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Abstract 
Risk Prediction Modelling in Head and Neck Cancer:  Development and 

Validation of a Model using the UK Biobank.                                                            

Caroline Elizabeth McCarthy 

Introduction and Aims 
Head and Neck Cancer (HNC) is the sixth most common cancer worldwide and it causes 

significant morbidity and mortality.  A risk prediction model could help to stratify patients 

according to risk of disease and be used in the design of clinical trials to aid selection of 

participants.  This thesis concerns the development and validation of a risk prediction 

model for absolute risk of HNC, using the UK Biobank dataset.  The changes in incidence of 

HNC in England between 2002-2011 will be explored and novel female-specific risk factors 

will be reviewed. 

Methods 
The model has been developed within the UK Biobank dataset, using logistic regression.  

The internal validity of the model was assessed using discrimination and calibration 

statistics.  The model was externally validated within a cohort of the UK Biobank not used 

to develop the original model.   

Results 

The risk model developed contains variables for age, smoking, gender, alcohol, diet, 

household income, BMI, number of sexual partners, fruit consumption and exercise.  The 

c-statistic was 0.67 and the model displayed good calibration.  On external validation, the 

c-statistic was 0.64 with good calibration.   

Conclusions 
Methods for assessing the implementation and impact of the model are discussed.         

The model has shown reasonable performance through internal and external validation 

methods.  Risk prediction models have the potential to inform the design of future clinical 

trials in HNC and this could be translated to work in OED.  
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Chapter 1 

 

Introduction 
 
 
 

This chapter discusses Head and Neck Cancer (HNC) and summarises the incidence 

of the disease according to geographical regions, gender and age (section 1.1).  It 

then goes on to discuss potential risk factors (section 1.2) and, briefly, cancer 

screening for other cancers (1.3.1).  Risk prediction modelling is introduced in 1.3.2 

with two examples of risk models developed for related conditions.  

1.1 Head and Neck Cancer 

The term ‘Head and Neck Cancer’ [HNC] refers to a heterogenous group of cancers 

affecting various sites of the head and neck, including the lip and oral cavity, salivary 

glands, pharynx, larynx, nasal cavity and paranasal sinuses (1), each with its own risk 

factor profile.   Figure 1.1 shows these anatomical sub-sites. 

 

 

 

 

 

 

 

 
Figure 1.1. Diagram showing sub-sites of Head and Neck Cancer.                            
Image from https://www.cancer.gov/types/head-and-neck/head-neck-fact-sheet 
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 According to the United Kingdom Association of Cancer Registries (UKACR), in their 

Library of recommendations on cancer coding and classification policy and practice 

(2), HNC includes cancers of the following sub-sites (International Classification of 

Diseases (ICD) codes are shown in parenthesis): oral cavity (C00-06), salivary glands 

(C07-08), tonsil and oropharynx (C09-10), nasopharynx (C11), piriform sinus (C12), 

hypopharynx (C13), base of tongue (C02.9), nasal cavity and middle ear (C30), 

accessory sinuses (C31) and larynx (C32).  The term “oropharyngeal cancer” includes 

cancers of the base of tongue, tonsil, soft palate and pharyngeal walls.   

There has been wide variation in the definition of HNC in the literature, with some 

papers including cervical oesophagus or thyroid gland (3, 4). 

In the UK, there were 12,061 cases of HNC in 2015 and 4,047 deaths in 2016 (5).  Over 

90% of HNC are thought to be preventable.  HNC is the eighth most common cancer 

in the UK and incidence rates have risen by 30% over the last 30 years (5). 

An overall incidence for HNC of 19.9 per 100,000 persons was reported in the UK in 

2015, by Cancer Research UK.  Incidence varies depending on sub-site, with 

nasopharyngeal cancer and oral cavity cancer having incidences of 0.49 and 3.13 per 

100,000 persons respectively (data from 2000-2004, South East England; Thames 

Cancer Registry) (1). 

1.1.1 Geographical Variation 

There is wide geographical variation in incidence, worldwide, with the highest 

incidence in South and Southeast Asia (Sri Lanka, India, Pakistan and Taiwan).  Oral 

cancer is the most common cancer in males in Sri Lanka (incidence 10.2 per 100,000) 

and this is likely to be due to specific risk factors such as chewing of smokeless 

tobacco (6).  In India, an average of 100,000 new cases of oral cancer per year are 

reported, in comparison to 4,564 in the UK in 2010 (5).  Parts of Western Europe (e.g. 

France), Eastern Europe (e.g. Hungary and Slovakia), Latin America and the Caribbean 

(e.g. Brazil, Uruguay and Puerto Rico) and the Pacific regions (e.g. Papua New Guinea 

and Melanesia) also have high incidences of oral cancer (6).   
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Within the UK, there are variations in incidence, with Scotland reporting a higher 

incidence of HNC than the rest of the UK; the incidence in Scotland increased from 

12.57 to 22.04 per 100,000 between 1975 and 2012 (7).  Up to 2010, the middle super 

output area (MSOA) of Liverpool experienced a peak incidence of HNC of 35 per 

100,000, which is higher than less economically developed areas of the Indian 

subcontinent for example (8).  

1.1.2 Gender 

Gender differences in incidence of HNC are marked, with 64.3-78.6% of HNC patients 

being male (1, 9-12), however, an increasing incidence in females has been noted 

(13, 14).  Males are three times more likely than females to develop HNC in the UK 

(incidence 12.7 per 100,000 vs 4.9 per 100,000) (1).  In the USA, the percentage of 

women affected increased from 40% to 45% between 1990 and 2004 and this is 

thought to be due to changes in smoking habits between men and women (13). 

1.1.3 Age 

HNC has higher incidence in older age groups; most tumours develop in persons in 

the fifth and sixth decade (1, 10, 11, 15).  60% of HNC patients in the UK are aged 

between 40 and 69 years and this is similar for the rest of the world (1).  Canada 

reports 60% of HNC patients are over the age of 60 years (11).  In the Middle East, 

51% are in the 50-69 years age category (10) and 50% are aged 60-79 years in 

Germany (15).  More recently, a trend for younger individuals developing HNC has 

been noticed, particularly in the USA and Scotland (13, 16).  In Scotland, where this 

trend was first reported, the incidence rate in males under 45 years of age more than 

doubled, from 0.6 to 1.3 per 100,000, between 1990 and 1999 (7).  

1.1.4 Global changes in Incidence of HNC 

Changes in incidence of HNC/oral cancer, over different time periods, have been 

reported (1, 10, 11, 17, 18).  In the UK, between 2002 and 2006, certain sub-types of 

HNC demonstrated a significant increase in incidence: oropharyngeal cancer doubled 

in incidence and oral cancer has been rising by 2.7% per year for the last twenty years 

(19). There has been an increase of 12% in males and 11% in females in the UK 

between 1995-1999 and 2000-2004 (1).  In the same period, the incidence of 
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laryngeal cancer decreased by 16% in males and 14% in females, possibly due to a 

decrease in smoking (1).   

In Europe, the incidence of oral cancer has been steadily increasing over the last two 

decades, although reports vary in whether or not they include the sub-site of the 

oropharynx (5).  In the Netherlands, a 0.5-2% annual increase in oral cavity cancer 

and 2.3-3% annual increase in oropharyngeal cancer was noted between 1989 and 

2006 (17).  Canada reported a decrease in incidence from 10.7 to 8.8 per 100,000 for 

oral cancer between 1992 and 2009 and an increase in oropharyngeal cancer from 

1.6 to 2.6 per 100,000 in the same period (11).  Croatia reported a 24% decrease in 

HNC from 1988 to 2008 (18) whilst Denmark reported an increase of 5 per 100,000 

between 1982-2007 (10).  In Australia, between 1982 and 2005, cancers of the base 

of tongue and tonsil increased in incidence by 1.39% and 3.02% respectively in males 

(20).  Oral cavity cancers decreased by 1.69% in the same time-frame (20).  The 

general trend is that the incidence of oropharyngeal cancer is rapidly increasing.  

Human papillomavirus (HPV) infection is strongly implicated as a risk factor for 

oropharyngeal cancer and will be discussed in section 1.2.4 (20).   

 

1.2 Risk Factors 

Smoking and alcohol are significant risk factors for HNC and will be discussed in 1.2.1.  

Other risk factors will be considered in sections 1.2.3 – 1.2.8, including diet, HPV, 

periodontal disease and socio-economic status. 

1.2.1 Tobacco and Alcohol 

Tobacco smoking, chewing tobacco and alcohol cause 75% of HNC (21).  Tobacco and 

alcohol act synergistically, as well as independently (21).  The relative risk for heavy 

smokers who consume 100-180g/ethanol per day (a heavy drinker) is 50.1 (95% CI 

33.54 – 74.91), compared to 6.21 (95% CI 3.76–10.24) for heavy smokers who only 

drink 0 – 24g ethanol/day and 2.27 (95% 1.11–4.63) for a heavy drinker who does not 

smoke (22).  The risk of HNC related to smoking increases with increasing frequency, 

duration and pack years (23). (Pack years is calculated as: number of cigarettes 
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smoked per day/20 × number of years smoked).  Earlier age of starting smoking is 

also associated with increased risk (23).  It is known that mortality rates from HNC 

are higher amongst smokers (19).   

The main risk factor in non-smokers is alcohol consumption and in those who do not 

consume alcohol, the main risk factor is smoking (23). Alcohol increases mucosal 

permeability and therefore allows increased uptake of carcinogens (24).  As with 

smoking tobacco, the risk of HNC attributed to alcohol increases with daily quantity, 

duration of consumption and lifetime cumulative consumption (23).  Research has 

been carried out into the effects of different types of alcohol, with varying results 

(25, 26); it appears that the quantity and the alcoholic content of the beverage 

consumed is most important (23). 

1.2.1.1 Smokeless Tobacco 

Smokeless tobacco is widely used in certain populations (27, 28).  Betel quid 

(paan/areca nut) is popular amongst Bangladeshi women and this extends to ethnic 

groups in the UK (28). Risk increases with quantity used and duration of use (23). The 

betel nut is held against the oral mucosa for long periods and may or may not be 

mixed with tobacco. Adding tobacco increases carcinogenesis, and in Asia, the use of 

betel quid is a stronger risk factor for oral cancer than smoking (23).  It seems to exert 

strongest effect on the gingivae, with a markedly increased risk of gingival carcinoma 

amongst users when compared to tongue cancer (23).   

1.2.3 Diet 

Poor diet is thought to account for 10-15% of oral/pharyngeal cancers (23).  Intake 

of fruits and vegetables may protect against HNC (29). A large prospective study 

conducted by the National Institute of Health, in a cohort of 490,802 members of the 

American Association of Retired Persons (NIH-AARP) followed-up from 1995/1996 to 

2000, showed that intake of vegetables had a more profound effect (Hazard Ratio 

[HR] 0.65, 95% CI 0.50-0.85) in reducing the risk of developing HNC than fruits (HR 

0.87, 95%CI 0.68-1.11)(29).  Cereals, butter, olive oil, grilled meat, fresh fish, pork and 

shellfish have all been explored with varying results regarding protective and harmful 

effects (23).  Consuming Maté (a herbal tea from South America) is known to increase 
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risk of oral cancer by 2.5 to 3.7 times (23).  Salted fish, consumed by Chinese 

populations, has also been found to increase the risk of nasopharyngeal carcinomas 

(28). 

1.2.4 Human papillomavirus 

Human papillomavirus infection [HPV] is rapidly emerging as a major cause of 

oropharyngeal cancer (OPC) and is thought to account for 20-25% of HNC (11, 20, 

21).  It is sexually transmitted and, therefore, individuals most at risk are those with 

early-age sexual activity and a high number of sexual partners (30).  A UK multi-centre 

study of HPV status of oropharyngeal cancers revealed that 51.8% (95% CI:49.3 - 

54.4) were HPV positive (31), whilst figures for oral cancer and laryngeal cancer were 

23.5% and 24% respectively (32). Some studies report HPV detection in over 80% of 

oropharyngeal cancers, however it is important to remember that detection does not 

imply causation (10% of benign oral samples were found to be HPV positive) (23).  

Interestingly, the rapid increase in the incidence of OPC (section 1.1.4) is not 

paralleled with an increase in the proportion of HPV-positive cases of OPC (31).  This 

demonstrates the need for further work into the underlying reasons for the 

increasing incidence of OPC cancers. 

1.2.5 Ethnic-Specific Risk Factors 

Ethnicity alone is not considered a risk factor for HNC, however ethnic-specific risk 

factors (such as betel quid use, discussed in 1.2.4) are very important (23). 

Interestingly, oropharyngeal cancer has much lower incidence in ethnic groups 

compared to white males and the incidence is lowest amongst black Africans (28).  

Incidence rates for cancer of the hypopharynx and salivary glands, which are not 

influenced as much by traditional risk factors, are very similar for ethnic minority 

groups and non-ethnic minority groups, which further supports the argument that 

ethnic-specific risk factors are responsible for the higher incidence of other HNC’s in 

ethnic-minority groups, rather than ethnicity alone (28). 

1.2.6 Periodontal Disease 

Periodontal disease and poor oral health have been investigated as possible risk 

factors for HNC. Eliot et al. reported an Odds Ratio [OR] of 1.09 (95%CI 1.02-1.16) for 
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periodontal disease, controlling for smoking, in a case-control study of 513 cases and 

567 controls (33).  This supports the findings of another study which found that 

increasing alveolar bone loss is associated with an increased risk of HNC (34).  

Periodontal disease involves a shift in the bacterial flora in the gums, accompanied 

by a potentially pathogenic inflammatory response, which may lead to alterations in 

the immune system, increased cellular proliferation and the generation of DNA-

damaging free radicals (33). 

1.2.7 Socio-economic Status 

Low socio-economic status (SES) is known to be a risk factor for many diseases and 

has been recognised as a significant risk factor for HNC (35). Although SES is highly 

correlated with other risk factors, such as smoking and alcohol consumption (16), 

there remains a significant proportion of risk associated with social deprivation that 

cannot be attributed to other risk factors (35).   

HNC is more common in low socio-economic groups and those with lower 

educational attainment (OR 1.9, 95%CI 1.6-2.3) (23).  Low educational attainment 

remained as a risk factor for HNC, when controlling for age, sex, smoking, alcohol and 

diet (OR 1.34 95% CI 1.04 – 1.73) in a meta-analysis of 16 studies with 4,395 cases of 

HNC (35).  Low household income was also associated with an increased risk of HNC, 

in a meta-analysis of 8 studies with 1,048 cases of HNC (OR 1.56 95% CI 1.29 – 1.88), 

controlling for age, sex, smoking and alcohol (35).   

A meta-analysis of 41 case-control studies (15,344 cases and 33, 852 controls) 

investigated the impact of SES on oral / oropharyngeal cancer risk. Low income, low 

occupational social class, and low educational attainment were all associated with 

HNC (36). Compared with individuals who were in high SES strata, the pooled ORs for 

the risk of developing oral cancer were 1.85 (95%CI 1.60- 2.15) in 37 studies for those 

with low educational attainment, 1.84 (95%CI 1.47-2.31) in 14 studies for those with 

low occupational social class,  and 2.41 (95%CI 1.59-3.65) in 5 studies for those with 

low income (36).  

 The effect of poor education on health, lack of access to healthcare, hygiene, poor 

nutrition, unfavourable working environments and poor living conditions may 
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contribute to causation of oral cancer via complex interactions with well-established 

risk factors such as smoking and alcohol (35, 36).  The high incidence in Liverpool 

(described in section 1.1.1) is likely to be linked, in part, to social deprivation; 

Liverpool was rated the most deprived local authority in England in 2010 (8). 

1.2.8 Occupational Risk Factors 

The International Agency for Research on Cancer (IARC) consider wood dust and 

leather dust-exposure as risk factors for sino-nasal cancers (37).  A systematic 

review of occupational risk factors for HNCs, based on 14 eligible studies (38), 

concluded that there was an association between exposure to formaldehyde and 

nasopharyngeal (39) and hypopharyngeal cancers (40) (OR 2.7 (95% CI 1.2-6.0) and 

OR 3.78 (95% CI 1.50-9.49) respectively) , wood dust and nasopharyngeal cancer 

(41), coal particles and hypopharyngeal cancer (40), asbestos and pharyngeal 

cancer (42) and leather dust and HNC (42). However, each of these associations is 

only based on an individual study and two of these studies did not control for 

alcohol consumption (39, 41), which increases the risk of confounding.  Seven of the 

included studies did not control for all relevant risk factors such as age, smoking 

and alcohol, therefore the results should be interpreted with caution. 

1.3 The Benefit of Early Detection of HNC 

It is known that early detection of HNC improves outcome, with 5 year survival rates 

of around 80%, compared to those diagnosed with nodal metastases, in whom this 

figure falls to 20% (19, 43, 44).   Presently, most HNCs are TNM (Tumour size, Nodal 

spread, distant Metastasis; TNM Classification of Malignant Tumours) stages 3 or 4 

at diagnosis; in a Danish study of nearly 10,000 HNC cases, 58% were diagnosed at 

late stage.  Risk factors for late stage diagnosis of oral cancer included male gender 

(female gender was protective): OR 0.63 95% CI 0.62 – 0.65), low income (OR 1.83 

95% CI 1.59 – 2.10) and shorter length of education (OR 1.80 95% CI 1.58 – 2.05)(45), 

which supports the role of social deprivation in HNC. 

Treatment of HNC is often multi-modal, including surgery, radiotherapy and/or 

chemoradiotherapy in the curative setting.  For recurrent or metastatic disease 

chemotherapy or immunotherapy may be offered.  Treatment carries significant 
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morbidity; early detection is crucial to the survival of cancer patients and enables less 

invasive treatments, which are associated with less morbidity, such as speech or 

swallowing impairment (46). 

1.3.1 Cancer Screening     

The aim of cancer screening is to detect patients with a high risk of having the disease 

in question.  These individuals would then be offered a diagnostic test to confirm if 

they have the disease.  The hope is that screening would identify cases at an earlier 

stage, which maximises survival.  Cancer screening can also reduce the incidence of 

disease through the accurate detection and treatment of pre-malignant conditions, 

before a cancer develops.  For example, the cervical cancer screening programme in 

the UK has resulted in a large decrease in incidence (OR 0.18 95% CI 0.16 – 0.20; 

females aged 35-64 years regularly screened) (47). 

Despite increased incidence of some cancer types, there has been a decreased 

incidence in age standardised mortality rate from all cancers (US data) (48). This has 

been attributed to the combined effect of early detection due to screening and the 

availability and provision of improved treatment (48).  In the UK there are screening 

programmes in place for breast cancer, bowel cancer and cervical cancer.  Breast 

cancer mortality is 35% lower amongst those who attend for breast screening 

compared to those who do not (OR 0.65 95% CI 0.53 – 0.80) (49) and cervical cancer 

screening prevents 70% (95% CI: 66–73%) of deaths from cervical cancer (47).  

Regular bowel cancer screening reduces the risk of dying from bowel cancer by 15% 

(50, 51). 

There is no current lung cancer screening programme in the UK, although results 

from randomised controlled trials are favourable (52-54).  The European position 

statement on lung cancer screening was published in 2017 and recommends 

European countries should begin planning their respective lung cancer screening 

programmes (55); this statement suggests only high- risk individuals are selected for 

screening and the use of risk prediction modelling to identify such patients.   

No screening programme is currently in place for HNC in the UK and this is partly due 

to the low detection rates demonstrated in studies (56).  Most  screening studies for 
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oral cancer have been completed in India, with varying results (57). It has been 

suggested that more research into targeted screening of high risk individuals is 

needed (58).  The U.S Preventive Task Force published recommendations regarding 

oral cancer and recommended that future research should aim to clearly define high 

risk individuals that will allow the efficacy of screening programmes to be accurately 

assessed.  They also stated that screening high-risk individuals may be cost-effective 

(59).  Screening for oral cancer is usually non-invasive, involving a clinical oral 

examination, whereas screening for other smoking-related cancers, such as lung 

cancer, involves exposure to radiation using a computerised tomographic (CT) scan. 

With any screening programme, there is a risk of false positive diagnosis, unnecessary 

surgery for benign lesions and associated psychological harm, and these effects must 

be carefully balanced against the benefits of screening (55).   

Often, individuals are selected for screening for cancers based on age or gender, e.g. 

the UK bowel cancer screening programme offers flexible sigmoidoscopy at age 55 

years, with two-yearly faecal occult blood test (FOBT) from age 60-74 years (60). 

However, cancers for which an invasive test is required may be targeted though 

screening of high-risk individuals, to balance the risk of harm and benefit (55).  High-

risk individuals can be identified using risk prediction models (section 1.3.2).   

1.3.2 Risk Prediction Models 

In recent years, epidemiological research has played a prominent role in predicting 

individual risk of developing chronic diseases. The potential public health benefits of 

individualised estimates of the probability of developing a disease cannot be 

overemphasised. Because of the public health significance, the National Cancer 

Institute has recognised risk prediction as an area of extraordinary opportunity (58).  

Risk prediction models for cancer are statistical models that estimate the probability 

of developing cancer over a defined period. Risk prediction for HNC would involve 

identifying the risk factors (so-called predictive or prognostic factors) of HNC and 

combining them into probability estimates of predicting HNC, either over a discrete 

time period or over a lifetime. The risk factors included in the model can be 

environmental, behavioural, genetic or psychological attributes of individuals, or any 
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combination of these. The development of a simple-to-use, validated, statistical 

model that estimates the probability of developing HNC over a defined period will 

help clinicians identify individuals at higher risk; this could allow more frequent 

screening in general dental practice and counselling of behavioural changes to 

decrease risk. These types of models will also be useful for designing future 

chemoprevention and screening intervention trials in individuals at high risk of HNC 

in the general population. Although risk models have been developed for cardio-

vascular disease (61), lung (62), breast (58, 63, 64) and colorectal cancer (65), a model 

incorporating oral cancer does not exist. 

Once a risk prediction model has been developed in a sample population, it must be 

validated in independent samples from the same population (internal validation) and 

ideally, within samples from different populations (external validation), to ensure its 

reliability and transportability to different populations.  Results of these internal and 

external validation studies may stimulate the modification of the original model, 

leading to new or modified models being gradually developed over time (66). 

There are a variety of ways of assessing the performance of a model, such as 

sensitivity, specificity and the AUC (area under the receiver operating curve [ROC]) 

(66).  The E/O statistic and c statistic are the most commonly reported statistics in 

relation to risk model performance (67, 68).  The E/O statistic measures the 

calibration performance of the model.  It compares the expected (E) numbers to 

observed (O) numbers of events, so a well-fitting model should have a value close to 

1 (67).  The c-statistic is equivalent to the AUC and it measures the discrimination 

performance of the model.  A value of 0.5 indicates no discrimination between those 

who develop the disease and those who do not, whereas a value of 1 indicates 

perfect discrimination (68).  

1.3.2.1 A risk model for Barrett’s oesophagus 

Barrett’s oesophagus is a pre-malignant oesophageal disease.  A risk model for 

predicting an individual’s risk of Barrett’s oesophagus, as detected by endoscopic 

screening, has been developed (69).  This study included 393 cases and 313 controls 

with non-Barrett inflammation of the oesophagus.  64% of cases were male and >95% 
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of cases and controls were Caucasian.  Variables included in the model were selected 

by a review of the literature and participants were required to complete a 

standardised health and lifestyle questionnaire, to collect information on these 

variables.  Variables included in the final model were selected by 2 phases of stepwise 

backward logistic regression.  The accuracy of the model was then assessed by using 

AUC (c-statistic) and calibration was assessed by using the Hosmer–Lemeshow 

goodness-of-fit test.  An AUC of 0.70 (95% CI, 0.66–0.74) was reported from the 

development dataset.  This was reduced to 0.61 (95% CI 0.56–0.66) in the external 

validation dataset. Performance of the model was good as shown by the goodness-

of-fit test (Hosmer–Lemeshow test, p=0.75).  This model compares favourably with 

the Gail model for breast cancer risk and other cancer risk models (43). 

 

1.3.2.2 A risk model for oesophageal cancer 

Kunzmann et al published a risk model for oesophageal adenocarcinoma, developed 

using the UK Biobank dataset (70), a cohort of over 500,000 adults over the age of 40 

years, recruited and followed up in the United Kingdom (described in detail in Section 

4.3.2).  They used a group of 355,034 adults over the age of 50 years with no cancer 

history at baseline, and identified 220 cases of oesophageal cancer during the 5-year 

follow-up period.  They developed a risk prediction model using Cox regression 

modelling and included variables for age, sex, smoking, body mass index and history 

of oesophageal conditions or treatments.  The discrimination performance was 

excellent with an AUC of 0.80.  They defined a cut off point for high-risk individuals 

and demonstrated that the model had a sensitivity of 77.4% and specificity of 70.4% 

for identifying those with disease. 

1.4 Aims: A Risk Model for Head and Neck Cancer using The UK 

Biobank Dataset 

Head and Neck cancer is a disease that is increasing in incidence and carries 

significant morbidity and mortality.  Efforts must be made to accurately identify high 

risk individuals to inform the design of future trials and to investigate the possibility 
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of screening of high-risk individuals.  Therefore, this thesis centres around building a 

risk model for head and neck cancer using a large, UK based dataset, containing 

extensive information on over 500,000 participants. 

The model was developed using logistic regression modelling (Chapter 6), using data 

from a section of the database containing participants from all areas of the UK 

excluding the North West; the model was validated in the North West cohort 

(Chapter 7).  Further details of the dataset can be found in Chapter 4, along with 

details of the methodology used to develop the model. Chapter 7 presents the 

external validation of the model in the North West Cohort. 

Prior to development and validation of the model, the trends in incidence of the 

disease in the UK will be investigated using data from the Office for National Statistics 

(Chapter 2).  Novel risk factors for head and neck cancer will be explored via a 

systematic review in Chapter 3.    The penultimate chapter will discuss Oral Dysplasia 

(a potentially malignant oral disease) and the potential for the use of risk modelling 

to guide management of this condition (Chapter 8).  The thesis will conclude by 

considering various applications of risk modelling to the field of HNC (Chapter 9). 
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Chapter 2 

 

Trends in the Incidence of Head and 

Neck Cancer in England:  2002 to 

2011 
 

 

 

The work within this Chapter was published in the International Journal of Oncology 

(Appendix 8). 

Trends and Regional Variation in the Incidence of head and neck cancers in England: 

2002-2011.   

McCarthy CE, Field JK, Rajlawat BP, Field EA, Marcus MW. 

Int J Oncol. 2015 Jul;47(1):204-10. doi: 10.3892/ijo.2015.2990. Epub 2015 May 7 
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2.1 Introduction 
Chapter 1 introduced Head and Neck Cancer (HNC) as a disease and described, 

briefly, the problems of increasing incidence and the known risk factors.  Risk 

prediction modelling was also introduced as a method to identify individuals at high 

risk of the disease.  This chapter investigates the incidence of HNC in England 

between 2002 and 2011 using data from the Office for National Statistics (ONS), 

looking specifically at trends for age groups, regions of England and gender. 

2.2 Background 

Head and Neck Cancer (HNC) is the fifth most common cancer worldwide, with over 

550,000 cases reported in 2012, and 12,061 cases in the UK in 2015 (71, 72).  

Incidence of laryngeal cancers has remained stable in recent years, whilst dramatic 

increases in incidence of oropharyngeal cancers have been reported (73).  For a 

definition of HNC sub-sites see Section 1.1. and Fig. 1.1. 

Cancer statistics form part of the evidence base to inform decisions regarding public 

health measures and resource planning.  They can also help to define the need for 

further research in particular areas.  In England, cancer registrations are validated by 

the Office for National Statistics (ONS) following submission of data by the Regional 

cancer registries. The validated data are freely available from the ONS for analysis.  

Regional differences in cancer incidence in England have been reported, with the 

North of England having higher incidence in both males and females, which may be 

linked to increased levels of deprivation (8, 74). 

By 2041, it is estimated that there will be 3.2 million people, in the UK, over the age 

of 85, which is double the amount of 2016 (75).  This ageing population will develop 

more cancers and the analysis of trends in incidence will form an important part of 

health-care planning. 

The aim of this study was to assess overall incidence of HNC in England in 2002-2011.  

The distribution and trends in incidence of HNC’s at specific anatomical subsites have 
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been analysed and trends have been identified in the different Regions of England.  

Trends in incidence between gender and age-categories were also considered. 

2.3 Methods 

Cases of HNC were identified from the Office for National Statistics (ONS) database.  

The ONS collects and publishes data related to the economy, population and society 

in the United Kingdom (UK).  Cancer registration has been conducted in parts of the 

UK since 1929 but national coverage was not achieved until 1962.  Cancer registries 

are now responsible for collecting data on cancer incidence, mortality and survival.  

In England, there are nine cancer registries and each uploads their regional data to a 

repository for validation by the ONS.  The validation process is based on process 

recommended by the International Agency for Research on Cancer.  Following 

internal validation by the ONS, detailed results of annual incidence of all cancers are 

published, categorised by age, gender and region of residence. 

Head and Neck Cancer cases were identified using ICD codes C00-C14 and C30-C32 

(see section 1.1).  The data available included raw numbers and age-

standardised/age-specific rates for males and females in 19 five-year age categories, 

from <1 to 85 years+.  Raw numbers and age-standardised rate ratios were available 

for the Regions (former “Government Offices for the Regions”) of England (Table 2.1).  

Incidence was calculated using cancer registration data and sex- and age-specific 

population data for each region of England, which was available from ONS.   A ten-

year period (2002-2011) was chosen in order to have sufficient data to allow 

examination of recent trends in the incidence of HNC. 
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Table 2.1.  Regions used to Categorise Cancer Statistics, by the Office for National Statistics.  Data on incidence of 
HNC and the sub-groups were analysed according to these Regions. 

Regions used to categorise Cancer Statistics 

North East 

North West 

Yorkshire and Humber 

East Midlands 

West Midlands 

East 

London 

South East 

South West 

 

Data were analysed to look for trends between age categories, gender, region and 

HNC subtypes within this period.  Combinations of these variables were also 

analysed.  There has been a reported increase in the incidence of Human 

papillomavirus-related HNC in recent years, therefore oropharyngeal (C09), base of 

tongue (C01) and tonsillar cancers (C10) were analysed as a subgroup, as these sites 

have most frequently been associated with HPV-infection (31, 32).  This group will be 

referred to as oropharyngeal squamous cell carcinomas (OPSCC).  The HPV status of 

these cancers is not known, however it has been reported that 36-80% of cancers at 

these sites are HPV-associated (31, 32).  This is discussed in more detail in section 

2.5.1.1. 

 Oral Cancer included ICD codes C00, C02-06 and C12-14.  Laryngeal cancers were 

also analysed separately (C32) as they account for a significant proportion of HNC 

(72).  Salivary gland cancers (C07-08), nasopharynx (C11), nasal cavity and middle ear 

(C30) and accessory sinuses (C31) have the lowest incidence of HNC, therefore were 

not analysed separately but included in the overall HNC figures. 

Incident rates are reported as number of new cases per 100,000 person-years and 

are age-standardised according to the 2013 European Standard population.  The ESP 
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is an artificial population structure which allows weighting of incidence or mortality 

data to produced age-standardised rates. This provides an estimate of what the 

incidence rate would be if the age-distribution was the same as the ESP, which allows 

comparison between countries with different population structures.  The study 

population was categorised according to age, region of residence, gender and cancer 

sub-types.   

2.3.1 Statistical Analysis 

Poisson regression models were used to examine time trends in the overall incidence 

of HNCs and time trends in the five-year age categories, region of residence, gender 

and HNC subtypes, between 2002 and 2011.  Poisson regression determines if 

changes occurring across a time series are significant, whilst adjusting for an 

independent variable such as age.   The dependent variable is ‘incidence of head and 

neck cancer’ (or sub-category) and the independent variables were year, age 

category, region of residence and gender. 

 

The Poisson regression equation can be written as  

𝑃(𝑦𝑖|𝑥𝑖; 𝛽) =  
exp(− 𝑒𝑥𝑝(𝑥𝑖

′ 𝛽)) exp (𝑥𝑖
′𝛽)𝑦

𝑦!
 

where 𝑦𝑖 is the incidence of HNC and 𝑥𝑖  is an independent variable (age, region or 

gender).  𝛽 represents the coefficient associated with the independent variable, 𝑥. 

Stata statistical software (StataCorp. 2013 (Stata Statistical Software: Release 13. 

College Station, TX: StataCorp LP) was used to analyse the data and p-values <0.05 

were considered statistically significant. 
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2.4 Results 

In the period 2002-2011, 71,457 HNC’s were reported (69% men, 31% women).  

30,651 were oral cancers, 12,849 were OPSCC and 17,496 were laryngeal cancers.  

62.8% of HNC patients were 60 years or older. 

The number of cases of HNC and the incidence, in 2002 and 2011, are displayed in 

Table 2.2; full data for each year are in Appendix 1. The results are displayed 

graphically in Figure 2.1 for HNC and each sub-type (oral cancer, oropharyngeal 

cancer and laryngeal cancer). 

The average annual incidence in HNC increased by 30.3% from 2002-2011, from 12.2 

to 15.9 per 100,000.  There was a 27% increase in males (17.4 to 22.1 per 100,000; 

p=0.003) and 32% increase in females (7.4-9.8 per 100,000; p=0.004). 

The incidence of OPSCC cancer increased by 45.5% from 1.8 to 3.3 per 100,000 

between 2002-2011 (p<0.001).  In males, the increase was 47.1% (2.7 to 5.1 per 

100,000; p=0.003) and in females 37.5% (1.0 – 1.6 per 100,000; p=0.003).  

Oral Cavity cancer showed a 24.6% increase from 5.2 to 6.9 per 100,000.  For males, 

the increase was 24.1%, from 6.6 to 8.7 per 100,000 (p=0.005) and for females there 

was an increase of 25.5% (3.8 to 5.1 per 100,000) (p=0.004).  

The incidence of laryngeal cancer was stable in comparison, increasing by only 2.9% 

from 3.4 to 3.5 per 100,000 (p=0.32).  
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Table 2.2. Incidence and number of cases of HNC in England from 2002 to 2011 (see Appendix 1 for full data). P-
values for significance of the trend in incidence are presented, with <0.05 considered statistically significant. 

 

 

 

 

 

 

Year         Men         Women  

  2002 2011   2002 2011  

Number of Cases         

         

Head and Neck  4215 5788   1867 2636  

Oral  1611 2271   971 1376  

Oropharyngeal  654 1338   245 434  

Larynx  1374 1506   300 342  

         

Incidence per 100,000    p 

value 

   p value 

Head and Neck  17.4 22.1 0.003  7.4 9.8 0.004   

Oral  6.6 8.7 0.005  3.8 5.1 0.004 

Oropharyngeal  2.7 5.1 0.003  1.0 1.6 0.003 

Larynx  5.7 5.8 0.400  1.2 1.3 0.400 
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Figure 2.1.  The incidence of Head and Neck Cancer (combined), OPSCC, Oral Cancer and Laryngeal Cancer in England: 2002-2011.                     Incidence per 
100,000 persons.  The incidence of HNC, oral cancer and oropharyngeal cancer increased throughout the period 2002-2011, whereas laryngeal cancer 
incidence remained stable. 

                      Males                                             Females 

                       

Oropharyngeal SCC 
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2.4.1 Age 

Figure 2.2 compares incidence rates of HNC and the subtypes, for males and females, 

aged over 40 years, in five-year age-categories between 2002 and 2011.  Age is 

presented in 5-year groups by the ONS and this method of categorisation has been 

used in several other epidemiological studies (76, 77).  

96% of patients with HNC were aged forty years or older (range 96.0-96.7%).  53% of 

cases occurred in persons aged 55 to 75 years.  The highest incidence of HNC 

occurred in those aged 80 years and older (67.3 per 100,000 males and 30.0 per 

100,000 females) but the highest average number of cases occurred in the 60 to 64-

year age category (males: n=783; females: n=279). (See Figure 2.2 “HNC”). 

Oral Cancer also had highest incidence in males and females aged 80-years and older 

(25.4 and 18.7 per 100,000 respectively).  The greatest number of oral cancer cases 

occurred in males aged 55-65 years (n=299) and in females aged 65-75 years (n=136), 

with 31% and 23% of oral cancer cases occurring in these age groups respectively.  

Incidence continued to rise sharply through all age categories for females, whereas 

for males there was no significant increase in incidence beyond 80 years. (See Figure 

2.2 “Oral Cancer”). 

Laryngeal cancer incidence was highest in males and females aged 75 to 85 years 

(24.2 and 4.1 per 100,000 persons respectively), although the greatest number of 

cases was found in those aged 60-70 years (males: n=236 and females: n= 45), with 

20.7% and 32.4% of cases occurring in these age groups respectively.  After a sharp 

increase in incidence between 45 and 74 years, there is a slight decrease in incidence 

in the oldest age categories, although this is non-significant. (See Figure 2.2 

“Laryngeal Cancer”). 

The incidence and total number of OPSCC were highest in males and females age 55 

to 65 years (incidence 11.9 and 3.6 per 100,000 and n=349 and 110 respectively). 

There is a sharp rise in incidence between ages 40 and 60 years, followed by a 

statistically significant decrease in incidence from age 60 years upwards, for both 
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males and females (p=0.002).  16.4% of cases were in the 40 to 49-year age category 

(range 14.2-18.3%), compared to 9.3% (8.7-9.7%) for oral cancer.  (See Figure 2.2 

“Oropharyngeal SCC”). 

2.4.1.1 Trends within Age Categories 

From 2002 to 2011, there was a significant increase in incidence of HNC for males in 

all age categories from 25 to 75 years, although this was most marked for males aged 

55-74 years (incidence increased from 49.7 to 63.6 per 100,000 males).  The largest 

increase was seen in the 55-59-year age category, particularly the second half of the 

ten-year period, with incidence of 41.4 in 2002, 45.0 in 2006 and 67.3 per 100,000 in 

2011. (See Table 2.3). 

