
1

LFSR generation for high test coverage and low hardware overhead

Leonel Hernández Martínez1*, Saqib Khursheed1, Sudhakar M. Reddy2

1 Dept. of Electrical Engineering & Electronics, University of Liverpool, UK.

2 College of Engineering, University of Iowa, USA.

* A.L.Hernandez-Martinez@liverpool.ac.uk

Abstract – Safety critical technology rests on optimized and effective testing techniques for every embedded system

involved in the equipment. Pattern generator (PG) like linear feedback shift register (LFSR) are used for fault detection and

useful for reliability and online test. This paper presents an analysis on the LFSR, using a known automatic test pattern

generator (ATPG) test set. Two techniques are undertaken to target difficult-to-detect faults with their respective trade-off

analysis. This is achieved using Berlekamp-Massey (BM) algorithm with optimizations to reduce area overhead. The first

technique (Concatenated) combines all test sets generating a single polynomial that covers complete ATPG set (baseline-C).

Improvements are found in Algorithm 1 reducing polynomial size through Xs assignment. The second technique uses non-

concatenated test sets and provides a group of LFSRs using BM without including any optimization (baseline-N). This

algorithm is further optimised by selecting full mapping and independent polynomial expressions. Results are generated

using 32 benchmarks and 65 nm technology. The concatenated technique provides reductions on area overhead for 90.6%

cases with a best case of 57% and 39% mean. The remaining 9.4% of cases, non-concatenated technique provides the best

reduction of 37% with 1.4% mean, whilst achieving 100% test mapping in both cases.

1. Introduction

The statistics on automotive accidents show that on average,

more than 6 million crashes are reported every year [1], which

makes automobiles a major concern for road accidents. The

evaluation of potential scenarios of hazards and dangers are

defined by the standard ISO26262, providing safety process

guidelines for each automotive component.

The safety classification is specified under the mentioned

standard as Automotive Safety Integrity Level (ASIL) and

categorizes safety requirements through various parameters

e.g. severity, exposure and controllability. The functional

safety of each automotive component has the goal to avoid

any threats to the vehicle. The categorization of critical safety

levels are established by the letters A, B, C and D, where D

represents the highest safety level (Fig. 1). The demanding

utilization of embedded systems in safety critical

environment lead to a requirement of higher level of fault

coverage for these systems. It is desirable to cover faults that

are classified as hard to detect and are of high importance.

This research work has the goal to overcome these challenges

for BIST technology [2], [3] , which consists of the

integration of a test pattern generator (TPG) to perform

internal testing, without requiring the presence of an external

tester [4].

To achieve high reliability of electronic systems devices, they

have to be tested when they are manufactured as well as in

the field. Typically, test patterns are applied either by an

external tester or in Built-in-test (BIST) mode by circuits

internal to a device under test. For field test it is necessary to

apply tests using BIST. The test patterns applied in BIST can

be pseudo-random patterns generated typically by an LFSR

or can be patterns which were generated by a deterministic

test pattern generator. In practice, one may use a hybrid

approach. The deterministic patterns will either have to be

stored or generated by expanding seeds fed to an LFSR. The

latter approach is popular in modern devices and is the focus

of our work. In the sequel we first discuss the need for BIST

in embedded systems followed by details of our proposed

method to generate deterministic tests on chip using LFSRs.

We demonstrate that concatenating all tests to be generated

one can use a single LFSR to generate all tests leading to

savings in the number of stages of LFSR compared to using

one LFSR and a seed to generate each test.

The adoption level of electronics in the automotive industry

has increased along with requirements to assure reliability of

the embedded electronics. Nowadays the Advanced Driver

Assistance systems (ADAS) is becoming a reality and the

electronic systems has the ultimate control of the critical

system [5].

Fig. 1. ASIL diagram representation of safety categories for

electronic embedded systems, from ASILA (left) to ASILD

(right) [1].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/227453375?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:A.L.Hernandez-Martinez@liverpool.ac.uk

2

The evolution of these automated technologies increase the

complexity of each part of the system involving aid

components, e.g. front facing cameras. In addition, existing

safety critical systems in automotive, such as ABS (anti-lock

brake systems) demands enhancements to match the pace of

recent developments. These type of systems are expensive but

necessary to guarantee the highest reliability levels required

by automotive industry standards (ASIL-D).

Multiples techniques have been developed for this purpose,

for instance the linear feedback shift register (LFSR) [6] has

been used in a variety of forms e.g. as part of a fault tolerant

system in space environment, where the authors provide

insightful information about systems design for fault

avoidance in a space environment [7]. In addition, LFSR has

been applied for pseudorandom binary sequence generator,

where the generation of pseudorandom-numbers with a

Gaussian distribution [8] is taken as the starting point for the

PG implementation. Reseeding for higher coverage [9]-[11]

is another approach, where the update of the initial value of

the registers in LFSR generates more specific bit sequences

for fault detection, this technique has also being utilized along

with encoding of patterns for the optimization of switching

activities when unknown values are introduced in the test

pattern [12], [13].

In continuation of PGs on chip, Smax+20, is a popular

approach [14] based on reduction of the probability of linear

dependencies among neighbour bits of the LFSR sequence.

In recent methods the Berlekamp-Massey (BM) algorithm

[15], [16] is applied as the mathematical method for accurate

calculation of LFSR and the use of recurrence relation model

for bit generation [17]. The use of BM provides a set of seeds

for a test set, giving one seed per test pattern. The utilization

of seeds, results in occupation of memory as big as the size of

the LFSR multiplied by the number of test patterns. Along

with improvements in fault coverage, approaches for suitable

use in automotive applications has been proposed,

performing various testing techniques through Stellar BIST

[18], as well as further reduction of test pattern can be

achieved by compressing and decompressing bit patterns

[19], [20].

