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Abstract

Biologists and pharmacologists commonly use zebrafish embryos

during the testing of drugs due to their properties and high ge-

netic similarity with mammals. The testing of these substances is

a tedious and painstaking process, carried out manually by trained

experts who determine whether the embryos have been deformed

or killed as a result of administering the chemical.

Computer vision presents efficient solutions for such aqua-

culture research problems by the application of machine learning

systems. However, having accurate and cost-effective monitoring

and analysis systems still has challenges due to the small size and

the high similarity of the samples and the unwanted position of

the samples due to their free swimming. In this thesis, a set of

novel and cost-effective systems are presented consisting of detec-

tion, classification, identification, and counting zebrafish samples.

In the first part, two applications are proposed to address

several problems that the biologists face in their work. First one is

a novel and accurate system for detecting and counting the number

of transparent live eggs inside a petri dish that may contain hun-

dreds of eggs either dead or live with other types of objects. The
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second one is counting the adult fish inside a tank that confuses

the biologists in their work without transferring the fish from tank

to another as an attempt for counting them.

In the second part, an image analysis pipeline is presented

from the data acquisition process to data analysis and classification

system to get a final result about the embryo status. The proposed

work aims to identify the health and detect the abnormalities of

zebrafish embryos using scanned images and based on computer vi-

sion algorithms. The images are comprised of many features which

could be extracted automatically or manually.

In the third part, a multi-label classification system for ze-

brafish embryo deformities based on microscopic images is pre-

sented. The proposed system aims to determine the numbers,

health, and presence of abnormalities in zebrafish larvae using a

classification system with high-throughput delivering results faster

than the manual process, and assisting in the pharmacological and

toxicological experiments. The novelty here is having a malforma-

tion classification system depending on different feature types and

identifying all the deformity classes that may appear on a sample

body at the same time using binary relevance multi-label algorithm.

According to the proposed application purposes and based

on computer vision algorithms, this thesis successfully addressed

most problems and provided efficient models for analysing, clas-

sifying, and counting the zebrafish larvae. The proposed models

provided the biologists by a novel and cost-effective computer vi-

sion models.
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Chapter 1

Introduction

1.1 Background

Producing any new drug or developing an existing one needs to be

tested before consuming by humans, this process is always done on

an experimental model to check the effects of these substances and

decide the suitability of this drug for human. Zebrafish prove that

it is a great model for this type of experiment because of their fast

responses that appear on their bodies [1].

Zebrafish becomes a fundamental animal model that is re-

cently used in pharmacological and toxicological studies according

to its high genetic similarity with mammals and also due to the

fast response of their bodies either on the behaviour of the fish

or any physical change that could be happened of any part of the

body [2, 3]. Many biological studies found that by adding chemical

substances with several concentrations, the zebrafish embryos may

either stay normal or exhibit a change in any part(s) of their bodies

according to the type of these materials [4–6].
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Chapter 1. Introduction

According to the annual statistics of living animals that are

involved in the scientific research in UK, 3.08 million procedures

was carried on in UK using mice, rat, and fish in 2013 only. Using

fish was 12% of these procedures and becomes the second popu-

lar animal model after mice since 2008 that registered rising in the

number of the pharmacological and toxicological studies. Figure

1.1 shows these statistics in 2013 [7].

Figure 1.1: Number of living animal procedures in UK

1.2 Motivation

Larvae are typically bred in large quantities, inside the experimen-

tal container either n-well plates or the petri dish. The biologist

needs to study and analyse each larva individually for the observa-
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Chapter 1. Introduction

tion process which is tedious and costly, as it takes a long period

to decide all samples status if it is normal or has been affected by

the added chemicals. Manual monitoring and analysing is a time-

consuming process.

A large number of produced embryos that need to be clas-

sified within the period that has been specified by European law

for animal protection which is 5 dpf (days post fertilisation) [8].

With all these factors, the need for a fully automated system still

a demand for a high-throughput classification system.

Despite the rapid growth of zebrafish embryo using as an

experimental model, there is still a lack of automated classifica-

tion systems. Screening the zebrafish egg and larva abnormalities

within one system where the zebrafish embryos grow in a fast way

and hatch within a few hours has not been reached yet upon to our

knowledge.

The lack of automatic capturing systems limits the devel-

opment of fully automated systems. The traditional imaging tool

consists of a microscope with a high-resolution camera which needs

awareness of several factors, provides the system by one sample im-

age and it is a time consumer. Using the proposed imaging tool

which is affordable and easy to use, the images are collected au-

tomatically, and the biologist only needs to place the dish or the

plate on the scanning area.

According to [9–11], designing an automated system to clas-
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sify the deformations of zebrafish larvae is a considerable challenge.

In 2012, Jeanray et al. attempted an automated system to clas-

sify two phenotypes then they extended their work in 2015 [12, 13].

However, it is not a fully automated system, and also there were

insufficient results with some malformation classes, and it was used

with a 6-well plate where the data acquisition was carried out in-

dividually for each well.

The demand for highly accurate and fast image acquisition

and analysis processes presents another limitation for many works

and studies [14]. Also, detecting the actual position of the embryo

inside the well is also another problem [15].

The manual fish counting process is harmful to the fish where

the scientists need to transfer the fish from tank to another using

small nets. This work proposes a solution for fish counting prob-

lems such as noises, the reflection of the fish image on the tank

sides. This system analyses a video using several statistical analy-

sis that overcomes the tank reflection problem and the overlapping

fish issue.

During the biologist experiments, they need to count the live

and dead zebrafish eggs inside the petri dish regarding their research

study. The manual detecting and counting process of the dead and

live eggs is tedious and takes much time where the dish may contain

hundreds of eggs. To address the manual process problem, a novel

identification and counting system is proposed to detect the dead

and live eggs then count them efficiently.
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1.3 Research Aims and Objectives

The main goal of this research is to provide novel high-throughput

systems to support biologists in their research and experiments.

This research aims to develop computer vision techniques to ad-

dress and overcome the biological experiment problems.

This research provides the aquaculture field with novel, high

performance, and cost-effective applications consisting of zebrafish

larva identification and classification based on two types of images

(microscopic and scanned images) and zebrafish egg/adult counting

based on computer vision techniques. The main objectives of this

research are summarised below:

• Using efficient and more accurate machine intelligence algo-

rithms for detection and classification of the malformations of

zebrafish larvae. Identify all the deformity classes that may

appear on a one sample body at the same time.

• Present an affordable and time-saving imaging tool which is

a flatbed scanner with high resolution, low cost, and friendly

use and introduce a fixed set up for video recording process to

overcome the manual procedure.

• Design an image analysis pipeline to identify the status of the

zebrafish egg/larva inside a petri dish and n-well plate based on

computer vision techniques and based on the collected scanner

images. Investigate the effects of the chemicals and drug and

5
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recognise the survival rate of the samples.

• Propose a counting system to identify and count the live eggs

inside the petri dish using image analysis techniques based on

scanned images.

• Design an accurate and high-throughput system for fish count-

ing inside a tank based on recording videos for free-swimming

fish and using image processing algorithms.

1.4 Summary of Contributions

In this thesis, a range of problems and challenges were successfully

addressed and overcome, and the proposed objectives have been

achieved. The research contributions are presented below:

1. Present a high-performance image analysis pipeline to segment,

detect, and identify the zebrafish larvae interaction with stim-

uli and find out the survival rate of the experimental samples.

2. Develop a novel multi-label classification system to classify ze-

brafish larva malformations using machine learning and deep

learning models and focusing on the main features resulting in

deep analysing of all classes to raise the reliability of the system.

3. Collect, organise, and analyse data set of zebrafish larva sam-

ples using a cost-effective tool which is the flatbed scanner.
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4. Determine the numbers, health and presence of abnormalities

in zebrafish larvae using a high-throughput system that is val-

idated by measuring the well-known effects of several chemical

substances that were tested in the Institute of Integrative Biol-

ogy laboratories such as alcohol and ammonia, also testing the

reliability of the system by comparing the automated system

output with the biologist observations.

5. Present two counting systems which successfully count the swim-

ming zebrafish inside a tank and count the zebrafish eggs in-

side a petri dish and addressed the traditional counting process

problems.

1.5 List of Publications

During the research journey and to document the work concepts

and results, several articles were published as follows:

1. Bayan Al-Saaidah, Waleed Al-Nuaimy, Moh’d R. Al-Hadidi,

and Iain Young. Zebrafish Larvae Classification based on De-

cision Tree Model: A Comparative Analysis. Advances in Sci-

ence, Technology and Engineering Systems Journal Vol. 3, No.

4, 347-353 (2018).

2. Bayan Al-Saaidah, Waleed Al-Nuaimy, Iain Young, and Moh’d

R. Al-Hadidi. Multi-label classification for zebrafish larva mal-

formations using binary relevance and decision tree. Image and
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Vision Computing, Elsevier, (2019). (Submitted)

3. Bayan Al-Saaidah, Waleed Al-Nuaimy, Moh’d R. Al-Hadidi,

and Iain Young. Automatic counting system for zebrafish eggs

using optical scanner. In Information and Communication Sys-

tems (ICICS), 9th International Conference on (pp. 107-110).

IEEE, Irbid, Jordan, 2018.

4. Bayan Al-Saaidah, Waleed Al-Nuaimy, Majid Al-Taee, Iain

Young , and Qussay Al-Jubouri. Identification of Tail Curva-

ture Malformation in Zebrafish Embryos. In International Con-

ference on Information Technology (ICIT), 8th International

Conference, IEEE, Amman, Jordan, 2017.

5. Bayan Al-Saaidah, Waleed Al-Nuaimy, Majid Al-Taee, Ali Al-

Ataby, Iain Young , and Qussay Al-Jubouri, Analysis of Em-

bryonic Malformations in Zebrafish Larvae, Developments in

eSystems Engineering (DeSE), Liverpool, UK, 2016.

1.6 Thesis Outline

This thesis is organised into six chapters. The following present a

brief description of the remaining chapters of this thesis.

1. Chapter 2: in this chapter, most concepts in the biological and

engineering fields that were concerned and used in this work are

illustrated. Background about the biological and toxicological
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experiments is introduced. Overview of the zebrafish and its

samples of eggs/larvae is provided. A brief description of the

biological experiments is presented. The computer vision and

the artificial intelligence fundamentals and theories that were

used and benefited in this work are explained.

2. Chapter 3: this chapter introduces two counting systems to

solve significant problems in the aquaculture. Background of

the existing counting systems are reviewed. The challenges and

limitation of this work are presented. The gathering data tools

of the two systems are discussed. The main parts of the sys-

tem and the detailed analysis of both systems are explained.

The results are presented, considered, and compared with the

existing systems.

3. Chapter 4: in this chapter, a new classification model is in-

troduced. The imaging tool and the data set collection are

explained. The automatic detection, segmentation, and clas-

sification of the samples healthiness are briefly clarified. The

system challenges and limitation are discussed. The system re-

sults are provided and analysed.

4. Chapter 5: in this chapter, an overview of the manual observa-

tion problems are presented. The system objectives are pointed

out. The system works with all stages from data collection to

feature extraction and classification are briefly explained. The

result was provided, analysed, discussed, and compared with

the existed systems.
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5. Chapter 6: in this chapter, the research journey motivations

and results are concluded. Some recommendations for future

work are suggested and introduced.
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Chapter 2

Background

2.1 Introduction

Recently, the zebrafish and specifically the larva has become the

second animal model that is widely used in toxicological and phar-

macological experiments. This chapter introduce the biological re-

search idea, using the zebrafish larvae in the research, and how the

zebrafish larva screening process is carried out. This chapter intro-

duces a summary of the theories and concepts of the fundamental

computer vision algorithms that were used in this research and pro-

vide a brief explanation of the zebrafish larva screening process.

2.2 Biological Research

Biology can be defined as the science of life which concerns all the

living organisms. It studies their physical structure, cells, inner

physiological processes and mechanisms, and the organism’s devel-

opment stages [16].
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The cell is the fundamental unit of all living things. The

whole organism cells have been produced from a single cell by cell

division process. Basically, the cell presents the basic unit in many

pathological processes [17]. Moreover, the cells contain the genet-

ics information holder (DNA) which is passed from cell to another

during the cell division process.

The biology science is like an umbrella that covers many

branches which are more specific sciences. The biology includes

the ecology, ethology, pharmacology, and genetics [18]. Each type

has different characteristics and concerns.

Pharmacology is one of the biology science branches aims

to study drug action using animal models [19]. The pharmacology

science is overlapped with the toxicology which concerned and in-

volved in drug practising and studying [20]. Diagnosing and testing

the doses is carried out to find out the dose’s effect depending on

the relation between the treatment and the animal model.

Over recent years the zebrafish has become one of the most

common animal models due to many factors including a high degree

of genetic similarity with humans, short generation times, trans-

parent larval stages, extensively annotated genome and simple hus-

bandry [21, 22].

Zebrafish are now widely used in drug development, to mea-

sure the impact of environmental changes, of toxins and pollutants
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and many other applications. However, using mammals in the bi-

ological experiment is expensive and laborious, it also led to an

increasing number of ethical issues for toxicological research, and

that have been limited in large-scale screening efforts [23].

Screening zebrafish larvae development and evaluating the

effects of the chemical compounds is started from the early ages

of the samples. This process is carried out manually for a large

number of samples. After each mating time, the single female can

produce hundreds of eggs [24] that differ depending on their hor-

mones [25].

2.2.1 Zebrafish Larvae

Zebrafish is a freshwater fish which is called Danio rario. The ze-

brafish are belonging to the minnow family [26]. The zebrafish

species have a sexual maturity approximately three months after

being hatched. The single female of zebrafish can produce hun-

dreds of eggs in each matting time which can be happened over the

whole year [27]. After 24hpf (hours post fertilisation), most parts

of the body are present and easily seen including the eyes, ventri-

cles, and the heart [28]. Figure 2.1 shows an example of the adult

zebrafish [29].

In particular, zebrafish larva is widely used in scientific re-

search as an animal model according to its characteristics. The

zebrafish larvae have been used in toxicity assessment [30–32], in

medical research such as the cancer and the infection disease [33–
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Figure 2.1: Zebrafish adult (Danio rerio)

35], and in development studies [36, 37].