Significant increases were also seen in females aged 30 to 40 (Appendix 2) and 50 to 

85 years (Table 2.3), with the largest increase in incidence found in females aged 65-

84 years: the incidence increased from 21.6 to 29.2 per 100,000 females between 

2002 and 2011.  The largest percentage increase was found in females aged 65-69 

(17.4 to 25.5 per 100,000); however, the largest change in incidence was found in the 

80-84-year age category (25.1 to 33.3 per 100,000). 

For OPSCC, in males there was a significant increase in incidence over the ten-year 

period for those aged 40 to 79 years and for females aged 35 to 79 (Table 2.3 and 

Appendix 2).  The incidence more than doubled in males aged 55-59 years (8.3 to 

17.6 per 100,000) and 65-69 years (6.2 to 13.6 per 100,000), which was the highest 

percentage increase for any age group and any HNC subsite. Incidence almost 

doubled in females aged 65-69 years (2.0 to 3.9 per 100,000). 

For oral cancer, the incidence increased significantly for females aged 50 to 84 years 

and males aged 50 to 74 years (Table 2.3).   The highest percentage increase in the 

ten-year period was seen in males aged 60-64 years (18.1 to 26.5 per 100,000) and 

females aged 65-69 years (8.3 to 13.6 per 100,000). 
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No statistically significant increase or decrease was found in any age category for 

laryngeal cancer, for either females or males.  Incidence rates remained relatively 

stable throughout the ten-year period (Appendix 2). 
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Figure 2.2.  Mean incidence, by age category, of Head and Neck Cancer, Oral Cancer, OPSCC and Laryngeal Cancer (per 100,000 persons). (mean of 
incidence per year from 2002-2011).  Incidence of HNC (combined) and oral cancer increases with increasing age. For oropharyngeal caner the incidence 
decreases, after peaking in the 55-59y age category.  The incidence of laryngeal cancer increases markedly, in males, up to the age of 75-70y and reduces 
slightly in the older age categories.   
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Table 2.3. Incidence of Head and Neck, Oral, OPSCC and Laryngeal Cancer in 5 year age-categories, from 2002-2011.   

Significant p values are highlighted in bold. Significant increases in incidence are seen for HNC, oral cancer and OPSCC. The incidence of laryngeal cancer in stable in all age categories. 

Age Category Gender Head and Neck 
 

Oral 
 

OPSCC 
 

Laryngeal 

(years)   2002 2011 p value   2002 2011 p value   2002 2011 p value   2002 2011 p value 

                 
40-44 M 8.1 8.7 0.035 

 
3.5 3.4 0.410 

 
2.1 2.8 0.027 

 
1.2 1.0 >0.05 

 
F 3.0 3.5 0.076 

 
1.2 1.4 0.159 

 
0.5 0.9 0.014 

 
0.4 0.2 >0.05 

  
  

   
  

   
  

   
  

  

45-49 M 18.5 21.3 0.015 
 

7.6 8.5 0.220 
 

5.2 7.3 0.006 
 

3.2 3.3 >0.05 

 
F 5.6 7.3 0.129 

 
2.6 3.1 0.674 

 
1.2 2.0 0.005 

 
0.5 0.8 >0.05 

  
  

   
  

   
  

   
  

  
50-54 M 29.8 33.4 0.022 

 
12.4 13.1 0.027 

 
6.6 12.5 0.005 

 
7.5 5.2 >0.05 

 
F 9.8 14.3 0.006 

 
4.5 7.1 0.032 

 
2.2 3.5 0.010 

 
1.2 1.7 >0.05 

 
 

  
       

  
   

  
  

55-59 M 41.4 57.3 0.004 
 

16.2 22.3 0.007 
 

8.3 17.6 0.004 
 

13.5 12.6 >0.05 

 
F 13.7 19.1 0.009 

 
6.1 8.8 0.005 

 
2.9 5.2 0.009 

 
2.8 1.8 >0.05 

  
  

   
  

   
  

   
  

  
60-64 M 48.2 63.1 0.012 

 
18.1 26.5 0.008 

 
7.7 16.2 0.005 

 
18.1 15.6 >0.05 

 
F 15.9 20.6 0.006 

 
8.4 10.3 0.029 

 
2.6 4.8 0.022 

 
2.6 3.2 >0.05 
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Table 2.3 continued 

Age Category Gender Head and Neck  

 

Oral  OPSCC  Laryngeal 

(years)   2002 2011 Pvalue   2002 2011 pvalue   2002 2011 pvalue   2002 2011 pvalue 

65-69 M 51.9 64.7 0.008 
 

19.5 24.0 0.018 
 

6.2 13.6 0.003 
 

20.8 20.9 >0.05 

 
F 17.4 25.5 0.010 

 
8.3 13.6 0.004 

 
2.0 3.9 0.010 

 
4.1 4.1 >0.05 

  
  

   
  

   
  

   
  

  
70-74 M 57.0 69.3 0.018 

 
18.9 26.9 0.015 

 
6.0 12.5 0.007 

 
24.8 22.7 >0.05 

 
F 22.0 29.1 0.018 

 
11.6 15.9 0.029 

 
3.1 3.5 0.076 

 
4.2 4.6 >0.05 

  
  

   
  

   
  

   
  

  
75-79 M 55.4 66.6 0.120 

 
19.8 24.7 0.207 

 
5.4 7.9 0.022 

 
22.9 24.7 >0.05 

 
F 21.8 29.0 0.006 

 
12.8 17.1 0.010 

 
1.3 2.6 0.032 

 
3.7 4.6 >0.05 

  
  

   
  

   
  

   
  

  
80-84 M 65.0 67.5 0.370 

 
25.7 25.8 0.410 

 
4.6 5.9 0.076 

 
23.4 24.0 >0.05 

 
F 25.1 33.3 0.014 

 
14.8 20.9 0.012 

 
1.9 2.3 0.571 

 
5.0 4.7 >0.05 

  
  

   
  

   
  

   
  

  
85+ M 68.9 79.7 0.546 

 
28.7 30.0 0.596 

 
5.6 4.8 0.499 

 
18.6 26.2 >0.05 

 
F 26.8 32.5 0.076 

 
15.7 19.7 0.096 

 
2.2 1.8 0.784 

 
3.2 3.3 >0.05 
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2.4.2 Gender 

Between 2002 and 2011, on average, 69% of HNC patients were male, giving a 

male:female ratio of 2.1:1.  The ratio of males to females did not change significantly 

between 2002 and 2011 (range 2.1:1 – 2.2:1).  The percentages of male oral cancer 

patients, OPSCC patients and laryngeal cancer patients were 61% (M:F = 1.6:1), 72% 

(2.6:1) and 82% (4.6:1) respectively.  Values quoted relate to patients aged 40 years 

or over. 

Figure 2.3 shows the percentage of male and female cases in each age category for 

each of the HNC types; the mean percentage for 2002-2011 for each age category 

has been used. 

The ratio of males:females with HNC, in terms of total number of cases, increases 

with age up to 55-59 years and then gradually decreases until the oldest age 

category, where there are fractionally more female cases than males (n=234 and 228 

respectively). This trend is more marked for oral cancer, where the proportion of 

males peaks in the 55-59-year age category (70%) and gradually falls, with increasing 

age, to 36.6% in the 85 years and over category, giving a female:male ratio of 1.7:1 

(n=149 and n=85 for females and males respectively).  Laryngeal cancer is the only 

subtype of HNC analysed that did not display a significant decrease in the proportion 

of male:female cases in the older age categories. 

Although the relative number of males affected falls in the older age categories for 

HNC, OPSCC and Oral Cancer, the incidence in males remains higher throughout all 

age categories (Figure 2.3).   
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2.4.3 Regional Variation 

Table 2.4 contains incidence data for all Regions of England.  The North East of 

England has the highest incidence of HNC in England; in 2011 the incidence was 27.6 

and 10.2 per 100,000 for males and females respectively, compared to the lowest 

incidence in London of 17.3 per 100,000 males and 6.8 per 100,000 females.  The 

North East also recorded the highest incidence for the subtypes analysed (OPSCC, 

oral and laryngeal cancers). 
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Figure 2.3. Percentage of Male and Female cases in each age category for HNC, OPSCC, Oral cancer and Laryngeal cancer; results show a 
decline in the male:female ratio with increasing age.  There are more females than males with oral cancer in those aged 80y and over. 
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The North West consistently records the second highest incidence of HNC (24.1 per 

100,000 males and 9.9 per 100,000 females). The greatest number of cases of HNC 

in England are recorded in the North West; an average of 813 male and 348 female 

cases of HNC were recorded each year from 2002-2011, compared to 325 and 132 

respectively in the North East.   

Table 2.4.  Mean Incidence of HNC and each sub-type, per 100000 persons, by Region of England.                                                        
(Mean of values from 2002-2011).  The North East and North West have the highest incidence of HNC and all sub-
groups. 

Region  Head and Neck  OPSCC  Oral  Laryngeal 

 
 Male Female  Male Female  Male Female  Male Female 

North East  26.0 10.0  4.8 1.6  10.2 4.8  8.3 1.8 

North West  24.1 9.9  4.7 1.4  9.2 5.1  7.4 1.7 

Yorkshire&Humber  20.5 8.8  3.9 1.1  7.7 4.5  6.5 1.4 

East Midlands  19.7 9.3  3.7 1.3  7.7 4.9  5.8 1.2 

West Midlands  19.5 8.1  3.8 1.3  7.6 4.5  5.9 1.2 

East  17.2 8.0  3.7 1.2  6.3 4.3  4.9 0.9 

London  16.4 6.8  3.1 1.1  6.4 3.6  4.8 0.9 

South East  17.3 8.2  3.4 1.2  6.7 4.5  4.7 0.8 

South West  20.6 9.0  4.0 1.3  7.8 4.7  5.7 1.0 

 
 

  
 

  
 

  
 

  

From 2002-2011, there was a significant increase in the incidence of HNC in all 

Regions of England.  Figure 2.4 shows the incidence of HNC in the Regions of England 

from 2002-2011, with p-values for significance of the trend.  The most consistent 

increases were found in the South West and Yorkshire & Humber for males, with an 

average annual percentage increase of 3.7% and 3.1% respectively.  The East 

Midlands and North West reported the most consistent increases for females 

(average APC 8.1% and 4.3% respectively). 

The North East showed a statistically significant decrease for Laryngeal cancer in 

males from 2002-2011 (incidence 9.2 per 100,000 to 7.6 per 100,000).  However, the 

East Midlands report a statistically significant increase in incidence for females, from 

0.8 to 1.5 per 100,000.  All other regions display non-significant trends, indicating 

that the incidence of laryngeal cancer is relatively stable. 
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The incidence of Oral Cancer increased significantly in all regions except Yorkshire & 

Humber and the North East, for males and females.  There was no significant increase 

in the East of England for female oral cancers. The East Midlands and South West 

displayed the most consistent increases each year for males and females 

respectively, with average annual percentage change of 5.1% (incidence increased 

from 6.2 to 9.2 per 100,000 from 2002-2011) and 5.7% (incidence increased from 3.5 

to 5.6 per 100,000). 

The incidence of OPSCC significantly increased in males and females in all regions 

except for females in the East and London.   The East Midlands and Yorkshire & 

Humber display the most consistent increases in incidence, in males, between 2002 

and 2011 with average APC of 14.3% (incidence increased from 1.9 to 5.9 per 

100,000) and 8% (incidence increased from 2.6 to 5.1 per 100,000).  In females, the 

most consistent increase was found in the South West, with average APC of 14.1%; 

incidence increased from 0.9 to 2.1 per 100,000 between 2002 and 2011. 
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Figure 2.4. Incidence of Head and Neck Cancer in each Region of England from 2002-2011 with p values for significance of trend.  All regions show a statistically 
significant increase in incidence of HNC for males.  All regions except the North East display a statistically significant increase in incidence of HNC in females. 



   

 
 

34 

 

2.5 Discussion 

Results of an increasing trend in the incidence of HNC in England, between 2002 and 

2011, have been presented in section 2.4.   

Over 96% of patients were aged over 40 years and 68% of HNC patients were male, 

which is similar to figures reported in other studies from England and internationally 

(1, 9, 10, 12, 15, 78). 

The incidence of HNC increased significantly during the study period, as did the 

incidence of OPSCC and oral cancer.  These findings were also observed by Dobaree 

et al in their study of HNC in the South East of England between 1995 and 2004 (1).  

Conway et al observed an increase in oral and pharyngeal cancer rates (C00-C06, C09, 

C10) in England between 1990 and 1999, with incidence in males increasing from 6.5 

to 8.3 per 100,000 and in females from 2.6 to 3.6 per 100,000 (79).  Although our 

results cannot be directly compared due to differences in classification, the trend 

appears to be similar over the two decades. 

There was no significant increase in the incidence of laryngeal cancer between 2002 

and 2011; this finding is also reported by the Oxford Cancer Intelligence Unit in a 

report detailing the profiles of HNC in England.  They found that the incidence of 

laryngeal cancer reduced by 20%, from 3.6 per 100,000 to 3.0 per 100,000, between 

1990 and 2006 but stabilised in the latter five years (73).  This is supported by 

Coupland et al, who found that incidence has decreased from the early 1990’s, 

particularly in those aged over 70 (80).  A reduction in laryngeal cancer incidence in 

males and stable incidence in females has been reported in France, Finland, Norway, 

Denmark, Spain and the Netherlands (10, 17, 71).  The highest incidence of laryngeal 

cancer was found in 75-84 year olds, which is similar to findings reported from the 

Netherlands that 21% of patients are in the 75-85 year age group and 32% are in the 

60-70 year age group (17).   
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2.5.1 Age 

Over half of all HNC patients in England, between 2002-2011, were in the 55-75 year 

age group.    Dobaree et al. reported that 60% of HNC patients in South East England 

were aged 40-69 years between 2000 and 2004 whereas Germany report a slightly 

higher age at diagnosis, with 50% of HNC patients aged 60-79 years (1, 15).  The USA 

report mean age at diagnosis of 62 years (44). 

Over the ten-year period studied, the most marked increases in HNC incidence were 

found in the 55-59 year age category for males and 65-69 year age category for 

females, which is mostly due to the increase in oropharyngeal, base of tongue and 

tonsil cancer as discussed below. 

The highest incidence of oral cancer was found in the over 80’s, for both males and 

females.  The most significant increases in incidence of oral cancer were found in 

males aged 60-64years and females aged 65-69 years.  Results from Portugal show 

that the highest incidence of oral cancer in females is in the over 75 year age group, 

whereas for males the 60-64 year age group has highest incidence, further 

supporting the concept that females with oral cancer tend to be older than males 

(12). 

Oral cancer incidence is increasing in the Netherlands in females, however rates are 

stable in males, which are findings similar to those reported from France (17, 81).  

Other studies have reported reducing incidence of oral cancer; a reduction of 1.5% 

per year was found between 1995 and 2004 in the USA (81), however in the time 

period 2003-2010, there was an annual percentage increase in oral cancers in males 

of 0.2% (44).  In fact, cancers of the tongue increased in males by 2.4% annually 

between 1999 and 2010 and in females by 0.6% annually between 1992 and 2010; 

therefore the trend may have been reversed (44).  This is unlikely to be due to HPV, 

as oral cancers are less commonly associated with HPV infection than oropharyngeal 

cancers (82), and is more likely to be due to smoking and alcohol habits.  The original 

reports of a declining incidence were for the USA as a whole, which is a vast, culturally 

and geographically diverse nation.  Incidence within some states continued to rise 
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during the period of general decline in oral cancer incidence (83) and it may be that 

the increasing incidence in these states has now reversed the general trend. 

2.5.1.1 Oropharyngeal SCC 

Information on HPV-status was not available from the ONS.  However, we classified 

oropharynx, base of tongue and tonsil as a sub-group (OPSCC) in order to study 

trends in incidence at these sub-sites, based on reports in the literature that between 

36% and >80% of cancers at these sites are infected by HPV, implying, but not 

proving, causation (32).  Studies have confirmed 50-55% of oropharyngeal cancers 

are HPV-infected (31) and HPV infection poses an increased risk of developing 

oropharyngeal cancer: OR 3.5 (95%CI 2.1 – 5.9) (84, 85).   

OPSCC affect younger individuals, with the highest incidence found in those aged 55-

65 years; it also affects proportionally more people aged 40-49 years than other head 

and neck cancers.  Higher incidence in older age categories is noted in the other HNC 

sub-types, however incidence of OPSCC decreases in persons aged over 65 years.  The 

incidence of OPSCC doubled in males aged 55-59 and 65-69 years, and almost 

doubled in females aged 65-69 years between 2002 and 2011.  This is in agreement 

with National Cancer Information Service data, which shows that the incidence of 

oropharyngeal cancer doubled in England between 1990 and 2006 (73); this rise is 

thought to be due to HPV-infection.  Forte et al have also reported a marked increase 

in tonsil and base of tongue cancer in Canada, again believed to be due to HPV 

infection (11).  Forte et al report the largest increase in persons aged 50-59 years 

(incidence 4.4 to 8.9 per 100,000 between 1997 and 2009), which is similar to our 

findings in England.  Monteiro et al reported that oropharyngeal cancer in men 

increased by 3.5% per year and in females by 2% per year between 1998 and 2007 in 

Portugal (12); the USA report increasing incidence of oropharyngeal and tonsillar 

cancer of 2.3% annually for males between 1992 and 2010 (13, 44).  Interestingly, a 

0.4% annual reduction in female oropharyngeal and tonsil cancers is reported in the 

USA in the period 1992-2010 (44); the reason for this is unclear.  This HPV-epidemic 

is under intensive research, and cancer statistics will form an important part of public 

health campaigns and health-care planning. 
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2.5.2 Gender 

The ratio of males:females remained relatively stable over the study period 

(approximately 2:1).  The incidence of head and neck cancers in males is higher than 

females throughout all age groups, however the relative proportion of females 

affected increases in the older age categories, probably due to a larger female 

population.  The male:female ratio is most consistent for cancers of the oral cavity; 

there are more female oral cancer patients over 80 years of age than male patients 

(58% and 42% respectively). Females have longer life-expectancy than males and as 

the population of females is much larger in this age group (1,564,400 and 920,700 

respectively in 2011), it is reasonable to expect a higher number of oral cancer cases. 

Laryngeal cancer had the highest ratio of male:female cancers (4.6:1) and this ratio 

is very similar throughout all age groups, even the most elderly, which is different to 

the trend observed with oral cancer:  Coupland reports a male:female ratio of 4.8:1 

for laryngeal cancer in the South East of England between 1985 and 2004 (80). In 

other countries, the ratio is much higher: Lithuania and Portugal have a male:female 

ratio of 25:1 and 36:1 respectively (71).  This is likely to be due to historical differences 

in smoking habits: 50% of men in Lithuania were smokers from the 1990’s to 2002, 

whereas only 10-20% of women smoked (86).  Alcohol consumption is also much 

higher in men in both Lithuania and Portugal (87). 

The incidence in males varies widely from country to country, from 11.9 per 100,000 

in Hungary to 1.8 per 100,000 in Sweden (71).  Smoking and alcohol are major risk 

factors for all HNC, however for laryngeal cancer the Population Attributable Risk 

(PAR) has been found to be 89% compared to 64% for oral cavity cancer. PAR is the 

proportion of the incidence of a disease in a population that can be attributed to a 

particular exposure, in this case smoking and alcohol.  Males also have a higher PAR 

for smoking and alcohol compared to women (74% compared to 57% respectively) 

(88); this may help to explain the much higher incidence in males than females. 

2.5.3 Region 

The North East and North West have the highest incidence of HNC and all subtypes 

analysed, with incidence rates that are consistently above the national average. 
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For HNC overall (C00-14, C30-32), all Regions of England showed a significant 

increase in incidence in the period 2002-2011.  Not all Regions had a statistically 

significant increase in Oral Cancer, but none displayed a decrease in incidence.  

Incidence of OPSCC increased in all Regions for males, particularly the East Midlands 

and Yorkshire & Humber; interestingly Yorkshire & Humber was one of the regions 

with no statistically significant increase in oral cancer incidence.  For females, it was 

the South West with the most marked increase in OPSCC. 

Laryngeal cancer incidence significantly decreased in the North East, although even 

with the decrease, the incidence is still the highest in the country.  A previous report 

has found a decreasing incidence in laryngeal cancer from the North to the South of 

England, thought to be due to the changes in the industrial landscape  and supporting 

the concept of the “North-South divide”, which is a term used to describe gross 

differences in socio-economic status for individuals living in the North and South of 

England (73).   

2.5.3.1 The Relationship between Social Deprivation, Smoking and Alcohol 

It has previously been reported that there is increased incidence of HNC in lower 

socio-economic groups and a link with deprivation has been established (16).  

Smoking and alcohol are the two most significant risk factors for head and neck 

cancer, and differences in the rates of smoking and alcohol consumption could help 

to explain the regional variations in incidence of the disease.  Smoking rates in the 

UK reduced dramatically between 1974 and 2011 (51% to 20% of men and 41% to 

18% of women) but regional variations still exist: in 2011 smoking rates were higher 

in the North West (22%) than the rest of England (20%), although this is not 

statistically significant (89).  Residential area deprivation is a strong independent 

predictor for smoking (OR 1.85 CI 1.57-2.13) and the North West contains over half 

of the 1% most deprived areas of England (90, 91).  Social deprivation is also 

considered as a risk factor for HNC in Section 5.2.2. 

Smoking is more prevalent in the routine and manual occupations than managerial 

and professional (29% vs 14% for males; 26% vs 12% for females) and the percentage 

of never smokers is lower.  It is known that people in lower socio-economic groups 
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are not only more likely to take up smoking but generally start younger, smoke more 

heavily and are less likely to quit smoking, each of which increases their risk of HNC 

(89).   

Heavy drinking on at least one day in the week (>8 units for men, >6 units for women) 

was most common in the North West and Yorkshire & Humber in 2011 (23% vs 18%).  

In contrast to smoking, regular alcohol consumption (at least 5 days per week) is 

more prevalent amongst the managerial/professional group than the 

routine/manual group (19% vs 13% for males) and in those who are in employment 

compared to the unemployed (15% vs 6% for males) (89).   

Smoking and drinking are also closely linked:  according to ONS data (2011), 14% of 

male smokers consumed greater than 12 units of alcohol on one day in the preceding 

week compared to 8% of non-smokers. It has also been found that amongst young 

people aged 11-15 years, occasional and regular smokers are much more likely to 

drink alcohol (OR 2.85 and 3.65 respectively) than non-smokers (92).  

Ethnicity has also been considered as a risk factor, due to the marked differences in 

incidence of HNC around the world.  Incidence of HNC is highest in South and South 

East Asia and the incidence of HNC amongst South East Asians living in the UK is 

higher than in other ethnic groups (3, 93); Csikar et al report incidence of 7.2 per 

100,000 and 6.0 per 100,000 respectively.  They conclude that in areas in which many 

South Asian women live, there may be a higher incidence of head and neck 

(particularly oral) cancer.  However, London has the highest percentage of Indian, 

Bangladeshi and Pakistani persons in England (1.8% of the population) and our study 

shows the incidence of HNC was the lowest of all the Regions (16.4 per 100,000 males 

and 6.8 per 100,000 females) (Figure 2.4).     

Smokeless tobacco use is highest in Bangladeshi women (16% of the Bangladeshi 

population) and this is thought to account for the higher incidence of oral cancer in 

this group (3).  Interestingly, there appears to be no link with deprivation for either 

male or female South Asians, in terms of oral and pharyngeal cancer risk, which 

supports the concept that ethnic-specific risk factors account for the higher incidence 

of oral/HNC in this group of the population (93). 



   

 
 

40 

2.6 Conclusion 
This study has confirmed that the incidence of HNC continues to rise in England.  

Between 2002 and 2011, incidence increased from 12.2 to 15.9 per 100,000.  Oral 

cancer incidence is also increasing, in males and females, whereas incidence of 

laryngeal cancer is stable.  The incidence of OPSCC doubled, in males and females in 

high-risk age-groups, in this ten-year period.  Regional variation exists and further 

work is needed to establish the role of deprivation and socioeconomic status on HNC 

incidence.  Cancer statistics form an important part of healthcare planning and this 

information may be used to inform researchers when planning studies and screening 

programmes in different Regions of England.  

This work has demonstrated a significant increase in the incidence of oral cancers in 

older females, which justifies exploration of novel, female-specific, risk factors for 

HNC.  Chapter 3 will explore female-specific risk factors for head and neck cancer, 

including age at menopause and hormone replacement therapy.    
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Chapter 3 

 

Exploring Novel Risk Factors for 

Head and Neck Cancer 

 

 

 

 

The work within this chapter was published in Oncology Reports (Appendix 8): 

Age at Menopause and Hormone Replacement Therapy as risk factors for Head and 

Neck and Oesophageal Cancer. A systematic review. 

McCarthy CE, Field JK, Marcus MW 

Oncol Rep. 2017 Oct;38(4):1915-1922. doi: 10.3892/or.2017.5867. Epub 2017 Aug 1 
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3.1 Introduction 
Chapter 2 explored the increasing incidence of HNC in England between 2002 and 

2011 and identified an increasing incidence in older females.  This chapter will 

explore novel female-specific risk factors for HNC, using a systematic review of the 

literature. 

3.2 Background 
The ratio of male: female cases of HNC in persons aged 50-60 years is close to 3:1, 

however the gender disparity reduces in the elderly population, with a male:female 

ratio of 1.5:1 in the over-eighties (94). For oesophageal SCC, the male:female ratio is 

lower, at 1.1:1.  

There have been reports of young women with no classic risk factors, developing oral 

cancer (95, 96) and some efforts have been made to explore this (96).  A review of 

risk factors in young adults (<45years) was conducted in the INHANCE consortium (a 

collaboration of HNC researchers, including over 40 member studies) in 2015; a lower 

attributable fraction for smoking and alcohol was detected (19.9% for women <45y 

vs 48.9% for women >45y).  There were proportionally more female HNC cases with 

tongue cancer who were never smokers and never drinkers, across all age categories 

(97).  This contrasts with the commonly accepted fact that smoking and alcohol 

account for most cases of HNC (see Section 1.2.1). 

Hormones are known to play an important role in several cancers, such as breast, 

ovarian and uterine, endometrial, prostate, testis and thyroid cancers.  There have 

also been reports of hormone-related risk factors for squamous cancers, such as 

oesophageal, cervical and lung cancer (98). Whilst hormone-replacement therapy 

(HRT) is a known risk factor for certain cancers (e.g. breast cancer), a recent meta-

analysis found that use of HRT is protective against oesophageal squamous cell 

carcinoma (SCC) (99). Early-menopause has also been linked to increased risk of 

oesophageal SCC (RR 1.32 (95% CI 1.11-1.56) per 5 years younger at menopause) 

(100). Another meta-analysis suggested decreased risk of lung cancer in never-

smoker females who use Hormone Replacement Therapy (HRT) (OR 0.86 (95% CI 

0.75-0.99)) (101).  
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This leads to the hypothesis that hormone levels have a role as a risk factor for 

squamous cancers. There is uncertainty surrounding the role of female hormones 

and the risk of head and neck oesophageal SCC; no systematic review has been 

conducted to address this uncertainty.  

3.3 Aims 
 

The aim of this review is to explain the role of female hormones in relation to the risk 

of head and neck and oesophageal SCC.   

The squamous histology and strong similarities in their epidemiology and aetiology 

justify their combination in this project (102-105), which will address two specific 

questions:  

(i) Is early menopause a risk factor for HNC or oesophageal SCC?  

(ii) Is Hormone Replacement Therapy protective against HNC or oesophageal 

SCC? 

 

3.4 Methods 

3.4.1 Search Strategy  

Electronic databases Medline, Web of Science, Embase and Cochrane were searched 

up to February 11, 2016. Search strategies were developed using medical subject 

headings (MeSH): ("head and neck neoplasms"[MeSH Terms] OR ("head"[All Fields] 

AND "neck"[All Fields] AND "neoplasms"[All Fields]) OR "head and neck 

neoplasms"[All Fields] OR ("head"[All Fields] AND "neck"[All Fields] AND "cancer"[All 

Fields]) OR "head and neck cancer"[All Fields] OR “HNC”[All Fields])) AND 

"oesophageal cancer"[All Fields] OR "esophageal neoplasms"[MeSH Terms] OR 

("esophageal"[All Fields] AND "neoplasms"[All Fields]) OR "esophageal 

neoplasms"[All Fields] OR ("esophageal"[All Fields] AND "cancer"[All Fields]) OR 

"esophageal cancer"[All Fields] AND "hormone replacement therapy"[MeSH Terms] 

OR ("hormone"[All Fields] AND "replacement"[All Fields] AND "therapy"[All Fields]) 

OR "hormone replacement therapy"[All Fields] AND ("female"[MeSH Terms] OR 
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"female"[All Fields]) AND ("hormones"[Pharmacological Action] OR 

"hormones"[MeSH Terms] OR "hormones"[All Fields] OR "hormone"[All Fields]) AND 

"early menopause"[All Fields]) and text words related to hormones and HNC or 

(o)esophageal cancer.  Reference lists were also extensively searched and relevant 

papers obtained.  

3.4.2 Eligibility Criteria 

Randomised controlled trials (RCTs), controlled (non-randomised) clinical trials 

(CCTs) or cluster trials, prospective and retrospective comparative cohort studies, 

case-control or nested case-control studies and cross-sectional studies, addressing 

the question of female hormones as a risk factor for HNC or oesophageal SCC, were 

considered. Studies were included if they:  

(i) Examined the general adult population (age >18 years), specifically 

studies with at least 50 cases of HNC/oesophageal SCC and any number 

healthy controls.  

(ii) Addressed the question of hormone replacement therapy or reproductive 

factors (menopause) and HNC/oesophageal SCC 

(iii) Administered HRT as an intervention for prevention of cancer or being 

taken therapeutically due to symptoms of menopause.  

(iv) Collected data on age at menopause, smoking, alcohol, age and socio-

economic status or educational attainment. 

(v) Reported odds ratios, risk ratios or incidence/prevalence of HNC or 

oesophageal SCC defined using the World Health Organisation (WHO) 

classification of diseases ICD-10 codes, C00-15 and C30-31 (see Section 

1.1) 

Cohort studies were only eligible if follow up time was at least 5 years.  Case series 

and case reports were excluded.  Only studies published in peer-reviewed 

journals, from 1948 to 2016, were considered. These criteria were applied to 

maximise the quality of the evidence considered.   
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3.4.3 Data Extraction 

Titles and/or abstracts of studies retrieved using the search strategy and those from 

additional sources were screened independently by two review authors (Caroline 

McCarthy and Dr. Michael Marcus) to identify studies that potentially met the 

inclusion criteria outlined above. Studies combining HNC with oesophageal 

squamous cell cancers were considered but data were extracted separately for HNC 

and oesophageal cancer where possible. Data were extracted in all forms (e.g. 

dichotomous, continuous) as reported in the included studies. The full texts of these 

potentially eligible studies were independently assessed for eligibility by the same 

authors. Any disagreement over the eligibility of particular studies was resolved 

through discussion with a third reviewer. A data extraction form was developed to 

assess the characteristics and findings of the primary studies (Appendix 3).  

3.4.4 Risk of Bias 

The risk of bias in each study was assessed using the Newcastle-Ottawa Scale (NOS).  

The NOS evaluates risk of bias based on methods used to select patients, 

comparability of groups in the study, methods for assessing outcomes, proof of 

exposure and appropriate follow-up. Studies are categorised as low, medium, high 

or unclear risk of bias, using a star-based scoring system. 8 categories are considered 

in total (see Table 3.1) with one star allocated if the criteria are met (two stars are 

available for the “control” category, as indicated). 
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Table 3.1. Categories for scoring studies using the Newcastle Ottawa Scale.  One star is available for each category 
except ‘Control’ as indicated with *, where two stars are available.  The maximum score is 9 stars.  

Newcastle Ottawa Scale Categories Scores one star if criteria 

fulfilled 

Selection 

1. Representativeness of the exposed cohort  

 

Truly OR somewhat 

representative 

2. Selection of controls  Drawn from same 

community as cohort 

3. Ascertainment of exposure  Secure record OR structured 

interview 

4. Demonstration that outcome of interest 

was not present at start of study  

Yes 

Comparability 

5. Study includes control for confounders  

*two stars available if 

general plus disease-specific 

factors included as control 

Outcome 

6. Assessment of outcome  

 

Independent blind assessment OR 

record linkage 

7. Was follow-up long enough for outcomes 

to occur  

Yes 

8. Adequacy of follow-up cohorts  Complete follow-up OR those 

lost to follow up unlikely to 

introduce bias: description of 

those lost suggests no 

different from those 

followed up OR <20% loss to 

follow up 
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A maximum of 9 stars are available; the higher the number of stars the lower the risk 

of bias. For ease of interpretation, a score of 7 or greater is considered ‘low-risk’ of 

bias, 4-6 is ‘medium-risk’ and 3 or below is considered ‘high-risk’ of bias.  

 

3.5 Results 

The search identified 13 potentially eligible studies following the review of titles and 

abstracts identified from the initial search. One study considered HNC and 

Oesophageal cancer separately, therefore this paper was included in both arms of 

the review. Five papers were excluded, based on insufficient number of cases (n=2), 

failure to report an effect estimate/confidence intervals (n=2) and lack of 

categorisation by histopathological subtype (n=1). Eight studies met the inclusion 

criteria, 3 for HNC and 6 for oesophageal cancer, with one being in both arms (100, 

106-112). The literature search results and selection process are presented in Figure 

3.1 and 3.2, for HNC and Oesophageal cancer respectively.  

 

Figure 3.1. Flow diagram of literature search results and selection process: Head and Neck Cancer 

 

 

257 papers identified from literature 

search 

252 excluded based on title/abstract 

5 potentially relevant papers 

2 excluded after full text review due 

to lack of reporting of effect estimate 

 

3 eligible for inclusion in systematic 

review 
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Figure 3.2. Flow diagram of literature search results and selection process: Oesophageal Cancer 

 

The systematic review includes two cohort studies (one oesophageal/HNC and one 

oesophageal cancer only) (100, 106) with follow-up time of 7.5 and 9.1 years 

respectively. Six case-control studies (four oesophageal cancer and two HNC) (107-

112) were also included. Studies covered the UK (100, 112), USA (106, 107), European 

continent (108, 113) and China (110, 111). 

The mean number of cases per study for the HNC papers was 214 (range 149-297). 

For oesophageal cancer, the mean case number per study was 163 (range 56-578). A 

summary of the demographic data for each study is presented in Table 3.2. 

A summary of the findings regarding use of hormone replacement therapy and risk 

of HNC/Oesophageal SCC is shown in Table 3.3.  Table 3.4 summarises the findings 

regarding age at menopause.  

 

293 papers identified from 

literature search 

278 excluded based on 

title/abstract 

9 potentially relevant papers 

3 excluded after full text review: 

 2 due to insufficient number of cases (<50) 

 1 due to lack of analysis by histopathological subtype 

6 eligible for inclusion in systematic 

review 
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Table 3.2. Demographic characteristics of the studies included in the Systematic Review of Hormone Replacement Therapy and Early Menopause, as risk factors for Head and 
Neck Cancer (HNC) and Oesophageal Cancer. 

 

Cancer Type Studied Author (Year) Country Study Type Participant demographics Time period 

      

HNC/Oesophageal Freedman (2010) USA Cohort 
NIH-AARP Diet and Health Study Cohort, aged 50-71years (median 
follow up 7.5 years) 

1995-2003 

HNC Langevin (2011) USA Case-Control 
Cases of primary HNC and complaint-free hospital controls attending 
ENT department, University of Pittsburgh Medical Center.  

2006-2010 

HNC Bosetti (2000) Italy/Switzerland Case-Control 
Cases of histologically confirmed oral/pharyngeal cancer age <75 
years attending hospitals in Italy/Switzerland and hospital controls 
with acute, non-neoplastic conditions 

1984-1997 

    
  

Oesophageal Lindblad (2006) UK 
Nested Case-
Control 

UK General Practice Research Database (UK GPRD) Cohort aged 50-
84 years 

1994-2001 

      

Oesophageal Gallus (2001) Italy/Switzerland Case-Control 
Cases aged < 79years of histologically confirmed oesophageal SCC 
admitted to study hospitals; hospital controls admitted to the same 
hospitals for acute, non-neoplastic conditions 

1984-1999 

      

Oesophageal Yu (2011) China Case-Control 
Cases of histopathologically confirmed oesophageal SCC; hospital 
based controls confirmed not to have oesophageal cancer. 

2008-2010 

      

Oesophageal Chen (2011) China Case-Control 
Cases of newly diagnosed primary oesophageal cancer; Hospital 
controls with no history of cancer 

2004-2010 

      

Oesophageal Green (2012) UK Cohort 
Million Women Study Cohort (women aged 50-64 years) with mean 
9.1 years follow up 

1996-2008 
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Table 3.3. Results for Hormone Replacement Therapy as a risk factor for HNC and Oesophageal cancer.  Significant Odds Ratios or Hazard Ratios are shown in bold. 