This paper addresses the aforementioned challenges on

electronic embedded systems for safety critical domains.

Improvements on the PG calculation methodology is

provided, as well as hardware overhead optimization. A novel

technique on the pattern reorganization for LFSR is proposed,

utilizing ATPG patterns as input that makes it suitable for set-

reset flip-flop (FF) implementation, putting aside the

utilization of memory for seed storage. In addition, this

provides a full mapping of the target patterns. This novel

technique of test pattern reorganization requires just an initial

binary value for the shift register. This is based on the

principle that test sets can be generated following one another

in uninterrupted succession, constructing a concatenated bit

pattern with the length resulting from the size of number of

patterns (m) multiplied by the number of bits (n).

Unlike the existing techniques, this technique utilizes only the

set of an initial binary value for the full mapping of ATPG

test set. Furthermore, the test bit mapping process is

optimized due to avoidance of reseeding, being this is

unnecessary in the concatenation approach of all the test

patterns in one, this provides benefits for the speed and power

due to the relation with mapping process. In consequence, the

proposed technique generates ATPG test patterns in a

sequential manner, optimizes the total area overhead and

maintains full test coverage.

The rest of this paper is organized as follows. In Section 2,

the proposed technique of concatenated ATPG set for LFSR

is described along with results of LFSR size. Section 3

presents the calculation for non-concatenated patterns,

improving the polynomial set required for the total mapping

of the ATPG patterns. A trade-off analysis is presented in

section 4, providing results on the area overhead from both

methods, concatenated and non-concatenated test set for

LFSR. Conclusions are drawn in section 5. In Appendix 1 we

give a detailed example to illustrate the two algorithms

studied in Sections 2 and 3.

2. Concatenated Technique

The integration of effective PG for embedded electronic

systems has been explored from various approaches. The

evolution of the external test set generator was crucial and

established the starting point for on-chip pattern generators.

The literature shows techniques with the goal to assure higher

test coverage, utilizing test point insertion [5], [21], [22] and

reseeding techniques for the LFSR [9], [10], as well as a

combination of both. The strategy of applying a number of

test vectors as inputs and output analysis has increased the

efficiency of fault detection. The fault coverage is defined as

the number of detected faults over total detectable faults.

The proposed technique prioritizes high fault coverage

through a novel approach removing storage of patterns and

improves the calculation process of LFSR.

2.1. Proposed Technique

As previously mentioned, many approaches utilize a test set

organization where patterns remain separate and PG

generates them individually [14], [16], [23]. These techniques

have been developed in order to improve test coverage. On

the other hand, these techniques make use of a set of seeds

equal to the number of patterns, which keeps the utilization

of memory for the storage of seed. In the proposed technique,

the test set is reorganized into only one pattern for the

calculation of LFSR. This is achieved by concatenating each

test vector with the immediate next sequential pattern of the

set, which generates a concatenated pattern of size m x n,

where m is the number of patterns and n is the bit size of each

pattern (Fig. 2).

The concatenated patterns is taken as the new goal and the

next step is the calculation of LFSR that will map the full bit

pattern. In the procedure of calculating the LFSR, this is

represented as polynomial, therefore this proposition

proceeds by finding the polynomial representation and then

use the mathematical expression to generate the test pattern.

3

Fig. 2. Proposed reorganization of test set.

Since the patterns are Galois field (GF2) [24] elements, the

coefficients of the polynomial are also binary numbers. In

literature, a variety of approaches for calculation of

polynomial can be found; many techniques take the way of

trial-and-error [25], which is a very long way to find a

suitable, small and full generator polynomial. In many

techniques, the polynomial number of coefficients are as

many or more than the number of bits present in the pattern

[9], [10], [14]. In recent studies, BM algorithm [15], [16]

adapted to binary field, has become a reliable calculation

technique for LFSR. Many studies utilize relaxed test set in

combination with BM [12], delivering polynomial

representation of LFSR smaller than the test pattern bit size.

The proposed technique forms one concatenated test pattern

for the input of BM algorithm and this outputs the polynomial

expression that fully maps the concatenated set. The bit

generation by LFSR is based on the recurrence relation model

[17], where each consecutive bit results from a linear

combination between previous patterns and polynomial

coefficients.

𝑏𝑗 =∑𝑐𝑖 ∙ 𝑏𝑗−𝑖

𝑑

𝑖=1

(1)

The linear combination (see (1)), shows that the next bit (bj)

is the summation of each polynomial coefficient (ci)

multiplied by the previous bits (bj-i). In order to produce all

patterns, this expression is applied in a window-moving

manner, where every time the last bit is calculated, the

previous group of bits (bj-i) is shifted left and the last position

is updated with the value of the last calculated bit (bj) (Fig.

3).

The linear combination among coefficients of the polynomial

representation of LFSR and each bit position of the target

pattern is utilized by BM algorithm for the assignment of

unknown bits from relaxed test patterns [23]. Each unknown

value is assigned based on the calculation of the discrepancy,

which is the linear combination between the polynomial

coefficients and d elements of the pattern (see (1)). The BM

algorithm includes a decision block when bj is unknown (Fig.