The zebrafish larvae achieved high popularity according to

many advantages that have been noticed and benefited by the re-

searchers. Biologists use zebrafish in their experiments instead of

other animals for many reasons. It can propagate over the year, not

in a specific time, the time period between fertilisation to hatching

is short (72 hours), the cheap husbandry, the high genes similar-

ity between the zebrafish and the mammals, the shape of its body

which is transparent help the biologists in their observations, and

the fast response to the chemicals [38–41]. Figure 2.2 shows an ex-

ample of 3dpf (days post fertilisation) embryo [42].

According to standard protocols, laws, and regulations ze-

brafish embryos have been submitted to use in the experiment in-

stead of using the adult and also with a specific age depending on

the degree of the acuteness of the added materials, as only larvae

less than five days after fertilisation are exempt from this legislation

[8, 43–45]. These animal protection laws require the researchers to
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Figure 2.2: Zebrafish embryo (3dpf)

accelerate the screening experiments especially with a large num-

ber of samples. The artificial intelligence systems can save the

researcher time and overcome the delays of manual processes.

2.2.2 Zebrafish Larva Screening

Using mammals in biological experiments is considered expensive

and laborious which increase the ethical issues during the toxico-

logical experiments [23]. In contrast, the zebrafish provide the biol-

ogists with many benefits including the low cost of the laboratory

care and husbandry of the samples and the high throughput of the

pharmacological and toxicological experiments [46].

According to all advantages of using zebrafish larva as an

animal model, it was widely used in behaviour monitoring, malfor-

mation detection, and development screening. As a result, provid-

ing and developing new techniques becomes a demand to analyse

and help the biologists in their work. New techniques have been

provided by researchers to assist the biological and the pharmacol-
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ogist in their work and present such as behaviour tracking [47–49],

malformation detection [50, 51], species counting [52, 53], heart

screening [54–56], and sizing [57, 58].

The toxicity assessments aim to identify and analyse the ad-

verse effects of any drug or dose after adding them on the experi-

mental organisms [59]. Figure 2.3 shows the general procedure of

biological experiments.

Figure 2.3: Toxicological experiments

The experiments start with breeding zebrafish males with

females in a specific ratio between the males and the females like

1:1 or 3:2. After waiting overnight, the eggs will be collected from

the tank and put inside a container for the sorting step where the

dead eggs are removed, and the live eggs will be moved to the n-well

plate for the experimental purposes. The sorting process is carried

out using the pipette and under the microscope. The chemicals
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and doses are added to the samples according to the experiment

requirements. The final step before analysing the data, the sam-

ples are screened and checked to register the dose’s effects that have

been observed by expert [60, 61]. All mentioned steps are carried

out manually by an expert biologist.

The zebrafish embryos respond to the stimuli by either chang-

ing the behaviour during their movement or as physical changes

that are occurred of any part of their bodies. Many biological stud-

ies found that by adding chemical substances with several concen-

trations, the zebrafish embryos may either stay normal or exhibit a

change in any part(s) of their bodies according to the type of these

materials [4–6]. These malformations are registered and analysed

to get reliable results of any medicine and find out the drug effects.

The observation process takes a long period to decide the larva sta-

tus, rather than the decision of this status should be accompanied

by a biological expert and in most cases, this process is harmful to

the zebrafish.

2.3 Computer Vision Technologies

Computer vision “is the science and technology of making machines

that see” [62]. Computer vision is a multidisciplinary scientific field

which deals with digital data (images/videos) using computational

algorithms. Using the engineering aspects helps the other areas to

automate their tasks which is usually executed by humans [63].

Computer vision concerns the data acquisition, processing,
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extracting the required information, and analysing the obtained in-

formation according to the goal. The input data should be digitised

to be comprehensible by the machines[64].

For a high-throughput zebrafish malformation screening, an

automated system for zebrafish embryo phenotypic detection using

machine learning algorithm and fluorescent images was presented

by Vogt et al.. The zebrafish embryo fluorescent imaging is con-

sidered as a straight forward way for object detection and segmen-

tation. However, the proposed system discarded the images with

dorsal or ventral position objects. The proposed system used the

Cognition Network Technology (CNT) for image analysis to anal-

yse and measure the phenotypes of the experimental samples [11].

Alshut et al. [15] segmented the embryos from the collected

images and classified the sample into living or coagulated using

Bayes classifier. However, the image gathering process was carried

out using a camera over the microscope; this way needs to be aware

of several factors like illumination and the focal point for high per-

formance capturing process. The capturing process is carried out

using different focal points to reach a suitable one. The proposed

classification algorithm was Bayes model using colour and shape

features.

The same data set of [15] was used by Tharwat et al. [14] to

classify the images into healthy and coagulated eggs. These texture

features were extracted using Segmentation-based Fractal Texture

Analysis (SFTA) with the rotation forest classifier.
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Using video analysis for zebrafish embryos was proposed in

[65] to classify if the sample is live or dead. By detecting the ze-

brafish embryo heart position and analysing the intensity variation

of the heart, if the cyclic motion areas are zero, then the sample

will be considered as a dead embryo.

Computer vision systems for zebrafish larva malformation

detection and classification were limited and had several challenges.

Recognising two classes of the zebrafish embryos was proposed in

[12], where the authors designed a classification system to classify

two types of zebrafish embryo malformations automatically. This

process came after treating the eggs by adding some chemical sub-

stances. The authors proposed a classifier based on a tree learning

algorithm for evaluating malformations of the larvae during their

growth that are caused by adding chemical substances. They used a

supervised learning method with image processing to identify only

two types of the malformations, edema and curved tail.

This work was then extended in [13] by adding other classes

to the previous system, including hemostasis, necrossed yolk sac,

edema, and tail malformations. They used a 6-well plate and a

classification model similar to that reported in [12], the liquid was

removed, and the imaging was carried on individually for each larva

and under the microscope which can be considered as a complicated

imaging procedure. The designed system by Jeanray et al. [13] is

not fully automated, and the accuracy of many classes in their sys-

tem is between 53%-89% which need to be upgraded.

Using video analysis for zebrafish embryos was proposed in
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[65] to classify if the sample is alive or dead. By detecting the ze-

brafish embryo heart position and analysing the intensity variation

of the heart, if the cyclic motion areas are zero then the sample will

be considered a dead embryo.

Computer vision algorithms have been used in many auto-

matic applications for zebrafish specimen screening. The screening

for one part of the zebrafish body or the whole body, use images

or videos, and analyse the data features according to the system

goals. Table 2.1 shows different applications of zebrafish specimen

screening.

Table 2.1: Summary of Methods

Author Application

Name

Imaging Tool Target part Fish

Age

Alshut et al. 2009 [15] Identification

and classifica-

tion

microscope Whole body 48hpf

Alshut et al. 2010 [9] Toxicological

screening

microscope Whole body 48hpf

Berghmans et al. 2007

[66]

Behaviour

tracking

Camera Whole organ-

ism

6dpf

Bhat et al. 2009 [67] Heartbeat

detection

Microscope Tissue

(heart,blood

cells)

48hpf
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Chan et al. 2009 [68] Heartbeat

detection

Microscope Tissue 52hpf

Cachat et al. 2011 [69] Behaviour pat-

terns and fish

tracking

Camera Whole body Adult

Chen et al. 2011 [50] Phenotype de-

tection

Microscope Tissue n.s.

Cario et al. 2011 [70] Behaviour pat-

terns and fish

tracking

Camera Whole organ-

ism

Adult

Kanungo et al. 2011 [5] Phenotype de-

tection

Microscope Cells 28hpf

Kato et al. 2004 [71] Behaviour pat-

terns

Camera Whole organ-

ism

3dpf-

adult

Liu et al. 2006 [72] Phenotype de-

tection

Microscope Whole organ-

ism

24hpf

Liu et al. 2008 [6] Cell patterns Microscope Cells 24hpf

Liu et al. 2012 [73] Phenotype de-

tection

Camera Whole body 48hpf

Mandrell et al. 2012

[74]

Toxicity

screening

Camera Whole body 6hpf

Peravali et al. 2012[75] Automatic

screening

Camera Whole organ-

ism

24-

120hpf

Spomer et al. 2012 [76] Heartbeat and

tissue detection

Camera Tissue 60-

72hpf

Vogt et al. 2009 [11] Phenotype de-

tection

Microscope Whole body 26-

48hpf

Xu et al. 2010 [77] Phenotype de-

tection

Microscope Whole body 3-5dpf
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Zanella et al. 2010 [78] Cell detection Microscope Cells 3-7hpf

Jeanray et al. 2015 [12,

13]

Phenotype de-

tection

Camera and Micro-

scope

Whole body 3dpf

Bayan [79] Phenotype de-

tection

Scanner Whole organ-

ism

1-5dpf

Bayan [80] Phenotype de-

tection

Public data set (micro-

scope)

Whole organ-

ism

3dpf

According to the research objectives, several concepts and

algorithms have been used and adapted due to the system goals.

A brief explanation and an extensive background about the algo-

rithms and theories that were used in this research are presented

in the next sections.

2.3.1 Colour Space Models

The colour space is defined as a mathematical model that is pro-

duced from the organisation of the colours in a specific way. The

primary colours where all the other colours are produced are Red,

Green, and Blue which present the channels of the colour space

RGB. Every pixel in an image is presented by the three main chan-

nels which are the red, green, and blue. The RGB colour space is

the standard colour system for the digital images [81]. However,

the RGB colour space can be converted into different colour spaces

like the Hue Saturation Value (HSV) [82].

The HSV colour space is different from the RGB colour space

where the HSV separates the image intensity from the colour in-

formation (chromaticity) [83]. The intensity of the colour is repre-

sented by the value channel where the hue and saturation channels
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represent the chromaticity; the hue channel represents the colour

as observed by the human vision, and the saturation is related to

the purity of the hue and the white channels mixture [84].

The HSV has a cylindrical geometry with angular dimen-

sions starting from the red colour, passing the green and blue to

represent more colours such as yellow, magenta, and cyan. Figure

2.4 shows the HSV colour space[85].

Figure 2.4: Hue Saturation Value space

The conversion from the primary colour space RGB to the

HSV colour space is carried out using several calculations are shown

in the equations below. The range of the RGB values is from 0-255

to 0-1 values [86].

R’ = R/255, G’ = G/255, B’ = B/255
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Cmax = max(R’,G’,B’)

Cmin = min(R’,G’,B’)

∆ = Cmax - Cmin

H =



60ox
(

G′−B′
∆ mod6

)
,Cmax = R′

60ox
(

B′−R′
∆ + 2

)
,Cmax = G′

60ox
(

R′−G′
∆ + 4

)
,Cmax = B′


(2.1)

S =

{
0 , ∆ = 0

∆ / Cmax , ∆ < > 0
(2.2)

V =Cmax (2.3)

The CIELab is a colour space that is designed for perceptual

uniformity concerning the human colour vision. CIE is defined as

a commission on illumination internationally in 1976 [87]. It rep-

resents the colours as three numerical values (channels) L*a*b. L

channel is related to the lightness, a and b represent yellow-blue

and red-green combinations. The red-green (*a) has been used in

marine sediments as an indicator of iron-manganese content [88].

Each channel of the CIELab colour space has a different

values according to each channel properties. L* channel values are

between 0 (black) to 100 (white), the values of channel a* varies

from -60 (green) to +60 (red), and b* channel values are between

-60 (blue) and +60 (yellow). Figure 2.5 shows the CIELab colour

space [89, 90].
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Figure 2.5: CIELab colour space

The transformation from RGB colour space to the CIELab

model, it is done after passing through the RGB-CIE XYZ trans-

formation. The transformation process is carried out using the

following calculations.

L∗= 116 f
(

Y
Yn

)
−16 (2.4)

a∗= 500
(

f
(

X
Xn

)
− f
(

Y
Yn

))
(2.5)

b∗= 200
(

f
(

Y
Yn

)
− f
(

Z
Zn

))
(2.6)

where:

f (t) =

{ √
3t , t > δ 3

t
3δ 2 +

4
29 ,otherwise

The values of Xn, Yn, and Zn are found from the RGB-CIE

25



Chapter 2. Background

XYZ transformation. δ = 6/29.

The colour transformation has been used and benefited in

many image processing applications. However, this technique has

not been used yet for zebrafish embryos recognition relating to the

literature.

2.3.2 Texture Features

Basically, the feature extraction process is defined as a dimensions

reduction process. Where the most valuable information will be

extracted for the large data and describe the original data [91].

The image texture is the information of the spatial arrange-

ment of the colours or intensities of a specific region in an image

[92]. The average grey level and the spatial frequency are the most

accurate and useful features for object segmentation [93].

The grey level relations are represented by the co-occurrence

matrix which is defined as the angular relationships between the

neighbour resolution cells which is interpreted by the distance be-

tween these cells [94].

The co-occurrence matrix is used to extract multiple numer-

ical features that are used for texture identification and classifica-

tion. The second statistics are calculated depending on a matrix

Cθ ,d(Ip1, Ip2) of the relative frequencies that describes how often the
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two pixels (Ip1, Ip2) of different or similar gray levels Ng appear as a

pair in the image matrix concerning the distance d and the direc-

tion θ . The value of this parameter Ng is 8 levels.

