposed technique, 

the test set is reorganized into only one pattern for the 

calculation of LFSR. This is achieved by concatenating each 

test vector with the immediate next sequential pattern of the 

set, which generates a concatenated pattern of size m x n, 

where m is the number of patterns and n is the bit size of each 

pattern (Fig. 2).  

The concatenated patterns is taken as the new goal and the 

next step is the calculation of LFSR that will map the full bit 

pattern. In the procedure of calculating the LFSR, this is 

represented as polynomial, therefore this proposition 

proceeds by finding the polynomial representation and then 

use the mathematical expression to generate the test pattern. 
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Fig. 2. Proposed reorganization of test set. 

Since the patterns are Galois field (GF2) [24] elements, the 

coefficients of the polynomial are also binary numbers. In 

literature, a variety of approaches for calculation of 

polynomial can be found; many techniques take the way of 

trial-and-error [25], which is a very long way to find a 

suitable, small and full generator polynomial. In many 

techniques, the polynomial number of coefficients are as 

many or more than the number of bits present in the pattern 

[9], [10], [14]. In recent studies, BM algorithm [15], [16] 

adapted to binary field, has become a reliable calculation 

technique for LFSR. Many studies utilize relaxed test set in 

combination with BM [12], delivering polynomial 

representation of LFSR smaller than the test pattern bit size.  

The proposed technique forms one concatenated test pattern 

for the input of BM algorithm and this outputs the polynomial 

expression that fully maps the concatenated set. The bit 

generation by LFSR is based on the recurrence relation model 

[17], where each consecutive bit results from a linear 

combination between previous patterns and polynomial 

coefficients. 

𝑏𝑗 =∑𝑐𝑖 ∙ 𝑏𝑗−𝑖

𝑑

𝑖=1

 

 

(1) 

The linear combination (see (1)), shows that the next bit (bj) 

is the summation of each polynomial coefficient (ci) 

multiplied by the previous bits (bj-i). In order to produce all 

patterns, this expression is applied in a window-moving 

manner, where every time the last bit is calculated, the 

previous group of bits (bj-i) is shifted left and the last position 

is updated with the value of the last calculated bit (bj) ( Fig. 

3).  

The linear combination among coefficients of the polynomial 

representation of LFSR and each bit position of the target 

pattern is utilized by BM algorithm for the assignment of 

unknown bits from relaxed test patterns [23]. Each unknown 

value is assigned based on the calculation of the discrepancy, 

which is the linear combination between the polynomial 

coefficients and d elements of the pattern (see (1)). The BM 

algorithm includes a decision block when bj is unknown (Fig. 

4), assigns bj with the result of the immediately calculated 

linear combination between the previous bits and the current 

polynomial coefficients. In this manner the polynomial 

degree is updated according to the discrepancy value through 

the entire pattern of bits. This process of polynomial 

calculation guarantees a sequential and consecutive mapping 

of the ATPG set using LFSR. 

 

Fig. 3. Recurrence relation flow chart for pattern mapping, 

given the polynomial and initial group of bits [7], [17]. 

The use of concatenated patterns and BM algorithm is 

addressed in this proposed technique. Results on the 

calculations are provided for fully specified and relaxed test 

sets.  

2.1.1. LFSR calculation  

The proposed concatenated technique utilizes concatenated 

ATPG set as the input of BM algorithm (Fig. 4) for the 

calculation of LFSR’s polynomial expression. A set of 29 

benchmarks are utilized [26].  

As established by the analysis on the of the recurrence 

relation (Fig. 3), the polynomial expression guarantees the 

full generation of the pattern. In an initial stage the LFSR 

calculation is performed using fully specified bits. 

In a second step, the concatenated ATPG sets are 

implemented with relaxed bit positions. Each benchmark has 

a different number of unknown values (Fig. 5). The test 

patterns are the input of BM, which assigns each unknown 

position according to the sequence shown in Fig. 4.  

 

Fig. 4. BM for the X values assignment [23]. 
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Fig. 5. Concatenated test sets with percentage of unknown 

values [26]. 