4), assigns bj with the result of the immediately calculated

linear combination between the previous bits and the current

polynomial coefficients. In this manner the polynomial

degree is updated according to the discrepancy value through

the entire pattern of bits. This process of polynomial

calculation guarantees a sequential and consecutive mapping

of the ATPG set using LFSR.

Fig. 3. Recurrence relation flow chart for pattern mapping,

given the polynomial and initial group of bits [7], [17].

The use of concatenated patterns and BM algorithm is

addressed in this proposed technique. Results on the

calculations are provided for fully specified and relaxed test

sets.

2.1.1. LFSR calculation

The proposed concatenated technique utilizes concatenated

ATPG set as the input of BM algorithm (Fig. 4) for the

calculation of LFSR’s polynomial expression. A set of 29

benchmarks are utilized [26].

As established by the analysis on the of the recurrence

relation (Fig. 3), the polynomial expression guarantees the

full generation of the pattern. In an initial stage the LFSR

calculation is performed using fully specified bits.

In a second step, the concatenated ATPG sets are

implemented with relaxed bit positions. Each benchmark has

a different number of unknown values (Fig. 5). The test

patterns are the input of BM, which assigns each unknown

position according to the sequence shown in Fig. 4.

Fig. 4. BM for the X values assignment [23].

4

Fig. 5. Concatenated test sets with percentage of unknown

values [26].

The stages involved in the calculation of LFSR are revised,

in order to improve the result. The first stage is the initial

calculation of polynomial and unknown assignment based

only on BM algorithm. Furthermore, optimization on the

calculation is performed by assigning the unknown bits

previous to the LFSR’s polynomial calculation. The

polynomial degree is expected to vary slightly from the

results with fully specified bits. The analysis provided in the

following section delivers insightful information about the

behaviour of the polynomial degree during the calculation

process, the values found, vary only in small magnitude with

respect to baseline numbers where the input of the algorithm

was fully specified bit pattern. This small reduction is linked

as well to the mathematical structure of the BM algorithm

[15].

2.1.2. Polynomial degree optimization with
relaxed test patterns.

The results obtained in fully assigned bits for all the

benchmarks can be optimized when unknown positions are

introduced. This further reduction can be found if previous

assignment of unknown values is performed before the use of

BM algorithm. This has a positive impact on the area

overhead of LFSR and facilitates its application for

microprocessors in safety critical environment. This further

reduction on the polynomial expression of LFSR is achieved

using a sequential bit assignment method [23]. Each

assignment of one bit at a time, runs BM algorithm and check

if the polynomial expression is smaller than calculated before.

The starting pattern is the one calculated using only BM

without previous assignment.

Fig. 6. Sequential diagram of flipping technique, a) Original

bit pattern, b) Baseline assignment of Xs using only on BM

along with the baseline polynomial and c) Flipping of one

position at a time of the initially assigned and re-calculation

of the polynomial [23].

Fig. 7. Exploration of minimal polynomial degree for

benchmark c432 [26] with unknown values using flipping

technique.

As show in Fig. 6, step b) is used as the reference for the

flipping and in each time all the other bits goes back to

unknown values and a re-calculation of the polynomial is

performed. During each flipping, the minimal polynomial

degree is updated and preserved.

A small reduction is found due to the mathematical

composition of BM algorithm where the limit value of the

polynomial degree is half of the pattern. Due to this process

of polynomial calculation, the value of the degree does not

move far from the half of the total bit size of the pattern. An

example on this polynomial degree behaviour is shown in

Fig. 7, where the values remain close to half the pattern’s

length.

Fig. 8. Algorithm 1 Polynomial calculation for concatenated

ATPG set

0%

20%

40%

60%

80%

100%

Benchmarks

Defined bit positions Positions with Xs

A B C

499

503

507

0 100 200 300 400

D
eg

re
e

v
al

u
e

iteration

Poly degree Pattern length/2

After flipping poly degree

Algorithm 1 Proposed polynomial calculation for

concatenated ATPG set

Input: ATPG set 'T'

Output: 1 polynomial for LFSR, its seed and the

assigned unknown values of the concatenated ATPG

set ‘Tc’

%ATPG concatenation

1. While i <= T size do

2. Tc=concatenate(Tc,Ti)

3. End While

% Polynomial calculation of concatenated set

4. Baseline polynomial calculation with BM

5. If Xs number in Tc > 0

6. While i <= Tc size do

7. If bit position is X

8. Flip bit position

9. If polynomial size < previously found

10. Update minimum polynomial

11. End if

12. End if

13. End while

14. End if

15. Return minimal polynomial and final bit

assignment

5

Fig. 9. Top level diagram of the steps involved in the

concatenated technique.

The behaviour of the polynomial degree shown previously is

verified for all benchmarks. Improvements were found in all

cases with a maximum reduction found in benchmarks s349

with a polynomial 3.2% smaller after optimization through

different assignment of Xs bit positions.

The exploration in the assignments of unknown values

present in the test patterns has been improved slightly and

Table 1 (see Appendix 1) shows sizes of LFSR obtained

using Algorithm 1 (Fig. 8) for fully specified bits and for

when Xs are present in each benchmark. The latter is shown

after being optimized with the flipping technique for

concatenated ATPG test set.

The optimized way for the implementation of this LFSR is by

using set-reset flip-flops, avoiding any memory for seed

storage. As summary, the concatenated ATPG technique for

LFSR calculation is shown in Fig. 9. This presents the

sequence followed in this proposed technique for its

implementation.