By using the co-occurrence matrix, many texture features

can be extracted where the smoothness, coarseness, and the im-

age texture information are described and quantified. The image

contrast, correlation, cluster shade, cluster prominence, energy, ho-

mogeneity, entropy, and variance are measured as following [94, 95]:

1. Auto correlation:

f1 = ∑
i

∑
j
(i j)(C(i, j)) (2.7)

2. Contrast:

f2 =
Ng−1

∑
n=0

n2{
Ng

∑
i=1

Ng

∑
j=1

C(i, j)| |i− j = n|} (2.8)

3. Correlation:

f3 =
∑i ∑ j(i j)C(i, j)−µxµy

σxσy
(2.9)

Where:

µx = ∑
i

iCx(i) (2.10)

µy = ∑
j

jCy( j) (2.11)

σx = ∑
i

Cx(i)−µx(i) (2.12)

σy = ∑
j

Cy( j)−µy( j) (2.13)
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4. Cluster prominence:

f4 = ∑
i

∑
j
(i+ j−µx−µy)

4C(i, j) (2.14)

5. Energy:

f5 = ∑
i

∑
j

C(i, j)2 (2.15)

6. Entropy:

f6 = ∑
i

∑
j

C(i, j)log(C(i, j)) (2.16)

7. Homogeneity:

f7 = ∑
i

∑
j

1
1+(i− j)2C(i, j) (2.17)

2.3.3 Hough Transform

Hough transform is a feature extraction technique used in computer

vision to extract objects depending on their shape and the geomet-

ric features [96, 97].

Hough transform started with line shape detection concern-

ing the orientation and the scale [98] then it was improved to detect

the circles and ellipses [99].

Basically, the Hough transform works on a two-dimensional

data space e.x images. The set of pixels with mapped points (in-

tersection) are grouped, and the slope will be calculated to detect

the line features [100].
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The Hough Circle Transform (HCT) is a feature extraction

technique that aims to detect and identify the circular objects with

different dimension and to concern the overlapping and occlusion

problems [101].

The HCT algorithm start checking each edge point (i, j) by

applying the circle equation: (i−a)2+( j−b)2 = r2. For each value

of a, all possible values of b are found according to the circle equa-

tion and the radius value. The resulted cells present the detected

circles in the image using this algorithm. If the radius is unknown,

a third dimension will be added to a,b which is r which has a higher

computationally expensive [102].

The Hough transform has been used in many applications in

different fields. It has been used for shape-based tracking [103]. It

was used and benefited for lane detection in transport [104, 105],

medical applications [106], and in the industrial applications [107].

It was used for object recognition purposes as proposed in

[108] by designing an automated injection system and utilised the

HT to detect the nuclei of the embryo. Nuclei recognition using

HT for tracking system was proposed in [109].

2.3.4 Classification and Regression Decision Tree

The decision tree algorithm is one of the most popular predictive

models that has been widely used in machine learning and statistics

[110].

The decision tree partition the feature space into smaller
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regions recursively by capturing the relationships between features

and the labels as shown in Figure 2.6 [111].

Figure 2.6: Decision tree algorithm

The main advantages of the decision tree algorithm, the sim-

plicity of the algorithm mathematics and it is easy to understand

and interpret. Furthermore, it is considered as a useful tool with

the small data size [112]. Moreover, the data does not require a lot

of preparation and no need for normalisation.

The decision tree has a challenge with the overfitting problem

when the training and the testing performance are not incorporated.
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The model is adequately trained, but with new data, performance

is worse [113]. The decision tree cannot be very robust, where the

model efficiency can be affected by any small change of the training

data [114].

The main concept of the decision tree is the conditions, sev-

eral questions of If-Then type questions have been answered by

the model depending on the feature values. The separated rules for

each category are combined using the logical operations (And, Or)

statements. The high numbers of rules can be reduced using the

heuristics implementation [115] and without affecting the system

performance.

There are two main types of the decision tree in data mining:

• Classification: In this type, the system predict discrete or cat-

egorical classes.

• Regression: This type able to predict the continuous real num-

bers like the weather temperatures.

The Classification And Regression Tree (CART) was intro-

duced by Breiman et al. to cover both types in one algorithm [116].

The decision tree is constructed by a multiple of rules based

on feature values of the training data set. The rules are selected de-

pending on the variable (feature) values to reach the best splitting

of tree nodes starting from the origin node to the leaves recursively.

The terminal nodes of the tree represent the observation (categor-

ical, numerical). The node splitting represents a challenge due to
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the overfitting problem; this process can be done according to the

equation below [111].

( j∗,s∗) = arg min L(s)

j ∈ 1, ..., p

s ∈ S j

(2.18)

The CART algorithm has been used by many researchers

for automatic zebrafish screening purposes. Sardine eggs have been

identified and recognised automatically using the CART algorithm

depending on the egg features such as the shape, the size and the

shade [117]. On the other hand, the CART algorithm has been

used for species classification for fish type (fillet or not) [118] and

larva malformation observations [13].

2.3.5 Convolutional Neural Networks

The deep learning (DL) or hierarchical learning is a part of the

machine learning approaches. The deep learning concept based on

the data representation [119]. The deep learning is presented by a

set of algorithms which are typically neural networks are learned as

multiple levels corresponding to the abstraction levels [120].

The DL is a biological-inspired by the nervous system with

the communication patterns and the signal processing [121]. The

most known deep learning models are based on the artificial neural
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networks (ANNs).

The first model learning approach was introduced in 1965 by

Oleksiy Ivakhnenko [122] who is named as ”Father of Deep Learn-

ing” [123]. He presented a multi-layer approach in which the input

data properties are automatically filtered [124]. The DL term was

introduced in 1986 by Rina Dechter [125].

In DL, the most commonly used algorithm in image analysing

is the Convolutional Neural Network (CNN) which is a multi-layer

of perceptrons with the least pre-processing requirements [126].

The main difference between DL and the traditional machine learn-

ing methods can be summarised by the feature extraction process

[127]. The DL network structure is designed to extract the most

essential information using filters which is traditionally done using

feature engineering process, and it is considered as expensive and

challenging process [128].

The CNN consists of a multi-layers input layer, output layer,

and hidden layers. The hidden layers are composed of convolutional

layers, ReLU layers, pooling layers, fully connected layers, and nor-

malisation layers [129]. Figure 2.7 shows the general structure of

the CNN [130].

1. Convolutional layer: this layer is considered as the core block

of the deep CNN [131]. The results of this layer are presented by

feature maps that are produced by convolving the kernel filters

the input image dimensions. The number of the convolutional

33



Chapter 2. Background

Figure 2.7: General structure of CNN

layer (depth) depends on the image size and the filter size.

2. Max-pooling layer: this layer received the feature maps and

reduced their resolution to achieve spatial variance. The pool-

ing windows can have random sizes and overlap with each other

[132].

3. Activation function layer: Rectified Linear Unit (RELU) is

the most common activation function that is used to avoid the

gradient problems [133].

4. Fully connected layer: this is the final layer of the CNN

where all neurons in this layer are connected with all activations

of the previous layer. The number of neurons in this layer is

hyper-parameter to be chosen [134].

Recently, the convolutional neural network (CNN) is widely

used in many computer vision applications such as image segmen-

tation [135, 136], image recognition [137], and image classification

[138, 139], drug discovery [140, 141], and video analysis [142].
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Automatic Counting Systems

3.1 Introduction

Dealing with zebrafish larvae requires dealing with both eggs, larva,

and adults. Counting eggs and identifying whether they are alive

or dead is considered a time-consuming process due to the large

number of the eggs that are produced after each mating. In this

chapter, two automatic counting systems for zebrafish species are

presented and explained. One for fish counting inside the tank

based on recorded videos and the other for Counting the live eggs

inside a petri dish based on scanned images. The research chal-

lenges and results are discussed.

3.2 Challenges and Objectives

The most important challenge with fish counting is the overlapping

of the fish inside the tank, which would be predicted as one object

35



Chapter 3. Automatic counting systems

and the tank material (glass) reflection. The main challenge in

the egg counting system is the high similarity between the live and

dead eggs from a side and the debris from the other side. The non-

uniformity of the egg positions, especially when they are located at

the dish edges may cause non-detected eggs. The overlapping eggs

can be a challenge in this work if the density of eggs is high.

The major objectives of this work are summarised below:

• Design an automatic system for zebrafish inside a tank using

computer vision techniques.

• Detect, identify, and count the live eggs inside a petri dish

based on scanned images and using image processing methods.

• Introduce cost-effective tools which are affordable and easy to

use such as, mobile phone and flatbed scanner.

3.3 Automatic Zebrafish Counting System

During the biologist experiments, the researchers need to count the

fish inside the tank. This process is always carried out manually.

This work aims to detect and count the number of free-swimming

fish.

In the research laboratories, there are many water tanks con-

taining tens or often hundreds of fish. Researchers need to recognise

the number of these fish inside the tank. Manual fish counting needs

to transfer the fish from tank to another. Handling the fish manu-

ally is a harmful procedure, time-consuming, and error-prone [143].
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Determining the number of fish in aquarium aims to prevent

the overstocking problem in the aquarium, and to determine the

number of fish that should be harvested and fed [144].

The published automatic fish counting systems have attempted

to find and isolate the fish blobs depending on image processing

operations for each frame in a recorded video [145, 146]. These sys-

tems have limitation regarding the fish body reflection and overlap-

ping problem. Using underwater videos and depending on the fish

shape, a counting system was presented by Fabic et al. in 2013 to

count the fish under the sea. They used Zernike moment to analyse

the shape of the blobs and to identify the fish in each frame of the

video [145].

In 2016, an automatic fish counting based on videos was pre-

sented to detect and count the zebrafish inside a tank. The authors

used the Gaussian Mixture Model (GMM) for background removing

and Hue moment for fish body reflection [143]. Table 3.1 presents

a summary for the most related existing systems.

Table 3.1: Fish counting systems

Author Method Capturing Tool Counting

Error

Fabic et. al

[145]

Canny edge detection with

coral blackening

background

camera under-sea

water

10-20%

Toh et al.

[146]

thresholding and averaging camera on a box

covered the fish tank

0-29%

Francisco et

al. [143]

thresholding and averaging camera above the

fish tank

5-37%
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This work provides a solution for fish counting problems such as

noise, the reflection of the fish image on the tank sides. The pro-

posed imaging tool is This system analyses a video using several

statistical analysis to detect the fish blobs inside the image using

thresholding then count these blobs according to the shape and area

feature.

The general methodology of this work is illustrated in Fig-

ure 3.1. This system will overcome the reflection and overlapping

problems that have not been solved by the existing systems using

statistical analysis and depending on the fish shape features behind

the image processing techniques.

Figure 3.1: Fish counting system

3.3.1 Experiments

Using a mobile phone camera, 54 videos were recorded. The first 29

videos were recorded using a mobile phone camera that was fixed

on a holder that was stuck on the table with 30cm between the

phone and the water tank, as shown in Figure 3.2. Four tanks were
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used in this work; each tank has ten fish with some stones in the

bottom of the tank.

Figure 3.2: First setup

The 25 videos were recorded using a mobile phone camera

that was set up using a tripod was fixed 20 cm from the tank, as

shown in Figure 3.3. Two tanks were used with five fish in each

one, and the length of the videos was around 20 seconds which is

about 495 frames. The videos were processed offline to test, analyse

and check the proposed work.

The used tanks are standard and have a specific criteria ac-

cording to the home office recommendations [147]. They are 3.5-

litre tanks, 6.5-7 inches deep, 4 inches wide, 10.5 inches in length.

The home office recommends no more than five fish per litre, so
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the maximum we could put into one tank is 17 fish and its recom-

mended that we don’t have groups smaller than 5 per tank.

Figure 3.3: Second setup

During the experiments, we noticed that using the tripod

was better and steadier than the holder; the holder fell many times

in each experiment. Furthermore, the videos using the tripod were

more stable than the tripod. In this system, any camera can be

used, but we preferred the mobile phone to improve the methodol-

ogy into a mobile application.
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3.3.2 Video Analysis

Some recorded videos were 10 seconds, and others were 20 seconds

long. Where the main purpose here is to count the fish, the most

important part here is the fish detection. This process is done

in several steps that were applied to all frames of each video. The

methodology started by finding the background to specify the anal-

ysis region. The background of the video frames was obtained by

calculating the average of all the video frames. For each frame,

a difference frame was found out and binarised, manipulated, and

filtered to a specific area, and finally, the number of blobs were

recognised. The number of fish in all frames were processed using

statistical formulas like mean and mode. Figure 3.4 shows an ex-

ample of the background subtraction.

• Read the video file

• Find the background of the video

– Read the video file

– Read each frame (1 to the total number of frames of the

video)

– find the sum of all of these frames

– Divide the result matrix on the number of frames

– Save the result (Background frame)

• For each frame:

– Find the foreground frame by subtracting the background

frame from the frame

– Threshold the resulting frame to have a binary frame using

Otsu’s method [148]
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– Specify the area of the blobs to eliminate small blobs using

experimental area value

– Count the number of these blobs

• Find the mean value of the blobs of all frames of the video

• Number of fish = mean (number of blobs of (fr1 : frn))

The binary image was filtered based on an experimental

value for the blob area, the major axis, and the minor axis of the

blob. The filtered image has the fish blobs, and the unwanted ob-

jects were removed. The number of blobs for each frame was found,

and the final decision about the number of fish was taken after ap-

plying the statistical measurements.

3.3.3 Statistical Analysis

Two statistical values were found to decide the most useful one to

get the right number of fish inside the tank. The first value is the

mean value F̄m of the detected blobs in all frames in the video and

the second value was the mode value Fd that presents the most fre-

quent number of the blobs in these frames as shown in the following

equations.

F̄m =
1
N

N

∑
n=1

fn (3.1)

where fn presents the number of blobs in the frame number n, and

N is the total number of the frames.

Fd = maxR{ f1, ..., fN} (3.2)
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Figure 3.4: Background removing: (a) Frame (b) Background (c) Subtraction result

where maxR is the most frequent value, and fn is the number

of blobs in the frame n.
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3.3.4 Results and Discussion

After applying two statistical formulas, mean and mode, the results

were analysed and registered. Figures 3.5 and 3.6 show the results

of the mean and mode values for 29, 25 videos. As shown in these

figures, the mean was closer to the actual number than the mode.

This means the counting system is based on the mean value of the

number of fish in all blobs.