The stages involved in the calculation of LFSR are revised, 

in order to improve the result. The first stage is the initial 

calculation of polynomial and unknown assignment based 

only on BM algorithm. Furthermore, optimization on the 

calculation is performed by assigning the unknown bits 

previous to the LFSR’s polynomial calculation. The 

polynomial degree is expected to vary slightly from the 

results with fully specified bits. The analysis provided in the 

following section delivers insightful information about the 

behaviour of the polynomial degree during the calculation 

process, the values found, vary only in small magnitude with 

respect to baseline numbers where the input of the algorithm 

was fully specified bit pattern. This small reduction is linked 

as well to the mathematical structure of the BM algorithm 

[15].  

2.1.2. Polynomial degree optimization with 
relaxed test patterns. 

The results obtained in fully assigned bits for all the 

benchmarks can be optimized when unknown positions are 

introduced. This further reduction can be found if previous 

assignment of unknown values is performed before the use of 

BM algorithm. This has a positive impact on the area 

overhead of LFSR and facilitates its application for 

microprocessors in safety critical environment. This further 

reduction on the polynomial expression of LFSR is achieved 

using a sequential bit assignment method [23]. Each 

assignment of one bit at a time, runs BM algorithm and check 

if the polynomial expression is smaller than calculated before. 

The starting pattern is the one calculated using only BM 

without previous assignment. 

 
Fig. 6. Sequential diagram of flipping technique, a) Original 

bit pattern, b) Baseline assignment of Xs using only on BM 

along with the baseline polynomial and  c) Flipping of one 

position at a time of the initially assigned and re-calculation 

of the polynomial [23]. 

 

Fig. 7. Exploration of minimal polynomial degree for 

benchmark c432 [26] with unknown values using flipping 

technique. 

As show in Fig. 6, step b) is used as the reference for the 

flipping and in each time all the other bits goes back to 

unknown values and a re-calculation of the polynomial is 

performed. During each flipping, the minimal polynomial 

degree is updated and preserved. 

A small reduction is found due to the mathematical 

composition of BM algorithm where the limit value of the 

polynomial degree is half of the pattern. Due to this process 

of polynomial calculation, the value of the degree does not 

move far from the half of the total bit size of the pattern. An 

example on this polynomial degree behaviour is shown in 

Fig. 7, where the values remain close to half the pattern’s 

length.  

Fig. 8. Algorithm 1 Polynomial calculation for concatenated 

ATPG set 
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Algorithm 1 Proposed polynomial calculation for 

concatenated ATPG set 

Input: ATPG set 'T' 

Output: 1 polynomial for LFSR, its seed and the 

assigned unknown values of the concatenated ATPG 

set ‘Tc’ 

 

%ATPG concatenation  

1. While i <= T size do 

2. Tc=concatenate(Tc,Ti) 

3. End While 

% Polynomial calculation of concatenated set 

4. Baseline polynomial calculation with BM 

5. If Xs number in Tc > 0 

6. While i <= Tc size do 

7. If bit position is X  

8. Flip bit position 

9. If polynomial size < previously found  

10. Update minimum polynomial  

11. End if 

12. End if 

13. End while 

14. End if 

15. Return minimal polynomial and final bit 

assignment 
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Fig. 9. Top level diagram of the steps involved in the 

concatenated technique. 

The behaviour of the polynomial degree shown previously is 

verified for all benchmarks. Improvements were found in all 

cases with a maximum reduction found in benchmarks s349 

with a polynomial 3.2% smaller after optimization through 

different assignment of Xs bit positions.  

The exploration in the assignments of unknown values 

present in the test patterns has been improved slightly and 

Table 1 (see Appendix 1)  shows sizes of LFSR obtained 

using Algorithm 1 (Fig. 8) for fully specified bits and for 

when Xs are present in each benchmark. The latter is shown 

after being optimized with the flipping technique for 

concatenated ATPG test set. 

The optimized way for the implementation of this LFSR is by 

using set-reset flip-flops, avoiding any memory for seed 

storage. As summary, the concatenated ATPG technique for 

LFSR calculation is shown in Fig. 9. This presents the 

sequence followed in this proposed technique for its 

implementation. 

2.1.3. Big O complexity analysis on time and 
space for Algorithm 1.  

The O complexity of Algorithm 1 is depicted as follows, 

considering each of the steps involved. The concatenation of 

the patterns has a linear and direct proportion to the size of 

the test pattern, this has a maximum iteration of O(T). Where 

T is the size of the test pattern. Berlekamp-Massey (BM) 

algorithm complexity has a quadratic relation with the length 

of the pattern O(T2), as mentioned in [16], [27].  