Outcome of Interest Author (Year) Type of Study 
Number of 

cases 
Relative Effect (Odds Ratio 
(OR) or Hazard Ratio (HR)) 

95% 
Confidence 

interval 

Risk of Bias 
(Newcastle Ottawa Scale) 

       

HNC Freedman (2010) Cohort 297 HR 0.78 0.61 – 0.99 Low (8/9) 

HNC Langevin (2011) Case-Control 149 OR 0.47 0.20 – 1.08 Medium (6/9) 

HNC Bosetti (2000) Case-Control 195 OR 0.88 0.45 – 1.72 Medium-High (4/9) 

Oesophageal SCC Lindblad (2006) Nested Case-Control 74 OR 0.93 0.40 - 2.16 Low (9/9) 

Oesophageal SCC Gallus (2001) Case-Control 114 OR 0.32 0.09 – 1.13 Medium-High (4/9) 

Oesophageal SCC Freedman (2010) Cohort 56 HR 0.74 0.42 – 1.26 Low (8/9) 

Oesophageal SCC Yu (2011) Case-Control 88 OR 0.94 0.53 – 1.70 Medium-high (4/9) 
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Outcome of 
Interest 

Author (Year) Type of Study 
Number of 

cases 
Age Relative Effect 

95% Confidence 
interval 

Risk of Bias 
(Newcastle Ottawa 

Scale) 

        

HNC Freedman (2010) Cohort 297 >55 years HR 0.92 0.50-1.71 Low (8/9) 

HNC Bosetti (2000) Case-Control 195 > 50 years OR 0.46 0.30 – 0.70 Medium-High (4/9) 

        

Oesophageal SCC Gallus (2001) Case-Control 114 > 50 years OR 0.43 0.22 – 0.83 Medium-High (4/9) 

Oesophageal SCC Freedman (2010) Cohort 56 increasing age P trend = 0.019  Low (8/9) 

Oesophageal SCC Yu (2011) Case-Control 88 <45 years OR 2.27 1.03 – 4.97 Medium-high (4/9) 

Oesophageal SCC Green (2012) Cohort 578 
Per 5 years 

younger 
RR 1.32 1.11 – 1.56 Low (7/9) 

Oesophageal SCC Chen (2011) Case-Control 68 >48 years OR 0.94 0.31-2.85 Medium (5/10) 

Table 3.4. Age at menopause and risk of HNC and Oesophageal cancer.  Significant Odds Ratios and Hazards Ratios are shown in bold. 
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3.5.1 Hormone Replacement Therapy (HRT) 

3.5.1.1 Head and Neck Cancer 

Three papers (one cohort study and two case-control studies) addressed the question 

of the use of HRT and incidence of HNC.  Only the Freedman et al study (8) was 

considered at ‘low-risk’ of bias, with a Newcastle Ottawa score of 7/9 stars.  This was 

a cohort study conducted in the USA, using the NIH-AARP Diet and Health Cohort of 

125 887 women. 297 cases of HNC were identified with mean follow-up of 7.5 years. 

The risk of HNC was 22% lower for people who had ever used HRT (HR 0.78;95% CI 

0.61-0.99). 44.1% of cases (n=127) had ever used HRT compared to 54.6% of controls 

(n=106934).  

Further analysis by hysterectomy status revealed that the risk reduction was greatest 

for women with an intact uterus who were current users of HRT for >5 years (HR 

0.23;95% CI 0.09-0.57). Interestingly, use of HRT other than oestrogen-alone or 

oestrogen-progesterone therapy conferred a greater risk of HNC (HR 2.31;95% CI 

1.15-4.65); however, this analysis was based on only 9 cases who used an alternative 

HRT.   

Two case-control studies were considered at medium/high risk of bias; they reported 

a non-significant reduction in risk of HNC for ever-users of HRT (107, 108). 

3.5.1.2 Oesophageal SCC 

Four studies analysed HRT use and risk of oesophageal SCC. Two were considered 

low-risk of bias (106, 112) and two were medium/high risk of bias (109, 110). 

Although all studies reported an effect estimate of <1 for users of HRT, implying a 

protective effect, none of the results were statistically significant. 

3.5.2 Age at Menopause 

3.5.2.1 Head and Neck Cancer 

Two studies (106, 108) assessed the link between age at menopause and risk of HNC. 

Bosetti et al (108) found a protective effect of later age at menopause (>50 years), 

with an OR of 0.46 (95% CI 0.30-0.70), although the study was medium-high risk of 

bias (NOS 4/9 stars). Freedman et al (106) found no significant effect on risk of HNC 

with later age at menopause (>55 years) and this study was scored as low risk of bias 

(7/9 stars). 
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3.5.2.2 Oesophageal SCC 

Four out of five studies reported a significant effect of age at menopause and risk of 

oesophageal SCC. The method of reporting varied: Gallus et al (109) reported an OR 

of 0.43 (95% CI 0.22-0.83) for age at menopause of >50 years vs menopause at age 

<45 years. Yu et al. (110) reported an increased risk of oesophageal SCC for women 

entering menopause at <45 years (OR 2.27;95% CI 1.03-4.97) and for 45-49 years (OR 

2.16; 95% CI 1.14-4.78) compared to menopause at age >50 years.  Both of these 

studies were scored as medium-high risk of bias (NOS 4/9 stars).  Green et al (100) 

reported increased risk of oesophageal SCC for every 5 years younger a woman was 

at time of menopause (RR 1.32;95% CI 1.11 – 1.56). Although Freedman et al (106) 

found no significant effect for individual age categories, they did observe a significant 

trend (p=0.019) for lower risk of oesophgeal SCC with older age at menopause.  Green 

(100) and Freedman’s (106) studies were considered low risk of bias, with NOS scores 

of 7/9 and 8/9 respectively (see Table 3.4).  Chen et al (111) (NOS score 5/9; medium 

risk of bias) observed no significant effect for age at menopause, although these 

authors classified older age at menopause as >48 years.  

3.6 Discussion 
This systematic review has considered evidence from a total of eight studies 

investigating the risk of HNC or oesophageal SCC in relation to age at menopause and 

use of hormone replacement therapy: five papers investigated oesophgeal SCC, two 

papers investigated HNC and one paper included both cancers. 

3.6.1 Early Menopause  

The evidence suggests that earlier age at menopause is associated with a higher risk 

of oesophageal cancer, based on 4 studies with a total of 836 cases of oesophageal 

SCC.  

Most women experience the menopause between the ages of 45 and 55 years; the 

median age at menopause is 47.2 years, according to a prospective cohort study of 

over 5000 women enrolled on the Royal College of GP’s Oral Contraception study 

(114). Menopause is ‘early’ in women aged 40-45 years (~5% of women) and 

‘premature’ in women <40years (~1% of women) (115). 
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3.6.1.1 Risk Factors for Early Menopause 

Early menopause is more frequent in women with certain genetic or autoimmune 

disorders, infections or a history of chemotherapy/radiotherapy or surgery to remove 

the ovaries (115). Mean age of menopause for smokers is significantly lower than 

non-smokers (45.6 years vs 46.9 years) (114). Women with early natural menopause 

are more likely to be smokers, ever-users of the oral contraceptive pill, undergone 

tubal ligation, have at least one episode of endometriosis and are less likely to use 

HRT. No association with alcohol, BMI, physical activity or parity (number of children) 

is reported (114).  

Women with diabetes have also been found to be at risk of early menopause (OR 

2.76;95% CI 1.32-5.66) (116). In a pooled analysis of case-control studies, diabetes 

diagnosed at age < 50 years conferred a greater risk of HNC (OR 1.37;95% CI 1.07-

1.74) when analysing 6448 cases of HNC and 13747 controls (117), but no link with 

age at menopause was considered in this study.  

3.6.1.2 Early Menopause and Oesophageal Cancer 

A recent systematic review and meta-analysis by Zhu et al of oesophageal squamous 

cell carcinoma and reproductive factors also found a protective effect for older age 

at menopause (RR=0.70; 95% CI 0.51-0.95) (118). The authors concluded that 

“properly extending the time of menstruation for pre-menopausal women is a 

possible way to reduce the risk of oesophageal SCC” (118).  However, this meta-

analysis was only able to consider evidence from case-control and cohort studies, 

several of which did not report adjusted risk ratios, therefore the authors calculated 

crude risk ratios from the reported data, which may have introduced bias.   

Another meta-analysis, by Wang et al, of eight oesophageal SCC studies, found 

menopausal status was associated with higher risk of oesophageal SCC (RR 1.66; 95% 

CI 1.12-2.48) but age at menopause was not significant (6).  

3.6.1.3 Early Menopause and HNC 

Hashim et al published a pooled analysis of hormone factors in female HNC in 

2017(119).  They used data from 11 studies from around the world, including 1572 
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cases of HNC and 4343 controls.  They report a 69% increased risk for all HNC for 

menopause at less than 52 years (OR 1.69 95% CI 1.06 – 2.71) compared to 

menopause over the age of 52 years, which conferred a non-statistically significant 

increased risk of HNC (OR 1.54 95%CI 0.93 – 2.57).  

 

3.6.2 Hormone Replacement Therapy (HRT) 

Hormone replacement therapy is long-established in the management of symptoms 

of the menopause and has also been shown to reduce risk of osteoporotic fractures, 

cardio-vascular disease, Alzheimer’s, depression, stroke, and colon cancer. 

Approximately 30% of UK women aged 50-74 years used HRT in 2001-2002 (120). 

Following this, a large US-based trial (Women’s Health Initiative - WHI) was 

prematurely stopped due to concerns over evidence of increased risk of breast 

cancer, coronary heart disease, stroke and pulmonary embolism amongst users of 

HRT (121). The UK-based Million Women Study (MWS) also reported increased risk 

of breast cancer with HRT in 2003 (122). Following media coverage of the results of 

these trials, use of HRT declined steadily in the UK for the next 3-4 years. In 2005, 

only 10-11% of menopausal women were using HRT (120).  

However, concerns have been raised by some authors surrounding the reporting of 

the WHI and MWS trial results and the fact little coverage was given to the evidence 

of reduced incidence of osteoporotic fractures and colon cancer (123). Both trials 

recruited women aged over 50 years, therefore the results cannot be applied to 

women who undergo premature menopause (124). HRT for women with premature 

menopause (primary ovarian insufficiency), prescribed up to the age of natural 

menopause (~51 years), is endorsed by the British Menopause Society and NICE 

guidelines. The NICE guidelines also recommend the development of a collaborative 

‘primary ovarian insufficiency’ registry to allow data collection to clarify, amongst 

other factors, the long-term risk of cancers in this group (125).  

3.6.2.1 HRT and Oesophageal Cancer 

The systematic review in this chapter did not find evidence of a significant risk 

reduction for oesophageal cancer amongst users of HRT.  However, all effect 
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estimates were <1 and the studies included contained only modest numbers of 

oesophageal cancer cases: the Freedman et al cohort study included 297 cases of 

HNC and was the only study to report a significant relative risk reduction for HNC in 

users of HRT (HR 0.78; 0.61-0.99).   

In a recent meta-analysis of oesophageal cancer and reproductive factors, the 

authors reported a 33% relative risk reduction with HRT use (RR 0.67; 95% CI 0.56-

0.81) (118). Similar results were reported for reduced risk of gastric cancers (RR 0.77; 

95% CI 0.64-0.92) (126).  

3.6.2.2 HRT and HNC 

The review presented in this chapter found a protective effect of HRT for HNC but 

this was based on one study at low risk of bias (106); Freedman et al report a 22% 

protective effect (HR 0.78;95% CI 0.61-0.99) for ever-users of HRT. 

Hashim et al (119) reported a striking protective effect of HRT for HNC, in their pooled 

analysis (described in 3.6.1.3).  For HNC they report a 42% protective effect (OR 0.58 

95% CI 0.34-0.77) when considering a total of 626 cases and 1,351 controls who had 

ever used HRT.   

The relationship between HRT and female HNC is assessed using the UK Biobank data, 

in Section 5.2.11. 

3.6.2.2 HRT: Confounding Factors 

Confounding factors must be considered: users of HRT tend to be of higher socio-

economic status and have higher levels of education. Both factors would reduce risk 

of HNC. To address this, only studies controlling for a measure of SES or education 

were eligible for inclusion in the review presented in this chapter.  Freedman et al (8) 

controlled for education, alcohol, BMI, tobacco smoking, physical activity and diet 

(fruit and vegetable intake), although residual confounding could still be relevant.  

3.6.3 The Role of Oestrogen deficiency 

3.6.3.1 The Female Survival Advantage 

Females have been found to have survival advantage in head and neck cancer, 

oesophageal, gastric and pancreatic cancer, as well as cancers at 11 other sites. For 

all cancers combined, women have a 5% lower risk of death than men; for head and 
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neck cancer, 12% improved survival is reported (39). This finding is consistent across 

all European regions in the EUROCARE-4 cohort of 1.6 million population-based 

cancer cases (127). The advantage is most pronounced in younger women and 

declines with age, with a marked decline beyond the age of menopause. It is possible 

that female hormones play a part in this 12% improvement in survival. 

3.6.3.2 Oestrogen and Cancer 

Oestrogen is known to promote cancer in oestrogen-responsive tissues, such as 

breast, endometrium and cervix, however evidence from mouse models suggests 

that oestrogen has an inhibitory role in oesophageal SCC growth (128). Oestrogen 

receptors have been found in oesophageal SCC tissue samples and HNCs (128-130). 

Oesophageal SCC cells with oestrogen receptors have been shown to be inhibited by 

oestrogen exposure and this may initiate apoptosis (131). Oestrogen appears to have 

both tumour-promoting and anti-tumour properties, depending on the tissue and 

presence of oestrogen receptors.  Head and neck cancer cell lines, from males and 

females, have been found to contain oestrogen receptors, and laboratory studies 

appear to show that oestrogen promotes growth of HNC cells (132, 133).  

3.6.3.3 Cumulative Oestrogen Exposure 

If oestrogen is responsible for inhibiting the growth of some cancer cells, oestrogen 

deficiency could be considered a risk factor for certain cancers. A woman who 

undergoes premature menopause has less oestrogen exposure over her lifetime and 

this may increase risk of cancers such as oesophageal SCC or HNC. However, further 

high-quality basic science studies are required to confirm the role of oestrogen in 

HNC and oesophageal SCC. 

3.6.4 Limitations 

The studies included in this review were all assessed for risk of bias, using the 

Newcastle Ottawa scale.  Only three of the eight papers included were low risk for 

bias.  This does limit the significance of our findings and is an indication of the need 

for further, high quality studies addressing the issue of female hormones and 

squamous cancers. 

We have only included studies that control for significant potential confounding 

factors, such as smoking and socio-economic status, however, the risk of residual 
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confounding remains.  Smokers are at risk of early menopause, so this is something 

that needs to be properly controlled for in future studies in this area.  Equally, users 

of HRT are likely to be of higher socio-economic status, which is a protective factor 

for HNC; studies should collect data on deprivation so that this might be controlled 

for. 

The rationale for combining head and neck cancer and oesophageal squamous cell 

carcinoma is based on the strong similarities in their epidemiology and aetiology.  We 

have deliberately excluded oesophageal adenocarcinomas as these cancers have 

quite different aetiology.  One of the papers included in our review by Bosetti et al 

(9) fails to clarify the histology of the oral/pharyngeal cancer cases included, which 

introduces a potential source of bias.  However, over 90% of oral cancers and more 

than 80% of pharyngeal cancers are of squamous histology (46), therefore the bias is 

unlikely to be significant.   

3.7 Conclusion 
Earlier age at menopause is a risk factor for oesophageal squamous cell carcinoma, 

with women entering menopause at <45 years having double the risk of those 

entering menopause age >50 years.  Similar, but less striking, results were observed 

for HNC.  Hormone replacement therapy was found to reduce the risk of 

HNC/Oesophageal SCC but the evidence is not conclusive.   

Strict eligibility criteria were used and only studies that controlled for other risk 

factors were considered, however there is still risk of residual bias.   

Data on reproductive factors and exposure to HRT should be collected, as routine 

practice, in future epidemiological and clinical studies of these cancers. The concept 

of oestrogen deficiency as a risk for HNC/oesophageal SCC deserves further 

exploration in appropriate laboratory and clinical studies.  Chapters 2 and 3 have 

demonstrated an increasing incidence of HNC in England and explored novel, female-

specific risk factors.  Chapter 4 describes the methodology used to develop and 

validate a risk prediction model for HNC, using the UK Biobank dataset.  
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Chapter 4 

 

Methodology for developing the 

first risk prediction model for Head 

and Neck Cancer 
 

 

4.1 Introduction 
Chapters 2 and 3 have presented results on the increasing incidence of HNC in 

England and explored novel risk factors for female HNC.  The role of risk modelling in 

cancer prediction was discussed in Chapter 1 (section 1.3 and 1.4).  This chapter will 

describe the methodology used to develop the first risk prediction model for absolute 

risk of HNC, using data from the UK Biobank.  Study design is considered in 4.3 and 

the UK Biobank dataset is described in 4.3.2.  Methods for data cleaning and handling 

of missing data are discussed in 4.3.3, as well as the issue of handling of continuous 

predictors (section 4.3.5).  Logistic regression is discussed in 4.4.4 and the issue of 

number of events per variable (EPV) is considered in 4.4.5.2.  Methods for assessment 

of model performance are briefly covered in 4.5 and expanded later in Chapter 6.    

Finally, the TRIPOD guidelines (Transparent Reporting of a multivariable prediction 

model for Individual Prognosis or Diagnosis) are discussed in 4.6 as an essential 

framework for ensuring that this HNC risk prediction model is robustly developed, 

validated and presented (134, 135). 

4.2 Research Question  
The aim of this study is to develop an internally and externally validated prognostic 

model for predicting an individual’s risk of developing HNC.  This would inform the 
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organisation of future screening programmes for HNC to ensure their efforts and 

finances are focussed on the highest risk individuals. 

The question being addressed is: “Can a large-scale dataset, containing data from 

500,000 individuals, be used to create a risk prediction model, which will accurately 

predict an individual’s risk of developing head and neck cancer?” 

 

4.3 Research Design 

4.3.1 Options for Study Design: Observational Studies 

Observational studies are frequently used to study risk factors and for predicting risk 

of disease.  Randomised controlled trials are not feasible for this type of project as it 

would be unethical to expose people to harmful risk factors (e.g. smoking) in order 

to determine which diseases they develop.  Equally, due to strict inclusion and 

exclusion criteria, the population enrolled may not be representative of the general 

population (136). 

Prospective cohort studies, case-control studies and cross-sectional studies are all 

valid types of observation study, through which to collect data for development of a 

risk prediction model (137).  Time available, budget and rarity of the disease will 

influence the type of study chosen to collect the necessary data. As pre-existing 

databases can be used for developing a risk prediction model, these considerations 

are not relevant, rather it is the quality of the study used to develop the database 

that should be considered. 

4.3.1.1 Prospective Cohort Studies 

Prospective cohort studies have an advantage that participants are disease-free at 

recruitment, therefore the researcher knows that the exposure of interest precedes 

the outcome.  This allows calculation of incidence, rather than simply prevalence (as 

is the case with cross-sectional studies) (137).  The researcher is also able to 

determine cause and effect, rather than simply reporting an ‘association’ between a 

risk factor and a disease, although one must be aware of the risk of confounding, 

even with prospective cohort studies.  Prospective studies also allow the study of rare 

exposures and allow examination of multiple effects of a single exposure (137); for 
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example, one can study the effect of smoking on incidence of cardiovascular disease, 

lung cancer and HNC.   

However, prospective cohort studies are often not appropriate when studying rare 

diseases or those with a long latency period, such as head and neck cancer (138) ; to 

develop a dataset with enough numbers of individuals with the outcome of interest, 

to provide an appropriately powered study, would take many years (137).  

Prospective studies are time-consuming and expensive and there is often an issue of 

differential loss to follow up between those who develop disease and those who do 

not, which introduces bias (139, 140).   

4.3.1.2 Retrospective Cohort Studies 

Retrospective cohort studies involve going back to existing data, developing a cohort 

within this and determining which risk factors were present in those who developed 

the disease. As the study will have been designed without the present question in 

mind (for example risk factors for HNC), it is possible that the dataset will not contain 

all relevant information related to the disease in question, which means that 

potentially relevant risk factors may not be included in the model (136, 141); 

however, retrospective cohort studies are preferred to case-control studies as the 

risk of recall bias is reduced (137).  Recall bias describes the situation whereby those 

with a disease are more likely to remember exposure to risk factors than those 

without the disease.   

4.3.1.3. Case-Control Studies 

Case-control studies compare separate groups of cases and controls retrospectively 

and seek to identify predictors of outcome.  They are particularly useful when 

studying rare diseases, when a cohort study would take too long.  New hypotheses 

can be generated with the findings of case-control studies, which can be tested in 

future prospective studies.  Cases are recruited from a particular population, for 

example patients attending a head and neck cancer clinic; controls may be recruited 

from the general population but are often recruited from hospital patients who do 

not have the disease in question. This introduces selection bias as they may not be 

representative of the general population.  Controls are usually matched to cases in 

terms of age and sex to reduce confounding.  Case-control studies are cost-efficient 
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and allow calculation of odds ratios; they examine the relative importance of a 

predictor (risk factor) in relation to the presence or absence of disease.  A case-

control study is often the only feasible option when there is a long latency period 

between the exposure and outcome (142), e.g. smoking and head and neck cancer. 

4.3.1.4 Nested Case-Control Studies 

Nested case-control studies provide an alternative study design when developing risk 

prediction models.  The ‘nested’ design, whereby the case and control groups are 

nested within an existing cohort database, overcomes some of the disadvantages of 

case-control studies and has some of the advantages of cohort studies (143, 144).  

Those who have developed the disease are ‘cases’ and those who have not are used 

as ‘controls’.  This should mean the cases and controls are more representative of the 

population, when compared to recruiting from a single centre, for example (145).  

The issue of recall bias is also reduced as the data were collected prospectively; 

however, some ‘cases’ may have already had the disease at recruitment.  As with 

retrospective cohort studies, the problem of incomplete data or failure to record 

details of all pertinent risk factors could be a problem with nested case-control 

studies (141). 

4.3.1.5 Existing Databases 

Pre-existing databases are a  convenient source of data (141); data has been collected 

by people other than the researcher and independently of any hypothesis, thereby 

reducing observer bias and standardising data collection.  The main disadvantage is 

that the type of data collected may not be ideally suited to the current hypothesis 

(141).  

4.3.2 The UK Biobank Dataset: a nested case-control study 

To answer the research question posed (“Can we reliably predict an individuals’ risk 

of developing head and neck cancer?”), a nested case-control study design is used 

here.  The case-control study is nested within the UK Biobank dataset, a prospective 

cohort study of over 500,000 individuals.   

The UK Biobank is a UK-based project, which has involved collecting large amounts of 

data from over half a million people from the general population of the United 

Kingdom.  It provides a uniquely rich resource for the study of risk factors, with the 
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aim of helping researchers to understand the causes of diseases and to find better 

ways of preventing and treating many conditions.    

The UK Biobank recruited over 500,000 persons aged 40-69 years between 2006 and 

2010.  These participants have provided detailed information about themselves and 

have agreed to have their health followed; this will develop a powerful resource for 

scientists to discover why some people develop diseases and others do not.  Data on 

a wide range of exposure and health-related outcomes have been collected.   

The UK Biobank was established by the Wellcome Trust (www.wellcome.ac.uk) and 

is supported by many other charities, government bodies and the NHS.   The biobank 

links to several electronic records, including cancer registries, death registers, 

hospital episode statistics and general practice records.  As time goes on, more health 

events will occur, and the resource will become increasingly valuable. 

Researchers can apply to have access to the dataset for a clearly-defined research 

programme and can select which information they receive from several categories 

(e.g. genetic data, population characteristics, health-related outcomes etc.)   The 

application is a two-stage process, preliminary and main application, including a lay 

summary, scientific rationale for the project, feasibility, security protocols for the 

data, funding details and a timeframe for the project.  The application is reviewed by 

the UK Biobank application sub-committee and when approved, charges must be 

paid in full.  

4.3.2.1 Data Protection 

Prior to release of anonymised data to researchers, the principal investigator, their 

institution and any collaborators are required to complete a Material Transfer 

Agreement.  This details the specific purpose for which the data will be used and 

standard terms relating to the dissemination and exploitation of results. See 

Appendix 4. 

In this case, the application process took over one year up to the point the data were 

released, and the cost was £2500,  
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4.3.2.2 Participants 

Researchers within UK Biobank planned to recruit 500,000 participants from the UK; 

this number was based on power calculations, assuming the dataset would mainly be 

used for nested case-control studies.  Further details of the power calculations can 

be found in the UK Biobank Protocol (146). 

Eligible participants were identified from population-based registers, held by the 

NHS.  35 assessment centres were set up around the UK, with 10 million eligible 

people living within 10 miles of an assessment centre.  The importance of good 

transport links, disabled access and availability of evening appointments were 

considered when setting up the assessment centres.   A pilot study of 300 individuals 

was conducted to allow refinement of the protocol.  Based on this, it was estimated 

that around 5 million primary invitations would need to be sent to achieve 

recruitment of 500,000 individuals. 

 

4.3.2.3 Data Collection and Validity of Data 

Participants first completed the consent process via a touch-screen electronic 

system, allowing for direct data entry.  A touch-screen self-administered 

questionnaire was used to collect most data, which has ensured good response-rates 

to sensitive questions, as privacy is maintained when compared to interview.   

A subsequent computer-assisted personal interview was completed, based on 

‘screening’ questions asked as part of the touch-screen questionnaire; for example, 

patients who indicated they had a particular medical condition would be asked 

follow-up questions during the interview.   The full assessment lasts around 90 

minutes.   
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Questions can be divided into the following categories:  

 Sociodemographic factors  

 Smoking and alcohol 

 Family history and early life exposures 

 General health and disability 

 Environmental factors 

 Dietary habits 

 Physical activity 

 Psychological and cognitive state 

The findings of a review of questionnaires used in previous scientific studies and 

trials, as well as consultation with international experts in each area, were used to 

develop the questionnaire used in UK Biobank (146). 

Baseline physical measurements were also recorded by trained staff at the 

recruitment centres; the measurements were chosen based on relevance, reliability 

and resources:  blood pressure, weight, height, waist and hip circumference, bio-

impedance (body-fat), hand-grip strength and bone densitometry were measured 

(146). 

 

4.3.3 Data Cleaning  

Due to the large file size (1.7GB), it was necessary to access the dataset via a 

University of Liverpool virtual machine.  The dataset was imported to R statistical 

software (147).  The UK Biobank dictionary of variables (n=7,800) was then reviewed 

to determine which variables could be removed from the outset, using prior clinical 

knowledge.  Variables that are very unlikely to be risk factors for HNC, for example 

‘number of falls in the last year’ and ‘plays computer games – yes or no’ were 

removed.  

4.3.3.1 Missing Data 

The remaining variables were then assessed for amount of missing data.  Many of the 

questions were only asked to a smaller number of participants, based on answers to 
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previous questions, e.g. specific smoking-related questions were only asked to 

participants who disclosed they had previously smoked.  For this reason, it was not 

possible to create a rule whereby variables were discarded based on amount of 

missing data; variables had to be assessed individually to determine their relevance 

to the research question, based on clinical knowledge and literature.  Missing data is 

discussed in more detail in section 4.4.3.  

As this study requires only baseline characteristics, rather than repeated measures, 

it was necessary to drop a large number of variables representing repeated 

measures; it was noted that these variables had a large amount of missing data (over 

90%) in some cases and therefore would have added little to the analysis. 

A working dataset containing 233 variables, with some relevance to HNC and with 

less than 20% missing data, was created by discarding variables as described.  The full 

list of variables included in the development dataset is presented in Appendix 5.  The 

rationale for retaining these variables in the dataset is discussed in Chapter 5.2.  

4.3.3.2 Inconsistencies in the Data 

Data were assessed for inconsistencies and outliers.  Cancer Registers often have the 

same cancer registered twice, with slightly different/updated information.  Many of 

the HNC cases within the dataset appeared to have had two HNC at the same 

anatomical site, days apart; obvious errors like these were corrected by removing the 

details of the ‘second’ HNC.  The rules applied for managing variables are presented 

in Appendix 6. 

 

4.3.4 Identification of Head and Neck Cancer cases 

International Classification of Disease-10 codes (148) were used to identify patients 

within the dataset who had HNC.  ICD-10 codes C00-C14 and C30-31 were used to 

represent HNC.  Laryngeal cancer was excluded from the initial model; it would be 

useful to consider building a separate model for this disease, due to the differences 

in epidemiology and risk factors.  The male:female for laryngeal cancer ranges from 

4:1 (80) up to 36:1 (71) , compared to 2:1 for oral cancer (149) (see sections 2.4.2 and 

2.5.2).  Smoking and drinking alcohol account for 90% of cases compared to 64% for 
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oral cavity (88).  There have also been differences identified at the molecular level, in 

the pathway of carcinogenesis, when comparing laryngeal cancer and oral cancer 

(150).  Laryngeal lesions are not visible via oral examination, therefore General Dental 

Practitioners (GDPs) are not involved in the detection of laryngeal cancer.  Given that 

the model will be aimed at GDPs it would not be appropriate to include laryngeal 

cancers in this context.  As described, oral and OPSCC have a mixed-aetiology, 

whereas laryngeal cancer has a high PAR for smoking and alcohol, therefore it is 

possible that other relevant risk factors for oral and OPSCC would be masked by 

including laryngeal cancers in the model. For these reasons, a separate model for 

laryngeal cancer can be considered in the future.   

4.3.5 Handling of Continuous Variables: Categorisation and Fractional 

Polynomials 

One of the assumptions of a logistic regression model is that the relationship between 

the log odds of the predictor variable and the outcome variable is linear (151).  There 

are three main options for addressing a non-linear relationship: variables can be 

categorised at arbitrary cut-off points, or fractional polynomials or cubic splines can 

be used (152).  Categorisation of continuous variables reduces power through loss of 

information and can lead to serious bias (153).  Several authors have recommended 

avoiding categorisation or dichotomising of continuous variables (154-156), as 

models developed using categorised variables display poorer performance (157).  

Royston and Altman developed the concept of fractional polynomials as a flexible 

way of modelling a non-linear relationship between predictor and outcome variables 

(158).    Using multivariable fractional polynomials allows us to test for deviation from 

linearity using fractional polynomials to model non-linear effects.  This first involves 

transforming the variable to ensure the value is not less than zero and then applying 

a power function from a pre-determined set of (-3, -2, -1, 0, 1, 2, 3) (159).  

The output of the logistic regression analysis when using fractional polynomials can 

be obscure and difficult to interpret (152).  For this reason, FPs are not used in 

building the logistic regression model for HNC (in Chapter 6) as an easily-interpreted 

output is considered more important than a slight improvement in model 

performance (157).   
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However, categorisation of continuous variables has been avoided to prevent loss of 

data.  Categorisation results in poorer model performance (157) and is thought to be 

unnecessary, biologically implausible and an inefficient use of data (154, 157).  

However, in some cases clinical interpretation is simplified by categorisation: the 

‘Townsend deprivation index’ (160) is presented as a continuous variable, with the 

score commonly categorised into quintiles; one is most deprived and five is least 

deprived, to allow for more meaningful analysis and interpretation of results. 

4.4 Model Development 

4.4.1 Descriptive Analysis 

Individual variables were assessed using descriptive statistics.  Data are presented for 

cases and controls and separated by gender. 

Histograms were used to view data from continuous variables as a crude check for 

normality.  In cases of normally distributed data, a mean and standard deviation is 

presented and a two-sided students t-test was completed.  For skewed data, median 

and interquartile range is presented, along with results of a Mann-Whitney U test of 

significance at the 5% significance level.    

For categorical data, numbers and percentages are shown in each category.  A chi-

squared test was completed where appropriate with a Fisher’s Exact test used when 

the number per cell dropped below 5.  Again a 5% significance level was used. 

4.4.2 Planning Model Validation: Splitting the Dataset 

An important part of model development is internal and external validation of model 

performance and this is discussed in more detail in Sections 4.5, 6.6.2, and 6.6.3.  It 

involves quantifying a model’s performance (based on discrimination and calibration 

of the model) initially internally, i.e. within the data used to develop the model, 

followed by external validation in data not used to develop the model.  This accurate 

estimation of model performance allows us to draw meaningful conclusions 

regarding the model’s predictive accuracy (161).   

This can involve testing the reproducibility of the developed model on different 

samples from the same or similar populations, for example data collected from the 

same population at a different point in time or at a different geographical location.  
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Another form of external validation tests the transportability of the model into 

different populations; in this case a completely independent dataset is used, often 

including patients from entirely different populations.   

In order to be classed as completely external, the validation should be carried out on 

completely independent data, by researchers who did not develop the original 

model.  Completely independent data with sufficient numbers of events and 

containing information on all relevant predictors is difficult to find, thus many models 

that are developed are not tested externally (162). 

With very large datasets, such as the UK Biobank, splitting the dataset into 

development and validation sets is a recognised way of allowing the model to be 

tested ‘externally’.  The validation dataset should have a minimum of 100 events 

(163) and ideally closer to 200 (164).  A non-random split in the data is recommended, 

e.g. data could be split based on geographical location, sex, smoking-habits, or based 

on presence of particular diseases e.g diabetes (163).    

4.4.2.1 Geographical Split of the Dataset 

The UK Biobank data was collected at 22 main assessment centres around the UK.  

The prevalence of HNC is variable around the UK, therefore it was decided to split the 

dataset into development and validation datasets based on geographical location of 

assessment centres.  The data from assessment centres in the North West 

(Manchester, Liverpool, Bury and Stockport) were separated to become the 

‘validation dataset’, containing 157 cases of HNC.  Data from other centres were 

retained for the development dataset.  The North West is known to have a high 

prevalence of HNC, therefore it is useful to validate the prediction model in this 

subset of the population (149).  It is recognised that the North East also has a high 

incidence of HNC (see Section 2.4.3), however, the number of cases from this part of 

England within the dataset (n=92) is less than the North West (n=157) and does not 

reach the minimum 100 cases recommendation (163) (discussed in Section 4.4.2) for 

the validation dataset. 
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4.4.3 Multiple Imputation 

Missing data is a problem common to many studies.  It is possible to simply omit the 

data from the analysis (complete case analysis) but this risks losing potentially useful 

information.  If the data are not missing completely at random, i.e. there is an 

underlying reason for the missingness, one risks severely biasing the results by 

omitting observations with missing data (165).   

Multiple imputation (MI) is a method for mitigating this loss of information, which 

allows the retention of all available information, potentially reduces bias and 

improves efficiency in parameter estimation (166).   MI is a simulation-based 

procedure; each missing value is replaced by m>1 reasonable values, creating m 

complete datasets, which are then analysed using standard statistical 

procedures(166).  The model is developed on each imputed dataset and the model 

estimates and fit statistics are combined using Rubin’s rules (167, 168).   

 

4.4.4 Developing the Risk Prediction Model: Logistic Regression Analysis 

Risk prediction models are used to predict the risk of a future health outcome, in the 

case of HNC, in a presently healthy individual.  To examine the research question, a 

regression analysis is used.  If data are available on time-to-event, a Cox Regression 

can be used.  However, where data regarding time are not available, logistic 

regression is the preferred statistical tool for developing a prediction model. 

A binary logistic regression will be conducted to assess if the independent variables 

predict the dependent variable, “development of head and neck cancer – yes or 

no”.  Binary logistic regression is an appropriate statistical analysis when the purpose 

of research is to assess if a set of independent variables predict a dichotomous 

dependent variable (151).  This type of analysis can be used when the independent 

variables (predictors) are continuous, discrete, or a combination of continuous and 

discrete.  This method of analysis evaluates the odds of membership in one of the 

two outcome groups, based on the combination of predictor variable values.   
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Binary logistic regression analysis overcomes many of the assumptions of linear 

regressions.  For example, linearity between dependent and independent variables, 

normality and equal variances are not assumed, nor is it assumed that the error term 

(residuals) variance is normally distributed.  The major requirement is that the 

outcome variable must be dichotomous.  There should be no multicollinearity among 

the independent variables (i.e. the predictor variables should not be highly correlated 

with each other), there should be no outliers, and there should be a linear 

relationship between the log odds and the independent variable (151).   

4.4.5 Variable Selection 

4.4.5.1 Clinical Significance of Variables vs Univariable Screening 

Univariable screening is not recommended (169, 170); it involves testing all 

predictors individually, i.e. running a logistic regression model for each predictor 

variable, one at a time.  The statistical significance of each predictor is assessed and 

a decision is made whether or not to include the predictor in the final model (see 

below). 

Simply excluding all non-significant variables can wrongly rule out important 

predictors (171) but it is important to acknowledge that including non-significant 

variables may lead to reduced precision of estimation other effects, without 

necessarily adding validity.  In our case, lack of significance will not prevent the 

variable being included in the model, rather the clinical significance of the variable 

will be considered in conjunction with the statistical significance.  Highly correlated 

variables will not be included to avoid bias within the model (151).  Variables will be 

selected for the model if there is robust evidence of a causal association between the 

risk factor and HNC. Evidence from meta-analyses, systematic reviews or large 

observational studies, published in peer-reviewed journals, will be considered.   

4.4.5.2 Events per Variable (EPV) 

The relative number of cases (“Events”) to number of regression coefficients 

estimated (excluding the intercept) is known as the ‘Events Per Variable’ ratio.  This 

has been shown to be a key predictor of model performance (134).  When EPV is low, 
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the association between predictors and the outcome estimated by logistic regression 

can be inaccurate and biased (too extreme) (172, 173).  Models built within small 

datasets suffer the same problem (174).  10 EPV has been adopted as a minimum for 

performing binary logistic regression analysis (135) although more recent work shows 

that the evidence for this figure of 10 is weak as it is based on only three EPV 

simulation studies (173, 175, 176).  The risk of finite sample bias (over-optimistic 

estimates of the true association between predictor and outcome) is higher when 

small datasets are used to estimate logit coefficients (177).  This can be overcome by 

increasing the total sample size, whilst keeping EPV constant i.e. increasing the 

number of non-events or ‘controls’ (177).    

We ensured a minimum of ten events per variable (EPV) in order to reduce bias and 

increase reliability of parameter estimates(175).  We also used a minimum of 10 

controls per case. 