To find the detection error of the proposed approach, the

following equation was applied then the average of these values was

Figure 3.5: Statistical values for each video (10 fish)
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Figure 3.6: Statistical values for each video (5 fish)

calculated to determine the algorithm efficiency. Tables 3.2

and 3.3 show the detecting error for each video that were recorded

for 10 and 5 fish. The detecting error was found for the mean and

the mode according to the following equations.

em =
|F̄m−Fc|

Fc
(3.3)

ed =
|F̄d−Fc|

Fc
(3.4)

Where em: is the detecting error using the mean value, ed is the

error for the mode value, and Fc is the actual number of the fish.
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Table 3.2: Counting error (10 fish)

Video

1 2 3 4 5 6 7 8 9 10 11

em 30% 40% 0% 10% 30% 10% 10% 10% 30% 10% 20%

ed 20% 40% 10% 10% 50% 10% 10% 10% 40% 20% 20%

Video

12 13 14 15 16 17 18 19 20 21 22

em 20% 10% 20% 20 %10% 10% 20% 10% 10% 30% 0%

ed 10% 10% 20% 20% 0% 10% 30% 10% 20% 40% 0%

Video

23 24 25 26 27 28 29 AvgErr

em 10% 30% 30% 30% 0% 10% 10% 16.5%

ed 20% 20% 40% 40% 10% 10% 20% 19.7%

Table 3.3: Counting error (5 fish)

Video

1 2 3 4 5 6 7 8 9 10 11 12 13

em 10% 0% 10% 10% 10% 0% 10% 0% 0% 0% 10% 0% 10%

ed 0% 0% 10% 10% 0% 10% 0% 0% 10% 10% 0% 0% 10%

Video

14 15 16 17 18 19 20 21 22 23 24 25 AvgErr

em 10% 10% 0% 0% 0% 10% 0% 0% 0% 10% 0% 10% 4.8%

ed 0% 10% 0% 0% 0% 0% 10% 0% 0% 0% 0% 10% 3.6%

3.4 Eggs Counting System

Zebrafish eggs are typically transparent and are always sorted one

by one manually using a pipette or estimating the number of eggs

using ‘spawning biomass’ depending on the volume of the spawning-

stock [149, 150]. The adult female zebrafish can produce hundreds

of eggs in every single mating process. Eggs are fertilised and devel-

oped in an environment with a temperature range between 25-31oC,
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where the optimal degree is 28.5oC [151].

The growth levels and mortality are affected by many fac-

tors like the temperature, water quality, and fish size. These factors

were presented and analysed in Houde and Zastrow’s study [152].

Instead of the traditional laborious ways for eggs counting,

automated systems were proposed to find out the number of eggs

automatically. In the system proposed by Friedland et al. [153], the

petri dish was captured using a scanner after covering the dish by a

black cover. The resulting images have the eggs with a black back-

ground. The eggs processed and analysed to have the number of the

eggs and the size of these eggs. In this study, all eggs were counted

as blobs with no need to distinguish between the live and dead eggs.

Counting the live eggs for pelagic fish was proposed in [151]

by producing images using a camera, illumination device, and black

background. In this study, the live eggs always float, and the dead

ones sink, this leads to having images with only live eggs. The re-

search focuses on the capturing method by capturing the surface

of the solution only which means the image processing operations

for live eggs identification and counting are carried out to clear the

image, enhance its illumination, and specify the area of the blob.

The traditional process for counting the number of surviving

eggs is a tedious work, time-consuming, and error-prone where the

diameter of the pipette is large compared to the egg size, occasion-

ally leading to uncounted eggs during this process. However, the
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available automatic counting systems deal with all eggs inside the

image, and no effort has been made to distinguish between the live

and dead eggs before counting them.

A high-throughput, viable, and cost-effective counting sys-

tem is proposed to detect and count the live zebrafish eggs inside

a petri dish. The proposed system starts with capturing an image

for the dish using a low-cost tool, process the images to identify the

dead and live eggs, and finally count the live ones. In this work,

the counting process is carried out automatically in a short period

using a low cost, high-performance imaging tool, which is a flatbed

scanner. Figure 3.7 shows the general algorithm of counting the

number of zebrafish live eggs.

3.4.1 Data Collection

The collected images of this system have been collected in the In-

stitute of Integrative Biology laboratories in the University of Liv-

erpool in collaboration with our colleagues in this Institute.

For the egg counting purpose, the data were collected for

the petri dish with 100mm diameter using a flatbed scanner with

a high-speed scanning. The scanner has its source of illumination

and a fixed focal length, therefore, no need to consider the exposure

or focus on the capturing process.

The region of interest was specified to minimise the scanning
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Figure 3.7: Egg counting stages
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process time. The petri dish was scanned using 1200 dpi. However,

the eggs inside the plate can also be visualised clearly, and the fer-

tilised and unfertilised eggs distinguished using a lower resolution

600 dpi. Figure 3.8 shows an example from the collected images

with 6436×6888 pixels in size.

Figure 3.8: Zebrafish eggs inside a petri dish (1200 dpi)

The applied successful experiments were 10, and the captur-

ing process was done two times. The first time was carried out im-

mediately after the breeding process in the morning, which means

4hpf (hours post fertilisation). The second time was carried out
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after 24 hours from the first time. Figure 3.9 shows a small part

from the dish in Figure 3.8.

Figure 3.9: Live and dead eggs

The biologist interest in knowing the number of live eggs

more than the dead ones, which are so clear and distinguished us-

ing the flatbed scanner. The live eggs are transparent by eyes and

have a yellow circle inside after having images by the scanner. The

dead eggs are dark by eyes and in the collected images using the

scanner. The actual number of the eggs inside the petri dish was

found and registered by the biologists manually using a pipette and

count the eggs one by one.
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3.4.2 System Methodology

After several experiments that were carried out in the Integrative

Biology laboratories, the collected images have been processed us-

ing several operations to get the estimated number of the live eggs

where the benefit of using engineering aspects becomes useful for

the biologists in their field. To detect and count the eggs, several

points should be considered: the similarity in shape between the

live and dead eggs, the unwanted objects inside the dish like the

food powder and debris, and also the edge of the petri dish that

may affect the detection process.

1. HSV converting: the first step is the image converting process

where the RGB coloured image from the scanner was converted

to the Hue Saturation Value (HSV) colour space. This step was

done according to the colour of the live eggs that is extremely

yellow, and by turning the image into HSV colour space, the

yellow colour becomes dark in the hue channel as shown in

Figure 3.11 of the RGB image in Figure 3.10.

2. Illumination correction: In the hue channel, the colours vary

from red through yellow, green, cyan, blue, and magenta [86].

The yellow circles were segmented using the hue colour channel.

The brightness of the hue image was corrected using the gamma

correction process for the image im according to the Eq. 3.5

with γ value =1. This step aims to increase the contrast of the

image and improve the difference between the background and

the foreground in the image.
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Figure 3.10: Small region of the RGB petri dish image

Figure 3.11: Hue channel image of the HSV colour space
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Correction = 255× (im/255)γ (3.5)

This step makes the system more robust from any an external

light that may affect on the image information. Figure 3.12

shows the image after applying the gamma correction.

Figure 3.12: Gamma correction result

3. Edge detection: The resulting image was processed using Canny

edge detection with a threshold between 0.1 and x; where x was

found using the Otsu’s thresholding method [148]. The mini-

mum threshold was chosen by trials and error to remove some

of the unwanted objects because the debris inside the dish is

darker than the eggs. Figure 3.13 shows the resulting image

from this step.

4. Circle filtering: The resulting circles are filtered using the Hough

Transform [102, 154] and depending on the area, radius, and the
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Figure 3.13: Binary image

circularity to remove any other unwanted objects either bigger

or smaller than these values. The radius range between 2.6mm

and 5.2mm, which equals to 10 and 20 pixels for 1200dpi scan-

ning images. Finally, the filtered circles are counted to have an

estimated number of live eggs, as shown in Figure 3.14 below.

3.4.3 Results and Discussion

The manual egg counting process is tedious and time-consuming

work and exposed to error, as explained before. The automatic

counting system has the main advantage of using engineering so-

lutions to solve other field problems. This new method uses a low

cost capturing tool which is a flatbed scanner and the resulted im-

ages are processed and analysed to get an estimated number of the

living eggs.
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Figure 3.14: Detected circles (live eggs)

Figure 3.15 shows the actual number of eggs versus the pre-

dicted number of eggs using this system. The detection error of

this system is between 1% and 28% with average detection error

17.5%. The average of the false positive and the false negative were

9%, 8% respectively. The results below show the predicted number

compared with the actual number of the zebrafish eggs inside sev-

eral Petri dishes that were used in the biological laboratories.

As shown in Figure 3.15, the results for 17 images of the ze-

brafish eggs with 4-24hpf for different dishes with different number

of eggs, the figure shows the counted numbers by the system and

the actual number of eggs that were counted manually one-by-one

by a biologist using a pipette.
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Figure 3.15: Egg counting system results

The major problem of the counting happened because of the

false detection and identification processes. Furthermore, the low

contrast of some eggs makes it similar to the background, which

causes a false detection of the eggs. Only one image provided a

28% counting error, which happened because of using a small petri

dish that produced an image with different contrast was not con-

sistent with the system software. If this image is excluded from the

system analysis, the average error would be 10%. Some dishes had

a lot of debris and food powder that cause noise and false negative

detection.

The previous efforts to count the eggs automatically focus

on counting all eggs inside the petri dish, and they did not need to

distinguish between the live and dead ones. The average error for

the proposed system [153] was reduced from 6% to 1% over several
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years of work. However, the system counted all eggs and did not

need to filter the live eggs from the others. The average error of

the proposed system in [151] was 2%. However, this is also counted

all eggs inside the dish, and also they used complicated hardware

which definitely needs expert intervention.

Using the scanner in this work produced extremely high-

resolution images suitable for the system purposes. The proposed

system showed a high performance in imaging and counting pro-

cesses. This system reduced the biologist interventions and present

an accurate counting system based on a cost-effective, affordable,

and easy to use imaging tool. The system saved the consumed

time and reduced the expert efforts where counting thousands of

eggs need full concentration and it is error-prone if the biologists

forgot the number he reached or if he pulled more than one egg

by the pipette. Moreover, the system from producing the image to

showing the result, it need 2-3 minutes where the manual counting

process needs more than 6 minutes depending on the number of

eggs.

3.5 Summary

This chapter presents two automatic counting systems for the ze-

brafish species. The two systems attempt to avoid manual interven-

tion. Furthermore, these systems give the result in a faster way than

manual counting. Considerably, the two proposed systems over-

come the manual process which is considered as a time-consuming

process and harmful.
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Depending on the most important features and using the

computer vision aspects, the counting systems are provided as a re-

liable, accurate, and cost-effective tool to count the zebrafish eggs

and the adults without any manual processes and can be done by

a non-biological expert.

The proposed systems are economical and can be used by

the researchers and the groups to reduce the consuming time and

reduce the researcher efforts. The two counting methods can be

improved and converted to mobile applications.
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Image Analysis Pipeline For

Zebrafish Larvae

4.1 Introduction

In this chapter, an image analysis pipeline is presented. The ex-

periment protocol and the used chemical are briefly explained. The

collected images are presented and analysed. The data preparation

process is illustrated. The designed classifier is presented and ex-

plained. The segmentation, detection, and identification processes

are explained and covered. The result of this system regarding

the status of all samples is presented and discussed. The research

challenges and achievements are introduced.

4.2 Challenges and Objectives

Despite the rapid growth in the use of zebrafish embryos as an

experimental model, there is still a lack of automated classification
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systems according to several challenges.

• The samples may slide to the edges of the petri dish that affect

the detection process and rise the identification error.

• Unwanted objects such as the debris or food particles, where

these can interfere with the detection process.

• The fast development of the zebrafish embryos leads to having

two classes of the live embryos which have different age and

different features, one of them is transparent and the other

having a completed growing embryo.

• The unwanted movement of samples inside the wells which rise

the detection and the identification errors.

Objectives:

The demand for this system comes from the biological requirements

of malformations detection that are happened with hundreds of

embryos within a short time relating to ethics and the fast growth of

the zebrafish embryos. As an attempt to overcome and address the

mentioned problems and limitations, several objectives are drawn

and presented:

1. Design an automatic segmentation, classification system for ze-

brafish eggs using two ways for feature extraction and also a

classifier.

2. Using the proposed platform, which is affordable and easy to

use, the images are collected automatically, and the biologist

only needs to place the dish on the scanning area.

3. Present affordable and time-saving imaging tool with a low cost

and friendly use.
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4. Present an automatic segmentation, orientation fixing methods

where the samples can be located in different positions which

were fixed manually according to the existed system.

5. Identify and classify the zebrafish egg/larva if it is healthy or

not after collecting images from the Institute of Integrative Bi-

ology laboratories by determining numbers, health and pres-

ence of abnormalities in zebrafish larvae (under three days post

fertilisation) using a high-throughput system.

4.3 Hardware And Data Collection

Due to a large number of samples and the animal protection reg-

ulations, it is necessary to use a high-throughput imaging tool. In

this work, a successful attempt was carried out using the flatbed

scanner. Using this device can produce hundreds of images for four

96-well plates at the same time, where the best camera is not able

to do this job. This can raise the system throughput with low cost.

4.3.1 Experiment protocol

The sample images that were used in this work were collected from

a dish containing hundreds of zebrafish eggs. The dish images were

collected during several biological experiments in the Institute of

Integrative Biology laboratories at the University of Liverpool in

collaboration with the colleagues in this Institute.

Further images were collected in the Institute of Transla-
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tional Medicine at the University of Liverpool with the cooperative

with the researchers in this department. The collected images con-

tain healthy embryo and non-hatched ones (chorion) according to

their breeding experiments.

Each experiment starts from day 1 to day 5. After that,

the samples should be killed according to the animal protection

regulations. The biological experiment began by separating the

male and female zebrafish adults by standing a plastic wall inside

the water tank over the night, then after several hours, this wall

was removed and the eggs produced naturally. After that, the eggs

were collected and sorted to get only the live eggs. The collected live

eggs were put in a particular environment with 28oc temperature;

the last step is adding substances by the biologist.

4.3.2 Chemicals

The collected eggs were subjected to several chemical substances

such as Dimethyl sulfoxide (DMSO), Alcohol, the waste nitroge-

nous compounds Ammonia, (Sodium) Nitrite, (Sodium) Nitrate

and metals such as Copper (Sulphate) as well as antimicrobial

aquarium treatments.