Algorithm 1, performs additional reduction on the calculated 

LFSR and this is achieved by flipping segments of the full 

test pattern. The number of segments to flip are selected a 

priori, based on a maximum calculation time established as a 

constant. The complexity contribution of this task is the 

product of number of unknown positions to flip (Xto-flip) by 

the number of segments (nsegment), thus the complexity result 

is O(Xto-flip*nsegment). The overall complexity is O(T + Xto-

flip*nsegment * T2). 

Based on the time complexity, the space complexity is 

determined as follows. For each of the benchmarks utilized, 

the ATPG test pattern varies and the first step is to load the 

whole test set in memory to perform the calculation of the 

corresponding LFSR. Therefore this step contributes with a 

space complexity of O(T), where T is the size of the 

concatenated pattern. The contribution of BM algorithm in 

the space complexity is defined by O(4T).  

The additional optimization on the calculated LFSR can be 

considered as an auxiliary space, which is taken each time a 

new segment of the pattern is flipped. Therefore the 

contribution of this step is O(T) for the new pattern and an 

additional calculation of BM multiplied by a factor of the 

final polynomial (pconcat). The overall space complexity of 

Algorithm 1 is O(6T+ pconcat*4T). 

The computer utilized to perform the tests for both algorithms 

has an intel core i3 processor with a speed of 3.30 GHz and 

RAM of 8 GB and 500 GB of storage.  

3. Non-Concatenated Patterns and Polynomial 
Calculation 

Other techniques for the calculation of LFSR uses non-

concatenated test sets [16]. In this section, an analysis of this 

process is provided, showing the steps involved, along with 

reduction techniques utilized on the polynomial set size. In 

the beginning, a polynomial set is calculated according to the 

individual mapping, where corresponding patterns are 

removed every time a polynomial is found. This delivers a 

progressive reduction on the test set, which shrinks the target 

set for next polynomial calculation.  

Due to the initial exclusion of patterns, a further exploration 

on the baseline selection of non-concatenated test set is 

performed. The progressive selection of the initial set of 

expressions, provides each polynomial with ATPG mapping 

subset, excluded in the consecutive next search, this sequence 

delivers each subset in an isolated manner. The optimization 

step exploits this fact and re-checks the coverage of 

polynomials considering the full test set, providing a more 

precise selection of polynomial expressions.  

In the bar graph of Fig. 11, the calculation of maximum and 

independent mapping polynomials for benchmark c432 is 

shown. Fig. 11 shows the total number of polynomials that 

remain after all the iterations, each previously selected 

polynomial expression, reveals the total mapping capacity 

when using as goal the full test set, and in following checks 

the remaining set of patterns are tested against the reduced set 

of polynomials. The method also shows that in each step, the 

mapping of some polynomials are included by others, this 

excludes some polynomials since its mapping subset is 

already included by another. Therefore, the polynomials are 

optimized according to the mapping sets. In Fig. 11 the 

maximum mapping of a polynomial is 29% of the test set.  
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Fig. 10. Algorithm for optimum number of polynomial using 

non-concatenated ATPG set.  

In Algorithm 2 (Fig. 10) the description of each step for the 

polynomial calculation for non-concatenated ATPG set is 

provided. The calculation sequence of LFSR for non-

concatenated ATPG set is shown in Fig. 13. This sequential 

diagram shows the optimization of polynomial set according 

to its maximum and independent mapping capacity. Fig. 12, 

shows improvement on the polynomial set for c432 

benchmark, where the total reduction on the polynomial set 

size is 33%. For each of the benchmarks presented in Table 2 

(see Appendix 1), Algorithm 2 achieves reductions on all 

polynomial sets, and the results can be seen in table 2, where 

improvements are found in all cases with a mean of 27% 

reduction on the polynomial number.  

 

Fig. 11. Individual maximum mapping for full test set, c432 

benchmark. 

 

Fig. 12. Total polynomial set size reduction of Benchmark 

c432. 

 
Fig. 13. Top level diagram of the steps involved in the non-

concatenated technique. 