4.4.5.3 Variable Selection for the Final Model 

Selection of variables for the final model can be achieved through various methods, 

when developing a risk prediction model.  Fitting the full model, i.e. with no prior 

variable selection is one method.  More commonly, an element of automatic 

selection, either forward, backwards or stepwise selection is used (151).   

The aim is to develop a model that accurately predicts an individuals’ risk of 

developing head and neck cancer, using a parsimonious multivariable model.  This 

means only including variables (predictors) that improve the fit of the model. 

4.4.5.3.1 Forwards Selection 

Forward selection involves starting with no variables in the model and adding the 

most significant variable (from univariable analysis) first.  One then continues to add 

one variable at a time and test to see if they improve the fit of the model (151, 178).      
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4.4.5.3.2 Backwards Selection 

Backwards selection involves starting with the full model then removing the least 

significant variable (from univariable analysis) and retesting to determine the impact 

on model fit.  This process is repeated until the parsimonious model is achieved.  This 

method evaluates each predictor after accounting for other variables (179).   

4.4.5.3.3 Stepwise Selection 

Stepwise selection is a method that allows moves in either direction, dropping or 

adding variables at the various steps.  Backward stepwise selection involves starting 

off in a backward approach and then possibly adding variables back in if they later 

appear to be significant. The process is one of alternation between choosing the least 

significant variable to drop and then re-considering all dropped variables (except the 

most recently dropped) for re-introduction into the model.  This means that two 

separate significance levels must be chosen for deletion from the model and for 

adding to the model. The second significance must be more stringent than the first 

(151, 178). 

4.4.5.3.4 Forward Stepwise Selection 

Forward stepwise selection is also a possibility, though not as common. In the forward 

approach, variables once entered may be dropped if they are no longer significant as 

other variables are added (178, 180). 

The results of applying data-driven approaches may not be reproducible; it is 

important to always consider the clinically relevant variables for inclusion in the 

model, even if they do not appear to be significant (178).  
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4.5 Model Validation  

Assessment of model validity is a key requirement of a risk prediction model; it 

indicates the usefulness of the model in clinical practice.  This is discussed in detail in 

chapters 6 and 7. 

4.5.1 Apparent Validation 

Apparent validation involves using statistics, such as the Area under the Receiver 

Operating Curve (AUROC) (see 6.6.1) and calibration curve (see 6.6.2) to assess the 

performance of the model (discrimination and calibration) in the data in which it was 

developed. 

4.5.2 Internal Validation 

Internal validation involves assessing model performance within the existing dataset. 

There are different methods commonly used for internal validation: split-

sampling/cross-validation and bootstrapping are discussed in detail in 6.6.3.1 and 

6.6.3.2. 

Briefly, cross-validation involves splitting the dataset into development and 

validation sets, then developing the model in the development set and validating it 

in the validation set.  This process can be repeated several times, taking new random 

subsamples each time, to improve the stability of the cross-validation process (181).  

Bootstrapping replicates the process of sample generation from an underlying 

population by drawing samples with replacement from the original data set, of the 

same size as the original data set (182).  Models may be developed in bootstrap 

samples and tested in the original sample or in those subjects not included in the 

bootstrap sample (183).  This method has been shown to result in more accurate 

estimation of model performance (184, 185). 
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4.5.3 External Validation 

External validation tests the model on completely independent data and indicates 

how well the model adapts to different clinical situations.  In our case, the dataset 

has been split into development and validation sets based on geographical region.  

The model was built using the development dataset, which contains 702 cases of HNC 

and validated within the validation set, containing 157 cases of HNC from the North 

West of England. 

4.6 TRIPOD Guidelines 
The TRIPOD guidelines have been developed by a collaborative group of academics 

and clinicians, with the aim of improving the reporting of risk prediction models (134).  

Moons et al (135) cited 49 papers as examples of poorly-reported risk models, to 

demonstrate the need for guidelines.  Transparent reporting of the model 

development and validation process is vital to ensure the risk of bias can be 

accurately assessed and the usefulness of the model can be determined by 

researchers external to the development process (135).  This will also help 

policymakers decide whether to recommend the use of the model when developing 

clinical practice guidelines (135).  The TRIPOD checklist comprises 22 items covering 

the entirety of the publication of the model: title, abstract, introduction, methods, 

results, discussion, supplementary information and funding (134). The checklist 

encourages publication of coefficients for predictor variables (rather than simply 

odds ratios), so that the model can be tested in external data, by authors not involved 

with the development of the model.  TRIPOD guidelines have been followed in the 

development and validation of the model presented in Chapters 6 and 7.  The TRIPOD 

checklist is in Appendix 7, with links to the relevant sections of this thesis to 

demonstrate compliance with the guideline. 

 

4.7 Conclusion 
This chapter has described the methodology that is used in the development of a risk 

prediction model for predicting absolute risk of HNC.  The dataset is split based on 
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geographical region (Section 4.4.2.1) to allow for subsequent external validation of 

the model (Chapter 7).  The risk model is developed using logistic regression analysis 

and univariable screening and automated variable selection methods are avoided 

(Section 4.4.5.1).  Methods for assessment of model performance are discussed in 

more detail in Chapter 6.   

The next chapter (Chapter 5) describes details of the UK Biobank dataset and presents 

descriptive statistics for each of the predictor variables considered relevant to HNC.   

TRIPOD guidelines are followed throughout the development, validation and 

reporting of this risk prediction model. 
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Chapter 5 

Results: Descriptive Statistics 
 

5.1 Introduction 

The previous chapter described the methodology used to handle the large, UK 

Biobank, dataset and produce a working dataset for development of an HNC risk 

prediction model.  Section 4.4.2 also described how the dataset was split, based on 

geographic region, into development and validation datasets.  This is so that the final 

model may be validated in data from a cohort from the North West of England, which 

was not used to develop the model. 

This chapter contains a description of why these variables were selected, using 

clinical evidence and summary statistics to compare HNC cases with controls (section 

5.2).  A detailed description of the HNC cases can also be found in 5.3, with a 

breakdown of subtypes and outcome.  The variables considered for the risk model 

can be placed into the following categories: 

 Demographic information (section 5.2.1) 

 Social Deprivation (section 5.2.2) 

 Smoking (section 5.2.3) 

 Alcohol (5.2.4) 

 Diet and Exercise (5.2.5 and 5.2.6) 

 Medical History (5.2.7 and 5.2.8) 

 Sexual History (5.2.12) 

 Hormone-related (females only) (5.2.11) 

 Other risk factors (5.2.9, 5.2.10 and 5.2.12) 

5.2. The Results 

Sections 5.2.1 to 5.2.13 consider differences in demographic data, socio-economic 

status, smoking, alcohol, diet, exercise, medical history, baseline measures of current 
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health, engagement with screening programmes, breastfeeding, female-specific 

hormone risk factors, sexual history and other novel risk factors. 

5.2.1 Demographic Information 

The dataset contains 859 cases of Head and Neck Cancer (HNC) and 501,788 controls. 

Table 5.1 summarises the differences in demographics and socioeconomic factors 

between HNC cases and controls. 

534 cases are male (62.2%) and 325 are female (37.8%).   

228,644 controls are males (45.6%) and 273,144 are females (54.4%).   

Male to female ratio of cases is 1.64:1 and for controls 0.82:1 (p<0.001). 

The mean age of the cases is 58.6 years (female) and 58.8 years (male).  Controls were 

significantly younger:  56.3 years (female) and 56.7 years (male); p<0.001 for both 

genders. 

Most cases (90.8%) and controls (91.1%) were born in the UK, with less than 10% of 

participants born elsewhere. 

The UK Biobank contains both prevalent and incident cases of HNC: 552 (64.3%) were 

diagnosed prior to recruitment and 307 (35.7%) were diagnosed post-recruitment.  

The mean time to diagnosis post recruitment was 2.5 years (range 0 – 6.8 years).  The 

mean time between diagnoses and recruitment for prevalent cases was 7.14 years 

(range 0 to 37.9 years).   

The average period at risk per subject was calculated from date of birth to 7 years 

post-recruitment (the most recent available update on cancer registry linkage).  

Total person-time-at-risk was 31,932,329 years with a total of 859 cases.  This gives 

a rate of 0.027 per 1000 person-years.  The average period at risk was 63.5 years. 

 

5.2.2 Socio-Economic Deprivation 

Socio-economic deprivation has been strongly linked with male risk of HNC (35).  One 

marker of area-level deprivation is the Townsend Deprivation Score (160).  This score 
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is calculated from several measures of individual deprivation, from consensus data, 

such as car ownership, education, employment, number of persons per household 

and income.  It has the benefit that it can be calculated from routinely collected data 

(area postcode).  However, it has disadvantages over collecting individual measures 

of deprivation as the data used to calculate the Townsend score is often calculated 

from census data that may be over 12 years old (186).  It also assumes that persons 

living within the same electoral ward are socio-economically homogenous, which is 

unlikely to be true (186).  This makes the Townsend Score particularly inaccurate for 

mobile, inner-city populations.  In a study of alternative measures of health in relation 

to deprivation, annual household income and National Statistics Socio-Economic 

Class  (NS-SEC) (formerly Socio-Economic Group) were found to be two measures 

which account for the largest variation in self-reported health (186).      

Lower level of education has previously been found to confer increased risk of HNC 

in the INHANCE consortium (an international combined cohort study containing 

23,964 cases of HNC); OR 1.34 (1.04-1.73) (35).  Conway et al. also found that those 

with the lowest income had a 56% increased risk of HNC, when controlling for 

smoking, alcohol, diet, age and gender (OR 1.56 (1.29-1.88)) (35). 

Table 5.1 presents the socio-economic data for this UK Biobank data, separated by 

HNC cases and controls and gender.  Within the UK Biobank, 14% of male cases (n=76) 

live in the most deprived areas of the UK (Townsend Deprivation Quintile 5), 

compared with 9% of male controls (n=21,230) (p<0.001).   

There was no statistically significant difference in level of education between cases 

and controls for females or males, although male cases left full time education at a 

statistically significantly younger age than controls (see Table 5.1).  There was a 

significant difference in the employment status between cases and control, with 

significantly more males and female cases being retired and unable to work due to 

illness, compared to controls. This is likely to be explained by the older age of cases 

vs controls and the fact they have diagnosis of HNC. 

In the current study, 30% of male cases (n=138) reported an annual household 

income of <£18,000 in comparison to 20% of controls (n=41,652) (p<0.001).  Figures 
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are similar for female cases and controls, with 33% (n=86) of female cases living in 

households with <£18,000 annual income, compared to 24.8% (n=55,350) of controls.  

The lower income could be attributed to the fact cases tend to be older and are more 

likely to be retired or unable to work due to their illness, although other studies 

support lower income as a risk factor for HNC (35). 
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Table 5.1.  Demographic and Socio-economic Data: Differences between HNC Cases and Controls in the UK Biobank.  p value <0.05 is considered statistically significant.  Bold 
indicates a significant result. 

Variable     Head and Neck case Control p-value   

   Male Female Male Female   

Number 
  

534 325 228,644 273,144 <0.001 
 

 
% 

 
62.2 37.8 45.6 54.4 

  
             

Age at recruitment (mean years (SD)) 58.8 (6.86) 58.6 (6.82) 56.7 (8.20) 56.3 (8.00) Males <0.001 

           Females <0.001 

Townsend Deprivation Quintile 
 

N % N % N % N % 
  

 
1 

 
173 32.4 113 34.8 82,341 36.1 97,981 35.8 Males <0.001 

 
2 

 
107 20.0 75 23.1 53,724 23.5 65,897 24.2 Females 0.61 

 
3 

 
86 16.1 62 19.1 39,835 17.4 49,157 24.2 

  

 
4 

 
92 17.2 41 12.6 31,218 13.7 37,335 13.7 

  

 
5 

 
76 14.2 34 10.5 21,230 9.3 22,443 8.1 

  

Average total annual household income  
         

£ (before tax) < 18,000 
 

138 30.3 86 33.2 41,652 20.7 55,350 24.8 Male <0.001 

 
18,000 - 30,999 

 
112 24.5 90 34.8 49,253 24.4 58,746 26.3 Female <0.001 

 
31,000 - 51,999 

 
113 24.8 44 17.0 53,909 26.7 56,727 25.4 

  

 
52,000 - 100,000 

 
74 16.2 33 12.7 44,577 22.1 41,608 18.7 

  
  >100,000   19 4.2 6 2.3 12,190 6.1 10,719 4.8     
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Table 5.1 continued. Demographic and Socio-economic Data: Differences between HNC Cases and Controls    

Variable Head and Neck case   Control   p-value  

 Male Female Male Female   
Country of Birth N % N % N % N %   
England 398 74.5 243 75.0    179,177  78.7   210,782  77.4 Males 0.04 
Wales 30 5.6 15 4.6       10,135  4.4     11,903  4.4 Females 0.33 
Scotland 60 11.2 28 8.6       17,996  7.9     22,105  8.1   
Northern Ireland 3 0.6 5 1.5         1,438  0.6        1,660  0.6   
ROI 7 1.3 5 1.5         2,112  0.9        2,842  1   
Elsewhere 36 6.7 28 8.6       16,883  7.4     22,972  8.4   

           
Education and Employment           
Age completed full-time education 16 (15 - 17) 16 (15 - 17) 16 (15 - 17) 16 (15 - 18) Male <0.01 
median (IQR)         Female 0.32 
Qualifications N % N % N % N %   
   University/College degree 149 37.9 86 35.7       76,502  41.4     84,475  38.1   
   A/AS levels or equivalent 38 9.7 38 15.8       23,283  12.6     31,976  14.4   
   GCSE's/O-levels 107 27.2 66 27.4       41,976  22.7     63,074  28.4   
   CSE or equivalent 25 6.4 13 5.4       12,269  6.6     14,588  6.6   
   NVQ/HND/HNC 49 12.5 13 5.4       20,516  11.1     12,159  5.5   
   Other professional qualifications 25 6.4 25 10.4       10,134  5.5     15,626  7.1   

           
Employment Status           
In paid employment or self-employed 250 47.3 136 42.6    137,739  61   149,112  55.2 Males <0.01 
Retired 187 35.3 149 46.7       71,242  31.5     95,436  35.3 Females <0.01 
Looking after home/family 1 0.2 9 2.8         1,283  0.6     12,619  4.7   
Unable to work due to sickness/disability 75 14.2 21 6.6         9,304  4.1        7,436  2.8   
Unemployed 16 3.0 0 0.0         5,360  2.4        2,890  1.1   
Doing unpaid/voluntary work 0 0.0 4 1.3            656  0.3        1,668  0.6   
Full or part-time student 0 0.0 0 0.0            461  0.2           883  0.3     
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5.2.3 Smoking  

Smoking is the single largest risk factor for cancers of the head and neck.  66.1% 

(n=353) male HNC cases in the UK Biobank are ever smokers (defined as current or 

former smokers).  50.7% (n=115,892) of male controls are ever smokers; p<0.001 56% 

(n=182) of female cases are ever smoker’s vs 40.1% (n=109,664) of controls; p<0.001.  

Full data are in Table 5.2. 

Consistent with previous reports, HNC cases report smoking more cigarettes per day 

than controls.  Current male smokers with HNC report smoking a mean of 20.7 

cigarettes per day compared to 17.1 for controls.  

Male and female HNC cases, who were smokers, began smoking at a younger age 

than controls, with males beginning around one year earlier (age 16.2 years) and 

females around three years earlier (age 15.8 years). 

Former smokers with HNC stopped at an older age than former smokers in the control 

group pointing to an overall increased duration of smoking among cases. 

Smoking duration was calculated as a new variable by subtracting age stopped 

smoking from age started smoking for former smokers.  For current smokers age at 

baseline – age started smoking was used to calculate smoking duration. 

Pack Years has been used as a measure of smoking exposure for many years, 

however, more recently smoking duration is believed to be a more accurate predictor 

of disease (187, 188).  Peto explains that a 55 year old person who begins smoking at 

age 15 and smokes 0.5 packs per day for 40 years has a greater risk of cancer than if 

they begin smoking at 45 years later but smokes 2 packs per day, even though they 

have smoked for 20 pack years (189).  In this study, pack years of smoking was 

significant, between cases and controls, in males and females.  Male cases had 

smoked for 37.5 pack years vs 25.9 in controls (p<0.001) and females 23.8 vs 20.1 

pack years; p=0.013.   
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5.2.3.1 Involuntary Smoking 

Involuntary, or passive, smoking has been difficult to study in relation to HNC due to 

difficulties in assembling large enough studies including sufficient numbers of never 

smokers.  Lee et al have published the findings from 6 case-control studies from 

within the INHANCE consortium, which contains 542 HNC who are never smokers and 

2,197 never-smoker controls.  They found an increased risk of head and neck cancer 

for those who were exposed to passive smoking in the home for greater than 15 years 

(OR 1.60; 1.12 -2.28; p-value<0.01).  The effect was only seen with this long duration 

of exposure and there was no overall increased risk for ‘ever exposure’ to passive 

smoke.  There have been other reports of an increased risk of HNC in adults who were 

exposed to passive smoke as children (190).  Troy et al. studied 858 cases and 806 

controls and found a 28% increased risk for head and neck cancer (OR 1.28 (95% CI 

1.01 – 1.63)) when controlling for current smoking and other commonly accepted risk 

factors (190).  The study may be subject to recall bias due to the nature of the 

retrospective data collection.  Our study found no difference in number of hours of 

smoke exposure at home or work, for non-smokers.  We did find a significant 

difference between male cases and controls in terms of number of smokers per 

household, however there were only 8 cases who reported >1 smoker in the 

household so the results are unreliable. 
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Table 5.2.  Smoking Related statistics for HNC cases and controls in the UK Biobank Dataset.  t-tests are used to test differences between continuous, normally distributed 
variables and chi-2 tests for categorical variables (with Fischer's Exact where indicated).  Significant p-values are shown in bold (<0.05 is considered statistically significant) 

                                          All   Head and Neck Cases Controls   p-value 
                                           n= 502,647  n=859  n=501,788     

     Male Female Male Female     

   N 534  325  228,644  273,144   <0.001 

   % 62.2  37.8  45.6  54.4     

               
Smoking Status N %  n % n % n % N %    
Never smoker 273,604 54.8  176 33.0 140 43.5 111,320 49.0 161,968 59.6  males <0.001 
Current Smoker 52,989 10.6  102 19.0 35 10.9 28,515 12.5 24,337 9.0  females <0.001 
Previous smoker 173,102 34.6  251 47.0 147 45.6 87,377 38.5 85,327 31.4    

               

No of smokers/household               
0 411,489 81.7  386 72.3 260 80.0 186,617 81.6 224,226 82.0  males 0.04 
1 41,294 8.2  48 9.2 27 8.2 16,890 7.4 24,329 8.9  females 0.94 
>1 5,373 1.1  8 1.5 3 0.8 2,294 1.0 3,068 1.1    

               
Hours of smoke exposure at home (for non-smokers)            

mean (SD) 0.5 
 
(4.5)  0.7  (4.1) 0.5  (3.7) 0.5 (4.4) 0.6  (4.6)  males 0.43 

N 463,475   441  289  203,372  247,269   females 0.81 
Hours of smoke exposure outside the home (for non-smokers)           

               

mean (SD) 0.5 
 
(2.6)  1.3  (5.6) 0.3  (1.0) 0.6  (3.0) 0.4  (2.1)  males 0.4 

N 463,475   409  264  191,847  229,253   females 0.81 
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Table 5.2 continued.  Smoking-related Statistics for HNC cases and controls    

                 All   Head and Neck Cases Controls   p-value 

                    n= 502,647  n=859  n=501,788     

     Male Female Male Female     

 N %  n % n % n % N %    
Smoked at least 100 cigarettes in lifetime (occasional smokers only)          
Yes 60,475 44.0  65 66.3 38 51.4 29,392 49.1 29,949 41.7  males 0.002 

No 71,261 51.8  33 33.7 36 48.6 30,423 50.9 41,800 58.3  females 0.09 

Don't know 5,793 4.2             

               
Type of tobacco smoked                
Current Smokers               
Manufactured Cig 27,336 69.8  36 43.4 23 76.7 11,545 56.5 15,732 84.4  males 0.04 

Hand-rolled cig 9,158 23.4  36 43.4 7 23.3 6,326 31.0 2,789 15.0  females 0.41 

Cigars or pipes 2,668 6.8  11 13.2 0 0.0 2,552 12.5 105 0.6    

               
Former Smokers               
Manufactured Cig 107,507 88.8  159 74.3 99 94.3 54,247 82.8 53,002 96.4  males <0.001 

Hand-rolled cig 7,996 6.7  40 18.7 5 4.7 6,066 9.3 1,885 3.4  females 0.206 

Cigars or pipes 5,326 4.4  15 7.0 1 1.0 5,190 7.9 120 0.2    
None of above 138 0.1             
Prefer not to answer 34 0.0             
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Table 5.2 continued.  Smoking-related Statistics for HNC cases and controls    

All   Head and Neck Cases Controls   p-value 
n= 502647  n=859  n=501788     

     Male Female Male Female     
Age started smoking                
Current Smokers               

mean (SD)  17.9  16.2  (5.2) 15.8  (2.5) 17.5  (5.7) 18.3  (5.9)  males 0.04 

n  39,416  83  30  20,253  18,409   females 0.02 
               
Former Smokers  17.3  17.1  (4.7) 18  (4.0) 16.9  (3.5) 17.8  (3.84)  males 0.43 
n  122,239  211  104  65,306  54,729   females 0.51 
               
No. cigs/per day               

Current Smokers 
mean 
(SD) 15.5  20.7  (11.3) 13.6  (6.6) 17.1  (9.2) 14.1  (7.37)  males 0.00 

 n 52,989  70  30  17,657  18,407   females 0.71 

Former Smokers 
mean 
(SD) 19.1  24.6  (12.6) 17.4  (8.6) 21.2  (11.6) 16.7  (8.5)  males <0.001 

 n 173,102  197  102  59,850  54,473   females 0.38 
Age Stopped Smoking               

 

mean 
(SD) 39.8 (11.6) 45.8  (12.4) 42.7  (11.9) 40.1  (11.6) 39.6  (11.8)  males <0.001 

 n 122,239  212  104  65,258  54,739   females 0.01 
               
Ever Stopped for 6 months n %  n % n % n % n %    
No 67,005 55.8  127 61.7 62 59.0 37,356 58.3 29,460 54.6  males 0.33 
Yes 51,262 42.7  79 38.3 43 41.0 26,693 41.7 24,447 45.4  females 0.37 
Don’t know 1,787 1.5             
 
Table 5.2 continued.  Smoking-related Statistics for HNC cases and controls    
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All   Head and Neck Cases Controls   p-value 
n= 502,647  n=859  n=501,788     

     Male Female Male Female     
Time from waking to first cigarette              

 n %  n % n % n % n %    
<5 mins 5,212 14.0  15 24.6 5 17.3 2,838 16.1 2,263 12.4  males 0.05 
5-15 mins 13,648 36.8  25 41.0 17 58.6 6,478 36.9 6,781 37.2  female 0.08 
30m-1h 10,140 27.4  10 16.4 3 10.3 4,750 27.1 5,082 27.9    
1-2h 3,626 9.8  7 11.4 2 6.9 1,752 10.0 1,750 9.6    
>2h 4,218 11.4  4 6.6 2 6.9 1,729 9.9 2,343 12.9    
Don't know 221 0.6             
Total 37,065              

               
Smoking now compared to ten years previous             

               
More now 6,548 16.7  19 22.9 6 20.0 2,943 14.4 3,580 19.2  males 0.09 
About the same 15,661 40.1  31 37.3 14 46.7 8,511 41.7 7,107 38.2  females 0.56 
Less now 16,917 43.2  33 39.8 10 33.3 8,955 43.9 7,920 42.6    
Total 39,126              

               
Pack Years of Smoking               
               

mean (SD) 23.4 
 
(18.6)  37.5  (27.4) 23.8  (16.3) 25.9  (20.5) 20.1  (15.3)  males <0.001 

n 150,126   206  105  65,641  62,493   females 0.01 
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5.2.4 Alcohol 

Alcohol is known to increase permeability of the oral mucosa and may, therefore, 

increase exposure to smoke carcinogens.  Alcohol and smoking act synergistically to 

increase risk of oral cancer and this is discussed in the Introduction Chapter 1 (section 

1.2.1).   Alcohol alone is a risk factor for HNC; in non-smokers drinking 3 or more 

alcoholic drinks per day doubles an individual’s risk of HNC (OR 2.04 (95% CI 1.29-

3.21)) (191).  Purdue et al showed similar odds ratios for heavy drinkers of beer, wine 

or liquor, implying that quantity rather than type of alcohol is most relevant to risk of 

HNC (192).  In contrast to smoking, it appears that a high intake of alcohol over a 

shorter period confers greater risk of HNC compared to a low intake (1 drink per day) 

over a longer period (192). 

In the present study, 30% (n=163) of male cases report to drink alcohol on a daily 

basis compared to 25% (n=57,751) of male controls (p<0.001).  In contrast to this, 

12% of male cases report complete abstinence vs 6% of controls; this could be due to 

the effects of treatment for HNC or a decision to stop drinking following the diagnosis.  

Results are similar but not statistically significant, for females. 

Amongst male non-drinkers, 84% (n=54) report to be former alcohol-drinkers vs 55% 

of controls.  This supports the assumption regarding the diagnosis of HNC having an 

influence on the current alcohol status.  The majority of male and female cases report 

drinking less alcohol now compared to ten years previously and this was statistically 

significant between cases and controls; p<0.001 males and 0.031 for females. 

When the type of alcohol was studied, male cases were found to drink less wine 

(p=0.001) and more beer than controls.  Males cases consumed an average of 7.7 

pints of beer per week compared to 5 pints for controls (p<0.001).  Cases also 

consumed a greater number of measures of spirits per week compared to controls (3 

vs 2; p=0.001).  Male cases were also less likely to drink alcohol with meals (44% vs 

58%; p<0.001). 

These results are displayed in Table 5.3.
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Table 5.3. Alcohol: Differences between HNC Cases and Controls, in terms of alcohol status, frequency and type of alcohol consumed, in the UK Biobank.  
Significant p-values are shown in bold (<0.05 is considered statistically significant). 

Variable   Head and Neck Cancer Cases     Controls   p-value   

  Male Female   Male Female    

              

Alcohol Status  N % N %  N % N %    

 Never  11 2.1 13 4  6,458 2.9 16,065 5.9 Males <0.001  

Previous  54 10.1 26 8  8,074 3.6 9,961 3.7    

Current  469 87.8 286 88  213,350 93.5 246,377 90.4 Females <0.001  

              

Alcohol Frequency (Current)              

 Daily or almost daily  163 30.5 56 17.1  57,751 25.2 43,822 16 Males <0.001  

3-4 times per wk  109 20.4 71 21.9  59,443 26 55,840 20.3    

 1-2 times wk  123 23 72 22.2  59,011 25.8 70,117 25.7 Females 0.39  

1-3 times per month  33 6.2 36 11.1  20,326 8.9 35,479 13    

Special occasions only  41 7.7 51 15.7  16,819 7.4 41,119 15.2    

Never  65 12.2 39 12  14,532 6.4 26,026 9.5    

Missing  0 0 0 0  762 0.3 741 0.3    
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Table 5.3 continued.  Alcohol-related statistics comparing differences between HNC cases and controls     

Variable   Head and Neck Cancer Cases   Controls p-value 

  Male Female  Male  Female    
             
Alcohol usually taken with meals              
(only asked to those who drink alcohol)   N % N %  N % N %   
 No  161 55.9 40 26.1  50,744 42.4 30,721 23.4 Males <0.001 
             
Yes  127 44.1 113 73.9  68,869 57.6 100,784 76.6 Females 0.42 
             
Alcohol now compared to 10 years previously             
More now  44 9.4 38 13.4  28,039 13.2 47,504 19.5 Males <0.001 
             
About the same  134 28.6 120 42.4  78,088 36.8 94,371 38.7 Females 0.04 

             
Less now  291 62 125 44.2  106,107 50 102,131 41.8   

             
Former Alcohol Drinker (never drinkers only)             
 No  10 15.6 13 33.3  6,397 44.2 15,975 61.6 Males <0.001 

             
Yes  54 84.4 26 66.7  8,074 55.8 9,961 38.4 Females <0.001 
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Table 5.3 continued.  Alcohol-related statistics comparing differences between HNC cases and controls     

Variable  Head and Neck Cancer Cases    Controls   p-value 

   Male   Female  Male   Female      

             
For those who drink at least once per week:             
Weekly number of glasses red wine (125mL)  mean(sd) 3.39 (5.7)  3.59 (5.8)  4.43 (6.3)  3.38 (4.7)  Males <0.01 

  N 394  197  174,936  168,874    

           Females 0.51 

             
Weekly no. of glasses of  mean (sd) 1.71 (4.0)  3.18 (5.2)  2.01 (4.4)  3.32 (5.0)  Males 0.18 

 white wine or champagne (125mL)  N 393  197  174,858  168,687    

           Females 0.71 

             
Weekly pints of beer or cider  mean (sd) 7.70 (9.2)  1.04 (3.1)  5.31 (6.9)  0.62 (1.8)  Males <0.01 

  N 393  198  175,495  169,071    

           Females <0.01 

             
Weekly number of measures of spirits (25cl)  mean (sd) 3.03 (7.9)  2.38 (7.5)  2.22 (6.4)  1.47 (4.0)  Males 0.01 

  N 392  198  174,775  168,471    

           Females <0.01 

             
Weekly glasses of fortified wine (62.5mL)  mean (sd) 0.47 (3.8)  0.27 (1.0)  0.20 (1.3)  0.28 (1.2)  Males <0.01 

  N 392  197  175,199  169,133    

           Females 0.97 

             
Weekly glasses of other alcohol  mean (sd) 0.0 (0.0)  0.1 (0.3)  0.0 (0.6)  0.0 (0.5)  Males 0.48 

    N 121   58   59,200   56,313       
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Table 5.3 continued.  Alcohol-related statistics comparing differences between HNC cases and controls       

Variable    Head and Neck Cancer Cases     Controls   p-value   

   Male   Female   Male   Female     
For those who drink maximum 3x/month:              
Average number of glasses of  mean (sd) 0.45 (1.3)  0.86 (1.3)   1.17 (2.1)  0.91 (1.7)  Males 0.09 

 red wine per month (125mL)  n 26  29   13,309  26,963    

            Females 0.89 

              
Average number of glasses of   mean (sd) 0.15 (0.5)  0.72 (1.1)   0.76 (1.4)  1.11 (1.7)  Males 0.03 

white wine/champagne per month (125mL)  n 26  29   13,300  26,918    

            Females 0.23 

              
Average number of pints of   mean (sd) 4.00 (6.7)  0.41 (1.0)   2.21 (3.5)  0.42 (1.2)  Males 0.01 

beer/cider per month  n 25  29   13,324  27,078    

            Females 0.99 

              
Average number of measures of  mean (sd) 0.36 (0.8)  0.58 (1.1)   0.84 (2.9)  0.70 (1.8)  Males 0.41 

 spirits per month (25cl)  N 25  29   13,273  26,925    

            Females 0.73 

              
Average number of glasses of   mean (sd) 0.04 (0.2)  0.38 (1.2)   0.14 (0.8)  0.17 (0.9)  Males 0.52 

fortified wine per month (62.5mL)   26  29   13,341  27,066    

            Females 0.20 

              
How many glasses of other   mean (sd) 0.00 (0.00)  0.00 (0.00)   0.09 (0.6)  0.12 (0.7)  Males 0.48 

alcoholic drinks per month?   n 26  29   13,354  27,098    

            Females 0.32 
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5.2.5 Diet  

Diet is known to be a risk factor for HNC.  Chuang et al have published evidence of 

the protective effect of fruit and vegetables on the risk of HNC (193).  This study used 

the international INHANCE consortium of studies with 14,520 cases and 22,737 

controls; Consuming fruit 7 or more times per week offered a protective effect of 48% 

(OR 0.52 (95% CI 0.43 – 0.62)) and vegetables OR 0.66 (95% CI 0.49 – 0.90).  In 

contrast, increased intake of red and processed meat conferred a greater risk of HNC: 

eating red meat on 7 or more occasions per week confers a 40% increased risk of HNC 

(OR 1.40 (95% CI 1.13 – 1.74)), similar to processed meat (OR=1.37 (95% CI 1.14-

1.65)). 

The data (Table 5.4) show that cases consume less fruit and raw salad/vegetables 

compared to controls.  On average, cases consumed less than two portions of fruit 

per day compared to controls, who reportedly consumed greater than two portions 

per day. Over a week this equates to a difference of around 3 portions.  This was 

statistically significant for males and females.   

Male cases are more likely to report never eating oily fish, beef or lamb than male 

controls.  Male cases are more likely to always add salt to their food (9.8%; n=52) 

compared to controls (5.2% n=11,818).   

 

5.2.6 Exercise 

Hashibe et al, in their study of risk factors for HNC within the Prostate, Lung, 

Colorectal and Ovarian  (PLCO) cancer cohort  (n=101,182), showed that physical 

activity for more than three hours per week offered a protective effect against HNC 

of around 40%  (OR 0.58  (95%CI 0.35-0.96))(194).   

The INHANCE consortium have reported similar effects, with a risk reduction of 22% 

with moderate physical activity compared to none (OR 0.78 (95%CI 0.66-0.91), in the 

2,283 cases and 5,674 controls studied (195). 

Moderate physical activity is defined, by the World Health Organisation, as 3-6 

Metabolic Equivalents (METs): “One MET is defined as the energy cost of sitting 
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quietly and is equivalent to a caloric consumption of 1kcal/kg/hour. It is estimated 

that compared with sitting quietly, a person's caloric consumption is three to six 

times higher when being moderately active  (3-6 METs) and more than six times 

higher when being vigorously active  (>6 METs)” (196). 