4.3.3 Hardware

The images were collected using a flatbed document scanner with a

high-speed scanning for a petri dish of 100mm diameter. The bene-

fits of using a scanner were manifold. The scanner has its source of
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illumination and a fixed focal length. Therefore, there is no need to

consider the exposure or focus on the capturing process. The scan-

ner provides the biologist hundreds of sample images in one scan

where the traditional way for collecting images in the proposed sys-

tems is always carried on using a camera with a microscope which

is considered as a time-consuming process.

To reduce the consumed time of the manual imaging process,

a flatbed optical scanner was used. The flatbed scanner has been

used to capture multi pictures for the well plate(s) which is done

in a short period (0.8) second for each well of the plate. Where the

manual process requires getting the embryos out of the well plate

individually to get images for them using a microscope.

Figure 4.1 shows two examples for the scanned images with

two different resolutions; it is clear that the image with higher

resolution (1200dpi) is better than the other with the lower one

(300dpi). However, the demand here to have a more top quality

image to get more apparent features becomes an essential require-

ment.

According to the swimming bladder that is heavy regarding

the embryo body, the embryos take side position, unlike the adult

fish [155]. Two main factors were determined after using several

scanners in the capturing process, that are illustrated below:

• Resolution of the images: Resolution of the scanner is defined

by the number of dots per one inch2 of the scanning area. De-
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Figure 4.1: Images using scanner with (a) 300dpi (b)1200dpi

pending on the embryo length, which is 3.5mm and after com-

paring the quality of some images using different resolutions of

the scanner, the minimum number of pixels that are required

in this work was determined to be 240 pixels for the embryo

as shown in Figure 3.5. This means around 69 pixels/mm.

Convert this ratio to dot per inch, each millimetre equals to

0.039inch. The minimum resolution should be 1753 dots per

inch. In practical, the required device should be a 2400dpi

scanner or more. Experimentally, most collected images were

gathered using 1200dpi, and it is suitable for the existed four

classes and according to the biologist’s observation.

• Speed of the scanner: according to the experiments that were

done in the Institute of Integrative Biology laboratories in the

University of Liverpool, the embryos were slightly moved, and

this is discussed in [156] where the authors found that the ze-

brafish with 3dpf were inactive and allocate at the bottom of
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the nursery container. According to their results, the speed of

the embryos at 3dpf is 0.38mm/s. By using the scanner, the

speed was 6.8mm/s to scan 300mm within 44 seconds.

The Flatbed scanner provides the system by hundreds of im-

ages depending on the number of inside the container, the manual

interventions are limited, and the major imaging factors like the

focal point and the illumination are fixed by the scanner. On the

other hand, using the camera with a microscope, which is the tra-

ditional imaging tool in most studies needs an expert to fix the

illumination and the focal point. Using the camera over the micro-

scope can be considered as a time-consuming process comparing to

the proposed tool where the images are taken for each larva sepa-

rately.

Besides using the camera over the microscope for imaging in

Jeanray et al. work [13], they moved the water from the wells, used

the side position for all the samples, used a 24-well plate which

means a larger size of the wells, and took a picture for each well

separately.

4.4 Data Preparation

Due to the system goals, a machine learning model was designed

and trained using egg images to classify three classes of eggs after

collecting them from the dish images. Each image of the petri dish

has two types (classes) of the zebrafish larva according to the sam-
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ple age. The live and dead eggs are under 3dpf where the normal

(hatched) and the chorion (not hatched) are 4 or 5dpf.

Depending on the egg detection process, the samples were

cropped using the egg centres and diameters, which were computed

using the Hough transform for circle detection. The egg detection

process started by Canny edge detection function using a thresh-

old that was produced from a Sobel edge detection function. This

process was followed by several morphological operations. Finally,

the circles with a specific range of radius were extracted from the

whole image. The resulting images were collected and had been

used to classify them into three classes as resulting from the biolog-

ical experiments were the fourth class (Normal) has been detected

and identified depending on the circularity feature.

4.4.1 Embryo Orientation

Before starting the experiments, a tail curvature deformity was ex-

pected, an orientation fixing was done to create a common position

for all embryo body images, where we deal with the organism that

have a unexpected movement. This step is very useful if more ex-

periments will be carried out in the future by adding different tox-

icities to the samples. The purpose of this work is to allocate the

embryo body in a horizontal position, the head on the left side, and

the yolk on the bottom. The common position makes the classifica-

tion process easier and more accurate, specially with the curvature

and shortage malformations, this step can be defined as preparing

stage where the images will be ready to be processed and analysed.
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The general methodology of this work is implemented, as shown in

Figure 4.2, which is started with rotation, flipping, and getting a

final image with a target position.

Figure 4.2: General methodology for orientation correction

The steps of this methodology are briefly illustrated below.

1. After finding the blob (larva) using many image processing

functions that were illustrated in the previous section, the ori-

entation angle value was determined to rotate the embryo by

this value. This step produces the horizontal position of the
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embryo, as shown in Figure 4.3. This step works successfully

with all images with zero error.

Figure 4.3: Embryo rotation: a) before b) after

2. To determine whether the head position on the left or the right

side, the embryo blob was divided into two halves, right and

left. These two parts were compared with each other according

to the sum of non-zero pixels of the two halves, where the bigger

one should be the head side, a horizontal flipping will be done

if the head on the right side. This step works successfully with

all images with zero error. Figure 4.4 shows the result of this

step.

Figure 4.4: Horizontal flip: a) before b) after

3. This step aims to check the yolk position to be at the bottom

side. To do this, three algorithms were attempted with differ-

ent results. This step focuses on the left side only that has the

head and the yolk.

The first way was done by comparing the sum of non-zero pix-
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els of two parts yield after dividing the blob into two halves

(up and down). Where the yolk part is bigger than the head,

a vertical flip was applied if needed. The second method was

done by calculating the distance between the centre of the eye

and the two left corners of the bounding box. If the distance

between the upper corner is longer than the distance between

the centre of the eye and the lower corner of the bounding box,

a vertical flipping of the embryo will be applied. These two

methods succeed with the most images, not all of them, 57

images using the first method and 92 images using the second

method from 137 images.

But the last attempt achieves the best results; it fixed all images

successfully. In this method, the blob (left side) was divided

into two halves. These two halves were compared to each other

according to the mean intensity values, where the yolk part

is always darker than the head. A vertical flipping was done

depending on the mean intensity value. Figure 4.5 shows the

result of this step.

Figure 4.5: Vertical flip: a) before b) after

Figure 4.6 shows some images of those that were successfully

fixed using this procedure.
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Figure 4.6: Fixing results: a) before b) after
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4.5 The System Methodology

The proposed work aims to identify the health and detect the ab-

normalities of zebrafish embryos from day.1 to day.5 using computer

vision algorithms. The proposed system has two automatic parts:

one for the data acquisition and the other for data analysis and

result finding. The images are comprised of many features which

could be extracted automatically or manually. The collected im-

ages were gathered using a scanner collecting a large number of

high-resolution images (suitable for biological observation) every

scan facilitating high-throughput analysis. Figure 4.7 shows the

general stages of the proposed system.

Figure 4.7: General overview of the system (a) dish images (b) n-well plate images

Due to the low number of the biological experiments and

the lack of the malformed samples and the low survival rate, the

collected images were grouped into: live egg, dead egg, normal
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embryo, and chorion. The scanning process is always carried out

synchronously with the biological experiments. The experiments

ran for up to 5dpf (days post fertilisation), adding chemicals (e.g.

application of different chemicals to the holding water) or physical

interventions (e.g. temperature) can be applied. The images were

prepared and subdivided into four different categories for the soft-

ware design step. Figure 4.8 shows examples from the four classes.

Figure 4.8: Sample classes a) dead egg b) live egg c) chorion d) normal

The images that have been used in the proposed classifier

were gathered from the dish and the n-well plate images. The live

eggs between 0-40 hpf (hours post fertilisation) are transparent and

look like a yellow circle. The dead eggs are white and appear dark.

The last two classes which present an older embryo with more than

3 dpf, the chorion is a non-hatched egg, and the normal is the

hatched one.

In this work, several stages are combined and integrated to

detect and classify the zebrafish larvae according to their age and

health. Two different containers were used for data collection dur-

ing the biological experiments.
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4.5.1 Zebrafish Larva Identification and Classification Inside Petri Dish

Using petri dish images and based on computer vision algorithms,

an image analysis pipeline to detect and classify the zebrafish larvae.

• Image pre-processing:

This step started with HSV colour space conversion, which ex-

perimentally better than the edge detection. Depending on the

hue image and using an experimental threshold, the image was

binarised. Some morphological operations were applied on the

binary image to get an image with the zebrafish larva samples

only. Figure 4.9 shows these processes applied to a petri dish

image.

• Egg/Larva Differentiation:

According to the ground truth of the collected images, four

classes during five days were observed and registered by a bi-

ological expert. Three classes of these four classes are non-

hatched larvae. Due to the different shape properties between

the three classes and the fourth class (hatched), a distinguish-

ing process was done before the classification step.

The most useful feature to differentiate the egg and larva is

the roundness. Depending on the segmented object dimensions

(area, perimeter) and using the roundness equation below, the

rounding metric was found to decide the next steps.

Rm =
4∗π ∗A

P2 (4.1)

Where: Rm is the rounding metric, A is the object area, and P

is the perimeter of the object.

74



Chapter 4. Image Analysis Pipeline For Zebrafish Larvae

Figure 4.9: Segmentation process (petri dish)

In the early stage of the experiments (1-3 dpf), the objects can

be detected and segmented using the Hough Circle Transform

(HCT) for circular shape detection. Furthermore, this cannot

be efficient with the next stages of the zebrafish larva images

(3-5 dpf). Figure 4.10 shows larva and egg samples with the

roundness value. The roundness value ranges between 0 to 1,

where 1 means the full rounded object.

The decision of this step simplifies the system to deal with egg
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Figure 4.10: Samples roundness feature

or larva. If the sample is identified as an egg, the sample will be

tested using a pre-trained model that was designed and trained

using a large number of zebrafish egg images covering the three

classes and using their texture features as illustrated in the next

subsection.

On the other hand, if the sample is detected as a larva, it will

be tested again if it is real larva or debris or a part of the dish

edges. To check and confirm if the sample is a hatched larva or

not, an eye(s) detection process is applied using HCT to detect

and find out any dark circle with an experimental radius value

which is evaluated based on the larva eye radius. Figure 4.11

shows some results of eye detection to confirm the sample class.

• Zebrafish larva Classifier:

The aim of the classifier designing is to classify the three types
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Figure 4.11: Zebrafish larva eye detection

of non-hatched samples. This was done by training CART

model using the texture features of the collected data. Af-

ter cropping the objects from the dish image and divide them

into three categories depending on the ground truth.

Several image processing operations are applied on the training

set as shown in Figure 4.12 to segment the sample object from

the whole image to make sure that the most important and

useful features will be extracted where the image may contain

debris and unwanted objects. These operations start with the

edge detection process using the Canny filter. After detection
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of the edges, some dilation using a disk mask with two pixels

is done.

To remove any unwanted objects, the largest object is seg-

mented depending on the object areas. The resulting image

is produced from the grey image multiplied by the largest ob-

ject binary image to keep the target object information. The

processed images have been used in the next steps to extract

the features and using these features to train the classifier on

how to predict and classify the three classes.

The next step is the feature extraction were the essential char-

acteristics of the three classes images are extracted and used

for the training step. The first attempt was made by focusing

on two first order colour features of the egg according to the

colour variance between the three classes. According to the

colour similarity between the dead and the embryo classes, 22

texture features are extracted from the egg images.

The texture features are useful for the classification process

when a wide variation of the grey levels are present in the im-

age. Combining first and second order features aim to have ro-

bust features for the classifier training step. The feature vector

consists of 24 features for colour and texture image characteris-

tics. For the image I of nxm in size, the mean and the standard

deviation values are calculated as follows

mean =
∑

n
i=1 ∑

m
j=1 Ii j

mn
(4.2)
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Figure 4.12: Pre-processing operations

std =

√
1

nm

n

∑
i=1

m

∑
j=1

(Ii j−mean)2 (4.3)

The first order features provide basic information about the

grey level distribution. However, the relative positions of these

grey levels have not been provided by the first order features.

The second order features describe and analyse if the low grey

levels are together or mixed with the high grey levels. These

features are calculated as proposed and illustrated in [94, 95,

157].
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The second order statistics are calculated depending on a ma-

trix Cθ ,d(Ip1, Ip2) of the relative frequencies that describes how

often the two pixels (Ip1, Ip2) of different or similar gray levels

Ng appear as a pair in the image matrix concerning the distance

d and the direction θ . The value of this parameter Ng is 8 levels.

Using the co-occurrence matrix, 22 features are extracted where

the smoothness, coarseness, and the image texture informa-

tion are described and quantified. The image contrast, corre-

lation, cluster shade, cluster prominence, energy, homogeneity,

entropy, and variance are measured as follows:

1. Auto correlation:

f1 = ∑
i

∑
j
(i j)(C(i, j)) (4.4)

2. Contrast:

f2 =
Ng−1

∑
n=0

n2

{
Ng

∑
i=1

Ng

∑
j=1

C(i, j)

∣∣∣∣∣ |i− j = n| (4.5)

3. Correlation:

f3 =
∑i ∑ j(i j)C(i, j)−µxµy

σxσy
(4.6)

Where:

µx = ∑
i

iCx(i) (4.7)

µy = ∑
j

jCy( j) (4.8)

σx = ∑
i

Cx(i)−µx(i) (4.9)
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σy = ∑
j

Cy( j)−µy( j) (4.10)

4. Cluster prominence:

f4 = ∑
i

∑
j
(i+ j−µx−µy)

4C(i, j) (4.11)

5. Energy:

f5 = ∑
i

∑
j

C(i, j)2 (4.12)

6. Entropy:

f6 = ∑
i

∑
j

C(i, j)log(C(i, j)) (4.13)

7. Homogeneity:

f7 = ∑
i

∑
j

1
1+(i− j)2C(i, j) (4.14)

The rest of the 15 features are correlated using Matlab func-

tions. Cluster shade, dissimilarity, homogeneity using a Matlab

function, maximum probability [157]. Sum of squares, differ-

ence variance, sum average, sum variance, sum entropy, differ-

ence entropy, information measure of correlation1, information

measure of correlation2 [94]. Inverse difference, inverse differ-

ence normalized, inverse difference moment normalised [95].