2.1.3. Big O complexity analysis on time and
space for Algorithm 1.

The O complexity of Algorithm 1 is depicted as follows,

considering each of the steps involved. The concatenation of

the patterns has a linear and direct proportion to the size of

the test pattern, this has a maximum iteration of O(T). Where

T is the size of the test pattern. Berlekamp-Massey (BM)

algorithm complexity has a quadratic relation with the length

of the pattern O(T2), as mentioned in [16], [27].

Algorithm 1, performs additional reduction on the calculated

LFSR and this is achieved by flipping segments of the full

test pattern. The number of segments to flip are selected a

priori, based on a maximum calculation time established as a

constant. The complexity contribution of this task is the

product of number of unknown positions to flip (Xto-flip) by

the number of segments (nsegment), thus the complexity result

is O(Xto-flip*nsegment). The overall complexity is O(T + Xto-

flip*nsegment * T2).

Based on the time complexity, the space complexity is

determined as follows. For each of the benchmarks utilized,

the ATPG test pattern varies and the first step is to load the

whole test set in memory to perform the calculation of the

corresponding LFSR. Therefore this step contributes with a

space complexity of O(T), where T is the size of the

concatenated pattern. The contribution of BM algorithm in

the space complexity is defined by O(4T).

The additional optimization on the calculated LFSR can be

considered as an auxiliary space, which is taken each time a

new segment of the pattern is flipped. Therefore the

contribution of this step is O(T) for the new pattern and an

additional calculation of BM multiplied by a factor of the

final polynomial (pconcat). The overall space complexity of

Algorithm 1 is O(6T+ pconcat*4T).

The computer utilized to perform the tests for both algorithms

has an intel core i3 processor with a speed of 3.30 GHz and

RAM of 8 GB and 500 GB of storage.

3. Non-Concatenated Patterns and Polynomial
Calculation

Other techniques for the calculation of LFSR uses non-

concatenated test sets [16]. In this section, an analysis of this

process is provided, showing the steps involved, along with

reduction techniques utilized on the polynomial set size. In

the beginning, a polynomial set is calculated according to the

individual mapping, where corresponding patterns are

removed every time a polynomial is found. This delivers a

progressive reduction on the test set, which shrinks the target

set for next polynomial calculation.

Due to the initial exclusion of patterns, a further exploration

on the baseline selection of non-concatenated test set is

performed. The progressive selection of the initial set of

expressions, provides each polynomial with ATPG mapping

subset, excluded in the consecutive next search, this sequence

delivers each subset in an isolated manner. The optimization

step exploits this fact and re-checks the coverage of

polynomials considering the full test set, providing a more

precise selection of polynomial expressions.

In the bar graph of Fig. 11, the calculation of maximum and

independent mapping polynomials for benchmark c432 is

shown. Fig. 11 shows the total number of polynomials that

remain after all the iterations, each previously selected

polynomial expression, reveals the total mapping capacity

when using as goal the full test set, and in following checks

the remaining set of patterns are tested against the reduced set

of polynomials. The method also shows that in each step, the

mapping of some polynomials are included by others, this

excludes some polynomials since its mapping subset is

already included by another. Therefore, the polynomials are

optimized according to the mapping sets. In Fig. 11 the

maximum mapping of a polynomial is 29% of the test set.

6

Fig. 10. Algorithm for optimum number of polynomial using

non-concatenated ATPG set.

In Algorithm 2 (Fig. 10) the description of each step for the

polynomial calculation for non-concatenated ATPG set is

provided. The calculation sequence of LFSR for non-

concatenated ATPG set is shown in Fig. 13. This sequential

diagram shows the optimization of polynomial set according

to its maximum and independent mapping capacity. Fig. 12,

shows improvement on the polynomial set for c432

benchmark, where the total reduction on the polynomial set

size is 33%. For each of the benchmarks presented in Table 2

(see Appendix 1), Algorithm 2 achieves reductions on all

polynomial sets, and the results can be seen in table 2, where

improvements are found in all cases with a mean of 27%

reduction on the polynomial number.

Fig. 11. Individual maximum mapping for full test set, c432

benchmark.

Fig. 12. Total polynomial set size reduction of Benchmark

c432.

Fig. 13. Top level diagram of the steps involved in the non-

concatenated technique.

As show in Table 2 (see Appendix 1) a reduction in most of

polynomial sets of each benchmarks was achieved. The

highest reduction in the polynomial set can be seen in

benchmark s510 with 78% of reduction. More high quality

results were also found in benchmarks: s386 with 59%, s820

with 50% and s832 with 66% reduction.

3.1. Big O complexity analysis on time and memory
for Algorithm 2.

For Algorithm 2, the generation of the pool of polynomials is

undertaken through Sidorenko-Borset algorithm that

considers the uniqueness of LFSRs and utilizes BM algorithm

to generate a pool based on a chosen pattern (tpattern). This

section of the algorithm contributes with a time complexity

of O(tpattern
2) [27]. The pool of polynomials are tested with all

the remaining patterns of the original test set and has a

maximum complexity of O(T). This previous tasks are

undertaken as long as test patterns remains in the test set,

which contributes with a factor of T for both previous tasks.

As a result, this section of the algorithm has a complexity of

O(T*(tpattern
2+T)). In the last section, Algorithm 2 performs a

selection of the highest generator polynomials (Pgenerator)

performing the test for the whole set of patterns, this

contributes with a complexity of O(Pgenerator*T). Overall the

complexity is O(T*(tpattern
2+T)+Pgenerator*T).