The present study confirms a difference between male cases and controls in terms of 

the number of days of moderate exercise per week.  20% of male cases report no 

moderate exercise compared to 13% of controls; p=<0.001.  Results are mixed, with 

the majority of male cases completing either no moderate exercise or exercising 

seven days per week (20% and 19.4% respectively).  Results for females were not 

statistically significantly different.  Results are presented in Table 5.4. 
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Table 5.4. Diet and Exercise: Differences between HNC Cases and Controls in the UK Biobank Dataset 

 Variable      Head and Neck Cancer Case     Control      

    Male   Females     Males   Females   p-value  

 Salt added to food   n % n %  N % n %   

  Never   253 47.6 205 63.3  121,881 53.4 155,668 57.1  Males   <0.001  

  Sometimes   146 27.4 79 24.4  64,550 28.3 75,881 27.8  Females             0.1  

  Usually   81 15.2 25 7.7  29,824 13.1 28,487 10.5   

  Always   52 9.8 15 4.6  11,818 5.2 12,554 4.6   
              
 Beef               

  Never   68 12.9 54 16.7  18,459 8.1 37,068 13.7  Males   <0.001  

  <1/week   195 37.1 144 44.4  101,233 44.6 125,602 46.3  Female             0.6  

  1/week   171 32.5 90 27.8  78,160 34.4 80,325 29.6   

  2-4/week   89 16.9 35 10.8  28,288 12.5 28,028 10.3   

  5-6/week   1 0.2 1 0.3  579 0.3 330 0.1   

  At least daily   2 0.4 - -  224 0.1 175 0.1   

              

 Bread (number of slices per week)             

  median (IQR)    12 (7 - 20)   8 (4.5 - 14)    14 (8 - 20)    10 (5 - 14)    Males   <0.001  

             Females             0.0  

 Bread type    n   %   n   %    n   %   n   %    

  White   202 41.4 67 22.3  73,221 33.0 54,614 20.8  Males   <0.001  

  Brown   56 11.5 31 10.3  30,643 13.8 29,874 11.6  Females             0.7  

  Wholemeal   219 44.9 189 63.0  111,054 50.1 160,206 62.2   

   Other    11 2.1 13 4.4  6,844 3.1 13,726 5.3     
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Table 5.4 continued.  Diet and Exercise: differences between HNC cases and controls in the UK Biobank dataset     
Variable    Head and Neck Cancer Case     Control      

    Male   Females     Males   Females   p-value  

 Cereal (number of bowls per week)             

  median (IQR)    5 (2-7)   6 (3 -7)    5 (2-7)   5 (3-7)   Males             0.2  

             Females  
           
0.0  

 Cheese    n % n %  N % n %   

  Never   21 4.1 12 3.8  6,531 2.9 7,010 2.6  Males             0.4  

  <1/week   70 13.6 61 19.1  32,324 14.6 52,318 19.7  Females             0.4  

  1/week   112 21.8 72 22.6  46,092 20.7 58,552 22.1   

  2-4/week   253 49.0 127 39.8  106,018 47.7 114,255 43.1   

  5-6/week   43 8.3 37 11.6  22,844 10.3 23,581 8.9   

  At least daily   17 3.3 10 3.1  8,423 3.8 9,400 3.6   
              
 Coffee (number of cups per day including decaf)            

    2 (1-4)   2 (1-3)    2 (1-3)   2 (0 - 3)   Males             0.8  

             Females  
           
0.0  

 Coffee Type              

  Decaf   53 13.4 55 22.3  27,379 15.3 46,913 22.9  Males             0.4  

  Instant   243 61.4 143 57.9  106,286 59.4 108,328 52.9  Females             0.3  

  Ground   91 23.0 44 17.8  42,450 23.7 45,376 22.1   

  Other   9 2.3 5 2.0  2,760 1.5 4,373 2.1   
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Table 5.4 continued.  Diet and Exercise: differences between HNC cases and controls in the UK Biobank dataset     
 Variable     Head and Neck Cancer Case     Control      

    Male   Females     Males   Females   p-value  

 Cooked Vegetables (number of tbsp per day)          

median (IQR)    2 (2 - 3)   2 (2 -3)    2 (2 -3)   3 (2 - 3)   Males  
           
0.9  

            Females  
           
0.0  

             
 Oily Fish intake         n         %          n       %          n        %         n        %   

 Never               79           15.2              33           10.2             25,716           11.4            29,033           10.7   Males  
           
0.0  

 <1/week             182           34.9            107           33.0             78,377           34.6            86,266           31.8   Females  
           
0.8  

 1/week             172           33.0            117           36.1             82,456           36.4         105,796           39.0    
 2-4/week               77           14.8              63           19.4             37,226           16.4            48,058           17.7    
 5-6/week                 7             1.3                3             0.9               1,945             0.9              1,639             0.6    
 At least daily                 4             0.8                1             0.3                  712             0.3                 495             0.2    
             
 Non-oily fish intake             

Never              39             7.4              16             4.9             10,199             4.5            13,249             4.9   Males  
           
0.0  

<1/week            156           29.6              87           26.9             67,683           29.8            76,958           28.4   Females  
           
0.9  

1/week            238           45.1            170           52.5          112,835           49.8         135,216           49.8    
2-4/week              90           17.1              50           15.4             34,364           15.1            44,374           16.4    
5-6/week                3             0.6                1             0.3               1,190             0.5              1,194             0.4    
At least daily                2             0.4               0               0.0                         369             0.2                 438             0.2      
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Table 5.4 continued.  Diet and Exercise: differences between HNC cases and controls in the UK Biobank dataset

Processed Meat

Never 45           8.5          47           14.5        12,367         5.4          34,368         12.6        Males 0.0          

<1/week 101         19.1        118         36.3        48,674         21.4        103,488      38.0        Females 0.8          

1/week 152         28.7        93           28.6        67,777         29.8        78,050         28.7        

2-4/week 198         37.4        62           19.1        83,941         36.9        51,158         18.8        

5-6/week 24           4.5          5              1.5          11,689         5.1          3,952           1.5          

At least daily 10           1.9          -          -          3,079           1.4          1,016           0.4          

Salad and Raw Vegetables (no. heaped tbsp/day)

mean (sd) 1.8          (1.9) 2.2          (1.8) 2.0                (2.2) 2.5                (2.1) Males 0.0          

n 484         318         210,386      260,166      Females 0.0          

Fruit Mean no. pieces per day (SD) Males <0.001

N 501         317         217,226      265,479      Females <0.001

Lamb n % n % n % n %

Never 102         19.4        74           22.9        32,921         14.6        55,618         20.5        Males  <0.01

<1/week 244         46.4        168         52.0        128,399      56.7        152,982      56.5        Females 0.6          

1/week 156         29.7        75           23.2        56,388         24.9        55,716         20.6        

2-4/week 22           4.2          6              1.9          8,321           3.7          645               2.4          

5-6/week 1              0.2          -          -          196               0.1          125               0.1          

At least daily 1              0.2          -          -          136               0.1          105               0.0          

2.44 (1.58)2.11 (1.62)2.10 (1.36)1.69 (1.45)

Head and Neck Cancer Case Control

p-valueMale Females Males Females
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Table 5.4 continued.  Diet and Exercise: differences between HNC cases and controls in the UK Biobank dataset    

Table 5.4 continued.  Diet and Exercise: differences between HNC cases and controls in the UK Biobank dataset     
Variable    Head and Neck Cancer Case     Control      

    Male   Females     Males   Females   p-value  

 Type of Milk   N % N %  N % N %   

  Full cream   95 17.9 28 8.6  20,913 9.2 13,584 5.0  Males  <0.01  

  Semi-skimmed  314 59.1 195 60.2  154,758 67.1 167,705 61.5  Females  <0.01  

  Skimmed   85 16.0 67 20.7  36,683 16.3 63,795 23.4   

  Soya   14 2.6 15 4.6  5,592 2.5 14,035 5.2   

  Other   9 1.7 7 2.2  2,671 1.2 3,819 1.4   

  Never have milk  14 2.6 12 3.7  7,157 3.7 9,553 3.5   
              
 Pork               

  Never   106 20.2 74 23.1  31,173 13.8 55,158 20.4  Males   <0.001  

  <1/week   251 47.4 176 54.8  129,164 57.0 153,250 56.5  Females  0.5  

  1/week   147 28.2 67 20.9  55,748 24.6 55,180 20.4   

  2-4/week   19 3.3 4 1.3  9,885 4.4 7,228 2.7   

  5-6/week   1 0.2        0 0.0  327 0.1 142 0.1   

  At least daily   1 0.2        0 0.0  154 0.1 93 <0.1   
              
 Poultry               

  Never   45 8.5 29 8.9  8,822 3.9 16,759 6.2  Males  <0.01  

  <1/week   71 13.4 35 10.8  25,849 11.4 28,011 10.3  Females  0.4  

  1/week   188 35.0 112 34.5  84,290 37.1 95,091 34.9   

  2-4/week   212 40.0 143 44.0  103,370 45.4 126,091 46.3   

  5-6/week   90 1.7 5 1.5  4,497 2.0 5,464 2.0   

  At least daily   5 0.9 1 0.3  702 0.3 771 0.3   
              
Water 
 (no. glasses/day)  Median (IQR)    2 (1 - 4)   3 (2 -4)    2 (1 -4)   3 (2 -4)   Males  < 0.01  

   n  499 306  207,634 256,058  Females  0.4  
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 Variable   Head and Neck Cancer Case     Control      

    Male   Females     Males   Females   p-value  

 Moderate Exercise for at least 10 minutes          

 (number of days per week)            

          0            100           20.0              45           14.6             28,813           13.2            32,221           12.6   Males   <0.001  

                      1               25             5.0              30             9.7             18,657             8.5            19,578             7.7   Females       0.2  

                      2               72           14.4              39           12.6             31,701           14.5            37,988           14.8    

                      3               54           10.8              53           17.2             30,585           13.9            40,815           16.0    

                      4               46             9.2              38           12.3             20,571             9.4            26,546           10.4    

                      5               65           13.0              43           13.9             35,677           16.3            35,657           13.9    

                      6               42             8.4              15             4.9             14,412             6.6            11,967             4.7    

                      7               97           19.4              46           14.9             38,187           17.4            51,176           20.0    
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5.2.7 Medical History  

5.2.7.1 Diabetes 

The percentage of cases and controls with diabetes did not differ significantly, for 

males (6.8-7%) or females (3.1 -3.8%).  However, female cases with diabetes were 

diagnosed with diabetes at a significantly older age than female controls (61years vs 

54 years; n=8).  The low number of females with HNC and diabetes (n=8) limits the 

significance of this finding (see Table 5.5) 

Diabetes is associated with several other chronic health problems including an 

increased risk of cancers.  A pooled analysis of 12 case-controls studies within the 

INHANCE consortium (117) showed an increased risk of HNC for women with 

diabetes, particularly never smokers (OR 1.70 95% CI (1.25 – 2.32); n=39).  Overall, a 

diagnosis of type two diabetes conferred increased risk of 33% (OR 1.33; 95%CI 1.02 

– 1.73; n=118), when controlling for age, sex, education, centre, smoking, alcohol, 

BMI and race.  Information on treatment of diabetes was not available but it is known 

that around 80% of patients diagnosed with diabetes receive treatment, therefore 

the authors concluded that the effect of diabetes in the absence of treatment (i.e. 

undiagnosed diabetes) might be stronger than that observed in their study. 

Around 90% of patients with newly diagnosed diabetes in the UK are treated with the 

drug Metformin (197).  A recent systematic review has examined the effect of 

Metformin on the incidence of HNC and concluded that metformin reduces incidence 

of HNC, reduces recurrence of disease and improves overall survival of HNC patients 

(198, 199).   

The incidence of diabetes has doubled in the last twenty years.  It is estimated that 1 

million people are living with undiagnosed Diabetes in the UK.  Although the numbers 

of females with diabetes and HNC in our study are small (n=8), one could hypothesise 

that their later age at diagnosis implies they have lived with untreated disease for 

longer than the female controls, therefore being exposed to the damaging effects of 

uncontrolled hyperglycaemia for longer.  To investigate this, a prospective study 

would be required with blood glucose levels measured at intervals.    
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5.2.7.2 Cardiovascular Disease 

Male cases had a higher percentage of cases of heart attack (14.9% vs 11.8%), stroke 

(7.9% vs 4.4%) and angina (11.6% vs 8.8%) than male controls (see Table 5.5).  This is 

most likely to be due to increased age as there are no reports of an association 

between cardiovascular disease and increased risk of head and neck cancer.  It is 

known, however, that patients newly diagnosed with HNC have a higher 

cardiovascular risk score (Framingham) compared to the general population, mainly 

due to a lack of secondary prevention which could be achieved by treatment of 

hypercholesterolemia (200).  This may be due to shared risk factors between HNC 

and CVD, such as smoking and poor diet.     

We observed no statistically significant difference in systolic or diastolic blood 

pressure, or pulse, between cases and controls (see Table 5.5). 

 

5.2.8 Baseline Measures of Current Health 

 

5.2.8.1 BMI and Body Fat 

Body Mass Index has been investigated in relation to HNC risk, with mixed results 

(201).  A pooled analysis of 17 international studies appeared to show a protective 

effect of higher BMI against HNC amongst smokers and consumers of alcohol (BMI of 

>30; OR 0.38; 95% CI 0.30-0.49).   This protective effect was not observed for never 

smokers (OR 0.95 (95% CI 0.47 – 1.91) (201).  A similar tendency for leanness has 

been noted in other smoking-related malignancies such as lung and oesophageal 

(202).  

Within the Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening trial, 177 

individuals developed HNC.  BMI was extensively analysed, using current BMI and 

BMI at ages 50 years and 20 years; there was no association with HNC risk (194).    

In the present study, both BMI and body fat were statistically significantly lower in 

cases than controls (see Table 5.5).  Male cases had a mean BMI of 26.5 compared to 

27.8 in controls.  Female cases had a mean BMI of 26.1 compared to 27.1 for controls.  
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It is unclear if the BMI and body fat have reduced in cases due to difficulty eating 

secondary to development of oral cancer; to prove causation, a prospective study 

would be required. 

 

5.2.9 Engagement with Screening Programmes 

There were no statistically significant differences in reported engagement with 

bowel, prostate, breast and cervical screening between cases and controls (see Table 

5.6).    This is contrary to other data regarding screening behaviours; amongst the 

most socially deprived individuals, uptake of screening is known to be poor.  Only 

35% of those living in the most deprived areas engage with bowel cancer screening 

compared to 66% or persons living in affluent areas (203).  The UK Biobank questions 

asked if people had “ever” attended for screening, so it may be that people have 

attended on a small number of occasions but do not routinely participate.   

 

5.2.10 Breastfeeding 

The benefits of being breastfed as an infant are well documented (204, 205).  There 

is evidence of improved cognitive function, reduced risk of allergy (particularly 

asthma) and reduced risk of obesity.  However, despite reports of a reduced 

incidence of childhood leukaemia (206), a large meta-analysis of 5,000 subjects 

revealed no link between being breastfed as an infant and cancer incidence later in 

adulthood  (RR 1.07 (95% CI 0.89-1.28)), except for pre-menopausal breast cancer  

(RR 0.88  (95%CI 0.79 – 0.98)) (207). 

The present study reveals no statistically significant difference between reports of 

being breastfed as an infant between cases and controls, although in male cases the 

rate was higher than controls (79.8 vs 75.5%; p=0.057) (see Table 5.7). 
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Table 5.5.  Diabetes and Cardiovascular Status and BMI: Differences between HNC Cases and Controls.  p<0.05 indicates a statistically significant result; significant results 
are shown in bold 

  Variable     Head and Neck Cancer Case Control p-value 

    Males Female Male Female   

 Medical Conditions  n % N % N % n %   

 Diabetes             

  Yes  36 6.8 10 3.1 15,968 7 10,394 3.8 Males 0.82 

  No  495 93.2 314 96.9 211,266 93 261,547 96.2 Females 0.49 
              

 Age diabetes diagnosed            

  Median (IQR)  53 (47 - 60)  61 (56 - 64.5) 54 (46 - 60)  54 (46- 60) Males 0.69 

  N  34  8  15,615  8,943  Females 0.02 
              

 Vascular/heart problems  n(%)           

  Heart Attack  32 6.0 2 0.6 9,277 4.1 2,298 0.8 Male <0.001 

  Angina  25 4.7 7 2.2 6,910 3.0 4,397 1.6 Female 0.38 

  Stroke  17 3.2 3 0.9 3,488 1.5 2,712 1.0   

  HTN  141 26.4 86 26.5 59,070 25.8 60,889 22.3                 

 Age hypertension diagnosed          ranksum 

  median (IQR)  54 (46.5 - 58) 52 (45- 58) 52 (45-58)  52 (45-58) Males 0.23 

  N  168  69  64,463  56,525  Females 0.80 
              

 Age angina diagnosed           rank sum 

  median (IQR)  56 (51.1 - 59) 52 (50 - 60) 54 (48 - 59)  55 (50 - 60) Males 0.20 

  N  36  7  10,209  4,758  Females 0.66 

 Age heart attack diagnosed          ranksum 

  median (IQR)  56 (50 - 60)  42 (42-42) 53 (57-59)  55 (49-60) Males 0.13 

  N  30  1  9,017  2,151  Females 0.16 
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Table 5.5. continued. Diabetes and Cardiovascular Disease: Differences between HNC Cases and Controls.   P-values <0.05 are considered statistically significant and are 
shown in bold. 

 

  Variable     Head and Neck Cancer Case   Control   p-value 

    Males  Female  Male  Female    

              

 Blood Pressure            

              

 Systolic mean (sd)  144.2 (21.46)  138.5 (22.03)  142.7 (18.53)  137.2 (20.29)  Male 0.07 

  N  483  297           213,161         254,246   Female 0.29 

              

 Diastolic mean (sd)  83.7 (11.63)  80.3 (11.14)  84.0 (10.57)  80.7 (10.57)  Male 0.55 

  N  483  297           213,168         254,252   Female 0.54 

              

 Pulse mean (sd)  68.7 (12.04)  72.1 (11.67)  67.9 (12.04)  69.9 (11.07)  Male 0.41 

  N  163  99             78,158           92,363   Female 0.05 

              

              

 BMI mean (sd)  26.5 (4.40)  26.1 (5.08)  27.8 (4.25)  27.1 (5.20)  Male <0.001 

  N  530  323           227,002         271,687   Female <0.001 

              

 Body fat percentage            

  mean (sd)  24.4 (6.26)  35.7 (7.55)  25.3 (5.81)  36.6 (6.91)  Male <0.001 

  N  522  317           223,370         269,028   Female 0.03 
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Table 5.6. Differences in uptake of Screening between HNC Cases and Controls in the UK Biobank Dataset; p<0.05 indicates a statistically significant result.  Significant results 
are shown in bold. 

   

  Variable     Head and Neck Cancer Case   Control     p-value 

    Males Female Male Female   

              

 Attitudes to Screening  n % n % n % n %   

 Ever had bowel cancer screening (60y)          

   Yes 134 49.8 82 49.4           52,992  52.7      56,943  50.4 Males 0.32 

   No 135 50.2 84 50.6           47,274  47.3      56,103  49.6 Females 0.80 

              

 Ever had PSA test (males only)           

   Yes 169 34   66,002 30.6   Males 0.10 

   No 328 66   149,786 69.4     

              

 Ever had Breast screening (females >=50y only)         

   Yes   274 96.5   199,474 95.9   

   No   10 3.5   8,517 4.1 Females 0.63 

              

 Ever had cervical smear (females only)          

   Yes   321 99.1   265,543 97.7   

   No   3 0.9   6,344 2.3 Females 0.09 
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Table 5.7.  Differences between HNC Cases and Controls in terms of Breastfeeding in infancy; p<0.05 is considered statistically significant. 

Variable     Head and Neck Cancer Case   Control   p-value 

   Males   Female   Male   Female    

   n % N % n % n %   
             
Breastfed as baby            

 Yes  288 79.8 179 72.8         122,743  75.5   154,452  70 Male 0.06 

             

 No  73 20.2 67 27.2           39,927  24.5      66,085  30 Female 0.35 
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5.2.11 Female – specific Risk Factors 

The role of hormones, including hormone replacement therapy and menopause has 

been extensively reviewed in Chapter 3.   

Earlier age at menopause is a risk factor for oesophageal SCC. When controlling for 

smoking, however, the evidence for a role in HNC is less clear (99, 118).  There is some 

evidence for a protective role of hormone replacement therapy in HNC, but further 

evidence is needed (106).  In the present study, female cases were older than controls 

which may explain why there was a significantly higher percentage of cases who were 

post-menopausal (86.4 vs 72.1%) (see Table 5.8). 

This study showed no statistical difference between cases and controls for age at 

menarche, age at menopause, age at first live birth, number of lives births, use of oral 

contraceptive pill, use of hormone replacement therapy or experience of 

hysterectomy or bilateral oophorectomy.  Data on lactation history were not 

available; however, no studies investigating links between lactation history and HNC 

could be found, so this is unlikely to be relevant to the current study.   

The data are presented in Table 5.8. Hormone replacement therapy had been taken 

by 39.7% of cases and 38.2% of controls, for an average of 6 years.  This study 

suggests there is no protective effect of HRT in HNC (see Table 5.8). 

The concept of oestrogen deficiency as a risk factor for female HNC remains 

interesting as Bosetti showed a protective effect of later age at menopause  (OR 0.40  

(95%CI 0.30-0.70)) (108); equally Hashim et al found that menopause at less than 52 

years conferred greater risk of HNC  (OR 1.69 95%CI 1.06 – 2.71; n=476) compared to 

no history of menopause, when controlling for age, education, smoking, alcohol, BMI) 

(119).  

However, this UK Biobank study does not support a role for early menopause as a risk 

factor for HNC as there was no difference in age at menopause between cases and 

controls.  Given the differences between males and female cases with HNC (females 

tend to be older and there are more cases in never smokers), efforts to identify 

female-specific risk factors should continue.   



   

 
 

1
1

0
 

Table 5.8.  Female-specific Hormone-related Factors: differences between HNC cases and controls in the UK Biobank Dataset.  Significant p-values (<0.05) are shown in bold. 

Variable Head and Neck Cases  Controls  p-value 

Age at recruitment 
mean (range) 58.6 (40-70)   56.4 (39-71)  <0.001 
N 325   273,144   
       
Menstruation       
Age at menarche (mean (SD)) 12.92   12.97  0.58 
N 314      
       
Menopause       
Post-menopausal N %  N %  
Yes 242 86.4  165,202 72.1  
No 38 13.6  64,057 27.9 <0.001 
 
Age at menopause       
Mean (std dev) 49.3   49.7  0.36 
N 228   154437   
       
Pregnancy       
Age at 1st live birth       
Mean (std dev) 27.8 6.55  29 6.34 0.18 
N 56   36,360   
       
Number of live births       
Mean (std dev) 1.82   1.82  0.99 
N 324   272,321   

 
Table 5.8 continued.  Female-specific hormone-related risk factors: Differences between HNC cases and controls 
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Variable Head and Neck Cases  Controls p-value  
Medications        
Ever taken oral contraceptive pill (OCP)                                                              N %  N %   
Yes 269 82.8  220,235 78.2   
No 56 17.2  51,489 18.9 0.47          
Ever used Hormone Replacement Therapy (HRT)       
Yes 129 39.7  103,824 38.2   
No 196 60.3  167,744 61.8 0.63          
Age Started HRT        
Mean (std dev) 47.5  47.4 0.87  
N 115  91,563            
Number of years on HRT        
Mean (std dev) 6.2  6.3 0.81  
N 94  73,347    
Operations        
Hysterectomy N %  N %   
Yes 25 8.6  19,900 8.3   
No 266 91.4  221,084 91.7 0.92  
Age at hysterectomy        
Mean years (std dev) 44.3 (7.68)   43.9 (8.0)  0.73  
        
Bilateral Oophrectomy N %  N %   
Yes 26 8.2  21,781 8.1   
No 291 91.8  246,767 91.9 1  
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5.2.12 Sexual History 

HPV infection accounts for over half of oropharyngeal cancers and almost all cervical 

cancers (31, 208).  In the USA, the incidence of oropharyngeal cancer now exceeds 

cervical cancer (209). 

Sexual behaviour is the main risk factor associated with oral HPV infections; lifetime 

number of sexual partners and age of sexual debut <18 years are strong indicators of 

risk of HPV infection (210-212).  The earliest evidence of infection has been found 2 

months following onset of sexual activity, and 62% of females were infected after 48 

months (212), which suggests vaccination would be most effective prior to the onset 

of sexual activity.  Gillison et al studied prevalence of HPV infection in the US 

population (n=5,579) and reported 6.9% of participants, aged 14-69 years, had oral 

HPV infection, with 1% carrying the high-risk strain HPV-16.  Age, male gender, 

number of sexual partners and positive smoking history were all independent risk 

factors for HPV infection (213).  Number of oral sexual partners has also be linked to 

higher risk of HPV infection (>10 oral sexual partners OR 5.2 (95% CI 1.1 – 25.0)) (214). 

In the UK, a vaccination programme for pre-adolescent girls has been in place since 

2008 and on 24th July 2018 the UK Government announced that this programme 

would be extended to adolescent males (215).  The Joint Committee on Vaccination 

and Immunisation commented that vaccination of boys would not be cost-effective 

if current NICE guidelines on assessment of cost-effectiveness of health interventions 

were applied.  However, using a system that reflects the long-term benefits of the 

programme did make vaccination of boys cost-effective.  The benefits of this wider 

vaccination programme will not be realised for at least 30 years but should contribute 

to a decline in the numbers of HPV-related oropharyngeal cancers (216). 

In this study, age at first sexual activity was statistically significantly lower in male 

cases (18.2 years vs 19.2 years; p<0.001) and male cases had a higher median number 

of sexual partners (6 vs 4; p<0.001) (see Table 5.9).  (Data were not available on 

number of oral sexual partners).  It is not immediately obviously why cases would 

have a higher number of sexual partners than controls.  However, age at sexual debut 

has been explored in relation to a number of factors related to socioeconomic status 

(217-219).  Sexual debut before 16 years is more frequent in people with no academic 
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qualifications than with academic qualifications and more frequent in those in lower 

occupations than managerial and professional occupations (220). 

Low parental educational attainment was significantly associated with earlier age at 

sexual debut (OR 2.58 95%CI 1.49 – 4.46), as was absence of either Mother (OR 2.43 

95% CI 1.22 – 4.83) or both parents (OR 2.28 95%CI 1.04 – 5.00) during childhood.  

Household income was not statistically significantly associated with age at sexual 

debut (218).  

The model development dataset contains 159 cases of oropharyngeal/tonsillar 

cancer/base of tongue cancer, out of a total 702 cases (22.6%).  Data are not available 

on HPV status of the HNC cancers in our dataset, however, based on estimates from 

the literature (31), around 83 (52% of 159) of these may be due to HPV infection, 12% 

of the total number of cases of HNC.  This justifies the consideration of sexual history 

in our model, however differences in sexual history are only evident in males and this 

will be considered when selecting variables for the final model.    
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Table 5.9.  Sexual History: Differences between HNC Cases and Controls in the UK Biobank Dataset.  P-values <0.05 are considered statistically significant and are shown in bold. 

Variable    Head and Neck Cancer Cases   Controls p-value   

   Male Female  Male Female   

              
Age first had Sexual Intercourse (years)           
              
  mean (sd) 18.2 (3.8) 19.0 (3.1)  19.2 (4.3) 19.1 (3.6) Male <0.001 

  n 452 285  199,406 235,378 Female 0.65 

              
Number of sexual partners            

  

median 
(IQR) 6 (3 - 15) 3 (1 -6)  4 (2 - 9) 3 (1 -5) Male <0.001 

  n 387 264  183,545 220,997 Female 0.47 

Ever had same-sex sex N % N %  N % N %   
 Yes     27 5.8 7 2.4  8,870 4.3 6,920 2.9  chi2 

            Male 0.10 

 No     435 94.2 281 97.6  197,325 95.7 235,063 97.1 Female 0.66 

              
Number of same-sex partners          Mann-Whitney U 

  

Median 
(IQR) 1 (1-8) 2 (1-7)  4 (1-18) 2 (1-3) Male 0.04 

  n 23 7  6,718 6,613 Female 0.46 
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5.2.13 Other Risk Factors for HNC 

Other risk factors for HNC have been less well-investigated.  Air pollution, sleep 

deprivation and snoring have been linked with other diseases including cancers.   

5.2.13.1 Snoring 

In this study, there was a statistically significant difference in self-reported snoring 

between cases and controls for both genders; cases were less likely to snore than 

controls (see Table 5.10). 

Snoring is a marker for sleep apnoea or Sleep-Disturbed Breathing (SDB).  Persons 

with SDB have an increased risk of dying from cancer than normal controls but a 

causation has not been proven (221):  Data from the Wisconsin Sleep Cohort Study, 

of 1,522 adults with 22 years follow up, found an increased risk of dying from cancer  

(HR 4.8) for those with severe SDB (7.3 per 1000 per years vs 1.54 per 1000 person 

years in the normal group) (221). The authors controlled for age, BMI, smoking and 

deprivation but acknowledge the small numbers in the severe SDB group.  Although 

this study is only exploring risk factors for HNC, rather than risk factors for mortality 

from HNC, these findings appear to be in contrast to our results, which show that 

cases are less likely to snore than controls. 

 

5.2.13.2 Air Pollution 

In the present study, there was no statistically significant difference in air pollution in 

the areas inhabited by HNC cases and controls (p>0.05), which appears to support 

the findings of Weinbayr et al (222) (see below); see Table 5.10. 

Air pollution is a risk factor for cancers, as identified in 2013 by the International 

Agency for Research on Cancer (223).   Weinmayr et al (222) have shown a link 

between long term exposure to PM2.5-Sulphates and Gastric Cancer, in a combined 

study of 10 European Cohorts in the ESCAPE study.  227,044 individuals were 

included, with 14.9 years follow up.  There were 763 cases of Upper Aerodigestive 

Tract Cancers (UADT), which included head and neck and oesophageal cancers and 

633 cases of gastric cancer.  The authors found no association with UADT but found 
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an increased risk of gastric cancer with increased exposure to PM2.5-Sulphates with a 

HR of 1.93 (95% CI 1.13 – 3.27) for every increase of 200ng/m3.   

Although air pollution is not implicated in as many cancers as more commonly 

accepted risk factors, such as smoking, the entire population is exposed therefore it 

may have a significant global effect.  Exposure to particulate matter of < 2.5 x 10-6 m 

in diameter  (PM2.5) is an established risk factor for lung cancer and are classified as 

a class I carcinogen (224). 

 

5.2.13.3 Sleep Deprivation 

The Office for Disease Prevention and Health Promotion has established a 

programme entitled “Healthy People 2020”; one of four core areas included in this 

programme is “Sleep Health”(225).  They have set a target that 70% of adults aged 

22 years or over should have 7 hours or more sleep in 24 hours.  This is in response 

to findings that lack of sleep confers increased risk of chronic diseases, including 

cancers.  Von Reusten et al published findings from the EPIC study (European 

Prospective Investigation into Cancer and Nutrition) which revealed that those 

sleeping for less than 6 hours per night have a 43% increased risk of cancers 

compared to those sleeping 7-8 hours per night (HR 1.43 (95% CI 1.09-1.87)).  This 

study included 23,630 individuals with average follow-up of 7.8 years (226).  

Our findings were contrary to this: sleep duration was slightly longer in male cases 

(7.2 hours) than controls (7.1 hours) (p=0.04).  There was no statistically significance 

difference in duration of sleep between female cases and controls (see Table 5.10).  

Sleep is a multifactorial phenomenon: male cases tended to be older and were more 

likely to be retired than controls, which may account for the slightly longer sleep 

duration.  Those with an established diagnosis of HNC may sleep longer as part of 

their recovery from treatment.  Sleep duration will vary throughout life and will 

depend on work and family commitments.  Consequently, this dataset is not ideally 

suited to assessing sleep deprivation as a risk factor for cancer and we are only 

provided with data at a single point in time, with no information of any history of 

chronic sleep deprivation.   
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Table 5.10.  Other Potential Risk Factors for HNC:  Exposure to air pollution and self-reported sleep duration and snoring in HNC Cases and Controls.  p<0.05 is considered statistically significant.  
Bold values indicate a statistically significant result. 

Variable Head and Neck case Control p-value 

 Male Female Male Female   
Air Pollution           
Nitrogen dioxide air pollution; 2010           
mean (SD) 27.35 (8.36)  27.03 (7.82) 26.8 (7.63)  26.7 (7.52) Males 0.08 
N 521  318  225216  269199  Females 0.40 

           

           
Particulate matter air pollution (pm10); 2010           
mean (SD) 16.3 (1.90)  16.2 (2.04) 16.2 (1.90)  16.2 (1.89) Males 0.25 

N 464  292  210239  250325  Females 0.85 
Particulate matter air pollution (pm2.5); 2010           
mean (SD) 10.07 (1.11)  10.04 (1.11)  10.0 (1.06)  9.98 (1.04)  Males 0.18 
N 464  292  210,239  250,325  Females 0.40 
Sleep Deprivation           
Sleep duration (average per night)           
mean number hours (SD) 7.23 (1.25)  7.28 (1.22) 7.13 (1.10)  7.17 (1.12) Males 0.04 
N 527  324  226,999  270,579  Females 0.08 

Snoring           
Yes 161 32.5 56 18.1 102,339 47.7 70,850 28.3 Males <0.001 

           
No 334 67.5 253 81.9 112,418 52.3 179,174 71.7 Females <0.001 
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5.3 Head and Neck Cancer Cases 

The detail of number of cases of four sub-types of HNC is considered here in the risk 

prediction model: oral, salivary gland, oropharyngeal and sinus cancers. Sections 

5.3.2-5.3.8 consider differences in age, smoking, lifetime number of sexual partners, 

household income, alcohol and exercise for these four sub-types.  For the justification 

for exclusion of laryngeal cancer, see section 4.3.4. 

Within the development dataset, there are 702 cases of HNC and 423,050 controls.  

Most cases are oral cancers (44.4%, n=311) followed by oropharyngeal/tonsil cancer 

(38.3%, n=269).  92 salivary gland cancers (13.1%) and 30 sinus cancers (4.2%) 

account for the remaining cases (see Table 5.11). 

5.3.1 HNC Sub-type and Sex 

The male:female ratio was elevated for oral and pharyngeal cancers but almost equal 

for salivary and sinus cancers.  The trend for male predominance was particularly 

strong for pharyngeal cancers and has been noted in other large studies (227). 

Table 5.11. Head and Neck Cancer Sub-types by Gender, within the UK Biobank Development Dataset 

Cancer Type Number of Cases   

 Male n (%) Female n (%) Total (%) M: F 

Oral 185 (59.3) 127 (40.7) 311 (44.3) 1.45:1 

Pharyngeal 193 (71.7) 76 (28.3) 269 (38.3) 2.54:1 

Salivary 48 (52.7) 43 (47.3) 92 (13.1) 1.11:1 

Sinus 14 (46.7) 16 (53.3) 30 (4.3) 0.88:1 

   Total: 702  

Controls 191 897 (45.4) 231 153 (54.6) 423,050 0.83:1 
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5.3.2 Age at Diagnosis 

Age at diagnosis was comparable for all sub-types of head and neck cancer (see Table 

5.12).  Over the last two decades, there has been a sharp rise in the incidence of 

oropharyngeal cancers in younger males, however in recent years it has been noted 

that this trend is slowing (31, 228).  There are increasing numbers of older individuals 

developing the disease (228).   There has been a drive to ensure treatment carries 

less morbidity than classic treatment for oral cancer, as survivors are likely to live 

with the consequences for longer due to their younger age at diagnosis.  However, 

there have been recent calls to review these so-called “de-escalation” trials in favour 

of more robust treatments, in recognition of the older patients now being diagnosed 

with oropharyngeal cancer (228, 229). 

 

Table 5.12  HNC Sub-types and Age at Diagnosis, by Gender (within the UK Biobank Model Development Dataset). 

Type of Cancer Age at Diagnosis 

 Male (mean/years) Female (mean/years) 

Oral 56.6 55.3 

Pharyngeal 55.4 54.9 

Salivary 52.6 50.0 

Sinus 55.3 57.9 

 

 

5.3.3 Smoking Duration amongst Ever Smokers 

Smoking duration was significantly longer for patients with oral vs other HNCs (see 

Table 5.13).  This is consistent with evidence that smoking is the major risk factor for 

oral cancers, whereas risk factors such as HPV infection may be more relevant for 

oropharyngeal cancers (192, 230, 231).  
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Table 5.13.  Smoking Duration for each sub-type of HNC considered, using data from the UK 
Biobank Dataset 

Type of Cancer 
Duration of Smoking 
(mean/years) 

Oral 34.1 

Pharyngeal 30.6 

Salivary 26.5 

Sinus 27.1 

P-value (ANOVA) = 0.03 

 

5.3.4 Lifetime number of sexual partners 

There is evidence to suggest a higher number of sexual partners increases risk for 

HPV-related oropharyngeal cancer (232).  Our data reveal a median of 10 sexual 

partners amongst male pharyngeal cancer patients compared to 4 for male oral 

cancer patients.  The difference is less notable amongst female head and neck cancer 

patients. See Table 5.14.  

 

Table 5.14.  Median Number of Sexual Partners for cases with each sub-type of HNC 

Cancer Type Median number of Sexual Partners 

(n) 

 

 Sex  

 Male Female Median (both 

genders) 

Oral 4 2 3 

Pharyngeal 10 4 8 

Salivary 3 3 3 

Sinus 5.5 4.5 5 
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5.3.5 Household income 

Household income can be used as a proxy for deprivation.  It may be a more reliable 

marker of individual levels of deprivation than Townsend or IMD scores (186), which 

also require calculation from the patient’s postcode.   The highest levels of low 

income were seen amongst patient with Oral cancers, consistent with previous 

reports (227, 233) (see Table 5.15).   

Table 5.15. Mean Annual Household Income for HNC cases, by anatomical sub-type. 

 

Cancer Type 

Annual Household Income (£) 

n (%) 

 < £18k £18 – 31999 £32-51999 £52-99999 >£100k/year 

      

Oral 93 (34.7) 77 (28.7) 57 (21.3) 36 (13.4) 5 (1.87) 

Pharyngeal 60 (26.7) 62 (27.6) 53 (23.6) 37 (16.4) 13 (5.8) 

Salivary 25 (32.9) 22 (28.9) 13 (17.1) 16 (21.1) 0 (0%) 

Sinus 6 (20.7) 10 (34.5) 8 (27.6) 2 (6.9) 3 (10.3) 

Controls 79798 (22.1) 90912 (25.1) 94907 (26.2) 75325 (20.8) 20784 (5.6) 

 

 

5.3.6 Frequency of Alcohol Consumption 

Reports of daily drinking were higher for all sub-types of HNC compared to controls, 

showing that this remains an important risk factor to consider in any risk prediction 

model.  The percentage of never drinkers was higher for all sub-types of HNC (see 

Table 5.16).  It is possible that patients decided to stop drinking following their 

diagnosis, as 88% of pharyngeal cancer patients and 60% of oral and salivary gland 

cancer patients claim to be previous drinkers (Table 5.17).   See 5.2.4 for a more 

complete discussion of alcohol consumption in HNC.  
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Table 5.16.  Frequency of Alcohol consumption by HNC Cases, by anatomic sub-type of HNC. 

Frequency of 

Alcohol 

Type of Cancer 

 Oral 

N(%) 

Pharyngeal 

N(%) 

Salivary 

N(%) 

Sinus 

N(%) 

Controls 

N(%) 

Daily 82 (26.3) 73 (27.1) 20 (22.0) 9 (30.0) 87,489 (20.7) 

3-4/week 66 (21.2) 57 (21.2) 20 (22.0) 4 (13.33) 96,932 (23.0) 

1-2/week 65 (20.8) 60 (22.3) 19 (20.8) 6 (20.0) 107,724 (25.5) 

1-3/month 29 (9.3) 17 (6.3) 7 (7.7) 4 (13.33) 46,929 (11.1) 

Special 

occasions only 

34 (10.9) 23 (8.6) 15 (16.5) 3 (10.0) 48,320 (11.5) 

Never 36 (11.5) 39 (14.5) 10 (11.0) 4 (13.33) 34,349 (8.1) 

 

Table 5.17.  Previous Alcohol Consumption in Current Never Drinkers, for HNC Cases, by anatomic 
sub-type 

  

Former Drinker  (if current 

never drinker) 

Type of Cancer 

 Oral  N(%) Pharyngeal  N(%) Salivary  N(%) Sinus  N(%) 

No 10 (38.5) 4 (11.8) 4 (40) 2 (50) 

Yes 26 (61.5) 34 (88.2) 6 (60) 2 (50) 
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5.3.7 Exercise 

There are greater levels of complete inactivity (i.e. zero days of exercise) amongst 

pharyngeal cancer patients (21% compared to 12.6% in controls) (Table 5.18).  

Exercise is known to be beneficial in helping to protect against several cancers and 

this evidence of reduced levels of exercise could be interesting to explore in greater 

detail (194, 195, 234). 

Table 5.18.  Number of Days on which HNC cases participate in Moderate Exercise, by sub-type of HNC. 