The idea of the CART classifier model is presented by con-

ditions. In this model, several questions are answered by the

trees sequentially like If-Then condition statements. These

questions depend on the extracted features from the images.

Using CART model related to its efficiency and flexibility.

The tree model is easy to interpret and modify according to

the observed internal work. The classification consists of two
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main steps, training and testing. The data set is divided for

training and testing processes using two quarters-one quarter

relation from the whole data set as follows:

Table 4.1: Data Set Division

Class Training Set Testing Set Total

Dead egg 322 161 483

Chorion 14 7 21

Live egg 464 231 695

In the training stage, the feature set (predictors) with class

labels (responses) are used to train a CART classifier model.

The second step is the testing step in which the classifier per-

formance appears as an essential indication of its capability. To

predict the class of a new sample, the designed model follow the

decisions in the tree from the root (beginning) node down to a

leaf node. The leaf node contains the response. By repeating

the first steps for preparing the image and extracting the 24

features, these features (predictors) are provided to the saved

classifier model to predict the class (response).

4.5.2 Zebrafish Larva Identification Inside n-well Plate

In some experiments, the biologists used the 48 or the 96-well plate

in their experiments to observe the zebrafish larva reaction. Several

attempts were set out in the purpose of getting malformed samples.

However, the number of experiments was not enough to get defected

samples, and most samples died in the early stages. This situation

presents a big challenge for the proposed project and ends the work

with only four classes.
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• Pre-processing:

Several image processing operations were applied to the well

plate images to detect the target objects from the whole image.

The process started with the canny edge detection algorithm

using an experimental threshold value. The result binary im-

age was enhanced using morphological operations, e.g. dilation

using a disk mask with 2 pixels size. Figure 4.13 shows the

result of the pre-processing step for 48- and 96-well plate.

Figure 4.13: Pre-processing operations: a) 96-well plate b) 48-well plate

• Well detection:

To detect and segment the samples inside the wells, the wells

should be detected, segmented, and cropped to specify the iden-

tification process for each well which is necessary for memory

usage and processing time reduction.

Well detection is an important step for the individual identifi-
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cation process for zebrafish larvae. Well detection process was

done using Hough Circle Transform (HCT) algorithm due to

the well shape and depending on the well radius, which is the

same for all wells. As shown in Figure 4.14, the well radius of

each image with any size using 1200 dpi imaging resolution is

300±100.

Figure 4.14: Inner and outer well diameter

Using the HCT for well detection present a robust detection and

segmentation technique, it is working efficiently with any size

of images and any size of wells. Furthermore, the image orien-

tation, scaling, and the number of wells is neglected where the

well segmentation using HCT algorithm find out the required

circles with specific properties and robust to these significant

problems in image processing. Comparing with the edge de-

tection and plate dimensions segmentation process that was

proposed in [158], the HCT was higher performance than this

method and more robust for the system consideration.
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• Sample detection and identification:

At this stage and after specify all wells as shown in Figure

4.15 and Figure 4.16, the sample in each well will be detected,

segmented, and identified its class.

Figure 4.15: Wells segmentation

The sample segmentation started with canny edge detection
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Figure 4.16: Wells labeling

with an experimental threshold value. The image was pro-

cessed using two linear dilation masks with size 3 pixels and

two different angles. The result processed image has many un-

wanted objects. The outer ring was removed depending on the

object perimeters to reduce the number of unwanted objects

and deal with inner parts of the well only. After removing

the outer circle, the holes are filled, and the image was filtered

again depending on the object areas to segment the experi-

mental sample. Figure 4.17 shows the inner well processing

and sample segmentation.

The identification process, as mentioned before for the petri

dish analysis. Using the properties of the sample and depending

on the object shape, the identification process was carried out,

and the sample class was shown for the system user. The n-well

plate differs from the petri dish that has two types of samples

(hatched and non-hatched zebrafish larva). Moreover, the wells
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Figure 4.17: Zebrafish larva segmentation

are narrow, and the chance of getting merged samples with the

well edges is higher than the petri dish container.

4.6 Results and Discussion

Using the n-well plate for zebrafish larva analysis and observation

provide high detection and identification results. However, the seg-

mentation of well contents is crucial especially when the samples

are close to the edges which cause a wrong object detection.

By applying all the mentioned steps and testing them on the

plate images, the detection process succeed with all inner samples

without considering those close with the edge, and it was segmented

with the edge as one object as shown in Figure 4.18.
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Figure 4.18: Zebrafish larva close to the well edge

The detection and classification error for the n-well plate

samples was zero after discarding all empty wells and those with

sliding samples to the edges. Once the sample is located in the well

centre, the system able to detect, segment, and classify the larva.

Figure 4.19 shows examples of the zebrafish larva inside 48-well and

96-well plates that were correctly detected and classified using the

proposed system.

The system can detect and classify the samples inside the

plate wells. However, many samples (about 60%) are close to the

well edges and cause detection and classification error. On the other

hand, using the petri dish for the same purposes showed a higher

performance and overcoming the sample sliding to the problem of

the edges.

The proposed image analysis pipeline for samples of a petri

dish shows a higher performance compared with the n-well plate;

the complexity time is extremely the same. This system is used to

detect, segment, and classify the eggs/larvae within the whole dish
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Figure 4.19: Examples of well-plate classification

image. Figures 4.20 and 4.21 show examples of small parts of dif-

ferent dishes where the egg/larva samples are detected successfully

and classified correctly. The label L for the live egg and D for the

dead one.

Figure 4.20: Classification results for the whole dish image
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Figure 4.21: Identification results for the whole dish image: a) Example 1 b) Example 2 c) Example

3 d) Example 4
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As shown in Figure 4.20 and Figure 4.21, the debris which

is considered as an unwanted object is discarded, the edge parts

are identified as not organism, and the target objects are detected,

segmented, and classified efficiently. However, in some cases, the

proposed system failed in detection and classification processes, as

shown in Figure 4.22. Some samples are misclassified, which can be

manipulated either by cross-validation for the classifier or reducing

the number of extracted features by using a feature selection algo-

rithm.

Figure 4.22: Drawbacks of the classifier

Using the scanner images provides us with a large number

of samples of outstanding quality. However, these images are taken

from a bigger image that contains hundreds of eggs. Partitioning

process to get every sample and deal with it as a single image

distort the sample images in many cases which are considered as a

big challenge in this work.

4.7 Summary

In this chapter, a novel zebrafish larva image analysis pipeline is

starting from detection to segmentation and classification based on

two container image types. Two types of container with different

ages were tested, analysed, and compared to the ground truth. By
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extracting the most important features for both colour and tex-

ture characteristics of the image, a high-performance classification

model was presented and evaluated with 97% testing accuracy to

classify the sample image of the zebrafish egg into three classes (live

egg, dead egg, chorion) depending on its status.

Using the flatbed scanner is presented as a low-cost, effec-

tive imaging tool that saves the consuming time where the one-shot

provides the system by hundreds of sample images. Furthermore,

this tool affordable and easy to use by the biologists with the least

imaging problems.

This system covers the most common malformation types

considering the nature of these embryos (orientation, position) that

is fixed using an automatic fixing method.

Besides the benefits that are provided by using the flatbed

scanner for data collection, the proposed system is assessed by the

biologists as an effective and time-saving process for their exper-

iments. The traditional way of capturing images for the samples

is always carried out individually for hundreds of samples, which

is a time-consuming process. Also, the biologist needs to analyse

each sample to decide its status, which is also considered as a time-

consuming process.

By using the proposed system, the biologist intervention is

limited, and the experiment time should be shorter than usual.

This system presents an image analysis pipeline that automatically
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detects, classifies, and identifies the zebrafish embryo abnormalities

using a high-throughput model for both the petri dish and the n-

well plates.
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Chapter 5

Zebrafish Embryo Malformation

Classification

5.1 Introduction

In this chapter, multi-class and multi-label classification systems

are proposed based on two machine learning algorithms to classify

the zebrafish larva malformations. The first proposed algorithm is

the decision tree, and the other algorithm is the pretrained CNNs.

Nine classes are identified by the proposed machine learning al-

gorithms for multi-class purposes. Most images have more than

one label where a multi-label based on the biologist observations.

The result of these two concepts is presented and discussed. A

comparison between the presented systems and the ground truth is

presented. The most challenges of this research are mentioned.

The proposed work aims to detect and classify the zebrafish

embryo malformations using different types of features, which were
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analysed and optimised with the classifier parameters to classify

nine classes of larvae (5dpf). The proposed work presents a binary

relevance multi-label classification using Decision And Regression

classification (CART) model integrating with shape and colour fea-

tures. Furthermore, this system able to identify all the deformity

classes that may appear on a one sample body at the same time.

On the other hand, a classification system was proposed based on

the pretrained CNNs for multi-class and multi-label problems.

5.2 Challenges and Objectives

Recently, zebrafish embryos are widely used in the pharmacological

and toxicological experiments and studies. The proposed system

aims to detect and classify the malformations that may cause for

the embryos after adding chemical substances.

The most challenge faced the proposed work is presented by

the high similarity between the different classes. Some classes are

hardly identified and classified by an expert that reflected on the

proposed system performance. Furthermore, the high number of

types compared with the small size of the data set.

To reach the best reliable system for zebrafish embryo screen-

ing, several objectives were drawn using the proposed system:

Objectives:
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• Using efficient and more accurate machine intelligence algo-

rithms for detection and classification of malformations for ze-

brafish larvae of 5dpf sample ages.

• Using different types of features using the ROI which integrated

with a high-quality classifier.

• Optimise all the extracted features and tuning them with the

classifier parameters to classify nine classes of larva malforma-

tions (5dpf).

• Identify all the deformity classes that may appear on a one

sample body at the same time.

5.3 Data Set

All the used images of this work are collected from public resources

with unrestricted use and reproduction. The data set is available

from [13, 42]. This data set was captured and collected by Jeanray

et al., in which the images are taken in different sessions. These

images were captured using an Olympus SZX10 microscope joined

with an Olympus XC50 camera with consideration of the light il-

lumination that comes from a condenser passing into the embryo.

By using this capturing tools, the generated images are 2575×1932

pixels of resolution in 8-bit TIFF format. The number of images

that were used in this system was 944 images for training and 230

images for testing process.

The data set consists of different types of malformation to

different body parts such as the embryo tail, the vessels, and the

whole body shape on the fifth day after fertilisation (5dpf). Adding
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several chemical substances into the surrounded liquid of the larvae

causes changes in the tail shape, so it goes to be up or down, also

the larvae may not be hatched (i.e. chronic type) or having edema.

Figure 5.1 shows examples from this data set [42].

Figure 5.1: Malformation Examples: a) Chorion b) Dead c) Down-Curved-Tail d) Edema e)

Hemostasis f) Necrosed-yolk-sac g) Short-tail h) Up-curved-tail/fish i) Normal

To integrate the position of the embryo in all images with

the proposed algorithm, the embryo should take a fixed scene. This

position should be aligned horizontally with the head aligned at the
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left side.

To detect any gradient position of the embryo, each image

was identified if it has any an unusual position by calculating the

angle of the orientation then rotates the image counterclockwise by

the value of the oriented angle as shown in Figure 5.2 The angle

was found from the following equation:

θ = tan−1 (y2− y1

x2− x1

)
(5.1)

Figure 5.2: Orientation fixing points

5.4 Binary Relevance And Decision Tree

The proposed system aims to design and develop a novel automated

detection and classification system for zebrafish embryo malforma-

tions with high performance. In this system, nine classes of ze-

brafish larva (eight types of deformities and the normal class) have

been analysed and classified. Figure 5.3 shows a general view of

the system.
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Figure 5.3: General structure of the system

5.4.1 Image Analysis

Having the most important information of the images will improve

the classifier performance because it reduces any noise or distortion

that may affect the desired detection. To generate high informative

images, several image processing functions were applied to distin-

guish the larva body from the whole image.

The image resolution was down-sampled to quarter the origi-

nal resolution (483×644) to upgrade the system work and minimise

the load on the CPU and get the result faster. The embryo region

was automatically extracted from the surrounding background us-

ing an automatic thresholding process. The thresholding value was

found using the minimum numeric value after applying two algo-

rithms; the first one that was developed depending on the cumu-

lative histogram of the image. The other one that depends on the

colour level distribution is adopted from [159].

The biggest blob was identified after labelling all blobs inside

the image. Then the dilation and the erosion processes were applied

to process the border of the object (larva) to be more noticeable and

recognised. As illustrated in Figure 5.4, the raw image has many
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small objects around the larva body that should be eliminated to

have apparent features of the image using filtering and thresholding

and other morphological operators such as dilation, erosion, and

closing, which yield the segmented image with the target object

(larva). Finally, the segmented object is cropped to get only the

embryo body, as shown in Figure 5.4.

Figure 5.4: Image pre-processing

5.4.2 Feature Extraction

To distinguish between the different types of malformations and to

identify if the larva is normal or not, 14 features were chosen and

extracted to get the most valuable characteristics and information

for the nine classes. The extraction process was carried out de-

pending on the region of interest (ROI) and using the shape and

the colour features according to each class characteristics. Table

5.1 shows a summary of these features.

The most important feature that indicates the chorion de-

formity is the roundness of the object. To detect the non-hatching

abnormality, the rounding metric was found for the sample images

(hatched and non-hatched). This metric was found depending on
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Table 5.1: Extracted features

Class Features

Chorion Rounding metric

Curved tail/fish Quadratic coefficient, curvature angle

Short tail The length of the larva body, distance from eye centre to the end point of the body

Dead Mean intensity value

Necrosed yolk Mean intensity value, standard deviation

Edema Area of yolk, height of the larva body

Hemostasis Area of red spots

the object perimeter and the object area and using the following

Equation 5.2.