For the space complexity of Algorithm 2, the initial load of

whole ATPG test patterns contribute with O(T). The

generation of the pool can be considered as auxiliary space

and contributes with O (4T) multiplied by a pool factor (fpool).

The selection of highest polynomial generator can contribute

as much as many patterns in the test set, therefore the

complexity is O(T). The final polynomial set contribute with

a factor of pnon-concat. Overall the space complexity is O(T+

fpool*4T+pnon-concat* T).

Algorithm 2 Polynomial calculation for non-

concatenated ATPG set

Input: ATPG set 'T'

Output: polynomial set for LFSR and its seeds

%initial polynomial calculation (baseline)

1. While T size > 0 do

2. min_map=10%;

3. select randomly a pattern from T

4. Initial polynomial calculation with BM for

selected pattern

5. Generate polynomial set based on initial

polynomial

6. While polynomial set size > 0 do

7. Select one polynomial from set

8. if polynomial mapping>=10%

9. Save polynomial, seeds and mapping set

10. Remove polynomial and the correspondent

mapping set

11. end if

12. end while

13. end while

% optimization of polynomial set

14. Restore original T

15. While T size>0 do

16. Calculate the maximum mapping polynomial

17. Save the maximum mapping polynomial and its

seeds

18. Remove the polynomial from set and its mapping

sub set

19. end while

20. Return the final group of polynomial for LFSR and

its seeds

7

4. Trade-Off Analysis

In this section, results are provided on the technique for

concatenated and non-concatenated ATPG set for LFSR (see

Appendix 1, Table 3). Each technique is formed by the

necessary logic to perform the mapping of bit patterns. In the

case of concatenated patterns, only the LFSR is required

while in the non-concatenated technique the LFSR and all

seeds per benchmark are necessary (Fig. 14). For the

following comparison, the results are provided separately in

order to show the number of polynomials in one graph (Fig.

15 (c)) and the comparison of total area overhead in the other

graph (Fig. 16 (c)).

The results on polynomial trade-off analysis compares the

total size of each technique, the concatenated (Fig. 15 (a))

requires only one polynomial and this is the value plotted,

however for the non-concatenated method (Fig. 15 (b)), a

group of polynomials are required, the summation of these

polynomials size is plotted. The results show that in 56%

cases the concatenated method improves the size of the

polynomial, with a best case reduction of 39% and with a

mean of 12%. For the remaining 44% cases, non-

concatenated technique provides a best case of 93% reduction

on the polynomial set, with a mean of 23%.

As an example on results of each algorithm, benchmark s349

can be seen in Appendix 1, Table 4 and 5. Both of the ATPG

test patterns have the same unknown positions (X) and the

patterns shown in these results represent the final bit

assignment chosen by each algorithm in the optimization

process by assigning a binary value (1 or 0) for LFSR

reduction. Table 4 shows the non-concatenated technique

results, where a set of 13 seeds has been calculated, this is due

to the fact that s349 circuit has an ATPG test set of 13 patterns

with a size of 24 bits each. Due to the uniqueness of the test

patterns, the expected number of seeds is the same as number

of patterns in most of the cases with a reduction found in the

polynomial number. In this case a reduction of one unit can

be seen in the set of polynomials, this happen because

polynomial 7 can generate two test patterns and for this

generation it utilizes two seeds. Table 5 shows the

concatenated technique results with only one seed and the

corresponding LFSR. This shows that the concatenated

technique delivers an LFSR which is 26% smaller than the set

of LFSRs together, delivered by non-concatenated technique

(Table 4). Note that in our calculations, seeds (Table 5) are

stored in LFSRs using set-reset flip-flops for further area

saving. Whereas non-concatenated technique stores all seeds

in memory as in literature.

Fig. 14. Results of each algorithm. Algorithm 1 delivers one

polynomial with a reduced application time due to the

utilization of only an initial state of the LFSR. Algorithm 2

delivers many polynomials with many seeds, this result in

larger application time, due to reseedings.

(a)

(b)

(c)

Fig. 15. Polynomial size for each technique. (a)

Concatenated technique baseline and optimized numbers,

(b) Non-concatenated technique baseline and optimized

numbers, (c) Trade-off analysis for both methods.

150

1500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

P
o
ly

n
o
m

ia
l

si
ze

Bechmark

Polynomial size for concatenated technique

Baseline concatenated technique (Baseline-C)

Improved polynomial size concatenated technique (Algorithm1)

7800

100

1000

10000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

P
o
ly

n
o
m

ia
l

si
ze

Bechmark

Baseline Non-concatenated technique (baseline-N)

Improved polynomial set size non-concatenated technique

(Algorithm2)

Polynomial size for non-concatenated technique

100

1000

10000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

P
o
ly

n
o
m

ia
l

si
ze

Bechmark

Polynomial size trade-off

1 polynomial size concatenated (Algorithm1)

Many polynomials non-concatenated (Algorithm2)

8

A trade-off analysis of total area overhead for each technique

is provided. The calculation of the area is based on the

constitution of LFSR as a set of flip-flops and XOR gates,

therefore the summation of both elements forms the area for

each method. For non-concatenated technique (Fig. 16 (b)),

seeds are included in the total area. Seeds are not necessary

in the concatenated technique (Fig. 16 (a)) because FFs are

set with the necessary initial binary value and can be reset to

re-start the mapping of the bit pattern, nevertheless this flip-

flop configuration increases the area for concatenated and this

is included in the total area overhead trade-off (Fig. 16 (c)).

For the area overhead numbers, the technology size of 65 nm

is used.