  

Moderate Exercise for at least 10 minutes (Number of Days per week) 

 Cancer Type 

 Oral 

N(%) 

Pharyngeal 

N(%) 

Salivary 

N(%) 

Sinus 

N(%) 

Control 

      

0 44 (15.2) 53 (21.0) 13 (14.8) 4 (13.3) 50,599 (12.6) 

1 19 (6.5) 15 (6.0) 6 (6.8) 2 (6.7) 32,461 (8.1) 

2 43 (14.8) 30 (11.9) 16 (18.2) 3 (10.0) 59,111 (14.8) 

3 36 (12.4) 28 (11.1) 10 (11.4) 5 (16.7) 60,335 (15.1) 

4 28 (9.7) 28 (11.1) 11 (12.5) 7 (23.3) 40,085 (10.0) 

5 41 (14.1) 32 (12.7) 13 (14.8) 4 (13.3) 60,274 (15.1) 

6 22 (7.6) 17 (6.8) 8 (9.1) 1 (3.3) 22,317 (5.6) 

7 57 (19.7) 49 (19.4) 11 (12.5) 4 (13.3) 75,330 (18.8) 
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5.4 Conclusions 

Many potential risk factors have been explored here covering patient demographics, 

medical history, smoking and alcohol, sexual history, hormone-related factors, and 

diet and exercise.  The evidence for the role of all the risk factors is discussed, 

however not all could be included in a risk prediction model.  The strongest evidence 

exists for smoking and alcohol, closely followed by number of sexual partners for 

HPV-related oropharyngeal cancer, diet and exercise, and social deprivation.  Low 

body mass index does not appear to represent a true risk factor for HNC but 

underlying reasons for the lower BMI of HNC patients are worthy of further 

investigation.  We have identified differences between patients with subtypes of HNC 

and between males and females in almost all identified risk factors, showing that 

Head and Neck cancer is a heterogenous disease in terms of its aetiology.   

Selection of variables for the final risk model will consider evidence from the 

literature as described, whilst maintaining the aim of developing a parsimonious 

model that can be utilised by general practitioners.   

Table 5.19 provides a summary of the pertinent risk factors described, with data for 

HNC cases and controls from the model development dataset.  Chapter 6 will describe 

the development of the risk prediction model for HNC. 
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Table 5.19.  Summary of Differences in Risk Factors between HNC Cases and Controls, with descriptive statistics, by gender, in the Model Development Dataset, within the 
UK Biobank.        P-values of <0.05 are considered statistically significant and are shown in bold. 

Variable Head and Neck Cancer Cases Controls p-value 

 Males Females Males Females  

Total Number 440 262 191,897 231,153  

Age at Recruitment (mean years (SD)) 58 (41-70) 59 (40-70) 56 (37- 72) 56 (39 – 71) <0.001 

Smoking Status    N(%)      

Never Smoked 143 (32.9) 119 (45.9) 93,885 (49.2) 137,805 (60.0)  

Ex-smoker 201 (46.2) 113 (43.6) 73,365 (38.5) 72,021 (31.3)  

Current Smoker 91 (20.9) 27 (10.4) 2,3449 (12.3) 20,021 (8.71) <0.001 

Smoking Duration (Mean (SD)) 32.8 (13.0) 29.3 (12.3) 26.5 (12.9) 25.2 (12.7) <0.001 

N 241 102 70,699 60,377  

Alcohol Status n (%)      

Never 9 (2.0) 12 (4.6) 5,421 (2.8) 13,846 (6.0) 

<0.001 Previous 46 (10.5) 22 (8.4) 6,765 (3.5) 8,317 (3.6) 

Current 385 (87.5) 228 (87.0) 179,059 (93.3) 208,335 (90.1) 

            
  



   

 
 

1
2

6
 

 
 
 
 
 

Table 5.19 continued.   Differences between HNC cases and controls with in the Model Development Dataset, within the UK Biobank. 

Variable Head and Neck Cancer Cases Controls P-value 
   Males Females Males Females   

Current Alcohol Frequency         n 
(%) 

     

Daily or almost daily 136 (30.9) 48 (18.3) 49,388 (25.8) 38,101 (16.5) 

<0.001 

3-4 times per week 92 (20.9) 55 (21.0) 49,714 (26.0) 47,218 (20.5) 
1 – 2 times per week 94 (21.4) 56 (21.4) 48,936 (25.6) 58,788 (25.5) 
1 – 3 times per month 28 (6.4) 29 (11.1) 17,033 (8.9) 29,896 (13.0) 
Special occasions 35 (8.0) 40 (15.3) 13,988 (7.3) 34,332 (14.9) 
Never  55 (12.5) 34 (13.0) 12,186 (6.4) 22,163 (9.6) 
N 440 262 191,245 230,498  

Body Mass Index (BMI); 
mean(SD) 

26.4 (4.5) 26.1 (5.0) 27.8 (4.2) 27.0 (5.2) 
Males: <0.001 
Females: 0.004 

N 436 260 190,545 229,959  
      

Fruit (no. of pieces per day; 
mean(SD))  

1.7 (1.5) 2.1 (1.4) 2.1 (1.6) 2.4 (1.6) <0.001 

N 416 254 182,400 224,686  
      

Townsend Deprivation Quintile 
N (%) 

     

1 (least deprived) 142 (32.3) 90 (34.4) 69171 (36.1) 82,830 (35.9) Males: <0.001 

2 90 (20.4) 60 (22.9) 45201 (23.6) 55,750 (24.1) Females: 0.62 

3 69 (15.7) 47 (17.9) 33687 (17.6) 41,913 (18.2) 
 

4 77 (17.5) 37 (14.1) 26406 (13.8) 31,797 (13.8) 
 

5 (most deprived) 62 (14.1) 28 (10.7) 17166 (9.0) 18,563 (8.0) 
 

N 440 262 191631 230,853   
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Table 5.19 continued.  Differences between HNC cases and controls with in the Model Development Dataset, within the UK Biobank 

Variable Head and Neck Cancer Cases Controls P-value 

  Males Females Males Females   

Household Income per year (£) n (%)          

<18000 109 (28.4) 75 (35.1) 33,918 (19.8) 45,880 (24.1)  

18000-30999 100 (26.0) 71 (33.2) 41,177 (24.1) 49,735 (26.1)  

31000-51999 94 (24.5) 37 (17.3) 46,075 (26.9) 48,832 (25.6) <0.001 

52000-100000 64 (16.7) 27 (12.6) 38,807 (22.7) 36,518 (19.2) 
 

>100000 17 (4.4) 4 (1.9) 11,034 (6.5) 9,750 (5.1) 
 

N 384 214 171,011 190,715  

 

     
Moderate Exercise (at least 10 minutes) no. days/week 

0 80 (19.5) 34 (13.6) 23,823 (13.0) 26,776 (12.4)  

1 20 (4.9) 22 (8.8) 15,818 (8.6) 16,643 (7.7) 
Females: 0.681 

2 57 (13.9) 35 (14.0) 26,825 (14.6) 32,286 (14.9) 

3 41 (10.0) 38 (15.2) 25,771 (14.0) 34,564 (15.9) Males: <0.001 

4 41 (10.0) 33 (13.2) 17,353 (9.4) 22,732 (10.5)  

5 55 (13.4) 35 (14.0) 29,983 (16.3) 30,291 (14.0)  
6 35 (8.5) 13 (5.2) 12,135 (6.6) 10,182 (4.7) 

7 81 (19.8) 40 (16.0) 31,979 (17.4) 43,351 (20.0)  

N  410 250 183,687 216,825   
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Chapter 6 

 

Development of a multivariable risk 

prediction model for head and neck 

cancer in adults, using the UK 

Biobank 

 

6.1 Introduction 
The aim of this Chapter is to describe the development and performance of the first 

UK-based risk prediction model for head and neck cancer, using the UK Biobank 

dataset.  TRIPOD guidelines on development, validation and reporting have been 

followed and a summary of compliance is presented in Appendix 7.   

Chapter 5 described the study population and detailed descriptive statistics 

comparing over 230 candidate predictors.  The evidence to support the consideration 

of these candidate predictors was also presented. 

The methodology used to develop the model has been described in Chapter 4.  

Briefly, the model presented in this chapter has been developed using a nested case-

control study within the UK Biobank, a cohort of over 500,000 adults recruited from 

around the UK (see section 4.3.2) (235).  The outcome of interest is a diagnosis of 

head and neck cancer, with the model predicting absolute risk of head and neck 

cancer.  The dataset contains 859 cases of HNC, as confirmed by linkage with the UK 

Cancer Registries.  Given the large size of the dataset, the data obtained from the 

North West of England were split from the remainder, to allow geographical 
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validation of the model.  This formed a development dataset with 702 cases of HNC 

and a validation dataset with 157 cases. (see section 4.4.2.1 for a detailed discussion 

of the rationale for this methodology). 

The dataset contained some missing data and this was handled by multiple 

imputation using chained equations (166, 236).  The model was developed using 

logistic regression analysis, first considering the candidate predictors in a univariable 

(unadjusted) analysis (section 6.3) and subsequently in a multivariable model (section 

6.4).   Automated selection methods were avoided to ensure the clinical relevance of 

the model (169, 170).  The discrimination and calibration of the model is assessed in 

section 6.7 (179, 237).   

6.2. Candidate Variables 

From the initial list of 7,800 variables available within the UK Biobank dataset, a 

reduced list of 233 variables were considered to have some clinical relevance to HNC 

(Appendix 5).  These variables were explored in Chapter 5 and the literature was 

assessed for existing evidence to support their role as risk factors for HNC (section 

5.2).  From this investigation, a final list of twelve variables was created, each of which 

were explored in the univariable analysis (see box 6.1). 

Box 6.1.  Variables considered in the Univariable Analysis 

Age Gender 

Smoking Duration BMI  

Smoking Status Alcohol (frequency of consumption) 

Alcohol Status Exercise (number of days per week) 

Lifetime number of sexual partners Townsend Deprivation Score (groups 1-5) 

Annual Household Income Fruit (number of pieces consumed per day) 
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6.3 Univariable Analysis 

Each variable of interest was tested for an (unadjusted) association with the 

outcome, diagnosis of HNC.  The step was performed to detect associations, not to 

aid in variable selection: variable selection using univariable analysis has been shown 

to be an unhelpful step in model development, as variables which could have helped 

to stabilise the model may be excluded, even if they are not statistically significant 

(169, 170).  The results of the univariable analysis are shown in Table 6.1. 

 

Table 6.1. Univariable analysis of risk factors for head and neck cancer.  Risk factors (variables) are 
shown with their corresponding Odds Ratio and 95% Confidence Interval, related to risk of Head and 
Neck Cancer.  P-values are shown for each category, with <0.05 considered statistically significant. 

Variable Odds ratio 

(OR) 

95% Confidence Interval p-value 

Age 1.03 1.03 – 1.05 <0.001 

Gender                                          

Female 

 

1.00 

  

 Male 2.02 1.74 – 2.36 <0.001 

Smoking Status                         

Never smoked 1.00   

Ex-smoker 1.91 1.62 – 2.25 <0.001 

Current Smoker 2.40 1.93-2.98 <0.001 

Smoking Duration 1.03 1.025 – 1.034 <0.001 

Alcohol Status    

Never drinker 1.00   

Previous drinker 4.14 2.53 – 6.75 <0.001 

Current drinker 1.45 0.93 – 2.24 0.093 



   

132 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table 6.1 continued.   Univariable analysis of risk factors for head and neck cancer 

Variable Odds ratio 

(OR) 

95% Confidence Interval p-value 

Alcohol Frequency     

Daily 1.00   

3-4 times per week 0.72 0.58-0.90 0.003 

1-2 times per week 0.66 0.53-0.82 <0.001 

1-3 times per month 0.58 0.43-0.78 <0.000 

Special Occasions 0.74 0.56-0.97 0.027 

Never 1.23 0.96-1.59 0.107 

BMI 0.95 0.93 – 0.97 <0.001 

Fruit 0.79 0.76 – 0.84 <0.001 

Townsend Groups    

1 1.00   

2 0.97 0.79 – 1.20 0.798 

3 1.01 0.80 – 1.26 0.963 

4 1.28 1.03 – 1.61 0.029 

5 1.65 1.29 – 2.11 <0.001 

    

 

 

 

 

   



   

133 
 

 

 

 

 

 

 

Table 6.1 continued.   Univariable analysis of risk factors for head and neck cancer 

Variable Odds Ratio (OR) 95% confidence 

interval 

p-value 

Household Income (£ per year)   

<18,000 1.00   

18,000 - 30,999 0.82 0.66 – 1.00 0.055 

31,000 – 51,999 0.60 0.48 – 0.75 <0.001 

52,000 - 100,000 0.52 0.40 – 0.67 <0.001 

>100,000 0.44 0.28 – 0.69 <0.001 

Moderate Exercise (at least 10 minutes; number days/week) 

0 1.00   

1 0.57 0.40 – 0.82 0.002 

2 0.69 0.52 – 0.91 0.008 

3 0.58 0.43 – 0.77 <0.001 

4 0.82 0.61 – 1.10 0.183 

5 0.66 0.50 – 0.87 0.004 

6 0.95 0.68 – 1.33 0.788 

7 0.71 0.55 – 0.92 0.010 

Lifetime number of 

sexual partners 

1.00 1.00 – 1.00 0.321 



   

134 
 

In the univariable analysis, the following variables are significantly associated (at the 

5% level) with an increased risk of HNC (odds ratio >1):  increasing age, male gender, 

past or current smoking, increasing smoking duration, being a previous alcohol 

drinker or a current alcohol drinker and living in an area categorised as deprived or 

very deprived (Townsend Groups 4 and 5).   

Factors offering a statistically significant (5% level) protective effect (odds ratio <1) 

are:  increasing consumption of fruit, higher BMI and an annual household income of 

greater than or equal to £32,000 (compared to <£18,000).  

 

6.4 Multivariable Analysis 
 

6.4.1 Multivariable Model Development 

 

6.4.1.1 Selection of Variables 

Annual household income and Townsend groups are both measures of deprivation.  

Annual household income is a measure of individual-level deprivation, whereas the 

Townsend score is a measure of area-level deprivation (186).  Deprivation has been 

recognised as an important risk factor for head and neck cancer and has been 

discussed in Chapter 5 (section 5.2.2).  However, including two variables to measure 

the same risk factor is not necessary.  59.2% of patients with HNC living in the most 

deprived areas (Townsend group 5) had an annual household income of <£18,000, 

compared to only 16% of those living in the most affluent areas (data not shown).  

Despite this, the variables are only weakly correlated, as demonstrated by a 

Spearman’s correlation coefficient of 0.2086 (p<0.001).  For simplicity, Townsend 

groups were not included in the multivariable model as they are not simply calculated 

with freely available software.  Household income is self-reported by the patient and 

can be directly entered into the model.   

Alcohol status was also removed from the final model, as this does not reflect level 

of alcohol consumption.  Frequency of alcohol intake has been shown to be a reliable 
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and valid measure of alcohol consumption in a systematic review of population 

surveys (238) and avoids the need for the patient to recall exact numbers of drinks or 

calculate number of units.  Asking patients about alcohol intake on the previous day 

has been shown to be a more accurate measure of alcohol intake than overall 

frequency, as patients tend to underestimate how often they drink (239). However, 

these data were not available in our dataset.  The final multivariable model included 

variables for age, gender, smoking status, smoking duration, annual household 

income, frequency of alcohol consumption, BMI, exercise, number of pieces of fruit 

per day and lifetime number of sexual partners. 

6.4.1.2 Multivariable Results 

The data were split into North West (for model validation) and Rest of UK (for model 

development) (section 4.4.2.1).  The development dataset contains 329,005 

observations with 10 imputed datasets; section 4.4.3 discussed multiple imputation. 

Table 6.2 shows the Odds ratios with 95% confidence intervals for each variable, from 

the multivariable model developed. 
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Table 6.2. Multivariable Model of Risk Factors for Head and Neck Cancer.  Odds Ratios and 95% 
confidence intervals are presented, with p-values (<0.05 is considered statistically significant). 

Variable Odds Ratio P value 95% Confidence 

Interval 

     

Model Intercept  Coefficient:          

-6.094852 

<0.001 -7.12 -5.07 

     

Age 1.03 <0.001 1.01 1.04 

     

Male Gender 1.74 <0.001 1.44 2.10 

     

Smoking Status     

Previous 1.15 0.257 0.90 1.47 

Current 1.00 0.990 0.68 1.49 

     

Smoking Duration 1.02 <0.001 1.01 1.03 

     

Household income     

18,000 – 30,999 1.00 0.999 0.78 1.28 

31,000 – 51,999 0.85 0.262 0.65 1.13 

52,000 – 99,999 0.79 0.152 0.58 1.09 

≥100,000 0.72 0.201 0.44 1.19 
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Table 6.2 continued.  Multivariable model of Risk Factors for Head and Neck Cancer 

Variable Odds Ratio p-value 95% confidence 

interval 

    

BMI 0.94 <0.001 0.93 0.95 

    

Frequency of Alcohol Consumption    

3 – 4 times/wk 1.02 0.843 0.79 1.32 

1-2 times/wk 0.95 0.694 0.72 1.23 

1 -3 times per month 0.96 0.829 0.68 1.36 

Special Occasions 1.18 0.327 0.85 1.65 

Never 1.57 0.010 1.11 2.20 

     

Moderate Exercise (at least 10 mins; number days/wk)   

1 0.66 0.040 0.44 0.98 

2 0.71 0.045 0.52 0.99 

3 0.65 0.011 0.46 0.90 

4 0.81 0.250 0.57 1.15 

5 0.70 0.031 0.51 0.97 

6 0.74 0.173 0.48 1.14 

7 0.72 0.037 0.54 0.98 

     

Fruit                           

(number of pieces/day) 

0.86 <0.001 0.80 0.92 

Lifetime number of sexual partners    

 1.00 0.536 0.999 1.001 
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The results confirm that increasing age is a risk factor for HNC, with each year 

conferring an additional 3% risk (OR 1.03).  Males have a 75% higher risk of the 

disease, than women (OR 1.75).  As smoking duration increases, risk of HNC also 

increases by 2% per year (OR 1.02).   

Daily drinking was used as the baseline and ‘never drinking’ emerged as a risk factor 

for HNC (OR 1.57).  The remaining categories for frequency of alcohol consumption 

were not significant.  This will be discussed in section 6.9. 

Increasing consumption of fruit offers a protective effect against HNC (OR 0.86); 

every additional piece of fruit consumed per day offers a 14% protective effect.  

Moderate exercise on at least 1 day per week is associated with a protective effect; 

only exercise on 1, 2, 3, 5 or 7 days per week was found to have a statistically 

significant association (at the 5% level) with a reduced risk of HNC.  Increasing BMI 

also confers a protective effect (OR 0.94). 

Smoking status, lifetime number of sexual partners and household income were not 

statistically significant in the multivariable model. 

6.5. Individual Risk Prediction 
 

To calculate the probability of disease for an individual, using the model(s) described, 

a linear predictor must be calculated.  Let us consider a male, aged 65 years, who is 

a current smoker of 45 years, with an annual household income of <£18,000, who 

consumes alcohol 3-4 times per week, eats no fruit, never exercises and has 5 

previous sexual partners. 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
1

1 + exp(𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟)
 

 

where linear predictor (log odds) = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +   𝛽1 𝑥1 + ⋯ + 𝛽𝑗 𝑥𝑗, where 𝛽 is the 

coefficient found in Table 6.2 and 𝑥 is the value of the associated variable. 
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In our case:  

log 𝑜𝑑𝑑𝑠 =  −6.094852 +  (0.0254 x 65)  +  (0.5554 x 1) +  (0.0025 x 1 )  +

 (0.0170 x 40)  +  (0.0001 x 1)  +  (0.0257 x 1 )  +  (0.0002 x 5 )  =  −3.180152 

Values for fruit and exercise are zero therefore are not seen in this equation. 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
1

1 + exp(−3.180152)
= 0.03992 

 

This gives a percentage probability of head and neck cancer of 4%. 

6.6 Assessing Model Performance: Internal Validation 
 

Evaluating model performance is an important step in model development to predict 

how well the model will perform in external data (67).  Analysis and reporting of 

model performance is required as part of the TRIPOD guidelines for developing a 

multivariable prediction model (134, 240).  It is vital to know how well a model can 

discriminate between those who have the outcome of interest and those who do not, 

if the model is to be used in screening trials or in clinical decision making. 

The results of the internal validation can reveal problems in the model development, 

such as over-fitting or optimism (section 6.6.3) (136).  Correction of the model or 

recalculation of coefficients can then be undertaken prior to external validation 

(161). Obtaining external data in which to validate a model can be difficult and, if such 

data are available, it is important to maximise the opportunity by ensuring the model 

being tested is as robust as possible (161).  Essentially, the purpose of internal 

validation is to examine optimism in apparent performance, produce optimism-

adjusted performance and revise the developed model accordingly (136).   

Firstly, the apparent performance (discrimination and calibration) should be 

calculated and this is discussed in 6.6.1. and 6.6.2.   The problem of optimism is 

considered in 6.6.3, along with techniques to address this. 
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6.6.1 Discrimination 

Performance of a model refers to its ability to accurately separate those with the 

outcome from those who do not have the outcome of interest (discrimination) within 

a population.  For models with a binary outcome (as in this case), the Area Under the 

Receiver Operating Curve (AUROC) is used as a measure of discrimination (184).  This 

is equivalent to the c-statistic for Cox-regression models (241).  The AUROC plots the 

sensitivity (true positive rate) against ‘1-specificity’ (false positive rate).  A value of 

0.5 indicates the model is no better than chance at predicting the outcome, whereas 

a value of 1 signifies perfect discrimination.  Models are considered to show good 

discrimination if the AUROC is at least 0.7 and outstanding discrimination with an 

AUROC of at least 0.9 (242).  However, the ROC should be interpreted in the context 

of the literature available in the subject area in which the model was developed and 

consideration must be given to the calibration performance (134).  

6.6.2 Calibration 

Another important aspect of model performance is calibration.  This demonstrates 

how similar the predicted and observed risks are.  With a well-calibrated model, 𝑥 

out of 100 patients with a predicted risk of 𝑥% should experience the event (67, 243).   

Calibration can be presented graphically as a calibration plot, with predicted and 

observed event rate plotted for defined risk groups, together with 95% confidence 

intervals (134, 135). The closer the plots lie to the 45-degree line, the better the 

calibration.     

6.6.3 Optimism in Model Performance 

The apparent performance of models developed in small datasets, with a low number 

of events-per-variable, can be over-optimistic.   The model is built to fit the data in 

which it is developed, therefore it may not perform as well in external datasets (136).  

This is referred to as ‘overfitting’.  The best way to minimise optimism, or over-fitting, 

in risk models is to ensure one uses a dataset with enough events (i.e. patients with 

the outcome in question), in which to develop the model (175, 244).  Models 

developed in datasets with at least 20 events per variable have been found to display 

minimal optimism (245).  If large datasets are not available, there are techniques to 
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test and mediate for optimism, including cross validation and bootstrapping (181-

183, 185, 244).   

The UK Biobank development dataset contains 702 cases of head and neck cancer, 

and 23 variables have been considered in the final model.  This gives an EPV of 30, 

which minimising the risk of over-fitting and makes Leave One Out Cross Validation 

(LOOCV) and bootstrapping unnecessary (244, 245). Furthermore, the model 

developed will be validated in external data, not used to develop the model; the 

results are presented in Chapter 7. 

Measure of apparent discrimination and calibration are presented in section 6.7.  For 

completion, cross-validation and bootstrapping will be discussed in sections 6.6.3.1 

and 6.6.3.2. 

6.6.3.1 Cross Validation  

In situations where a relatively small dataset is available, it is considered wasteful to 

split the dataset into development and validation datasets (184).  It is better to use 

the full data to develop the model and then use cross-validation or bootstrapping 

techniques to obtain measures of internal validation (246).  Cross-validation involves 

splitting the data into N subgroups; the model is then developed in N-1 of the groups 

and tested in the remaining group.  This is repeated N times and the average 

performance is calculated (181).  Using 10 groups has been shown to produce the 

best results more efficiently, when compared to leave-one-out cross validation 

(LOOCV) (247).  LOOCV involves the same procedure detailed above, where N is the 

total number of participants in the dataset. 

6.6.3.2 Bootstrapping 

An alternative to cross-validation is bootstrapping.  This is another resampling 

procedure, in which samples of the same size as the original dataset are drawn with 

replacement from within, to create a new dataset (183, 185, 244).  The model is then 

developed in the bootstrap sample and tested in the original data.  The apparent 

performance is calculated in the bootstrap sample and tested in the original sample 

(test); optimism is calculated by subtracting the test performance from the apparent 

performance.  This entire procedure is repeated between 200 and 1000 times, 
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following which the average optimism is calculated (248).  Optimism-adjusted 

performance can then be calculated and if necessary, a shrinkage factor can be 

applied to the coefficients (249).  Bootstrapping has been shown to provide accurate 

estimates of model performance and is generally preferred to cross-validation 

procedures as it is considered more efficient use of data (67). 

6.7 Discrimination and Calibration of Multivariable Model using Standard Terms 

 

Apparent discrimination, as measured by the AUROC is 0.67 (95% CI 0.64 – 0. 69), see 

Figure 6.1.  This shows that the model is better than chance at predicting a case of 

HNC. 

 

Figure 6.1. Area Under the Receiver Operating Curve for Multivariable Model of Head and Neck Cancer 
Risk Prediction.   

Calibration was measured using expected:observed risk.  The calibration slope has a 

value of 0.99 and is shown in Figure 6.2:  The ‘Expected’ probability of a diagnosis of 

head and neck is calculated for each individual in the dataset.  The ‘Observed’ risk is 

calculated as the mean of the outcome variable (HNC).  The E:O ratio is simply the 

mean of the expected probabilities divided by the mean of the outcome variable.  A 

value close to one indicates perfect calibration.  A value less than one indicates that 

predictions are under-estimating risk and a value of greater than one indicates the 

predictions are over-estimating risk (67, 243).  Figure 6.2 shows calibration of ten risk 
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groups, demonstrating that performance is good across risk groups, as displayed by 

close-proximity to the 45-degree line.  Confidence intervals are shown and are 

narrow, indicating good calibration.  Most of the deciles are clustered close to the 

left side of the graph, indicating the very low risk of head and neck cancer in the 

general population.   

 

Figure 6.2.  Calibration Slope for Multivariable Risk Model for Head and Neck Cancer 

 

6.8 Discussion 

This chapter has presented the first risk prediction model for absolute risk of head 

and neck cancer, developed using the UK Biobank dataset. 

Logistic regression analysis has been used to develop the model.  The binary outcome 

of “Head and Neck Cancer: yes or no” lends itself to logistic regression; this method 

of analysis is flexible and produces a clinically meaningful output (odds ratios) (151, 

250). 

In the univariable analysis, increasing age, male gender, past or current smoking, 

increasing smoking duration, being a previous alcohol drinker or a current alcohol 
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drinker, and living in an area categorised as deprived or very deprived (Townsend 

Groups 4 and 5) were significant risk factors for head and neck cancer.  Increasing 

consumption of fruit, an annual household income of greater than or equal to 

£32,000 (compared to <£18,000) and increasing BMI were significantly protective 

against HNC.   

The multivariable model included variables for age, gender, smoking status and 

smoking duration, BMI, frequency of alcohol intake, household income (as a measure 

of deprivation), number of sexual partners, fruit intake and exercise.    

A multivariable model was built using untransformed continuous variables for ease 

of interpretation.  Increasing age, male gender, increasing smoking duration, and 

never drinking alcohol were found to be risk factors for HNC.  Moderate exercise, 

increasing BMI and increasing consumption of fruit were found to be protective.  The 

increasing incidence of HPV-related oropharyngeal cancers justifies the inclusion 

number of sexual partners in the risk model (20, 228), as number of sexual partners 

has been established as a risk factor for this sub-type of HNC (30). 

Increasing age, male gender and smoking are well established risk factors for HNC 

(194, 233, 251) and deprivation has also emerged as an important predictor of HNC 

(35, 227, 233), which justifies including household income in the model, as a proxy 

for individual-level deprivation (227, 252).  

 Alcohol is also a well-known risk factor for HNC and its effect is synergistic with 

smoking (192, 194).  It is surprising that the risk prediction model reveals ‘never 

drinking alcohol’ as a risk factor for HNC.  The dataset contains both prevalent and 

incident cases of HNC therefore it may be that changes in alcohol consumption 

following diagnosis of HNC has affected this result, i.e. it may be that cases have 

stopped drinking following their diagnosis of HNC.  For the never drinkers, 77% 

(68/88) are former drinkers, compared to 44% (15,082/34,212) of controls (data not 

shown), which supports this suggestion.  This reveals that current alcohol frequency 

may not be the most reliable predictor to use in a risk prediction model for HNC as it 

does not reflect lifetime use of alcohol.  Use of alcohol is known to change throughout 
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life (253), therefore it may be more appropriate to seek information about drinking 

habits both past and current to improve the model’s discriminative ability. 

Exercise and diets rich in antioxidants are known to be beneficial in prevention of 

HNC (193, 194, 233) and this is supported by the present model, with significant 

protective effects demonstrate for increasing fruit consumption and exercise on at 

least one day per week. 

BMI has been explored as a risk factor for HNC but no definite consensus has been 

reached as to its significance (201).  Section 5.2.8.1 discussed the relevance of BMI to 

HNC.  This model demonstrates that controls have a higher BMI than cases, implying 

that higher BMI is protective against HNC (OR 0.94).  However, this dataset contains 

information on patients who were free from HNC at recruitment and those with a 

previous diagnosis of HNC.  BMI may have been affected by the diagnosis itself, as 

HNC patients will frequently have periods of time where eating is difficult, which 

could result in weight loss (254).  Unintentional weight loss is reported as a presenting 

symptom in 26% of patients who go on to receive a diagnosis of HNC (255).  A 

prospective cohort with details of BMI in the years prior to diagnosis would be 

required to investigate this further. 

6.8.1 Model Performance 
 The AUROC was 0.67, which is reasonable.  The calibration was good with all risk 

groups lying close to the 45-degree line on the calibration curves.   

Resampling techniques were not used for internal validation as the EPV is high in 

these data, which minimises optimism in model performance statistics.  The true test 

of a model lies in its performance in external data, i.e. data in which the model was 

not developed, which is presented in Chapter 7. 

This is the first risk prediction model to be developed with HNC as an outcome, for 

the general population; therefore, it is impossible to discuss this apparent 

performance in the context of the current literature.   

One other risk model has been identified which predicts HNC in patients with current 

symptoms (256). This model is proposed for use in general practice as a tool for 
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guiding urgent referrals.  This model was developed using a UK-based dataset with 

397 cases and 4,318 controls.  The model has an AUROC of 0.77.  No calibration 

statistics are presented.  This model was externally validated, by the same authors, 

in a Scottish dataset of 2000 individuals with 232 cases of HNC(255).  The 

discrimination is good (C-statistic of 0.81); again, no measure of calibration is 

reported. 

Speight et al published an extensive Health Technology Assessment report, in 2006, 

on the cost-effectiveness of oral cancer screening in the UK, using a simulated 

population of 100,000 (257).  This incorporated some elements of risk modelling, 

although none that could be applied in general practice.  No performance statistics 

are presented.  The findings suggest that opportunistic screening of “high-risk” 

individuals could be cost-effective.  They define high-risk as males over the age of 40 

years, who smoke and consume alcohol.   

6.8.2 Absolute Risk of HNC 

Absolute risk is the risk of developing a disease within a given time period.  Absolute 

risk can be calculated by linkage with regional incidence data as in Cassidy et al 2008 

(188).  In this paper, regional lung cancer incidence data was obtained from North 

West Cancer Intelligence Service, in 5-year age categories and the intercept (𝛼) was 

calculated for each 5-year age group, using: 

𝛼 = ln (
𝑝

1−𝑝
) −  ∑ 𝛽𝑖𝑥𝑖, where 𝑝 =

𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 𝑝𝑒𝑟 100,000 𝑝𝑒𝑟𝑠𝑜𝑛𝑠

100,000
.   

The intercept is a function of the ratio of number of cases to number of controls and 

does not pertain to absolute risk; hence, the number of person-years at risk must be 

reported or, as in this example, a more complex method of calculation, using regional 

cancer data can be employed.  This will be discussed in Chapter 9 in relation to future 

aims.  

6.9 Conclusions 

The paucity of data on risk prediction in HNC highlights the need for the development 

of a validated risk prediction model.  There is great potential for use of this model for 

defining selection of patients for screening trials and this is discussed in Chapter 9.  
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Incorporation of biomarkers could further refine the predictive ability of the model 

(136, 258), and such a model could be applied to a known high-risk group of patients 

with a diagnosis of oral pre-malignancy in order  to predict malignant transformation 

and hence guide management decisions (see Chapter 8).  Potential for clinical 

application and future work will be discussed in Chapter 9.  

The model developed in this chapter shows reasonable discrimination and good 

calibration for prediction of head and neck cancer. The results of the external 

validation are presented in Chapter 7. 
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Chapter 7  

 

External Validation of a Risk 

Prediction Model for Absolute Risk 

of Head and Neck Cancer, using the 

UK Biobank 
 

 

7.1 Introduction 

The previous chapter presented the development of the first risk prediction model 

for absolute risk of head and neck cancer, using the UK Biobank dataset.  This chapter 

presents the validation of this model, using a subset of the UK Biobank dataset, 

containing persons living in the North West of England. 

Validation of risk prediction models is of paramount importance to investigate their 

reliability in different populations, referred to as ‘transportability’.  Ideally models 

should be validated in external datasets to confirm their reliability and predictive 

accuracy, before they are used in impact studies to assess their clinical usefulness 

(161, 163, 240).  

The North West of England is known to have a higher incidence of head and neck 

cancer than other parts of the UK (8, 149).  For this reason, the original dataset was 

split geographically, into development and validation sets, to tests its performance in 

a cohort known to have a higher risk of HNC.  It is not recommended to randomly 

split the data into development and validation sets (184), rather a geographical split 
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or time-dependent split is a better way of validating a model’s transportability to 

different populations (67, 161) (see section 4.4.2.1.) 

This chapter will present the methodology used for external validation (section 7.2), 

descriptive statistics for the validation cohort (section 7.3) and measures of model 

performance (section 7.4). Methods for improving model performance and the 

results of this will be presented in Section 7.5.  

7.2 Methodology 
 

The model for predicting risk of HNC, developed in section 6.4.1, contained variables 

for age, gender, smoking status and smoking duration, BMI, frequency of alcohol 

intake, household income (as a measure of deprivation), number of sexual partners, 

fruit intake and exercise.    

Firstly, the differences between cases and controls in the validation dataset are 

explored using descriptive statistics (t-test for continuous and chi-squared for 

categorical predictors) and compared to the development cohort (section 7.3).   

The linear predictor and predicted probability of head and neck cancer has been 

calculated for each individual in the validation dataset, using the log of the Odds 

Ratios found in Table 6.2 and the equation shown in section 6.5.  The c-statistic (area 

under the receiver operating curve, AUROC) has been used as a measure of the 

model’s ability to discriminate between cases and controls.  The calibration slope and 

calibration plot are used as measures of calibration.  Ten deciles of risk have been 

calculated to create risk groups, which are presented graphically as a calibration plot. 

Given that the model will always perform better in the data in which it is developed, 

it is sometimes necessary to recalibrate the model for the data in which it is to be 

used (161).  This can be achieved by updating the model intercept.  This is discussed 

in section 7.5 and the effects of this updating on the discrimination and calibration 

are presented.   

The model performance is assessed separately for males and females and separate 

calibration plots are presented.  Risk of HNC is significantly higher for males than 
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females (OR 1.75; see table 6.2), therefore it is important to determine if the model 

performs equally well for both sexes. 

 

7.3 The Validation Dataset 

This section will describe differences between the HNC cases and controls in the 

validation dataset.  These differences will be compared back to those found in the 

development dataset, which were presented in section 5.2.   

The validation set contains 78,895 individuals, with 157 cases of head and neck 

cancer.   

Table 7.1 presents the descriptive statistics detailing differences between cases and 

controls for all the variables used in the final model. 

7.3.1 Similarities and Differences between the Validation and Development 

Cohorts 

 

There are significantly more males than females with HNC.   Males with HNC are 

significantly older than male controls but this was not seen for females, which is 

different to the development data (Chapter 5.2.1).   There is a significant difference 

in the smoking status between cases and controls for males and females, which was 

also apparent in the development data (section 5.2.3).  Smoking duration was not 

significantly different, neither was frequency of alcohol consumption.  However, in 

the development dataset smoking duration was significantly different between cases 

and controls (section 5.2.3).  Household income was significantly lower for cases 

compared to controls, which was also the case in the development data (section 

5.2.2).  Participation in moderate exercise was greater for female controls compared 

to cases but this difference was not seen in males.  The opposite was seen in the 

development data: male cases reported less exercise than controls (section 5.2.6).  