Rm = 4π.
area

perimeter2 (5.2)

The value of the rounding metric for the chorion class identified

between 0.85-1.00, this metric evaluate the rounding degree of the

object where 1.00 means the object is entirely circular, and for any

other values, the object classified as hatched.

The other classes that were studied are related to the cur-

vature abnormality of the zebrafish larvae tail (up or down) is de-

tected using geometric features. The study in [160] described tail

curvature of the zebrafish embryos as a “surrogate marker” that

is used to identify the kidney cyst disease effectively. This work

demonstrated how the ValProic Acid (VPA) could reduce the dis-

ease effects on the kidney in the earlier stages and before being

worse. As a result of high-throughput screening, the responsible

gene of the tail deformity can be identified and depending on this

the suitable chemical substances can be added by the biologist to
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stop the disease progression.

Using the Region Of Interest (ROI) only which is the tail

side and finding the gradient to get the tail edges, which is used to

find the quadratic equation coefficient, which indicates the tail cur-

vature. After specifying the horizontal and the vertical directions

of the tail edge which are computed using the following equation.

∇F =
∂F
∂x

î+
∂F
∂y

ĵ (5.3)

This step was done to restrict the next steps to be applied

in the desired direction which is the positive y-direction as shown

in Figure 5.5.

The curve fitting was used to calculate the degree of the

curvature. For the normal shaped embryos, the body should be

straight where any curving appears with their bodies classified as a

malformation. Then to decide if the curve is up or down, it depends

on the curvature direction is it up or down. After applying the

Figure 5.5: Positive y-axis gradient of the cropped tail (a) normal tail (b) up-curved tail (c)down-

curved tail

polynomial fitting function the three coefficient values (a, b, c) of
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the quadratic are obtained from

f (x) = ax2 +bx+ c (5.4)

Examples of the obtained polynomial curve fitting for the y-

axis gradient of normal, curved-up and curved-down tails are shown

in Figure 5.6. These coefficients indicate embryo’s abnormality (i.e.

curved-up or curved-down). The value of a is varied between −8×
10−4 and 10× 10−4. The negative value of a indicates the up-

curved, the positive over 1 indicates the down-curved, and the value

around zero indicates the un-curved sample body.

Figure 5.6: Polynomial curve fitting for the y-axis gradient (a) up-curved tail (b) down-curved tail

(c) normal tail

To get more robust features and rise the system performance,

the curvature angle of the body was found depending on the eye

centre, the body centre, and the end point of the object body as

shown in Figure 5.7.

Finding the first point, which is the centre of the eye (ax,ay)

is found after thresholding the eye area, which is always black.

After segmenting the eye blob, the centre of this blob was found

depending on the blob area properties. The second point is the

centre of mass of the embryo body (bx,by) which is found using the
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Figure 5.7: Curvature angle points

weighted position vectors for x and y direction for a binary image

I(x,y) with MxN size as shown in the following equations.

bx =
∑

M
x=1 ∑

N
y=1 x.I(x,y)

∑
M
x=1 ∑

N
y=1 I(x,y)

(5.5)

by =
∑

M
x=1 ∑

N
y=1 y.I(x,y)

∑
M
x=1 ∑

N
y=1 I(x,y)

(5.6)

The third point presents the last point of the tail (cx,cy),

which varies for the three classes (up-curved tail, down-curved tail,

and non-curved). After finding the three points, the angle between

them is found using the cosine rule with the line lengths between

the three points, as shown in Figure 5.8.
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Figure 5.8: Curvature angle for different classes

To have features for all the malformation classes, the yolk

should be detected, segmented, and identified if it is normal or de-

formed. The edema class is determined when the yolk becomes

inflated, and the under eye region becomes bigger than the normal.

The darkness of the yolk cells indicates the death of these cells,

which is identified by necrosed class. The dead category happens

when the whole body cells are dead with a dark colour appearance

which is biologically identified as a non-survivor sample.

To segment the yolk region only, several mathematical and

image processing operations are applied to detect and segment this

region. The object corner points are recognised by finding a ma-

trix of the object peaks depending on the extreme points of the

object convex hull, as shown in Figure 5.9 and Figure 5.10. This

property is one of the region properties that describe many shape
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features of the desired object. The interesting point as shown in

Figure 5.10 is A or B, and in this work A was used as a start point

for yolk segmentation, which is the first point in the corners matrix.

Figure 5.9: The convex hull of the larva body

Figure 5.10: The extreme points of the body

Starting from A to the end of the image, the segmentation

was carried out by segmenting the lower part of the body from

point A to the end. In some cases, the eye is segmented with the

yolk, which may affect the feature extraction process performance.

To avoid any effect of the eye existing, the eye region was removed

as shown in Figure 5.11 using the points in Figure 5.12 based on

the vertical projection of the image which presents the number of

pixels in each column of the image.

By noticing the point A is the minimum here, a vertical pro-

jection was found and plotted to find out the most suitable way
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Figure 5.11: Example of the eye segmenting with the yolk

Figure 5.12: The segmented yolk

for head or eye removing. Figure 5.13 shows the vertical projection

vector, which describes the image matrix rows. The signal of the

projection was smoothed, then the minimum value (A) was found

starting from the maximum point (B). By using point A, the head

was removed, and the yolk sac region only was resulted. The area

of the yolk region is one of the extracted features to identify the

edema class.
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Figure 5.13: The vertical projection

To figure out if the sample has a necrosed yolk or not, the

colour features for the segmented yolk were found. The necrosed

yolk is identified by dead yolk cells when all yolk cells are dark.

Two colour features were chosen and extracted, which are the mean

intensity value for the non-zero double value and the standard de-

viation for the same target (yolk).

The hemostasis deformity happens when the head or the yolk

has a red pigment on which is biologically identified as a defence

process to prevent any loss of the blood in the injury status where

the circulatory system prevents this from happening [161]. To de-

tect this region, the CIELab colour space was used then the area for

the segmented region was found and analysed which differentiate

between the hemostasis and the other classes.

The CIELab colour space was utilised to identify the colours

that are visualised by the human eyes. The first channel (*L)

presents the illumination where the channel (*a) identified the val-
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ues of red, magenta, and green. By computing the filled relative

area of the (*a) channel and (*b) channel as shown in Figure 5.14,

this feature will be able to judge if there is a red spot or not. Fig-

ure 5.15 shows images from hemostasis class with the detected red

spots that were marked by the green colour.

To determine the survivor samples, which means ascertaining

if the larva is alive or dead, the colour features such as the mean in-

tensity value and the standard deviation value for the whole object

region were calculated. The colour features are useful to identify

the darkness of the embryo body. Furthermore, the number of pix-

els of the lowest grey levels showed differentiation between the dead

and live samples.

Figure 5.14: Red spots detection

Figure 5.16 shows the essential features for dead sample de-

tection and depending on these values; three features were used for

classification.
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Figure 5.15: Hemostasis red spot detection

Figure 5.16: The most effective features for dead class

To recognise the shortage deformity which is presented by

the loss in the posterior vertebrae of the zebrafish larva’s spinal

column which is caused by some stimulus [162]. To determine this

deformation, two features were extracted. The first one is the length

of the whole body for the horizontal view where the second one is

the distance from the centre of eye to the endpoint of the tail using

the Euclidean distance between two points (centre of the eye and
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the last point of the tail). Figure 5.17 shows these features for short

embryo and not-short ones.

Figure 5.17: The extracted features for short class

5.4.3 Training classification models

Based on the extracted features, 8 CART models were built and

trained using the 14 feature values. Each model presents a binary

model to distinguish between the normal sample with the defective

one. The goal is to detect and classify the zebrafish embryo sample

status if it has normal or abnormal growth. Furthermore, the clas-

sification process here is a multi-label classification system; some of

the added chemical substances cause deformities for different parts

of the larva’s body. The CART model is used according to its char-

acteristics such as the compatibility with the small size of data set

and the flexibility. The CART model was developed by Breiman in

1984 [163]. The main concept of the CART is the condition, several

questions with type If-Then questions have been answered by the
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model depending on the feature values.

The classification consists of two main steps, training and

testing. The training stage depends on the binary relevance con-

cept, which means training eight binary CART models using the

extracted features. Each binary model has its feature vector (pre-

dictors) depending on each model label (response) in the testing

step, where the classifier performance and capability will be deter-

mined. To predict the class of none labelled sample, the trained

model follows the decisions in the tree from the root node down to

the leaves. The last node (leaf) contains the response (label). The

testing step for the new image starts with extracting the features

which are provided to the saved classifier model to predict the class.

The CART models were trained using the k-fold cross-validation

with ten folds, as shown in Figure 5.18. The cross-validation pro-

cess is used to test the model prediction ability during the training

stage to languish the overfitting problem and to get an indication

about the model generalisation for the unknown data set. Cross-

validation try to find the most accurate prediction performance

depending on the fitness measures [164].

5.4.4 Testing the trained models

Once the tree models were built, the testing stage will start to

find out the classification system accuracy and performance. The

validation process was carried out during the training stage, and

after validated the eight models, a set of images were provided for

113



Chapter 5. Zebrafish Embryo Malformation Classification

Figure 5.18: Training stage (Binary relevance)

multi-label testing. The testing process was carried out, as shown

in Figure 5.19. The testing stage starts by providing the system

by a new image. Using the CART model to test if the sample is

live or dead. If the sample is live, then we need to identify if it is

hatched or not. The live hatched sample will be examined using

the seven models in a parallel way to detect and specify if it has

any malformation(s).

5.5 Deep Learning

Deep learning algorithm represents one of the most recent algo-

rithms of the machine learning approaches based on a set of learn-

ing layers. The significant difference between the deep learning

algorithm and the other machine learning approaches is the feature

extraction process which is the main step in the supervised and the
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Figure 5.19: The testing stages

unsupervised classification.

The feature extraction process is a significant challenge in

the machine learning algorithms where it might represent a partic-

ular data and not work with others. The feature extraction process

is traditionally done manually and based on the human vision, and

this is considered as a time-consuming process for most machine

learning algorithms.

Recently, deep learning algorithm represents a high-active

research field which becomes a high-performance tool for images

classification. Deep learning has complex layers for the feature

extraction process of the input images effectively. However, the

ineffectual extracted features comparing with the manual feature

extraction process based on the machine learning approaches where

only particular information of the input data.
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The most advanced machine learning algorithm represented

by Convolutional Neural Networks (CNNs) has been widely used by

researchers for image classification [138, 165, 166] . The proposed

work aims to classify the nine classes of zebrafish larvae using two

types of pretrained CNN with different characteristics and param-

eters.

Recently in 2018, one study was proposed for zebrafish larva

classification based on deep learning [167]. This study used Jean-

ray et al. data set [13, 42] and classify them using a fine-tuned

VGG 16 model. The result showed lower accuracy when the num-

ber of classes was increased due to the high similarity between the

larva classes and the small size of the data set. The overlapping

classes were not mentioned by the author where this data set has

a multi-label problem and to deal with it as a multi-class problem

the overlapped classes should be concerned.

5.5.1 CNN architecture

Two kinds of the pretrained convolutional neural networks are used,

tested, and analysed using the data set of zebrafish larvae [13, 42].

Figures 5.20 and 5.21 show the general structure, and the main lay-

ers of the two used CNN. The first one is the GoogleNet with 144

layers and the second CNN is ResNet50 with 177 layers.

According to the small size of the data set, pretrained net-

works were used for image classification where training a CNN from
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Figure 5.20: GoogleNet architecture

Figure 5.21: ResNet50 architecture

scratch successfully needs a huge data set to be trained efficiently

and produce sufficient value of the network weights.

Using a pretrained CNN and reuse the network weights is de-

fined as Transfer Learning (TL) process, and this helps the network

to train faster than training from scratch. However, the pretrained

networks extract low-level features such as edges, curves, and many

other [168].

The deep networks generate a high level of features. How-

ever, the deeper network has a high training error and worse per-
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formance, as shown in Figure 5.22. The main idea of the residual

networks where the DesNet50 is one of this type of deep network

is to use layers and skip other layers which is defined as identity

shortcut connection [169].

Figure 5.22: Training error and testing error for two network depths

5.5.2 Training and Validation

The used data set her is zebrafish larvae images with different

types of malformations [13, 42]. The input images are re-sized to

224x224x3 pixels according to the pretrained CNNs parameters.

And the data set was divided into a training set 70% and 30% for

system evaluation.

First, a multi-class problem of the data set was addressed and

implemented using the two types of CNN (ResNet50, GoogleNet).

Where the images have overlapped labels, a multi-label classifica-

tion system is proposed using the same CNN.

By using the pretrained CNNs, the same weights and the
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same stack of layers were used according to the small size of data

set and the weights reusing advantages. The most advantage of

using the pretrained CNNs is the training time saving with lower

complexity.

For multi-class classification, eight classifier models were trained

and validated. Each model is a binary classifier model similar to

the proposed CART model. For example, the dead larva images

were used versus all the live larva images and the same with the

rest of malformation types.

On the other hand, a multi label classifier is proposed to

classify the samples that have more than one label. The categories

were managed as shown in Table 5.2 besides the dead and chorion

classes.

First, the pretrained Resnet50 was used, which comprises

of 50 layers, convolution layers, max pool layers, fully connected

layers, and output layer for feature extraction and classification

[169]. The second attempt was carried out using the pretrained

GoogleNet which comprises 22 layers, convolution layers, max pool

layers, fully connected layers, dropout layers, and output layer [170]

which are used for feature extraction and classification.

5.6 Results and Discussion

The multi-label system aims to detect and classify zebrafish embryo

malformations and to name all the deformation types that appeared

on each testing sample that has more than one malformation class.
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Table 5.2: Multi label classes

Class Abbreviation Classes

DENS Down curved, Edema, Necrosed, Short tail

DNE Down curved, Edema, Necrosed

DNEH Down curved, Edema, Necrosed, Hemostasis

DNSEH Down curved, Edema, Necrosed, Hemostasis, short tail

NE Edema, Necrosed

NEH Edema, Necrosed, Hemostasis

SNE Short tail, Edema, Necrosed

SNEH Short tail, Edema, Necrosed, Hemostasis

UNE Up curved, Edema, Necrosed

UNES Up curved, Edema, Necrosed, short tail

UN Up curved, Necrosed

UNEH Up curved, Edema, Necrosed, Hemostasis

UNH Up curved, Necrosed, Hemostasis

UNHSE Up curved, Edema, Necrosed, Hemostasis, short tail

The data set was publicly available for use and reproduction [42].