In the results of total area overhead (Fig. 16), the

concatenated technique improves the area by setting and

resetting the FFs to initial binary value, which puts aside the

use of seed storage in a separate memory. The values shown

in Fig. 16, has similar shape as the values presented for the

polynomial size (Fig. 15), this is due to the strong link of both

methods to the size of the LFSR. These results show that

concatenated technique of ATPG set, provides an

improvement on the area overhead for 90.6% of cases with a

best case of 57% smaller area overhead and a mean of 39%.

The remaining 9.4% of cases, non-concatenated technique

provides a best case of 37% with a mean of 1.4% whilst

achieving 100% test mapping in both cases using a known

ATPG test set.

5. Conclusions

In safety critical environment the utilization of embedded

electronic systems is increasing constantly and therefore

methods for more reliable electronic components are needed.

In this paper, BIST technology is used in testing technique,

since the fault coverage has a crucial impact on the reliability

of the electronic circuit. An analysis on the LFSR is provided

in this paper using ATPG test sets. Two techniques are used

to target difficult to detect faults with their respective trade-

off analysis. This is based on Berlekamp-Massey (BM)

algorithm with additional optimizations to reduce area

overhead. The first technique is referred as concatenated, and

combines all test sets generating a single polynomial that

covers complete ATPG set. In this stage the results are

referred as baseline-C for this concatenated technique.

Further improvement are found using Algorithm 1, reducing

polynomial size through Xs assignment. The second

technique is referred as non-concatenated and in the initial

stage provides a group of LFSRs using BM without including

any optimization, referred as the baseline-N. Further

optimization is performed through Algorithm 2 that selects

full mapping and independent polynomial expressions.

Using 32 benchmarks designs and 65 nm technology library,

overall results show that concatenated technique, provides a

reduction of area overhead in 90.6% cases with a best case of

57% compared with non-concatenated technique with the left

9.4% with a best case of 37% area overhead reduction. The

mean numbers of these techniques show 39% for

concatenated compared with a mean area overhead reduction

of 1.4% by non-concatenated technique. In both cases, full

test coverage is preserved.

(a)

(b)

(c)

Fig. 16. Total area overhead for each method. For

concatenated technique only FFs + XORs. And for non-

concatenated additional ROM is included. (a) Concatenated

technique baseline and optimized numbers, (b) Non-

concatenated technique baseline and optimized numbers, (c)

Trade-off analysis for both methods.

1300

13000

1 4 7 10 13 16 19 22 25 28

A
re

a
o
v
eh

ea
r

(u
m

2
)

Benchmark

Total area overhead for concatenated technique

Concatenated baseline total area overhead in um² (Baseline-C)

Improved concatenated area overhead in um² (Algorithm 1)

92800

1300

13000

130000

1 4 7 10 13 16 19 22 25 28

A
re

a
o
v
eh

ea
r

(u
m

2
)

Benchmark

Total area overhead for non-concatenated

technique

Non-concatenated baseline total area overhead in um² (Baseline-N)

Improved non-concatenated area overhead in um² (Algorithm 2)

1300

13000

130000

1 4 7 10 13 16 19 22 25 28

A
re

a
o
v
eh

ea
r

(u
m

2
)

Benchmark

Total area overhead trade-off

Improved concatenated area overhead in um² (Algorithm 1)

Improved non-concatenated area overhead in um² (Algorithm 2)

9

6. Acknowledgements

The authors would like to thank the Consejo Nacional

de Ciencia y Tecnología (Mexican Government) and

the Department of Electrical Engineering &

Electronics, University of Liverpool, UK, for their

financial support.

7. References

[1] BSI Standards Limited, "Road vehicles — functional

safety, part 10: Guideline on ISO 26262," in BSI

Standards Publication, BSI Standards Limited ed., BSI

Standards Limited, Ed. UK: BSI Standards Limited,

2012, .

[2] V. D. Agrawal, C. R. Kime and K. K. Saluja, "A

tutorial on built-in self-test. I. Principles," IEEE Design
& Test of Computers, vol. 10, (1), pp. 73-82, 1993.

[3] L. Wang, C. Wu and X. Wen, VLSI Test Principles
and Architectures: Design for Testability. Elsevier, 2006.

[4] W. F. Lee and Glaser, Learning from VLSI Design
Experience. Springer, 2019.

[5] T. McLaurin, "Periodic Online LBIST Considerations
for a Multicore Processor," 2018 IEEE International Test
Conference in Asia (ITC-Asia), pp. 37-42, 2018.

[6] Wang, System-on-Chip Test Architectures:

Nanometer Design for Testability. Morgan Kaufmann

Publishers Inc., 2008.

[7] P. P. Shirvani and E. J. McCluskey, "Fault-tolerant

systems in a space environment: The CRC ARGOS

project," 1998.

[8] C. Condo and W. J. Gross, "Pseudo-random Gaussian

distribution through optimised LFSR permutations,"

Electronics Letters, vol. 51, (25), pp. 2098-2100, 2015.

[9] W. C. Lien et al, "A new LFSR reseeding scheme via

internal response feedback," in 2013 22nd Asian Test
Symposium, 2013, pp. 97-102.

[10] R. Chakraborty and D. R. Chowdhury, "A novel

seed selection algorithm for test time reduction in BIST,"

in 2009, pp. 15-20.

[11] C. V. Krishna, A. Jas and N. A. Touba, "Test vector

encoding using partial LFSR reseeding," in Proceedings

International Test Conference 2001 (Cat.
no.01CH37260), 2001, pp. 885-893.