As show in Table 2 (see Appendix 1) a reduction in most of 

polynomial sets of each benchmarks was achieved. The 

highest reduction in the polynomial set can be seen in 

benchmark s510 with 78% of reduction. More high quality 

results were also found in benchmarks: s386 with 59%, s820 

with 50% and s832 with 66% reduction. 

3.1. Big O complexity analysis on time and memory 
for Algorithm 2.  

For Algorithm 2, the generation of the pool of polynomials is 

undertaken through Sidorenko-Borset algorithm that 

considers the uniqueness of LFSRs and utilizes BM algorithm 

to generate a pool based on a chosen pattern (tpattern). This 

section of the algorithm contributes with a time complexity 

of O(tpattern
2) [27]. The pool of polynomials are tested with all 

the remaining patterns of the original test set and has a 

maximum complexity of O(T). This previous tasks are 

undertaken as long as test patterns remains in the test set, 

which contributes with a factor of T for both previous tasks. 

As a result, this section of the algorithm has a complexity of 

O(T*(tpattern
2+T)). In the last section, Algorithm 2 performs a 

selection of the highest generator polynomials (Pgenerator) 

performing the test for the whole set of patterns, this 

contributes with a complexity of O(Pgenerator*T). Overall the 

complexity is O( T*(tpattern
2+T)+Pgenerator*T). 

For the space complexity of Algorithm 2, the initial load of 

whole ATPG test patterns contribute with O(T). The 

generation of the pool can be considered as auxiliary space 

and contributes with O (4T) multiplied by a pool factor (fpool).  

The selection of highest polynomial generator can contribute 

as much as many patterns in the test set, therefore the 

complexity is O(T). The final polynomial set contribute with 

a factor of pnon-concat. Overall the space complexity is O(T+ 

fpool*4T+pnon-concat* T). 

Algorithm 2 Polynomial calculation for non-

concatenated ATPG set 

Input: ATPG set 'T' 

Output: polynomial set for LFSR and its seeds 

 

%initial polynomial calculation (baseline) 

1. While T size > 0 do 

2. min_map=10%; 

3. select randomly a pattern from T 

4. Initial polynomial calculation with BM for 

selected pattern 

5. Generate polynomial set based on initial 

polynomial 

6. While polynomial set size > 0 do 

7. Select one polynomial from set 

8. if polynomial mapping>=10% 

9. Save polynomial, seeds and mapping set 

10. Remove polynomial and the correspondent 

mapping set 

11. end if  

12. end while 

13. end while 

% optimization of polynomial set 

14. Restore original T 

15. While T size>0 do 

16. Calculate the maximum mapping polynomial 

17. Save the maximum mapping polynomial and its 

seeds 

18. Remove the polynomial from set and its mapping 

sub set 

19. end while 

20. Return the final group of polynomial for LFSR and 

its seeds 



7 

 

4. Trade-Off Analysis 

In this section, results are provided on the technique for 

concatenated and non-concatenated ATPG set for LFSR (see 

Appendix 1, Table 3). Each technique is formed by the 

necessary logic to perform the mapping of bit patterns. In the 

case of concatenated patterns, only the LFSR is required 

while in the non-concatenated technique the LFSR and all 

seeds per benchmark are necessary (Fig. 14). For the 

following comparison, the results are provided separately in 

order to show the number of polynomials in one graph (Fig. 

15 (c)) and the comparison of total area overhead in the other 

graph (Fig. 16 (c)).  

The results on polynomial trade-off analysis compares the 

total size of each technique, the concatenated (Fig. 15 (a)) 

requires only one polynomial and this is the value plotted, 

however for the non-concatenated method (Fig. 15 (b)), a 

group of polynomials are required, the summation of these 

polynomials size is plotted. The results show that in 56% 

cases the concatenated method improves the size of the 

polynomial, with a best case reduction of 39% and with a 

mean of 12%. For the remaining 44% cases, non-

concatenated technique provides a best case of 93% reduction 

on the polynomial set, with a mean of 23%.  