Sexual history was not significantly different, however in the development data male 

cases reported statistically more sexual partners compared to controls (5.2.12).  Fruit 

consumption was higher for male controls compared to cases, but no significant 

difference was clear for females.  Fruit consumption was higher for both male and 
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female controls in the development dataset (5.2.5).  This demonstrates some 

differences between the development and validation datasets, which has the 

potential to demonstrate the performance of the developed model in a broader 

population than initially considered.  The prevalence of HNC in this population is 198 

per 100,000 compared to 165 per 100,000 in the development dataset, indicating the 

higher risk of disease in this population.   
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  Table 7.1  Descriptive Statistics for Risk Factors for Head and Neck Cancer in the Validation Cohort 

Variable  Head and Neck Cancer Case  Control p-value 

  Males Females  Males Females  

        
Number  
(N (%)) 

 94 (59.9) 63 (40.1)  36747 (46.7) 41991 (53.3) 0.001 

Age at recruitment (years) 
(mean (std dev)) 

 

 59.4 (6.5) 
 
 

57.0 (7.0) 
 
 

 56.7 (8.2) 
 

 

56.6 (8.0) 
 
 

Males 0.003 
Females 0.697 

Never  33 (35.1) 21 (33.3)  17,435 (47.8) 24,163 (57.8)  
Previous  50 (53.2) 34 (54.0)  14,012 (38.4) 13,306 (31.8) Males 0.012 
Current  11 (11.7) 8 (12.7)  5,066 (13.8) 4,316 (10.4) Females <0.001 

N (%)  94 (100) 63 (100)  36747 (100) 41991 (100)  
 

Smoking Duration (ever smokers) 
Mean years (SD) 

30.4 (14.5) 
 

25.8 (13.2) 
 

 27.4 (12.9) 
 

26.8 (12.7) 
 

Males 0.105 
Females 0.675 

N Missing (%)  10 (17) n=11 (26)  4,680 (25) 5,335 (30)  
Alcohol Frequency    N(%)        

Daily  27 (28.7) 8 (12.7)  8,363 (22.8) 5,721 (13.7)  
3-4 times/wk  17 (18.0) 16 (25.4)  9,729 (26.6) 8,622 (20.6)  
1-2 times/wk  29 (30.9) 16 (25.4)  10,075 (27.5) 11,329 (27.0) Males  0.126 

1 – 3 times/month  5 (5.3) 7 (11.1)  3,293 (9.0) 5,583 (13.3) Females 0.943 

Special Occasions only  6 (6.4) 11 (17.5)  2,831 (7.7) 6,787 (16.2)  

Never  10 (10.6) 5 (7.9)  2,346 (6.4) 3,863 (9.2)  
N (%)  94 (100) 63 (100)  36,637 (100) 41,991 (100)  
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Table 7.1 continued.  Descriptive Statistics of Risk Factors for Head and Neck Cancer within the Validation Cohort 

Variable  Head and Neck Cancer Case  Control p-value 

  Males Females  Males Females  

Household Income (£/year) 
N(%) 

       

<18,000  29 (40.3) 11 (24.4)  7,734 (25.3) 9,470 (29.2) Males 0.039 
18,000-31,999  12 (16.7) 19 (42.2)  8,076 (26.4) 9,011 (27.8) Females 0.229 

32,000 – 51,999  19 (26.4) 7 (15.6)  7,834 (25.6) 7,895 (24.3)  
52,000-99,999  10 (13.9) 6 (13.3)  5,770 (18.9) 5,090 (15.7)  

≥100,000  2 (2.8) 2 (4.4)  1,156 (3.8) 969 (3.0)  
                                 N missing(%)  22 (23) 18 (29)  6,177 (17) 9,556 (23)  
Moderate Exercise (10 mins; no. days/wk) N(%)      

0  20 (22.0) 11 (18.6)  4,990 (14.3) 5,445 (13.9)  
1  5 (5.5) 8 (13.6)  2,839 (8.1) 2,935 (7.5)  
2  15 (16.5) 4 (6.8)  4,876 (14.0) 5,702 (14.6) Males 0.325 
3  13 (14.3) 15 (25.4)  4,814 (13.8) 6,251 (16.0) Females 0.08 
4  5 (5.5) 5 (8.5)  3,218 (9.2) 3,814 (9.8)  
5  10 (11.0) 8 (13.6)  5,694 (16.3) 5,366 (9.8)  
6  7 (7.7) 2 (3.4)  2,277 (6.52) 1,785 (4.6)  
7  16 (17.6) 6 (10.2)  6,208 (17.8) 7,825 (20.0)  

                                N missing (%)  3 (3) 4 (6)  1,831 (5) 2,859 (7)  
Fruit intake (no. pieces/day 
(sd)) 
                                N Missing (%) 

 1.6 (1.4)                 
 9 (10) 

2.1 (1.3)  
0 (0) 

 2.1 (1.64)  
1,921 (5) 

2.4 (1.6)  
1,198 (3) 

Males 0.007 
Females 0.133 

Lifetime number of Sexual 
Partners (mean (sd)) 
                                   N Missing 
(%) 

 14.5 (20.2) 
 

24 (25%) 

4.2 (4.1) 
 

9 (14%) 

 11.0 (124.8) 
 

7,949 (22%) 

4.3 (10.3) 
 

8,195 (19%) 

Males 0.813 
Females 0.9185 
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7.4 Missing Data 

 

Missing data was noted as shown in Table 7.1: missing data for number of sexual 

partners and household income and smoking duration was highest, whereas all other 

variables had ≤6% missing data. 

Techniques for handing missing data were considered, including case-wise deletion 

or complete case analysis and multiple imputation.  Multiple imputation was 

discussed in Chapter 4, section 4.4.3 and was used on the development dataset to 

handle missing data.  Complete case analysis involves only using complete cases (i.e. 

with no missing data) in the analysis:  individuals with any missing data are were 

removed for the purposes of the analysis. 

In the validation dataset, complete case analysis was chosen due to the large size of 

the validation dataset and the fact that the variables with the highest amount of 

missing information were not statistically significant in the risk model (section 6.4.1).  

When the missing predictors do not have a significant effect on the outcome, 

complete case analysis is a simple and valid technique (259).  However, it is 

recognised that multiple imputation is a robust method for handling missing data and 

preferred by some authors (162).  60,240 individuals were available for complete case 

analysis.  Missing data is discussed in more detail in section 7.7.1. 

7.4 Calculation of the Linear Predictor 
 

The linear predictor (LP) was calculated for each patient in the validation dataset, 

using the coefficients obtained from the risk prediction model presented in 6.4.1 

(Table 6.2). The coefficient is the log of the odds ratio.  The LP is the log odds of each 

patient having the outcome of interest (151). 
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𝐿𝑖𝑛𝑒𝑎𝑟 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 =  −6.094852 (𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡) +  (. 0170573 ∗ 𝑠𝑚𝑜𝑘𝑖𝑛𝑔 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) +

 (. 0001917 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑥𝑢𝑎𝑙 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠) +  (−.1552106 ∗ 𝑓𝑟𝑢𝑖𝑡 𝑝𝑒𝑟 𝑑𝑎𝑦) +

 (−.322034 ∗ (𝑚𝑜𝑑𝑒𝑥10 == 7)) +    (−.299228 ∗ (𝑚𝑜𝑑𝑒𝑥10 == 6)) +  (−.3548187 ∗

(𝑚𝑜𝑑𝑒𝑥10 == 5)) +  (−.2049572 ∗ (𝑚𝑜𝑑𝑒𝑥10 == 4)) + (−.4371079 ∗ (𝑚𝑜𝑑𝑒𝑥10 =

= 3)) +  (−.332567 ∗ (𝑚𝑜𝑑𝑒𝑥10 == 2)) +  (−.4220539 ∗ (𝑚𝑜𝑑𝑒𝑥10 == 1)) +

 (. 4487275 ∗ (𝑎𝑙𝑐𝑓𝑟𝑒𝑞 == 6)) +  (. 1661107 ∗ (𝑎𝑙𝑐𝑓𝑟𝑒𝑞 == 5)) + (−.0385644 ∗

(𝑎𝑐𝑙𝑓𝑟𝑒𝑞 == 4)) +  (−.0528734 ∗ (𝑎𝑙𝑐𝑓𝑟𝑒𝑞 == 3)) +  (. 0257095 ∗ (𝑎𝑙𝑐𝑓𝑟𝑒𝑞 ==

2)) +  (−.3233918 ∗ (ℎ𝑜𝑢𝑠𝑒𝑖𝑛𝑐𝑜𝑚𝑒 == 5)) +  (−.2301338 ∗ (ℎ𝑜𝑢𝑠𝑒𝑖𝑛𝑐𝑜𝑚𝑒 == 4)) +

 (−.1571579 ∗ (ℎ𝑜𝑢𝑠𝑒𝑖𝑛𝑐𝑜𝑚𝑒 == 3)) +  (. 0001484 ∗ (ℎ𝑜𝑢𝑠𝑒𝑖𝑛𝑐𝑜𝑚𝑒 == 2)) +

 (. 0024737 ∗ (𝑠𝑚𝑜𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑢𝑠 == 2)) + (. 1402463 ∗ (𝑠𝑚𝑜𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑢𝑠 == 1)) +

 (. 5554884 ∗ 𝑔𝑒𝑛𝑑𝑒𝑟) +  (. 0254182 ∗ 𝑎𝑔𝑒) +   (−0.026872 ∗  BMI))  

 

The mean of the LP for the validation dataset is -6.737 (sd 0.607), based on 60,240 

observations.  The linear predictor was -6.095 (sd 0.523) for the development 

dataset, which is similar.  This allows us to compare the development and validation 

data and demonstrates that, on average, the risks are similar in the development and 

validation datasets.    

 

7.4 Model Performance 

7.4.1 Discrimination  

 

The c-statistic (area under the receiver operating curve) for the model in the 

validation data is 0.64 (95% CI 0.59 - 0.70), which shows that the model is better than 

chance at predicting the outcome (see Figure 7.1).  The performance is slightly worse 

than in the development data (AUROC 0.67 (95% CI 0.64 – 0. 69) – section 6.7).  This 

may be due to slight overfitting of the model in the development dataset, however 

this is unlikely to be due to the large sample size (n=329,005).  

 



   

157 
 

 

Figure 7.1. Area under the Receiver Operating Curve (AUROC) Graph demonstrating the Discrimination 
of the Risk Model in the Validation Dataset; C-statistic = 0.64 

 

7.4.2 Calibration 

 

The probability of head and neck cancer is very low, 0.00199 (n=78,895).  The mean 

expected probability is 0.00143 (n=60,240). 

Although this only equates to a difference of 0.00056, the expected:observed ratio is 

0.72.  Ideally the E:O would be 1, with no difference in the expected and observed 

probabilities.  However, with such low incidence, even small differences can appear 

large when viewed as a relative measure, such as E/O.  

The calibration slope is 0.83 (std error 0.14).  This suggests the model is slightly 

overfitted, with predictions being slightly too high in all risk groups.  

Ten risk groups were created, and a calibration plot generated (see Figure 7.2).  The 

risk is very low (<0.01% for all ten groups) and the observed and expected 

probabilities are quite close to the reference line. The model generally overpredicts 
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risk of head and neck cancer, as seen by many of the points lying above the reference 

line and as shown by the calibration slope of 0.83.   

 

 

Figure 7.2.  Calibration plot for Model Validation showing Expected and Observed Probabilities for Ten 
Risk Groups.  The 45-degree line indicates perfect calibration.  The points lie fairly close to this line 
indicating fairly good calibration of the model. 

 

7.5 Improving Calibration 

 

The problem of overfitting or optimism in model development was discussed in 6.6.3.  

In models developed in data with a low EPV or using data-driven techniques, such as 

automated selection of variables, one might expect significant overfitting (163).  

However, the present model was developed in data with an EPV of 30 and using 

clinical reasoning for variable selection to minimise this problem.  However, the 

calibration in the external validation is worse than the apparent calibration in the 

development data, which had a calibration slope of 0.99.  This is probably due to the 

fact that the prevalence of the outcome (HNC) is higher in the validation cohort 
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(section 7.3).  There is one option available to improve the calibration in these 

circumstances, which involves updating the model intercept, i.e. updating the 

baseline risk to reflect the higher outcome frequency (161, 260). This has been shown 

to improve calibration when models were under- or over-predicting risk (261).  

Another option when faced with a model which performs worse than desired is to 

develop a completely new model and reject the first model.  However, unless there 

have been significant concerns with the development of the initial model, it is 

recommended the model is simply updated, either by re-estimating the baseline risk 

(as in this case), or my re-estimating the effect estimates (161).  This prevents loss of 

scientific information and prevents a large number of models being developed, which 

generates confusion about which model should be used (161).   

The intercept is updated by fitting a logistic regression model with the original linear 

predictor (as an offset term) as the only covariate.  The new coefficient generated is 

the updated intercept. 
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The updated intercept in this validation data is -5.762 (95% CI -5.943 - -5.583).  The 

calibration slope is unchanged at 0.83 (sd 0.14) (see Figure 7.3) as is the 

discrimination as the ranking of the predictions is unchanged.   

Looking at the calibration plot, we can see the points now lie closer to the line of 

agreement (the 45-degree line), showing better agreement. 

 

 

 

 

 

 

 

 

 

 

Figure 7.3. Calibration Plot showing Expected and Observed Probabilities for Ten Risk Groups, 
following updating of the Model Intercept. 
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Figure 7.4 shows the calibration plots for the original model and the updated model overlaid. 

. 

 

Figure 7.4. Graph showing calibration of original model overlaid with calibration of model 
with updated intercept.  The expected:observed probabilities lie slightly closer to the 45-
degree line for some of the risk groups, with the updated model 

 

 

 

7.6 Calibration in Different Risk Groups 

 

Risk is different in subgroups of the population and therefore one might expect a risk 

model would perform differently in these subgroups (161, 260).  This model shows 

that male gender is a significant risk factor for HNC (6.4.1) and gender-specific risk 

factors for HNC have been explored in Chapter 3.  For this reason, model calibration 

has been tested separately for males and females. 
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7.6.1 Model Performance: Males 

 

The model performance was assessed in males within the validation cohort 

(n=27,364).  The E:O was 1.02 indicating good calibration.  The calibration slope was 

0.90, which is better than in the overall validation cohort.  The c-statistic is slightly 

improved but not significantly, at 0.65 (0.58 – 0.71).  Figure 7.5 shows the calibration 

plot.  All of the groups lie close to the 45-degree line.

 

Figure 7.5.  Calibration Plot of Risk Model for Head and Neck Cancer, with ten risk groups, for 
Males in the External Validation cohort. 
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7.6.2 Model Performance: Females 

 

The model was validated in females only, n=32,876 using the same methodology 

described in section 7.2.  The c-statistic is lower, at 0.61 (95% CI 0.52 – 0.69) and the 

calibration performance is also worse, with a calibration slope of 0.81, indicating that 

risk is under-predicted although, the E:O is 0.99, indicating good calibration overall.  

Figure 7.6. shows the calibration plot for ten risk groups of females in the validation 

dataset. 

 

 

Figure 7.6.  Calibration plot of risk model for Head and Neck Cancer, with ten risk groups, for 
females in the Validation dataset. 

 

7.7 Discussion 
 

The validation dataset contains 78,895 individuals with 157 cases of HNC and is drawn 

from a sub-group of the UK Biobank cohort.  Individuals recruited at sites in the North 

West of England are included in the validation cohort; the model was developed in 

the remaining data containing 329,005 observations with 702 cases of HNC (Chapter 

6). 



   

164 
 

The prevalence of HNC in the validation cohort is higher than that in the development 

cohort, which is consistent with reports of a higher incidence of HNC in the North 

West of England (8, 149).  Other than this higher prevalence of the outcome, the case-

mix is similar as demonstrated by comparisons between cases and controls in the 

development and validation cohorts (section 7.3).   

The ability of the model to discriminate between cases and controls is reasonable but 

there is scope to refine the model, to improve performance.  The c-statistic is 0.64 

for the overall cohort, 0.65 for males only and 0.61 for females only.   The calibration 

is good with the calibration plots showing points close to the 45-degree line, 

indicating the expected and observed probability of HNC is similar.  The calibration 

was not significantly improved by updating the model intercept. It may be that the 

only way to improve overall performance would be to include extra, as yet 

unidentified, novel variables that are more accurate predictors of disease than those 

currently included (161).  These risk factors may be molecular markers, which could 

preclude use of the model in general clinical practice.  This will be discussed in 

Chapter 9. 

 

7.7.1 Missing Data 

 

Collins recommends external validation studies should contain a minimum of 100 

events, and ideally 200 events, to ensure validity of the performance measures 

reported (164).  This validation dataset contained 157 cases, so the results of this 

validation study should be an accurate reflection of model performance in this data.   

Missing data was significant for three covariates (number of sexual partners, 

household income and smoking duration).   

It has previously been reported that missing data for income is frequently high in 

responses to surveys, around 10-15% (262).  One may assume that it is the personal 

nature of the questions surrounding income and sexual history that means patients 

are less likely to answer.  The questions were answered as part of a Computer-
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Assisted Self-Interview (CASI), as previously recommended when exploring sensitive 

information (263), in order to minimise the problem of missing data.   

Patients from the Liverpool Oral Medicine Patient Research Forum (LOMPRF) were 

asked to complete a short questionnaire regarding questions they would be willing 

to answer, for the purposes of determining their risk of HNC.  All patients (n=5) were 

willing to answer all questions posed (covering all variables included in the model), 

however questions were raised by two patients about the need for details of 

household income and sexual history.  Once an explanation had been given regarding 

the relevance of these factors to HNC, the patients said they would be willing to 

provide this information.  This informal, small, study does not provide the necessary 

evidence that patients would be willing to provide the details required for the risk 

model; a larger clinical utility study would be required.  If patients are not willing to 

answer the necessary questions, these variables could be removed from the model.  

Alternatively, one could work with a Public and Patient Involvement (PPI) group such 

as LOMPRF to determine if there are better ways of asking these questions and 

collecting the data.  Alternatively, real-time multiple imputation methods can be built 

in to computer software to overcome the problem of partial responses (264), 

assuming a web-based tool is being used.  

The reason for missing information regarding smoking duration, which is up to 30%, 

is due to the missing data for age started smoking (and age stopped smoking for 

former smokers).  Participants in the UK Biobank study were only asked for details of 

their age when they started (and stopped) smoking if they indicated they currently 

(or previously) smoke(d) “on all or most days of the week”.  Participants who reported 

to smoke ‘occasionally’ (n=14,455 for current smokers and n=71,472 for former 

smokers) or ‘just once or twice’ (n=80,991 for former smokers) were not asked for 

details of age at starting or stopping smoking.    Of these, 66,224 (40%) report to be 

‘ever’ smokers (i.e. have smoked at least 100 cigarettes in their lifetime).  Given the 

importance of smoking duration in other smoking-related cancer risk prediction 

models (for example the LLP model (188)), it would be important to ensure these 

data are thoroughly collected in any future studies. 
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7.7.2 Performance compared to Published Risk Models 

 

Whilst the performance of this model cannot be compared to similar models in the 

same field, due to the lack of such a model, the performance will be considered in 

relation to risk models in other smoking-related cancers (lung and oesophageal). 

7.7.2.1 Lung Cancer 

Risk prediction modelling in lung cancer has been established since the early-2000’s 

when Bach et al published their risk model for lung cancer risk prediction amongst 

smokers (265).  The c-statistic was 0.72.  Many other lung cancer risk models have 

been produced, including the Liverpool Lung Project (LLP) model in 2008 with a c-

statistic of 0.70 (188), which was updated in 2015 to the LLPi model which has a c-

statistic of 0.85 (266).  There is great variability in the apparent performance of the 

many lung models developed, with c-statistics ranging from 0.57 to 0.92 reported in 

the literature (267-272).  

7.7.2.2 Oesophageal Cancer 

A search of the literature revealed several risk prediction models for oesophageal 

cancer; the first were published in 2013 (43, 273) and several have been published 

between 2016 and 2018 with c-statistic ranging from 0.71 to 0.84 (70, 274-278).  One 

of these models was developed within the UK Biobank data and included 220 incident 

cases and 355,034 controls (70).  The model included variables for age, sex, smoking, 

body mass index, and history of oesophageal conditions or treatments.  The c-statistic 

is 0.80 but the model has not yet been externally validated.   

The models with better performance tended to have a disease-specific risk factor 

incorporated (275, 277), such as ‘known oesophageal disease’, as in this latter model 

(70) or genetic markers in the model of Dong et al (275). 
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7.8 Conclusion 
 

The model developed provides a firm foundation on which to begin the discussion on 

risk modelling in HNC.  The model demonstrates moderate discriminative ability and 

good calibration; its performance is consistent with models developed for predicting 

risk of other smoking-related cancers, but it is noted that several of these models out-

perform the present model.  This is likely to be because of the presence of disease-

specific risk factors and genetic markers in the better models.  The HNC model could 

be refined and updated to improve the performance, by including disease-specific 

risk factors or molecular biomarkers, if they can be identified.  Chapter 9 will discuss 

the need for further validation studies in truly independent data and for clinical 

impact studies to determine the model’s true potential in improving patient 

outcomes. 
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Chapter 8 

 

The Link with Oral Epithelial 

Dysplasia  
 

 

 

The work in this Chapter was published as an Editorial in Oral Oncology 

(Appendix 8). 

Field EA, McCarthy CE, Ho MW, Rajlawat BP, Holt D, Rogers SN, Triantafyllou A, Field 

JK, Shaw RJ.   

Editorial:  The management of oral epithelial dysplasia.  The Liverpool algorithm. 

Oral Oncol. 2015 Oct;51(10):883-7. doi: 10.1016/j.oraloncology.2015.06.015. Epub 

2015 Jul 18. 
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8.1 Introduction 

The work described in this thesis demonstrates the increasing incidence of HNC in 

the UK (chapter 2), explores novel gender-specific risk factors for HNC (chapter 3) and 

presents the first risk prediction model for HNC, developed and validated in a large 

UK dataset (chapters 4-7). 

Risk prediction models have an important role to play in primary prevention efforts 

in many cancers, particularly HNC.  If high-risk individuals can be accurately identified, 

targeted prevention efforts can be implemented.  Patients with a diagnosis of Oral 

Dysplasia (oral pre-cancer) are known to be at high risk of developing oral cancer 

compared to the general population (279).  Liverpool University Dental Hospital, 

manages a cohort of around 250 patients with histologically confirmed oral dysplasia; 

the malignant transformation rate has been reported as 25% over 5 years (280, 281). 

There is potential for a risk prediction model to inform treatment and follow-up 

decisions (282).  This chapter discusses the diagnosis of Oral Pre-malignancy (Oral 

Dysplasia) and reviews the current management strategies.   

8.2 Oral Epithelial Dysplasia (OED) 
 

8.2.1 Background and Current Management of Oral Epithelial Dysplasia 

 

Oral epithelial dysplasia (OED) is a potentially malignant disorder of the oral mucosa, 

which may appear as a white patch, red patch or mixed red and white patch on any 

area of the oral mucosa (see Figure 8.1).  The clinical appearance is described in 

section 8.2.3.1.   
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Figure 8.1. Clinical photograph of a homogenous, white dysplastic lesion on the lateral border (side) of the tongue, 
extending to the ventral (underside) surface.   

These premalignant lesions undergo malignant transformation to oral cancer in 5.0-

36.4% of cases (6, 279, 282-287). 

A biopsy is required to confirm the diagnosis of OED.  The lesion is graded 

histologically as mild, moderate or severe.  Severe oral epithelial dysplasia has been 

found to transform to oral cancer in up to 50% of cases (288).   

Ho M et al (2012) studied a cohort of 91 patients with histologically-confirmed OED 

from Liverpool University Dental Hospital.  The authors reported a mean time to 

transformation (MTT) following diagnosis of 40 months, with 12% transforming 

within 2 years and 22% at five years (279).  Ho PS (2009) reported malignant 

transformation of 24% (8 of 33) cases of OED over 38 months (6).   

Prevention of malignant transformation is the primary aim of management.  Failing 

this, detection of malignant transformation at the earliest possible opportunity, to 

allow minimally invasive treatment, is desirable. 

OED may be managed by surgical excision (laser or scalpel), laser ablation or, less 

commonly, photodynamic therapy, cryotherapy or non-surgical treatments 

(discussed in 8.2.4.2).  Close-monitoring with intervention in the event of a suspicious 

change in clinical appearance is offered in some cases and is discussed in 8.2.4. 



   

172 
 

The decision to proceed with treatment (as opposed to close monitoring) would 

ideally be based on a validated risk prediction model showing that the patient is at 

high risk of developing oral cancer. In clinical practice, because no such model is 

available, the decision is based on grade of dysplasia seen on histological examination 

and clinical risk factors for malignant transformation such as smoking status, site, size 

and appearance (279, 282).  Feasibility of surgery, in terms of patient acceptance, 

anticipated quality of life following surgery, medical status of the patient and local 

factors such as requirements for reconstruction, are also major considerations. 

Recurrence of lesions following surgery is reported in 4-17% of cases  (289-292) (see 

section 8.2.4.1), therefore close follow-up is required.  Length of follow-up and 

intervals between appointment are variable between clinicians and there is a need 

for consensus guidelines to inform clinicians how to manage these patients (279). 

Management decisions are challenging, and at present the only guidelines in place 

regarding management of OED form part of the British Association of Head and Neck 

Oncologists (BAHNO) UK Head and Neck Cancer Multidisciplinary Management 

Guidelines (231). These guidelines advise on the “targeted use of biopsy and 

histopathological assessment, along with advice on reduction of environmental 

carcinogens (tobacco use and alcohol), followed by surgical excision of the lesion 

where the size of the lesion and subsequent function allows”.  Long term surveillance 

is recommended.   

In the United Kingdom, primary care practitioners receive guidance from the National 

Institute for Health and Clinical Excellence (NICE) regarding referral of patients with 

suspected cancer (293), which have been summarised in the “Mouth Cancer Referral 

Guidelines for Dentists” by Cancer Research UK (294).  These guidelines apply for 

patients with unexplained or persistent lesions of the oral mucosa; therefore, most 

patients with OED will be managed in secondary or tertiary care settings, following 

referral from primary care. 

At Liverpool University Dental Hospital, a tertiary Regional OED clinic was created in 

recognition of the difficulties faced in managing patients with this condition.  These 

clinics are intended to harness the combined expertise of both Oral and Maxillofacial 
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Surgery and Oral Medicine specialists to ensure patients receive the highest standard 

of care.  This format also minimises delay to definitive treatment, which often 

includes surgery.     

8.2.2 Current Methods for Diagnosis of OED 

 

8.2.2.1 Histopathological Examination 

Despite many studies into alternative methods, routine histopathological 

examination of a biopsy specimen remains the gold standard for diagnosis of OED.  

The 2005 WHO Classification of Tumours defined the features of OED in the hope of  

reducing intra- and inter-observer variability amongst histopathologists in reporting 

of OED (295-297).  Presently, dysplasia is categorised as mild, moderate and severe, 

however studies have shown variability between specialist oral and maxillofacial 

pathologists in their interpretation of the architectural and cellular changes within 

the epithelium that lead them to their diagnosis (297, 298). 

It has been suggested that a binary system, categorising lesions as ‘low risk’ and ‘high 

risk’, would be helpful in reducing inter-observer variability (298).  It was also 

suggested that this may help in avoiding confusing messages to clinicians, such as 

reports stating “mild with focally moderate dysplasia”, which can be difficult to 

interpret clinically (298).  This binary system has been shown to correlate well with 

clinical outcomes, with only 15% of lesions categorised as ‘low risk’ undergoing 

malignant transformation, compared to 80% of ‘high risk’ lesions.  Sensitivity and 

specificity of the binary system is reported as 84.9% and 85% respectively.  Crucially, 

this method of reporting avoids the category of ‘moderate dysplasia’, for which 

treatment decisions can be particularly challenging.(298)    

The use of toluidine blue, bio-optical imaging and cytological examination of brush-

biopsy specimens are under intensive research  (299-305), but as yet none of these 

methods are able to reliably replace routine histopathology.   Toluidine blue is 

discussed below in view of the encouraging results indicating its ability to detect 

lesions more likely to progress to oral cancer.(282). 
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8.2.2.2 Toluidine Blue 

Toluidine blue (Tolnium chloride) or TBlue is a dye with a high affinity for cells rich in 

nucleic acids (such as (pre)-malignant cells of the oral mucosa).  It has been used in 

studies (301, 306, 307) to aid detection of dysplastic lesions and carcinoma of the oral 

mucosa.  Sensitivity rates for detection of carcinoma are high (76 - 100%), however 

the figures are lower for detection of dysplasia (45-94%).  Specificity is quite low, 

ranging from 39 to 45%(307).  Detection rates improve with increasing severity of 

dysplasia (307).  It has been proposed that Tblue detects ‘molecularly-positive’ 

lesions, as it stains nucleic acids, its retention being linked to loss of heterozygosity 

at various loci on tumour suppressor genes (300).  That is, it is thought to stain high 

risk lesions that are likely to progress, even in the absence of histopathological 

features of dysplasia (282).  Rock et al found that 22 out of 83 “TB-positive” lesions 

progressed to oral cancer against 34 out of 266 TB-negative lesions.  This implies that 

lesions which stain positive for TB are more than twice as likely to progress to oral 

cancer (OR 2.65; 95%CI 1.45 – 4.83).  This is attractive, as it may help to guide 

management and follow up of lesions but needs to be confirmed by a randomised 

control trial.  The ease of application and immediate, chair-side result favours its use 

and results are easy to interpret, however further evidence is required regarding its 

use in detecting dysplasia.  Its use is supported for detection of carcinomas and in 

biopsy site selection, as well as in mapping out a lesion prior to excision (308, 309). 

 

8.2.3 Predictors of Malignant Transformation of OED 

One of the main challenges in the management of OED is predicting which lesions will 

progress to invasive carcinoma.  Factors including non-smoking status, lateral tongue 

site and non-homogenous appearance have been shown to be associated with higher 

rates of malignant transformation, along with female gender, larger size of 

lesion(>200mm2) and non-homogenous appearance, as described previously (6, 279, 

282). 

8.2.3.1 Clinical Appearance 

Dysplastic oral lesions may present as leukoplakia (white patches), erythroplakia (red 

patches), erythro-leukoplakia (mixed red and white patches), verrucous lesions 
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(usually thick, white lesion) or ulcers/erosions.  Lesions may be homogenous (uniform 

in appearance) or non-homogenous (mixed appearance); it has been shown that 

speckled lesions (areas of erythro-leukoplakia) are more likely to be dysplastic and to 

undergo malignant transformation (286, 310).  

Leukoplakia is a clinical diagnosis, defined as ‘a white plaque of questionable risk 

having excluded (other) known diseases or disorders that carry no increased risk of 

cancer’ (295) and does not confirm the presence of dysplasia.  Unfortunately, authors 

differ in their use of the term ‘leukoplakia’ which can make the results of studies 

ambiguous; some incorrectly use it to infer dysplasia.  Studies reporting on malignant 

transformation of oral leukoplakia  display a wide range of malignant transformation 

rates: 0.13-17.5%  over a period of 6 months to 30 years (286, 310).  There is 

variability between studies in the diagnosis of the disease, the population studied, 

the treatment modality and the follow-up arrangements, which is likely to account 

for the large range in malignant transformation rates.  When comparing malignant 

transformation rates of OED between studies, one should be aware of the method 

used to diagnose oral dysplasia, so that similar studies can be compared.   

Around 90% of red lesions (erythroplakia) show evidence of severe dysplasia or 

carcinoma on histology(311).  Holmstrup et al (312) reported a 7-fold increase in 

malignant transformation in non-homogenous leukoplakia (i.e. mixed red and white 

lesions), therefore it is usual for these lesions to be treated more aggressively than 

their homogenous counterparts (312).  Treatment almost always includes surgery 

and this is discussed below (section 8.2.4.1). 

An annual malignant transformation rate of leukoplakia of 1.4-7% has been reported, 

with the highest rate of malignant transformation occurring in the first 2 years (6, 

286, 310).  Size of lesion has also been found to predict malignant transformation, 

with lesions over 200mm2 found to transform more often than smaller lesions (279, 

312). 

The lateral tongue is the most common site for oral leukoplakia, followed by buccal 

mucosa. Ho et al found that 80% of lesions on the lateral tongue occurred in non-



   

176 
 

smoking patients (279). These lesions transform more frequently than lesions 

elsewhere on the oral mucosa (279, 286, 289).   

8.2.3.2. Grade of Dysplasia 

Grade of dysplasia has been found to be strongly associated with malignant 

transformation, with lesions showing a higher grade of dysplasia more likely to 

transform to invasive carcinoma (285, 287, 289, 313).  Lesions showing no evidence 

of dysplasia may also transform (285), which highlights the need for careful follow up 

of all patients with areas of change on the oral mucosa.  Mild dysplasia shows less 

than 5% transformation, and moderate and severe dysplasias have transformation 

rates of 3-15% and 7-50% respectively (288).  Amagasa et al (314) found that time to 

malignant transformation was reduced for lesions with higher grades of dysplasia. 

Liu et al (289) showed an increased risk of malignant transformation for lesions 

histologically confirmed as dysplastic, with high grade lesions more likely to 

transform compared to low grade (OR 2.78).  This finding is supported by Lee et al 

(313) who found a 2.30-fold increased risk of malignant transformation in lesions 

showing moderate/severe dysplasia compared to mild dysplasia.   

The effect of field cancerization is well-known and it has been demonstrated that 58% 

of patients with a unilateral oral squamous cell carcinoma displayed evidence of 

histologically abnormal tissue on the contralateral side, which appeared clinically 

normal (315).  This is consistent with a report by Lee et al (313)  that for 41% of their 

patients who developed Oral Squamous Cell Carcinoma (OSCC), the cancer developed 

at a different site to the original leukoplakia for which they were being treated. 

8.2.3.3 History of Oral Cancer 

Previous history of oral cancer is a risk factor for malignant transformation of 

dysplastic lesions:  Lee et al (313) showed that 63.6% of patients with previous cancer 

experienced malignant transformation of a dysplastic lesion compared to 25.4% of 

those with no previous history.   Management of these patients is also likely to be 

more aggressive and include excision or laser ablation of new lesions as they develop.   
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8.2.3.4 Smoking Status 

Non-smoking patients have been found to be at higher risk of malignant 

transformation compared to ever-smokers.  Ho et al (279) reported that non-smokers 

were 7.1 times more likely to undergo malignant transformation than heavy smokers 

(>20 pack years).  Rock et al published results in 2018 of their study of 444 patients 

with OED in Canada (282) and reported an increased risk of malignant transformation 

for dysplastic tongue lesions; 44 of the 85 tongue lesions in non-smokers progressed 

to oral cancer (OR 7.3; 95% CI 1.7-31.1).  The wide confidence intervals cast some 

doubt on the validity of the overall result. 

That non-smokers appear to be at higher risk of malignant transformation contrasts 

with the commonly accepted fact that smoking is a risk factor for oral cancer.  The 

increased risk of malignant transformation in non-smokers may be due to underlying 

(epi-)genetic differences.  Oral dysplasia that has developed in the absence of classic 

carcinogens suggests an alternative aetiology such as unique genetic mutations or 

replicative errors, which may confer increased risk (282). 

 

8.2.3.5 Molecular Markers of Malignant Transformation 

Various molecular markers of malignant transformation have also been explored 

(316-318). Loss of Heterozygosity (LOH) and methylation of p16 will be discussed 

briefly.  Rock et al have previously developed a prediction model for progression of 

OED based on LOH-status alone (319).  Their cohort contained 44 cases of oral 

dysplasia which progressed to oral cancer out of 296 total cases.  They have shown 

that LOH in a dysplastic lesion in a non-smoker confers a greatly increased risk of 

malignant transformation (HR 60.7 (95% CI 7.1 – 514.5)) and conclude that LOH 

“should be an important consideration in the management of OED”.  The addition of 

methyl groups to tumour suppressor genes (methylation) reduces their activity:   

27.1% of lesions showing evidence of p16 methylation underwent malignant 

transformation compared to 8.1% of un-methylated p16 cases (OR 4.6) (320).  

Molecular markers should be considered in any future risk prediction model for oral 

epithelial dysplasia. 
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8.2.4 Management Decisions in OED 

 

Section 8.2.1 discussed the current management of OED and the brief guidelines 

provided within the UK National Multidisciplinary Guidelines for Head and Neck 

Cancer (231).  The value of clinical photographs for surveillance is recognised, with 

72% of Consultant Oral and Maxillofacial Surgeons photographing lesions at the 

patient review appointments.  However, only 26% of these specialists would always 

biopsy a potentially premalignant oral lesion, although 99% would biopsy a speckled 

patch (321). Clinicians must decide whether to monitor a lesion for signs of 

progression, prior to definitive surgical intervention vs proceeding directly to surgical 

excision.  Patients with multiple lesions, larger lesions and lesions present at high risk 

sites (lateral border of tongue/floor of mouth), are considered to be at high risk of 

malignant transformation and may therefore be offered intervention, rather than 

active surveillance (279).   These decisions are made based on best-available evidence 

and potentially would benefit from the use of a risk prediction model, together with 

clinical acumen.  For lesions thought to be at low risk of progression, e.g. a mildly 

dysplastic lesion in a low-risk site, active monitoring is a realistic management plan 

(322).  Active monitoring may include clinical examination, photographic recording 

and surveillance biopsies.  

Management of moderate dysplasia varies between clinicians and may include a 

period of monitoring followed by resection if changes are noticed.  Other clinicians 

recommend excision of all areas of leukoplakia, due to reports of malignant 

transformation of non-dysplastic areas of leukoplakia many years after initial 

diagnosis (322).  Without conclusive evidence to support or reject the use of surgical 

excision of dysplastic lesions, it remains common practice to excise lesions showing 

histopathological evidence of severe dysplasia or carcinoma in-situ, as they would be 

considered at high risk of malignant transformation (323). 

8.2.4.1 Surgical Management of Oral Epithelial Dysplasia 

Some authors recommend excision of all areas of leukoplakia (322), with the aim of 

preventing malignant transformation. In complete contrast, it has been suggested 

that surgical excision of hamster tongue mucosa treated with carcinogen promotes 
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malignant transformation (324), although this has not be shown in humans.  In the 

absence of good quality evidence that surgical intervention helps to prevent 

malignant transformation, it is necessary to consider the need for multicentre, 

randomised control trials with long follow-up periods, to accurately determine the 

outcome of surgical intervention.   

Despite the current lack of RCTs into surgical intervention, it remains the most 

commonly used intervention in treating oral epithelial dysplasia. When treatment is 

advised, this may include laser ablation, laser resection or conventional scalpel 

excision(285).   

8.2.4.1.1 Scalpel Excision  

Scalpel excision remains a common treatment for dysplastic oral mucosal lesions.  

Studies over the last 10-15 years show a mean recurrence rate of 11.9% and 

malignant transformation rate of 4.6% for lesions that are excised (see Table 8.1) 

(325-329).   