[12] H. Yuan et al, "LFSR Reseeding-Oriented Low-
Power Test-Compression Architecture for Scan Designs,"

J. Electron. Test., vol. 34, (6), pp. 685-695, 12/01, 2018.

[13] A. A. Al-Yamani and E. J. McCluskey, "Seed

encoding with LFSRs and cellular automata,"

Proceedings 2003. Design Automation Conference (IEEE
Cat. no. 03CH37451), pp. 560-565, 2003.

[14] B. Koenemann, "LFSR-coded test patterns for scan

designs," in Proceedings of the 2nd European Test
Conference - ETC91, 1991, pp. 237-237.

[15] E. Berlekamp, Algebraic Coding Theory, Revised
Edition. World Scientific Publishing Co, 2015.

[16] O. Acevedo and D. Kagaris, "On The Computation

of LFSR Characteristic Polynomials for Built-In

Deterministic Test Pattern Generation," IEEE

Transactions on Computers, vol. 65, (2), pp. 664-669,

2016.

[17] S. Hellebrand et al, "Generation of vector pattterns

through reseeding of muetiple-polynomial linear

feedback shift regist," in 1995, pp. 120.

[18] Yingdi Liu, Nilanjan Mukherjee, Janusz Rajski,

Sudhakar M. Reddy, Jerzy Tyszer, "Deterministic stellar

BIST for in-system automotive test," in International

Test Conference and International Symposium on Test &
Failure Analysis 2018, USA, 2018, .

[19] S. Jha et al, "A cube-aware compaction method for

scan ATPG," in 2014, pp. 98-103.

[20] I. Pomeranz, "POSTT: Path-oriented static test

compaction for transition faults in scan circuits," in 2017,

pp. 1-8.

[21] M. T. He et al, "Test-point insertion efficiency

analysis for LBIST applications," in 2016 IEEE 34th
VLSI Test Symposium (VTS), 2016, pp. 1-6.

[22] N. A. Touba and E. J. McCluskey, "Test point

insertion based on path tracing," in Proceedings of 14th
VLSI Test Symposium, 1996, pp. 2-8.

[23] O. Acevedo and D. Kagaris, "Using the berlekamp-

massey algorithm to obtain LFSR characteristic

polynomials for TPG," in 2012 IEEE International

Symposium on Defect and Fault Tolerance in VLSI and

Nanotechnology Systems, DFT 2012, October 3, 2012 -

October 5, 2012, pp. 233-238.

[24] J. Jeswani, J. Rose and T. Schwarz, "Using algebraic

signatures to compress built-in self test on a chip," in

2017, pp. 95-100.

[25] J. H. Anderson, Y. Hara-Azumi and S. Yamashita,

"Effect of LFSR seeding, scrambling and feedback

polynomial on stochastic computing accuracy," in 2016,

pp. 1550-1555.

10

[26] K. Miyase, S. Kajihara and S. M. Reddy, "A method

of static test compaction based on don't care

identification," in Proceedings First IEEE International

Workshop on Electronic Design, Test and Applications
'2002, 2002, pp. 392-395.

[27] V. R. Sidorenko and M. Bossert, "Synthesizing all
linearized shift-registers of the minimal or required

length," 2010 International ITG Conference on Source
and Channel Coding (SCC), pp. 1-6, 2010.

11

8. Appendix 1

Table 1. LFSR optimized size for concatenated technique.

Benchmark

Base line

LFSR size

Optimized

LFSR size

% LFSR size

optimization
Number of patterns (m) Bit size (n) m x n

1 c432 28 36 1008 505 497 1.6%

2 c499 52 41 2132 1067 1065 0.2%

3 c880 21 60 1260 632 626 0.9%

4 c1355 84 41 3444 1723 1722 0.1%

5 c2670 45 233 10485 5273 5238 0.7%

6 c3540 93 50 4650 2321 2317 0.2%

7 c5315 46 178 8188 4099 4089 0.2%

8 c6288 14 32 448 226 225 0.4%

9 c7552 75 207 15525 7762 7756 0.1%

10 s208 27 19 513 259 253 2.3%

11 s344 14 24 336 169 165 2.4%

12 s349 13 24 312 158 153 3.2%

13 s382 25 24 600 305 297 2.6%

14 s386 63 13 819 409 407 0.5%

15 s400 24 24 576 287 285 0.7%

16 s420 44 35 1540 775 766 1.2%

17 s444 24 24 576 292 283 3.1%

18 s510 56 25 1400 702 696 0.9%

19 s526 49 24 1176 586 584 0.3%

20 s641 22 54 1188 593 591 0.3%

21 s713 21 54 1134 566 564 0.4%

22 s820 94 23 2162 1083 1077 0.6%

23 s832 95 23 2185 1094 1088 0.5%

24 s838 76 67 5092 2548 2540 0.3%

25 s953 76 45 3420 1703 1702 0.1%

26 s1196 113 32 3616 1804 1802 0.1%

27 s1238 125 32 4000 2007 1996 0.5%

28 s1488 101 14 1414 709 701 1.1%

29 s1494 100 14 1400 704 697 1.0%

30 Design A 1200 1437 1.7M 862200 851854 1.2%

31 Design B 1080 1494 1.6M 806760 791432 1.9%

32 Design C 1300 1507 2.0M 979550 969755 1.0%

12

Table 2. Optimization polynomial set size for non-concatenated technique.