As an example on results of each algorithm, benchmark s349 

can be seen in Appendix 1, Table 4 and 5. Both of the ATPG 

test patterns have the same unknown positions (X) and the 

patterns shown in these results represent the final bit 

assignment chosen by each algorithm in the optimization 

process by assigning a binary value (1 or 0) for LFSR 

reduction. Table 4 shows the non-concatenated technique 

results, where a set of 13 seeds has been calculated, this is due 

to the fact that s349 circuit has an ATPG test set of 13 patterns 

with a size of 24 bits each.  Due to the uniqueness of the test 

patterns, the expected number of seeds is the same as number 

of patterns in most of the cases with a reduction found in the 

polynomial number. In this case a reduction of one unit can 

be seen in the set of polynomials, this happen because 

polynomial 7 can generate two test patterns and for this 

generation it utilizes two seeds. Table 5 shows the 

concatenated technique results with only one seed and the 

corresponding LFSR. This shows that the concatenated 

technique delivers an LFSR which is 26% smaller than the set 

of LFSRs together, delivered by non-concatenated technique 

(Table 4). Note that in our calculations, seeds (Table 5) are 

stored in LFSRs using set-reset flip-flops for further area 

saving. Whereas non-concatenated technique stores all seeds 

in memory as in literature. 

  

Fig. 14. Results of each algorithm. Algorithm 1 delivers one 

polynomial with a reduced application time due to the 

utilization of only an initial state of the LFSR. Algorithm 2 

delivers many polynomials with many seeds, this result in 

larger application time, due to reseedings.  

 

(a) 

 

 

(b) 

 

 

(c) 

Fig. 15. Polynomial size for each technique. (a) 

Concatenated technique baseline and optimized numbers, 

(b) Non-concatenated technique baseline and optimized 

numbers, (c) Trade-off analysis for both methods.  
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A trade-off analysis of total area overhead for each technique 

is provided. The calculation of the area is based on the 

constitution of LFSR as a set of flip-flops and XOR gates, 

therefore the summation of both elements forms the area for 

each method. For non-concatenated technique (Fig. 16 (b)), 

seeds are included in the total area. Seeds are not necessary 

in the concatenated technique (Fig. 16 (a)) because FFs are 

set with the necessary initial binary value and can be reset to 

re-start the mapping of the bit pattern, nevertheless this flip-

flop configuration increases the area for concatenated and this 

is included in the total area overhead trade-off (Fig. 16 (c)). 

For the area overhead numbers, the technology size of 65 nm 

is used. 

In the results of total area overhead (Fig. 16), the 

concatenated technique improves the area by setting and 

resetting the FFs to initial binary value, which puts aside the 

use of seed storage in a separate memory. The values shown 

in Fig. 16, has similar shape as the values presented for the 

polynomial size (Fig. 15), this is due to the strong link of both 

methods to the size of the LFSR. These results show that 

concatenated technique of ATPG set, provides an 

improvement on the area overhead for 90.6% of cases with a 

best case of 57% smaller area overhead and a mean of 39%. 

The remaining 9.4% of cases, non-concatenated technique 

provides a best case of 37% with a mean of 1.4% whilst 

achieving 100% test mapping in both cases using a known 

ATPG test set. 

5. Conclusions 

In safety critical environment the utilization of embedded 

electronic systems is increasing constantly and therefore 

methods for more reliable electronic components are needed. 

In this paper, BIST technology is used in testing technique, 

since the fault coverage has a crucial impact on the reliability 

of the electronic circuit. An analysis on the LFSR is provided 

in this paper using ATPG test sets. Two techniques are used 

to target difficult to detect faults with their respective trade-

off analysis. This is based on Berlekamp-Massey (BM) 

algorithm with additional optimizations to reduce area 

overhead. The first technique is referred as concatenated, and 

combines all test sets generating a single polynomial that 

covers complete ATPG set. In this stage the  results are 

referred as baseline-C for this concatenated technique. 

Further improvement are found using Algorithm 1, reducing 

polynomial size through Xs assignment. The second 

technique is referred as non-concatenated and in the initial 

stage provides a group of LFSRs using BM without including 

any optimization, referred as the baseline-N. Further 

optimization is performed through Algorithm 2 that selects 

full mapping and independent polynomial expressions. 

Using 32 benchmarks designs and 65 nm technology library, 

overall results show that concatenated technique, provides a 

reduction of area overhead in 90.6% cases with a best case of 

57% compared with non-concatenated technique with the left 

9.4% with a best case of 37% area overhead reduction. The 

mean numbers of these techniques show 39% for 

concatenated compared with a mean area overhead reduction 

of 1.4% by non-concatenated technique. In both cases, full 

test coverage is preserved. 