The images in the collected data set have a large size (2575×1932

pixels), which are down-sampled to quarter this size to be (644

×483) pixels. This step has many advantages like accelerating the

calculations and feature extraction process. This can be carried

out using a typical CPU without need to get a new processor.

Furthermore, the capturing process cannot always be with a high

resolution; this has been considered as a challenge to get a high

classification performance with low-resolution images.
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5.6.1 The Performance Equations

To verify the system performance, a set of unknown images were

provided to the system, and the system performance was analysed

and found out. By using a set of unknown images for multi-label

processing, the evaluation metrics should be calculated and regis-

tered using the true set of labels (T) and the predicted set of labels

(P). The first metric is the Hamming loss which is identified as the

fraction between the wrong labels and the total number of labels

[171] for N of L labels instances which is found depending on the

following equation

Hamming−Loss =
1

|N|.|L|

|N|

∑
i=1

|L|

∑
j=1

xor(yi, j,zi, j) (5.7)

The second important metric is the exact match which find the

percentage of samples or instances that have been correctly detected

all the labels in the ground truth, which is done according to the

following equation

Exact−Match =
1
L

L

∑
i=1

Pi = Ti (5.8)

The micro averaging was used for the B binary problems

of c labels (trees). The computation for TP, TN, FP, FN will be

calculated depending on the micro averaging criteria as following:

m(B) = B

(
c

∑
i=1

T P(Yi),
c

∑
i=1

FP(Yi),
c

∑
i=1

T N(Yi),
c

∑
i=1

FN(Yi)

)
(5.9)

In the reported evaluation metrics and depending on the

micro averaging formula, the recall, precision, the F score, and the
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exact match were defined as follows [172]:

precision =
∑

c
i=1 T P(Yi)

∑
c
i=1 T P(Yi)+∑

c
i=1 FP(Yi)

(5.10)

Recall =
∑

c
i=1 T P(Yi)

∑
c
i=1 T P(Yi)+∑

c
i=1 FN(Yi)

(5.11)

Speci f icity =
∑

c
i=1 T N(Yi)

∑
c
i=1 T N(Yi)+∑

c
i=1 FP(Yi)

(5.12)

F− score =
2

1
Precision +

1
Recall

(5.13)

5.6.2 Results and discussion

From Table 5.3, it is noted that the system performance is favourable

and promising. After several stages from segmentation to feature

extraction and finally the multi-label classification, the result is

satisfactory able to get the results as group of labels which can

be considered as deep analysis of the samples. Furthermore, the

system can be improved and modified by extracting more features.

The following results are found for the multi-label processing and

after merging the dead and chorion classes and after re-labelling

the images by experts where the overlapped images with multiple

classes were not mentioned in the collected data set.

The art of the feature extraction process is to extract the

most critical features with the most intelligent technique which is

presented here by specifying the ROI to avoid the time consuming

during the training and testing processes. Furthermore, the ROI
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Table 5.3: Multi-label evaluation

Metric Value

Accuracy 93%

Precision 88%

Recall 85%

Specificity 82%

F-score 87%

Hamming Loss 20%

Exact Match 48%

segmentation offers a compelling and vital step according to the

high similarity of the images of different classes.

The system reads the sample image, extracts the features,

tests the image using the classification models and depending on

the feature values. Finally, the result will be provided as a vector to

describe the sample characteristics. Figure 5.23 shows an example

of the system results.

Figure 5.23: Zebrafish larva with detected malformations

By relating to the testing accuracy in Table 5.4, we notice

that the chorion class has 80% accuracy. In fact, the system suc-

ceeds to detect four images from five correctly, and the false clas-

sified image was identified as dead according to its colour features.
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The low number of images in this class affected the accuracy value

of this class. Also, some of the dead class images have a high simi-

larity with the chorion, as shown in Fig. 5.24. To avoid classifying

the dead as chorion, the input image has been tested if it is live or

dead if it is dead no need for further testing. The chorionic class

will be tested only when the sample is live.

Figure 5.24: Misclassified: a) Dead larva b) Chorion larva

The difficulty of hemostasis detection is occurred because of

the heart existing, and this may conflict the heart with the red

spots, which are the abnormal blood cells. Figure 5.25 shows an

example of larva classified wrongly as hemostasis that happened

because of the heart existing.

Figure 5.25: Misclassified hemostasis sample
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By comparing the proposed system accuracy with the ex-

isting one [13] we conclude that the efficiency was higher for most

difficult classes such as Hemostasis class, Edema class, down-curved

tail, and Up-curved fish class despite the distortion that occurred

of the images because of the down-sampling process. The exist-

ing system used the ensembles of the decision tree algorithm that

was presented in [173] and based on the pixel values. The method

started with extracting 1000 subwindows, describing these subwin-

dows by normalised raw pixel values for the three channels (RGB).

These values for each subwindow were provided to the extremely

randomised decision tree, and it was ensembled for all the extracted

subwindows.

Table 5.4: Evaluation comparison of the proposed system with the existing one

Class

Existing Sys-

tem (Binary-

models) [13]

Proposed System

(Binary-models)

Proposed System

(Multi-label)

Dead 99% 100% 87%

Chorion 90% 80% 80%

Short tail 89.9% 92% 92%

Down curved tail 82.68% 94% 98%

Necrosed yolk 95% 92% 84%

Edema 73.85% 96% 97%

Hemostasis 54.57% 94% 78%

Up curved Tail/Fish 72-80% 100% 100%

Normal 90% 100% 98%

The most challenging class to be detected and recognised is

the hemostasis class then the edema class. In the proposed work,

these two classes provide us with satisfactory results and better

than the existing classification systems in spite of the detection dif-
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ficulty and the high similarity between types.

The proposed system showed a high success rate in segmen-

tation, region specifying, feature extraction, and the multi-label

classification. The number of malformations that were analysed

and studied was eight, and the number of classes was nine, includ-

ing the non-defective embryos (Normal). These classes represent

different types of deformity that effect on the body shape and the

internal parts of the zebrafish embryos. Seeing the internal de-

formations related to larva body transparency. According to this

feature, other classes of malformation can be added to these classes

if the other parts of the zebrafish larva body are affected by adding

chemical substances.

Two types of pretrained CNN were used to classify the ze-

brafish deformity types. The accuracy of the binary models and

the multi-label classifier for both networks are shown in Table 5.5.

The multi-label performance is shown in Figure 5.26. As

we noticed, this accuracy was affected by the small number of im-

ages in each category and the high number of classes. This may be

improved by adding more images or using any augmentation algo-

rithm to increase the data set size.

The obtained results from this system are promising where

the proposed system used the pretrained CNN and reuse their

weights without any pre-processing or augmentation of the data set

images. Furthermore, this work does not require plenty of knowl-
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edge about malformation characteristics and features.

Figure 5.26: Multi-label classification accuracy using GoogleNet
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Table 5.5: Testing accuracy of DL models

Classification model Accuracy (Resnet50) Accuracy (GoogleNet)

Dead vs All Live 97% 100%

Chorion vs All Hatched 100% 100%

Down vs Not Down 85% 99%

Up vs Not Up 98% 100%%

Edema vs Not Edema 90% 80%

Necrosed vs Not Necrosed 88% 97%

Short tail vs normal tail 91% 94%

Hemostasis vs Not Hemostasis 87% 89%

Multi Label classifier 59% 69%

5.7 Summary

The proposed systems set out to design and improve the automatic

intelligent system to classify the zebrafish larva malformations us-

ing a multi-label classification system. One of the most important

reasons for the proposed work is the lack of automatic detection

and classification systems in this field. However, the attempt of

one research group to have similar system has many challenges and

limitations. Two methods are presented in this research, using bi-

nary relevance CART model and using pretrained CNNs.

The first method is CART models based on binary relevance.

Extracting features using the ROI only instead of the whole im-

age can affect the accuracy of the system. Obtaining the essential

features (shape, colour intensity) make the proposed classification

system more robust and increase the system’s efficiency. This multi-

label system shows a sufficient ability to identify the sample status

and to mention all detected types when it has more than one de-
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formation which can be more beneficial to the biologist to find out

all the added chemicals effects.

The second method was done using two types of pretrained

CNNs. The most significant challenge with this system is the small

size of the data set and the high similarity between classes. Based

on the CNNs, both ResNet50 and GoogleNet models show high per-

formance with the multi-class problem, but due to the mentioned

challenges the accuracy of the multi-label is inadequate.

By comparing the proposed two methods with each other

and with the existed system, we noticed that the multi-class clas-

sification system accuracy using pretrained CNNs was higher than

the CART models and the previously existed system [13]. However,

the multi-label classification based on binary relevance CART has

a considerable accuracy comparing with the pretrained CNNs per-

formance. The existed system work was a multi-class system, and

the multi-label has not been mentioned in their work. The data set

images were re-labelled by biological experts.

Any field can get benefits from the engineering aspects, and

biology science is one of these fields that success to employ machine

learning to help them and solve their experiment problems. Fur-

thermore, this system was widely accepted by the biologists to help

them in their experiments.

The importance of this work is presented by the cooperative

between two fields, using computer vision aspects to automate the

animal screening experiments, to solve significant problems, and the

129



Chapter 5. Zebrafish Embryo Malformation Classification

impact of this work has an accurate system to help the biologists in

the screening processes. This work can be extended to cover more

types of malformation.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, a set of successful classification, identification, and

counting systems based on computer vision techniques are provided

to help the biologists in their work and overcome the manual ob-

servation problems. The importance of this work comes from the

biological experiments requirement of zebrafish larvae monitoring

for hundreds of samples in a short time relating to the ethics and

the fast growing of the embryos. The main generated conclusions

from this work are summarised as follows.

1. The developed image analysis pipeline provides the biologists

by a fully automatic monitoring system without any manual

intervention using a high-performance detection, segmentation,

and classification processes. However, the system faced a prob-

lem with the slide objects to the well sides. To overcome this

limitation, a wider container has been used (petri dish) where
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most samples sit on the plate centre. This system opens the

door for better and bigger image analysis system if the number

of classes can be increased. The advantage of this system over

all proposed systems that all processes starting from capturing

till having a status report of the embryos is going automatically

with a low-cost tool and high-throughput. Also, this system

covers the most common malformation types considering the

nature of these embryos (orientation, position) that is fixed us-

ing an automatic fixing method by using the most important

features for all classes depending on body shape, texture, and

colour. The proposed system has two automatic parts: one for

the data acquisition and the other for data analysis and result

finding.

By using the proposed system, the biologist intervention is lim-

ited, and the experiment time should be shorter than usual.

The proposed method is also set out to demonstrate a cost-

effective way to carry out clinical relevant research so that it

can be carried out in any lab with basic equipment (the scanner

and computer are very affordable).

2. Where many drugs are tested on zebrafish embryos that are

produced in large number within few hours, the manual de-

tection process of these malformations is a tedious operation,

and many embryos will be discarded without being analysed

according to the European regulations.

One of the most important reasons for the proposed project is

the lack of automatic detection and classification systems in the
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field. However, one research group proposed a similar system

with many challenges and limitations. Those limitations were

overcome in the multi-label classification system by extracting

more essential features, focusing on all types of features not

only intensity, using a high performance classifier, integrate

the system of all malformation types where the embryo may

have one, two, or three classes at the same time according to

the kind of the chemical substance.

The multi-label CART system shows a higher performance than

CNN. This might happen because of the extracted feature types.

The CART model test specific features for each label where the

deep learning extract the features for the whole image where

the different classes have high similarity and the size of the data

set is small.

3. Using the flatbed scanner is presented as a cost-effective imag-

ing tool that saves the consumed time where the one-shot pro-

vides the system by hundreds of sample images. Furthermore,

this tool affordable and easy to use by the biologists with the

least imaging problems. Besides the benefits that are provided

by using the flatbed scanner for data collection, the proposed

capturing tool is assessed by the biologists as an effective and

time-saving process for their experiments.

4. The proposed two counting systems provide the biologists by

accurate, automatic, and cost-effective counting systems that

minimise the human intervention and the animals harmful and

pains that is happened during the manual counting process.
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These counting systems received wide acceptance by the biol-

ogists to help them in their experiments.

5. The cooperation between two fields will provide a novel solution

to have an automatic system that overcomes the biological ex-

periment difficulties and provide the community with the bene-

fits of the engineering techniques. The impact of the proposed

analysis systems is presented by solving significant problems

face the biologists in their work.

6.2 Future Work

Many directions are recommended to enhance the zebrafish larva

analysis systems based on computer vision, which are presented in

this thesis. The following points summaries some of these recom-

mendations:

1. The image analysis pipeline for zebrafish egg/larva classifica-

tion can be extended for more deformity types based on a low-

cost tool (flatbed scanner).

2. The two counting systems can be developed into a smart phone

application using phone camera settings. The proposed two

systems can be used with other types of fish.

3. The proposed multi-label CNN for zebrafish larva classification

can be developed using a different type of the deep learning
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network or by tuning the network parameters.

4. The fish counting system can be improved using a different way

for background subtraction such as the Low-Pass-Filter (LPF)

technique for smoothing and noise reduction purposes.

5. Detect the most important features using another computer

vision algorithm like scale-invariant feature transform (SIFT)

which is a popular algorithm for local feature extraction.

6. Despite the cost-effective of the used imaging tool, but it can

be replaced by a different type of imaging tools such as a high-

resolution camera or a higher resolution flatbed scanner or 3D

scanner. Furthermore, the well plate that has been used in the

experiments can be replaced by a lower number of wells like

the 24-well plate to minimise the side stick problem.

7. A binary relevance based on pre-trained CNN can be used to

rise the multi-label classification performance based on data

availability.
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