Benchmark

Baseline

polynomial set

Baseline

polynomial

mean degree

Optimized

polynomial

set

Optimized

polynomial

mean degree

%

polynomial

set

reduction

Number of

patterns

(m)

Bit size (n)

1 c432 28 36 27 28 18 27 33%

2 c499 52 41 50 32 36 32 28%

3 c880 21 60 21 47 18 47 14%

4 c1355 84 41 66 35 49 35 26%

5 c2670 45 233 45 198 38 197 16%

6 c3540 93 50 81 42 66 43 19%

7 c5315 46 178 46 149 39 150 15%

8 c6288 14 32 14 26 11 26 21%

9 c7552 75 207 70 184 60 186 14%

10 s208 27 19 20 15 17 15 15%

11 s344 14 24 11 18 9 17 18%

12 s349 13 24 13 18 12 18 8%

13 s382 25 24 25 16 18 16 28%

14 s386 63 13 34 9 14 10 59%

15 s400 24 24 18 19 11 19 39%

16 s420 44 35 41 26 27 26 34%

17 s444 24 24 23 18 14 18 39%

18 s510 56 25 32 20 7 21 78%

19 s526 49 24 20 22 14 22 30%

20 s641 22 54 22 41 20 41 9%

21 s713 21 54 21 45 20 45 5%

22 s820 94 23 68 17 34 18 50%

23 s832 95 23 59 17 20 18 66%

24 s838 76 67 61 56 46 56 25%

25 s953 76 45 6 22 5 22 17%

26 s1196 113 32 16 24 15 25 6%

27 s1238 125 32 17 23 15 24 12%

28 s1488 101 14 16 11 14 11 13%

29 s1494 100 14 46 9 25 10 46%

30 Design A 1200 1437 876 1164 788 1106 10.0%

31 Design B 1080 1494 788 1315 512 1249 35.0%

32 Design C 1300 1507 910 1191 701 1131 23.0%

13

Table 3. Trade-off results for total area overhead

Benchmark

m x n Concatenated Non-concatenated % Improvement
Number of patterns

(m)
Bit size (n)

1 c432 28 36 1008 5950 11516 48%

2 c499 52 41 2132 12681 24438 48%

3 c880 21 60 1260 7520 14927 50%

4 c1355 84 41 3444 20566 37922 46%

5 c2670 45 233 10485 62497 144255 57%

6 c3540 93 50 4650 27688 55428 50%

7 c5315 46 178 8188 49077 112340 56%

8 c6288 14 32 448 2647 5656 53%

9 c7552 75 207 15525 92758 212959 56%

10 s208 27 19 513 3065 5625 46%

11 s344 14 24 336 2017 3536 43%

12 s349 13 24 312 1799 3930 54%

13 s382 25 24 600 3538 6027 41%

14 s386 63 13 819 4824 6542 26%

15 s400 24 24 576 3365 5646 40%

16 s420 44 35 1540 9095 15493 41%

17 s444 24 24 576 3424 6091 44%

18 s510 56 25 1400 8270 10733 23%

19 s526 49 24 1176 6864 10357 34%

20 s641 22 54 1188 7058 14168 50%

21 s713 21 54 1134 6700 15261 56%

22 s820 94 23 2162 12866 18780 31%

23 s832 95 23 2185 12933 17658 27%

24 s838 76 67 5092 30441 56256 46%

25 s953 76 45 3420 20364 12846 -37%

26 s1196 113 32 3616 21514 20959 -3%

27 s1238 125 32 4000 23768 22656 -5%

28 s1488 101 14 1414 8436 10792 22%

29 s1494 100 14 1400 8230 11491 28%

30 Design A 1200 1437 1.7M 10173822 17938843 43.3%

31 Design B 1080 1494 1.6M 9463843 15049653 37.1%

32 Design C 1300 1507 2.0M 11577889 18424655 37.2%

14

Table 4. Algorithm 2 results for benchmark s349.

Binary representation of LFSRs Seeds stored in memory
Non-concatenated ATPG test

patterns

1 10100011110011 01111111110101 011111111101010111110000

2 1111100101101 1111000000101 111100000010101111101011

3 1000011101001110101011 1001011110000001000000 100101111000000100000001

4 1101110010110100001111 1000000001010000000000 100000000101000000000000

5 1001000111001100101111 0000000000111010000010 000000000011101000001011

6 111000001000010111111 000000000110000000000 000000000110000000000101

7
1000000110001110010101 0000000000100011000011

0000000000100110000000

000000000010001100001110

000000000010011000000000

8 1011100100010100101011 0000000000101100000010 000000000010110000001011

9 111001110011 000000000111 000000000111100100011111

10 10101101010111 00001000010011 000010000100110100000110

11 1110110101101 0110100000001 011010000000101000001111

12 1100010011101 0000000000010 000000000001011000001101

Table 5. Algorithm 1 results for benchmark s349.

Binary representation of

LFSR

Set-reset value of the LFSRs

flip-flops (seed)
Concatenated ATPG test patterns

11110111110010011001111

11001111101110001010110

01000101110010101000101

11001001100001110101001

00100010011001010101101

10011101010110010111000

1110011011101000

01111111110101011111000

01111111110101011111010

11100101111000011100001

11101111111110011011110

01100111111111111001111

11111011111111111001100

0011111111111111

011111111101010111110000111111111010101111101011

100101111000011100001111011111111100110111100110

011111111111100111111111011111111111001100001111

111111111101111100001111011111111011101011101011

011111111110000011100101011111111111011011110000

011111111011110011101011011010000000101000101111

011111111001011011101101