 
(a) 

 
(b) 

 
(c) 

Fig. 16. Total area overhead for each method. For 

concatenated technique only FFs + XORs. And for non-

concatenated additional ROM is included. (a) Concatenated 

technique baseline and optimized numbers, (b) Non-

concatenated technique baseline and optimized numbers, (c) 

Trade-off analysis for both methods.  
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8. Appendix 1 

 

Table 1. LFSR optimized size for concatenated technique. 

# Benchmark 

 
Base line 

LFSR size 

Optimized 

LFSR size 

% LFSR size 

optimization 
Number of patterns (m)  Bit size (n) m x n 

1 c432 28 36 1008 505 497 1.6% 

2 c499 52 41 2132 1067 1065 0.2% 

3 c880 21 60 1260 632 626 0.9% 

4 c1355 84 41 3444 1723 1722 0.1% 

5 c2670 45 233 10485 5273 5238 0.7% 

6 c3540 93 50 4650 2321 2317 0.2% 

7 c5315 46 178 8188 4099 4089 0.2% 

8 c6288 14 32 448 226 225 0.4% 

9 c7552 75 207 15525 7762 7756 0.1% 

10 s208 27 19 513 259 253 2.3% 

11 s344 14 24 336 169 165 2.4% 

12 s349 13 24 312 158 153 3.2% 

13 s382 25 24 600 305 297 2.6% 

14 s386 63 13 819 409 407 0.5% 

15 s400 24 24 576 287 285 0.7% 

16 s420 44 35 1540 775 766 1.2% 

17 s444 24 24 576 292 283 3.1% 

18 s510 56 25 1400 702 696 0.9% 

19 s526 49 24 1176 586 584 0.3% 

20 s641 22 54 1188 593 591 0.3% 

21 s713 21 54 1134 566 564 0.4% 

22 s820 94 23 2162 1083 1077 0.6% 

23 s832 95 23 2185 1094 1088 0.5% 

24 s838 76 67 5092 2548 2540 0.3% 

25 s953 76 45 3420 1703 1702 0.1% 

26 s1196 113 32 3616 1804 1802 0.1% 

27 s1238 125 32 4000 2007 1996 0.5% 

28 s1488 101 14 1414 709 701 1.1% 

29 s1494 100 14 1400 704 697 1.0% 

30 Design A 1200 1437 1.7M 862200 851854 1.2% 

31 Design B 1080 1494 1.6M 806760 791432 1.9% 

32 Design C 1300 1507 2.0M 979550 969755 1.0% 
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Table 2. Optimization polynomial set size for non-concatenated technique. 

# Benchmark 

 

Baseline 

polynomial set 

Baseline 

polynomial 

mean degree 

Optimized 

polynomial 

set 

Optimized 

polynomial 

mean degree 

% 

polynomial 

set 

reduction  

Number of 

patterns 

(m)  

Bit size (n) 

1 c432 28 36 27 28 18 27 33% 

2 c499 52 41 50 32 36 32 28% 

3 c880 21 60 21 47 18 47 14% 

4 c1355 84 41 66 35 49 35 26% 

5 c2670 45 233 45 198 38 197 16% 

6 c3540 93 50 81 42 66 43 19% 

7 c5315 46 178 46 149 39 150 15% 

8 c6288 14 32 14 26 11 26 21% 

9 c7552 75 207 70 184 60 186 14% 

10 s208 27 19 20 15 17 15 15% 

11 s344 14 24 11 18 9 17 18% 

12 s349 13 24 13 18 12 18 8% 

13 s382 25 24 25 16 18 16 28% 

14 s386 63 13 34 9 14 10 59% 

15 s400 24 24 18 19 11 19 39% 

16 s420 44 35 41 26 27 26 34% 

17 s444 24 24 23 18 14 18 39% 

18 s510 56 25 32 20 7 21 78% 

19 s526 49 24 20 22 14 22 30% 

20 s641 22 54 22 41 20 41 9% 

21 s713 21 54 21 45 20 45 5% 

22 s820 94 23 68 17 34 18 50% 

23 s832 95 23 59 17 20 18 66% 

24 s838 76 67 61 56 46 56 25% 

25 s953 76 45 6 22 5 22 17% 

26 s1196 113 32 16 24 15 25 6% 

27 s1238 125 32 17 23 15 24 12% 

28 s1488 101 14 16 11 14 11 13% 

29 s1494 100 14 46 9 25 10 46% 

30 Design A 1200 1437 876 1164 788 1106 10.0% 

31 Design B 1080 1494 788 1315 512 1249 35.0% 

32 Design C 1300 1507 910 1191 701 1131 23.0% 
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Table 3. Trade-off results for total area overhead 

# Benchmark 

 

m x n Concatenated Non-concatenated % Improvement 
Number of patterns 

(m)  
Bit size (n) 

1 c432 28 36 1008 5950 11516 48% 

2 c499 52 41 2132 12681 24438 48% 

3 c880 21 60 1260 7520 14927 50% 

4 c1355 84 41 3444 20566 37922 46% 

5 c2670 45 233 10485 62497 144255 57% 

6 c3540 93 50 4650 27688 55428 50% 

7 c5315 46 178 8188 49077 112340 56% 

8 c6288 14 32 448 2647 5656 53% 

9 c7552 75 207 15525 92758 212959 56% 

10 s208 27 19 513 3065 5625 46% 

11 s344 14 24 336 2017 3536 43% 

12 s349 13 24 312 1799 3930 54% 

13 s382 25 24 600 3538 6027 41% 

14 s386 63 13 819 4824 6542 26% 

15 s400 24 24 576 3365 5646 40% 

16 s420 44 35 1540 9095 15493 41% 

17 s444 24 24 576 3424 6091 44% 

18 s510 56 25 1400 8270 10733 23% 

19 s526 49 24 1176 6864 10357 34% 

20 s641 22 54 1188 7058 14168 50% 

21 s713 21 54 1134 6700 15261 56% 

22 s820 94 23 2162 12866 18780 31% 

23 s832 95 23 2185 12933 17658 27% 

24 s838 76 67 5092 30441 56256 46% 

25 s953 76 45 3420 20364 12846 -37% 

26 s1196 113 32 3616 21514 20959 -3% 

27 s1238 125 32 4000 23768 22656 -5% 

28 s1488 101 14 1414 8436 10792 22% 

29 s1494 100 14 1400 8230 11491 28% 

30 Design A 1200 1437 1.7M 10173822 17938843 43.3% 

31 Design B 1080 1494 1.6M 9463843 15049653 37.1% 

32 Design C 1300 1507 2.0M 11577889 18424655 37.2% 
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Table 4. Algorithm 2 results for benchmark s349. 

# Binary representation of LFSRs Seeds stored in memory 
Non-concatenated ATPG test 

patterns 

1 10100011110011 01111111110101 011111111101010111110000 

2 1111100101101 1111000000101 111100000010101111101011 

3 1000011101001110101011 1001011110000001000000 100101111000000100000001 

4 1101110010110100001111 1000000001010000000000 100000000101000000000000 

5 1001000111001100101111 0000000000111010000010 000000000011101000001011 

6 111000001000010111111 000000000110000000000 000000000110000000000101 

7 
1000000110001110010101 0000000000100011000011 

0000000000100110000000 

000000000010001100001110 

000000000010011000000000 

8 1011100100010100101011 0000000000101100000010 000000000010110000001011 

9 111001110011 000000000111 000000000111100100011111 

10 10101101010111 00001000010011 000010000100110100000110 

11 1110110101101 0110100000001 011010000000101000001111 

12 1100010011101 0000000000010 000000000001011000001101 

 

 

Table 5. Algorithm 1 results for benchmark s349. 

Binary representation of 

LFSR 

Set-reset value of the LFSRs 

flip-flops (seed) 
Concatenated ATPG test patterns 

11110111110010011001111

11001111101110001010110

01000101110010101000101

11001001100001110101001

00100010011001010101101

10011101010110010111000

1110011011101000 

01111111110101011111000

01111111110101011111010

11100101111000011100001

11101111111110011011110

01100111111111111001111

11111011111111111001100

0011111111111111 

011111111101010111110000111111111010101111101011

100101111000011100001111011111111100110111100110

011111111111100111111111011111111111001100001111

111111111101111100001111011111111011101011101011

011111111110000011100101011111111111011011110000

011111111011110011101011011010000000101000101111

011111111001011011101101 

 

 

 

 

 

 

 

 