Laser resection offers the advantages over scalpel excision of: haemorrhage control, 

improved visibility, shortening of operative time, decreased post-operative pain and 

swelling, minimal scarring and good post-operative tissue mobility (330).  Recurrence 

rates from studies into laser treatment of OED range from 7.7 to 38.1%. (331-333).
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Table 8.1. Studies of Surgical interventions in Oral Epithelial Dysplasia.  The results for recurrence rate and malignant transformation rate, following surgery, are shown for 
each study 

 Author and Year Type of Treatment % Recurrence % Malignant Transformation amongst 

treated cases 

Jaber 2010 (325) “Surgery” or  “drug therapy” or 

“other” 

16.7 4.7 

Holmstrup 2006 (312) Scalpel Excision 13.5 12.4 

Kuribayashi 2012 (327) Scalpel Excision following 

application of Lugols Iodine 

15.1 1.9 

Thomas 2012 (328) Scalpel excision 4.2 4.1 

Pandey 2001 (329) Surgical Excision 10.1 0 

Jerjes 2012 (334) Laser excision and/or ablation 19.5 10.4 

Van der Hem 2005 (335) Prophylactic laser treatment 9.9 1.1 

Ishii 2003 (330) Laser treatment 29.3 1.2 
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8.2.4.2 Other Methods of Treatment 

8.2.4.2.1 Photodynamic Therapy 

Photodynamic therapy (PDT) has also produced positive results in the treatment of 

oral leukoplakia in short-term studies, although recurrence within 6 months was 

reported in one case (290).  Jerjes reported a complete response with PDT in 81% of 

treated lesions, malignant transformation in 7.5% of cases and progressive disease in 

a further 7.5% (336). 

8.2.4.2.2 Chemoprevention 

Several authors have investigated the use of chemoprevention in the management 

of oral dysplasia.  Vitamin A and beta carotene were explored as part of a double-

blind, placebo-controlled, randomised control trial (291) and it was demonstrated 

that 52% of lesions regressed with a regime of oral vitamin A, whilst 33% of lesions 

regressed with beta carotene.  Only 10% regressed in patients taking placebo.  This 

response was not maintained following cessation of the therapy, with up to 66% of 

responders relapsing. 

Epstein et al (292) used topical bleomycin in the management of oral dysplasia and 

demonstrated a decrease in clinical size and in grade of dysplasia compared to 

placebo.  Whether or not this translated to a decreased rate of malignant 

transformation is not clear.   

13-cis-retinoic acid and oral lycopene have also shown promising short-term results 

(337, 338), however reports of adverse reactions and early relapse limit their clinical 

usefulness.  

The most recent Cochrane review regarding management of oral leukoplakia 

concluded that there is insufficient high-quality evidence to support the use of non-

surgical interventions for treatment of oral epithelial dysplasia (339).  Only 2% of Oral 

and Maxillofacial (OMFS) consultants reported ever using chemopreventive agents 

for patients with oral premalignant lesions (321). 

A UK-based multicentre, double-blind, placebo-controlled, randomised control trial 

of Sodium Valproate for high-risk oral epithelial dysplasia, has been funded by the 



   

182 
 

Medical Research Council (ISRCTN12448611) (340) .  This trial is due to open in 2019 

and will recruit 110 patients with high risk oral dysplasia.  Patients will receive either 

4 months of Sodium Valproate or placebo, following which the histological and 

molecular changes will be assessed.   Interest in Sodium Valproate as a 

chemopreventive agent in HNC was raised following publication of the Kang study 

(341): over 400,000 US Veterans, of which 27,000 were taking sodium valproate, 

were recruited.  Results showed a significant protective effect against HNC for those 

veterans taking sodium valproate for greater than 3 years (HR 0.66 (95%CI 0.48-

0.92)). 

8.2.4.3 Follow-up 

Currently there is no international / national consensus for exact duration of follow-

up or follow-up intervals for monitoring of dysplastic lesions (342).   Some suggest 

lifelong follow-up at intervals of no more than 6 months (322), due to the potential 

for malignant transformation many years following the initial diagnosis of dysplasia. 

However, this has to be considered in terms of clinical resources; a risk assessment 

model would be extremely useful to select high risk individuals for follow up in 

secondary care, with low risk individuals discharged back to the Dentist for lifelong 

follow up.  Evidence from Taiwan, of 2229 male patients with Oral Leukoplakia 

showed a five year and ten year malignant transformation rate of 5% and 9.56% 

respectively, demonstrating the need for vigilance, even after the first five years 

(343).  

One survey of 189 UK OMFS Consultants (321) reports that 96% would follow up a 

patient with severe dysplasia but that only 70% would follow up moderate dysplasia. 

Thus, in the UK we already have an agreement to focus on the highest risk patients, 

but this could be improved with a validated risk model.  This indicates that clinicians 

regard grade of dysplasia as an important predictor for malignant transformation and 

plan their follow up of patients on that basis. 
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8.2.5 Risk Prediction for Oral Epithelial Dysplasia 

 

There are no current risk prediction models in clinical use for Oral Epithelial Dysplasia.  

Decisions on management are based on clinical and histological predictors. Attempts 

have been made to develop a risk model of malignant transformation: Lee et al (313) 

used a dataset containing 70 patients with OED with median 7.2 years follow up, with 

22 cases of malignant transformation.   They considered a total of 12 variables in their 

Cox regression model, of which three were significant at the 5% level.  Age >60, 

positive cancer history and moderate/severe dysplasia (vs mild dysplasia) were found 

to be risk factors for transformation.  Unfortunately, no discrimination or calibration 

statistics were presented, and the model has not been internally or externally 

validated.  This model is underpowered to detect variables significantly associated 

with the outcome, given the small number of cases that progressed to cancer (n=22).  

Using the rule of ten events per variable, only 2 variables should have been 

considered, which demonstrates the need for a larger dataset in which to develop 

this model. 

8.3 Discussion 
Patients with Oral Epithelial Dysplasia have a significantly increased risk of developing 

oral cancer compared to the general population (25% vs 0.2%) (281, 341).  There is a 

need for consensus guidelines, based on the available evidence, for the management 

of OED. Ideally, management decisions should be based on a robust and properly-

validated risk prediction model.  No such risk model exists at present and a large 

dataset is required to achieve this aim. OED is diagnosed by clinical examination and 

histopathology, which remain the gold standard for diagnosis considering current 

evidence. With further development of the technologies discussed in this chapter, 

this may change in the future.   

The forum in which patients are managed may be significant for patient outcome: 

Liverpool University Dental Hospital has a specialist oral pre-malignancy clinic, which 

involves clinicians from the specialities of Oral Medicine, Oral and Maxillofacial 

Surgery and Oral Pathology.  This group has shown that patients managed within this 

multidisciplinary dysplasia clinic, whose lesions undergo malignant transformation, 
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present with lower stage tumours (T1) in comparison to patients presenting with oral 

cancer from general practice or elsewhere (281).  This permits more limited surgical 

intervention (wide local excision), when compared to higher stage tumours, which 

may be treated with more invasive surgery plus adjuvant radiotherapy with or 

without concurrent chemotherapy.   There is also a survival advantage, with 100% 5 

year survival reported, in the group of patients (n=23) who developed oral cancer, 

from dysplasia, having first been managed within the tertiary care clinic (281). 

The fourth World Workshop on Oral Medicine (WWOM IV) review of the 

management of oral epithelial dysplasia (344) concluded that there is a lack of RCTs 

assessing the effectiveness of surgical intervention in preventing malignant 

transformation.  However, surgery (laser or scalpel) remains the most appropriate 

treatment option for many patients.  Laser ablation can also be considered for larger 

areas where surgical removal may not be compatible with function.  The use of 

toluidine blue in identification of high risk lesions, selecting biopsy sites and helping 

to ensure clear margins is increasing and good results are emerging (282, 299, 301, 

307) as discussed in 8.2.2.2. 

Alternative modes of management such as chemoprevention have been explored 

and clinical trials are currently been undertaken,  however high quality evidence is 

required before chemopreventive options can be considered in the management of 

OED (344). Regular and long-term follow up is required for all patients with OED; at 

least 5 years follow up by specialists is suggested.  The location of this follow up may 

include tertiary dysplasia clinics, oral medicine clinics, and OMFS departments at 

district general hospitals. Patients will need to be individually assessed to determine 

the most appropriate location for follow-up.   Due to the potential for late malignant 

transformation, all patients discharged from specialist care will require lifelong 

surveillance in General Dental Practice; patients should be re-referred in the event of 

a change in the clinical appearance of the lesion.   

It is questionable whether more aggressive management is justified for patients with 

particular risk factors (e.g.  non-smoking patients). In the absence of RCTs the 

evidence does point to a high risk of malignant transformation for dysplastic lesions 
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on the lateral tongue of non-smoking patients (279, 282).  An ambition for the future 

will be to create a risk model for malignant transformation of dysplastic lesions, which 

will then need to be utilised in a RCT, with the aim of eventually offering a 

personalised treatment plan for patients with OED.  Development of a dysplasia risk 

model will require a dataset with sufficient numbers of cases of OED, progressing to 

oral cancer, requiring a multicentre study.  Ideally the model will include molecular 

markers, necessitating a prospective study. 

8.4 Conclusion 
The evidence presented here has highlighted the need for a risk prediction model to 

aid decision making, with the aim of improving outcomes for patients with this 

potentially malignant disease.  Chapter 9 provides conclusions and proposals for 

future work following the development and validation of the risk model for head and 

neck cancer in chapters 6 and 7. 
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Chapter 9  

 

Conclusions and Further Work 
 

9.1 Introduction 

Head and Neck Cancer is a debilitating disease affecting 12,000 people in the UK 

every year and over 500,000 individuals globally (345).  The incidence is rising, 

particularly in subgroups of HNC related to HPV infection (31).  Risk prediction models 

offer an exciting opportunity to enhance patient care in HNC.  There is potential to 

reduce morbidity and mortality associated with HNC through targeted screening of 

high-risk individuals, hopefully leading to earlier detection of disease and the 

possibility of less invasive treatments (257).  There is potential for a risk calculator to 

be used in clinical trial design to enable recruitment of sub-groups of patients with 

the highest risk of disease.  Using a risk prediction tool in general dental practice could 

offer an exciting opportunity to educate patients regarding their risk habits, based on 

a personalised risk score.   

This thesis has discussed the increasing incidence of HNC in the UK, explored novel 

risk factors for HNC in females and described the development and validation of the 

first risk prediction model for absolute risk of HNC in a UK population, using the UK 

Biobank dataset.  Oral pre-malignancy has also been discussed, as this condition 

affects a group of individuals with a particularly high risk of developing HNC.  This 

chapter draw conclusions from the work presented in chapters 2 and 3 (sections 9.2 

and 9.3) and will discuss the potential for further external validation (section 9.5) and 

testing of the risk prediction model for HNC (presented in Chapter 6) in feasibility and 

impact studies (section 9.6).  Options for implementation of the risk model in HNC 

clinical trials and as a tool for the dental team to guide patient counselling on risk 
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behaviours are discussed in 9.7 and 9.8, including the potential to translate this work 

into Oral Pre-malignancy. 

9.2 Incidence of Head and Neck Cancer  

The incidence of HNC increased from 12.2 to 15.9 per 100,000 between 2002 and 

2011, in the UK (149).  However, at sites strongly associated with HPV-infection (the 

oropharynx, tonsil and base of tongue), the incidence of cancers doubled.  This trend 

has been reported by others (31, 346) and in July 2018 the UK Government 

announced that the HPV vaccination programme would be extended to include boys 

(216) to address the issue of HPV-related oropharyngeal cancers.  The HPV 

vaccination should significantly reduce the incidence of HPV-related HNC, however, 

this effect will not be demonstrated for several decades due to the lag time between 

initial infection and presentation with HPV-related oropharyngeal cancer (216).   

9.3 Novel Risk Factors 

Smoking, alcohol and particularly the combination of the two are well-established 

risk factors for HNC (22).  Increasing age and male gender are also known to increase 

the risk of disease.  However, there is increasing acceptance that lack of fresh fruit 

and vegetables and lack of exercise are risk factors for HNC.  Closely related to this is 

the problem of social deprivation; areas of significant deprivation in the UK have rates 

of HNC three-times the national average (8).  However, not all patients conform to 

the stereotype of a HNC patient by being an older male with a long history of smoking 

and drinking alcohol.  Work in this thesis has demonstrated an increasing incidence 

of oral cancer in older females (Chapter 2).  There is also a known cohort of non-

smoking female patients with oral pre-malignancy, who suffer a higher rate of 

malignant transformation compared to their smoking counterparts (279, 282).  This 

raised the question as to whether hormone-related risk factors were specific to 

females.  The systematic review presented in Chapter 3 demonstrated a lack of 

studies addressing this issue but confirmed an increased risk of oesophageal cancer 

for women entering menopause before the age of 45 years; similar but less significant 

results were noted for HNC.  Hormone related risk factors (early menopause and 

hormone replacement therapy) were not found to be significantly different between 
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cases and controls when assessed in the UK Biobank data (Chapter 5).  However, in a 

pooled analysis of 11 HNC studies, with 1572 cases of HNC, HRT offered a significant 

protective effect (OR 0.58 (95% CI 0.34-0.77)), which justifies further exploration of 

hormone-related risk factors in female HNC (347).   

9.4 Improving Model Performance 

Chapter 6 presented the development and performance of a risk prediction model 

for HNC using the UK Biobank dataset.  The final model included variables for age, 

gender, smoking duration and smoking status, frequency of alcohol consumption, 

lifetime number of sexual partners, daily consumption of fruit, moderate exercise and 

annual household income.  This model was developed using a nested case-control 

study within the UK Biobank, which contains 702 cases of HNC and 423,752 controls.  

The model performance was moderate in terms of its ability to discriminate between 

cases and controls (c-statistic 0.67) but displayed good calibration.  The model was 

validated in a sub-group of individuals from the North West of England, known to 

have a higher incidence of HNC (8).  The performance of the model in this external 

validation was reasonable, with a c-statistic of 0.64.  

9.4.1 Limitations of the Model and the Data 

The addition of further HNC-specific risk factors could potentially improve the 

discriminative ability of the current model.  Certainly, the addition of molecular 

biomarkers has been shown to improve performance of other cancer risk prediction 

models (275, 348).  There is increasing evidence of a role for biomarkers, present in 

saliva, which are associated with increased risk of HNC, specifically lactate 

dehydrogenase (349), sialic acid (350) and presence of HPV in oral rinses (351).  As 

technology develops and chairside analysis of saliva for relevant biomarkers becomes 

possible, the model could be updated.      

It was surprising to note that those currently ‘never’ drinking alcohol were at higher 

risk of HNC than daily drinkers (Table 6.2).  This may be explained by looking at the 

univariable analysis of alcohol status (Table 6.1), which revealed that ‘previous 

drinkers’ were at higher risk of HNC than current drinkers and never drinkers.  It is 

possible that those currently not drinking have stopped consuming alcohol for health-
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related reasons, for example alcoholic liver disease.  It is not possible to capture a 

picture of lifetime consumption of alcohol from the UK Biobank data and this is a 

limitation of the study.  However, we did note that a statistically significantly greater 

number of male and female cases report drinking “less alcohol now than 10 years 

previously”, compared to controls (see Table 5.3).  This could be due to the diagnosis 

of HNC, as discussed in 5.3.6. 

The Biobank data contains both prevalent and incident cases of HNC (see section 

5.2.1).  Both were included in the model development and validation data.  It would 

be possible to include only incident cases to remove any bias introduced from 

including prevalent cases.  Patients may have changed their alcohol or smoking habits 

due to the diagnosis of HNC which could result in artificially lower effect estimates 

for these variables.  Data on lifetime smoking and alcohol can help to overcome this, 

however, lifetime alcohol consumption was not captured within the Biobank data.  

Smoking duration was used within the model to reflect lifetime exposure to cigarette 

smoke.   

Household income is lower in the HNC cases than controls and this may be explained 

due to the fact a greater percentage of cases are retired compared to controls 

(section 5.2.2); therefore, a different measure of socio-economic deprivation could 

be considered for future models, such as Index of Multiple Deprivation (IMD).  IMD 

data was not available in the Biobank.  Townsend deprivation index was available, 

but this was not selected for the final model as it cannot be simply calculated from a 

postcode.  Lifetime number of sexual partners could be removed from future 

iterations of the model as this is only relevant to oropharyngeal cancers (see sections 

1.2.4 and 5.2.12) due to the association with Human papillomavirus.   

Due to the heterogeneous nature of HNC and differences in risk profiles between 

patients with the difference sub-types of HNC, it would be sensible to consider 

individual risk models for the different sub-types.  However, many of the subtypes 

are extremely rare and it would require a dataset much larger than the UK Biobank 

in order to develop a robust model. 
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This study calculated absolute risk of head and neck cancer, with an average person-

time at risk of 63.5 years (see section 5.2.1).  A model for 5-year or 10-year risk could 

be considered, and regional cancer incidence data could be used to facilitate absolute 

risk calculation over this period, as described in section 6.8.2. 

9.5 External Validation Studies 

Many risk prediction models have been developed but few are validated in external 

data and even fewer have been assessed for their clinical impact on patient outcomes 

(264, 352).  It is recognised that the model developed in this thesis will require further 

validation in data external to the UK Biobank.  INHANCE  (International Head and 

Neck Cancer Epidemiology Consortium) is a collaborative group of HNC researchers 

that contains over 30 member studies with greater than 30,000 cases of HNC and 

over 40,000 controls (353).  We will seek to collaborate with individuals within this 

consortium to validate this HNC risk prediction model.  Discussions regarding data 

sharing are underway. 

Head and Neck Cancer 5000 is a UK based cohort study of 5000 patients with a 

diagnosis of HNC (354), who were asked to provide details on lifestyle, including 

sexual history, at baseline.  Researchers are encouraged to apply for access to this 

data, therefore this could provide a valuable UK-based dataset for validation of the 

model, assuming comparable controls are available. 

9.6 Impact Studies 

Many risk prediction models are developed with the ultimate aim of having a positive 

impact on patients, whether through guiding decision-making (264) or reducing the 

burden of disease through screening (355).  Section 9.6.1 will briefly discuss models 

which have been successfully developed and implemented to demonstrate this is a 

realistic possibility for a HNC risk model.  Section 9.6.2 and 9.6.3 discuss a framework 

for moving forward following the model development phase. 

9.6.1 Successful Development and Implementation of Risk Prediction 

Models in Lung Cancer 
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Lung cancer risk prediction models have been developed, validated and tested in 

screening trials; the use of such models has been found to be beneficial in selecting 

high-risk patients for screening (356). Selecting high-risk individuals, using risk 

algorithms, improves cost-effectiveness of screening for lung cancer and reduces the 

risk of false positive diagnoses (357, 358).  The PLCOm2012 model (Prostate, Lung, 

Colorectal and Ovarian modified risk prediction model) has been developed (359) and 

externally validated (360-363) and has now been adopted for use in selection of high-

risk individuals for the Cancer Care Ontario pilot study of lung cancer screening (356, 

364).  Individuals with a greater than 2% risk as defined by the PLCOm2012 model are 

invited for low-dose CT screening (356). 

The Liverpool Lung Project modified risk prediction model (LLPv2) (365) has also been 

externally validated (360-362) and used in the UKLS trial (United Kingdom Lung 

Cancer Screening Trial) (366).  UKLS is a randomised controlled trial of low dose CT 

screening for lung cancer against usual care (no screening).  4055 patients were 

recruited to the pilot study; patients were classified as high-risk (and therefore 

eligible for inclusion) if they had a >5% chance of lung cancer as determined by the 

LLPv2 model (52).  46 (2.1%) participants were diagnosed with lung cancer and over 

85% were detected at an early stage (Stage I or II).   The LLPv2 is also used in the 

Liverpool Healthy Lung Project, funded by Liverpool Clinical Commissioning Group 

(367) through which patients with a greater than 5% risk of lung cancer are invited 

for LDCT scan via their GP. 

This demonstrates that with proper development, validation and impact studies, risk 

prediction models can be a valuable tool in clinical trials and screening programmes. 

9.6.2 The Process following Model Development 

 

Developing and validating this HNC risk prediction model is only the first step towards 

achieving the aim of reducing the incidence of head and neck cancer.   

A model that performs well in validation studies could be expected to perform well 

in clinical practice. However, just because a model exists does not mean that a 

clinician will choose to use it or that it will improve decision-making, or indeed health-
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outcomes (264).  These potential pitfalls can be addressed systematically through 

feasibility studies, clinical utility studies and ultimately impact studies.  This involves 

significant time and monetary costs so one must be confident that the model in 

question is ready for implementation in clinical practice (264, 352, 368, 369).   

The model should be externally validated in at least one external dataset and ideally 

within the population that the impact study will be performed.  This allows 

coefficients to be recalculated to fit the population in which it is to be used if 

necessary.  One should also be confident that the aim of the model is realistic; for 

example, if the aim is to reduce the incidence of HNC through targeted screening of 

high-risk individuals, one should be sure that there is evidence to support this.  

Appropriate software would also need to be developed to allow the risk model to be 

combined with existing programmes in clinical practice (369). 

The way in which the model is introduced to clinical practice is of paramount 

importance and should be done in consultation with the clinicians involved.  The 

model can be presented to clinicians in a directive or assistive format (264).  In the 

directive format, the clinician is given a direct recommendation from the model 

output, e.g. to order a diagnostic test.  In the assistive format, the clinician is 

presented with a probability of the outcome for that individual and can make their 

own decision about how that should be interpreted.  The directive format is preferred 

by clinicians and has been shown to improve patient outcomes, compared to the 

assistive format (264).  When applying this to screening programmes, patient choice 

will also be a factor, as any screening programme carries the risk of uncertain 

diagnoses and inaccurate results.  Patients should be fully appraised of the role of the 

risk model in selecting them for screening, and the potential risks and benefits of the 

screening offered (370, 371).  

9.6.3 Study Design 

To test the effect of a risk model on decision making or outcome, a clinical trial is 

required.  This may take the form of a cluster cross-over RCT, in which certain clusters 

use the model and others do not, following which the group initially using the model 

becomes the control group and vice versa.  Closely related to this is the ‘parallel 
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group’ design, where parallel groups either use the model or act as controls.  In this 

case, it is very important to study the decision making of clinicians in each group prior 

to the trial, so that one can account for any differences at baseline. Alternatively, a 

before-after study design can be used, where the effects of the risk model on decision 

making (or other outcome) are compared before and after model implementation 

(352, 368).    

Studying the effect of a model on the health-outcome in question can require very 

long studies, especially if the outcome is rare, as is the case with HNC.  In this 

situation, it is reasonable to study the effect on decision-making initially.  This can be 

achieved through clinical trials as described above, however, decision analytic studies 

can be used prior to committing to expensive RCTs (368, 372). These studies model 

the effects of the risk prediction model on decision making and outcome, based on 

the model’s predictive accuracy and the effectiveness of the intervention proposed, 

within pre-existing datasets.  If there is no effect on decision-making in the decision 

analysis, it would be hard to justify a trial to study change in outcome.  Decision 

analytic modelling also forms an important part of Health Economic Evaluations 

(HEE), which considers the cost of an intervention (for example, screening) in relation 

to improvement in quality of life.  HEE for prediction models are rare and there is a 

need for guidance in this area (368). 

Wallace et al proposed a framework for the implementation of a clinical prediction 

model, as follows (369): 

1. Exploratory phase: explore how well the model performs in external 

validation. 

2. Preparation for impact analysis: Conduct a feasibility study to investigate 

clinician-acceptance of the model and consider potential barriers to 

implementation. 

3. Experimental phase:  Monitor the use of the model in clinical practice 

(through a trial). 

4. Long-term implementation phase: examine if a model is used long-term and 

the methods used to achieve this. 
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The model developed here in this thesis could be externally validated in large, existing 

datasets to confirm its predictive accuracy.  Software could be developed to integrate 

the model into existing software programmes in general dental and medical practice.  

A decision-analysis study could be completed to model the effect of the risk model 

on clinicians’ decisions to screen high-risk individuals for oral cancer.  Pending the 

results of such analysis, a cluster RCT could be designed to test the use of the model 

in general practice.   

9.7 Implementation: Counselling on Risk Behaviours 
General Dental Practitioners are required to screen all patients for oral cancer (373).  

However, only 51% of the adult population of the UK visit a Dentist each year (374).  

Whilst it may not be necessary to use a clinical risk calculator in General Dental 

Practice to guide screening of high-risk individuals, as all patients will undergo an oral 

examination, using a personalised risk score could support discussions between 

dental professionals and patients regarding risk behaviours, such as smoking and 

alcohol consumption.  It could also provide an opportunity for the dental team to 

discuss health promoting behaviours, such as eating fresh fruit and vegetables and 

taking regular exercise.  There is evidence from an RCT that use of a risk score when 

providing smoking cessation advice results in longer term success with smoking 

cessation (375).  The effects of this would hopefully be more wide-reaching than the 

effect on incidence of HNC alone, due to the damaging effects of smoking and alcohol 

on general health.  This provides an exciting opportunity to implement what is 

already being done in relation to lung cancer (375) into General Dental Practice.  

Feasibility and impact studies would be required to test whether the HNC risk model 

is well-received by clinicians and patients, and the impact on smoking cessation rates 

and other risk behaviours. 

 

9.8 Translation to Oral Pre-Malignancy 

Finally, risk prediction modelling could offer huge benefits in guiding the 

management of oral pre-malignancy and in the design of clinical trials.   
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The management of oral pre-malignancy is currently based on clinical and histological 

diagnosis, with no use of risk prediction scores to guide the clinician.  Although many 

molecular markers, which may predict malignant transformation, are under 

investigation, none are currently being used to guide patient management.  Nikitakis 

et al reviewed the current literature on molecular markers associated with 

progression of oral dysplasia to oral cancer, in 2018 (376).  They concluded that “a 

combined panel embracing all of these parameters (molecular markers) and an 

algorithm to provide quantitative scoring should be developed” (376). 

A large prospective dataset would be required to develop such a model and external 

data would be required to validate the model.  This is likely to require a multicentre, 

national or international study, of significant duration.  The model should then be 

tested for its clinical usefulness and ultimately for its effect on the incidence of HNC.     

9.8.1 Risk modelling in Clinical Trials 

In addition to the potential for guiding management decisions and improving 

outcomes for patients with Oral Epithelial Dysplasia, there is potential for a risk 

prediction model to be used in clinical trials.  Phase II trials are feasibility trials, usually 

involved in testing novel drugs or other interventions.  Rather than comparing 

outcome between index and control groups, one can predict survival in both groups 

based on usual standard of care (using the risk model) and compare this to the 

observed survival (or other outcome measure).  This helps to control for the 

differences between trial patients in each group (372). 

Phase III trials are expensive, and it is desirable to recruit patients at highest risk of 

poor outcome, to increase the expected event rate and hence minimise sample size 

requirements.  Exposing low-risk patients to potentially toxic drugs or the 

inconvenience of screening and risk of false positive results would not be ethical, 

which further supports the need for recruitment of high-risk patients.  These high-

risk patients can be identified through use of a risk model, which helps to provide a 

definitive cut off point for inclusion criteria (372).   
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9.9 Concluding Remarks 
Risk prediction modelling is currently under-utilised in HNC research.  There is great 

potential to build, validate and implement risk calculators in many areas of HNC 

clinical practice. The work presented in this thesis should stimulate discussion 

between clinicians and academics about future work in this area.  The model 

developed could be refined, validated and implemented to inform recruitment of 

high-risk individuals to clinical trials, guide the dental team when counselling patients 

on risk behaviours and be explored as a tool for screening of high-risk individuals.  

There is potential to translate this work to Oral Pre-malignancy, to allow the 

development of personalised treatment plans, based on the individual’s’ risk of 

developing oral cancer, calculated using a properly developed and validated risk 

prediction model.  
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Appendix 1.  Chapter 2: Incidence of Head and Neck Cancers in England, by Sex: 2002-2011 
Table A1.1 Incidence of Head and Neck Cancer and sub-types, per 100,000 persons, for males and females from 2002-2011, in England 

Year Value Cancer Type 
  

Head and Neck Cancer  OPSCC  Oral Cancer  Laryngeal Cancer 

Total Male Female  Total Male Female Total Male Female Total Male Female 

2002 

 

Incidence 12.2 17.4 7.4  1.8 2.7 1.0 5.2 6.6 3.8 3.4 5.7 1.2 

N 6,082 4,215 1,867  899 654 245 2,582 1,611 971 1,674 1,374 300 

2003 

 

Incidence 13.1 18.4 7.9  2.0 3.1 1.0 5.6 7.2 4.1 3.4 5.7 1.2 

N 6,532 4,505 2,027  1,004 756 248 2,809 1,756 1,053 1,698 1,380 318 

2004 

 

Incidence 13.1 18.6 7.8  2.1 3.1 1.1 5.5 7.0 4.1 3.4 5.8 1.1 

N 6,554 4,563 1,991  1,040 761 279 2,771 1,730 1,041 1,693 1,424 269 

2005 

 

Incidence 13.2 18.6 8.1  2.2 3.4 1.1 5.6 7.0 4.3 3.4 5.8 1.2 

N 6,700 4,617 2,083  1,119 835 284 2,831 1,733 1,098 1,729 1,432 297 

2006 

 

Incidence 14.3 20.1 8.6  2.5 3.9 1.2 6.0 7.7 4.5 3.3 5.6 1.2 

N 7,272 5,033 2,239  1,284 969 315 3,083 1,920 1,163 1,708 1,405 303 
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Table A1.1 continued.  Incidence of Head and Neck Cancer and Sub-types (per 100,000 persons) for Males and Females 2002-2011, in England 

 

Year Value 
 

                           Cancer Type  
 

 
 

 
  

  Head and Neck Cancer                 OPSCC            Oral Cancer        Laryngeal Cancer  
Total Male Female  Total Male Female Total Male Female Total Male Female  

2007 

 

Incidence 14.1 19.9 8.5  2.5 3.9 1.3 6.0 7.7 4.4 3.3 5.7 1.1  

N 7229 5012 2217  1304 974 330 3098 1942 1156 1714 1436 278  

2008 

 

Incidence 15.1 21.1 9.2  2.7 4.3 1.2 6.6 8.1 5.0 3.5 5.9 1.2  

N 7799 5364 2435  1415 1089 326 3394 2066 1328 1798 1492 306  

2009 

 

Incidence 15.4 21.7 9.4  3.0 4.5 1.5 6.6 8.4 4.9 3.4 5.9 1.1  

N 8034 5550 2484  1549 1156 393 3469 2161 1308 1797 1496 301  

2010 

 

Incidence 15.9 22.1 9.9  3.4 5.2 1.7 6.7 8.4 5.1 3.5 5.9 1.2  

N 8355 5711 2644  1794 1339 455 3524 2167 1357 1837 1529 308  

2011 

 

Incidence 15.9 22.1 9.8  3.3 5.1 1.6 6.9 8.7 5.1 3.5 5.8 1.3  

N 8424 5788 2636  1772 1338 434 3647 2271 1376 1848 1506 342  
 

p-value <0.001 0.003 0.004  <0.001 0.003 0.003 <0.001 0.005 0.004 0.32 0.40 0.40  
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Appendix 2.  Further Results from Chapter 2. 
Table A2.1.  Incidence per 100,000 persons of HNC in England, in each 5-year age category, from 2002-2011. 

 

 

  

Year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

Age Cat M F M F M F M F M F M F M F M F M F M F 

40-44 2.1 0.5 2.2 0.6 1.9 0.8 2.8 0.5 2.9 0.7 2.9 1.2 2.7 0.9 3.0 0.9 3.2 0.9 2.8 0.9 

45-49 5.2 1.2 5.4 1.4 5.5 1.4 5.3 1.6 6.2 1.6 6.5 1.9 7.2 2.0 6.2 2.1 7.6 2.2 7.3 2.0 

50-54 6.6 2.2 7.6 2.1 7.5 2.3 10.2 2.5 8.7 2.9 11.3 2.2 10.7 2.9 12.8 3.6 12.0 3.7 12.5 3.5 

55-59 8.3 2.9 10.0 2.9 9.2 2.7 9.8 2.7 11.1 3.4 10.0 3.5 14.1 3.3 15.1 4.5 17.2 5.0 17.6 5.2 

60-64 7.7 2.6 9.7 2.5 9.7 3.7 10.1 2.4 11.9 3.3 11.2 3.5 10.5 3.3 12.2 4.4 16.9 5.9 16.2 4.8 

65-69 6.2 2.0 6.4 2.0 7.6 2.7 9.2 2.3 8.8 2.6 10.0 2.5 13.1 2.6 11.3 3.6 13.3 3.9 13.6 3.9 

70-74 6.0 3.1 6.8 2.7 6.0 2.0 6.6 2.7 6.7 1.9 7.1 3.2 10.0 2.8 9.6 3.1 10.8 3.7 12.5 3.5 

75-79 5.4 1.3 4.5 1.9 6.5 2.1 5.4 2.5 8.0 2.3 5.9 1.8 7.4 2.5 7.4 3.0 7.7 2.4 7.9 2.6 

80-84 4.5 1.9 4.1 1.4 5.3 2.7 5.7 2.8 6.3 1.5 5.2 1.6 4.3 1.5 6.2 1.6 8.2 2.7 5.9 2.3 

85+ 5.6 2.2 3.8 1.2 5.9 1.5 2.4 1.6 5.4 1.7 3.5 2.4 4.2 1.7 3.2 1.1 4.3 1.6 4.8 1.8 
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Appendix 2 continued. Further Results from Chapter 2. 
Table A2.2.  Incidence per 100,000 persons, of OPSCC in England, in 5 - year age categories, from 2002-2011 

 

  

Year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

Age Cat M F M F M F M F M F M F M F M F M F M F 

40-44 2.1 0.5 2.2 0.6 1.9 0.8 2.8 0.5 2.9 0.7 2.9 1.2 2.7 0.9 3.0 0.9 3.2 0.9 2.8 0.9 

45-49 5.2 1.2 5.4 1.4 5.5 1.4 5.3 1.6 6.2 1.6 6.5 1.9 7.2 2.0 6.2 2.1 7.6 2.2 7.3 2.0 

50-54 6.6 2.2 7.6 2.1 7.5 2.3 10.2 2.5 8.7 2.9 11.3 2.2 10.7 2.9 12.8 3.6 12.0 3.7 12.5 3.5 

55-59 8.3 2.9 10.0 2.9 9.2 2.7 9.8 2.7 11.1 3.4 10.0 3.5 14.1 3.3 15.1 4.5 17.2 5.0 17.6 5.2 

60-64 7.7 2.6 9.7 2.5 9.7 3.7 10.1 2.4 11.9 3.3 11.2 3.5 10.5 3.3 12.2 4.4 16.9 5.9 16.2 4.8 

65-69 6.2 2.0 6.4 2.0 7.6 2.7 9.2 2.3 8.8 2.6 10.0 2.5 13.1 2.6 11.3 3.6 13.3 3.9 13.6 3.9 

70-74 6.0 3.1 6.8 2.7 6.0 2.0 6.6 2.7 6.7 1.9 7.1 3.2 10.0 2.8 9.6 3.1 10.8 3.7 12.5 3.5 

75-79 5.4 1.3 4.5 1.9 6.5 2.1 5.4 2.5 8.0 2.3 5.9 1.8 7.4 2.5 7.4 3.0 7.7 2.4 7.9 2.6 

80-84 4.5 1.9 4.1 1.4 5.3 2.7 5.7 2.8 6.3 1.5 5.2 1.6 4.3 1.5 6.2 1.6 8.2 2.7 5.9 2.3 

85+ 5.6 2.2 3.8 1.2 5.9 1.5 2.4 1.6 5.4 1.7 3.5 2.4 4.2 1.7 3.2 1.1 4.3 1.6 4.8 1.8 
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Appendix 2 continued. Further Results from Chapter 2. 
Table A2.3.  Incidence per 100,000 of Oral Cancer in England, in five-year age categories, from 2002-2011 

 

 

 

Year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

Age Cat M F M F M F M F M F M F M F M F M F M F 

40-44 3.5 1.2 3.5 1.5 2.8 1.3 3.5 1.5 3.4 2.0 3.1 1.1 4.1 2.0 3.6 2.8 3.7 2.4 3.4 1.4 

45-49 7.6 2.6 6.6 4.0 6.5 3.1 6.5 3.3 7.4 3.2 6.7 3.6 6.8 4.0 7.1 3.1 7.4 3.2 8.5 3.1 

50-54 12.4 4.5 12.4 5.0 12.3 6.8 12.6 5.7 12.6 5.8 15.2 6.2 13.9 6.7 13.0 6.2 13.6 6.7 13.1 7.1 

55-59 16.2 6.1 17.1 7.5 16.6 7.1 15.3 6.1 18.4 7.6 20.0 7.9 19.2 7.8 21.3 8.4 20.7 9.7 22.3 8.8 

60-64 18.1 8.4 21.9 8.0 20.6 8.4 20.2 10.2 21.7 8.4 23.4 8.8 22.6 9.8 22.8 10.3 26.4 9.5 26.5 10.2 

65-69 19.5 8.3 22.2 9.7 17.8 9.9 21.6 11.2 24.4 10.3 23.1 10.5 25.1 11.8 26.8 13.5 26.5 12.9 24.0 13.6 

70-74 18.9 11.6 21.1 12.2 23.3 11.0 20.8 12.1 21.0 13.4 22.2 11.1 22.7 15.5 26.6 12.3 25.1 15.3 26.9 15.9 

75-79 19.8 12.8 24.7 11.0 23.8 12.9 22.8 12.3 23.6 12.5 21.1 15.4 26.3 14.1 29.1 15.5 23.6 16.8 24.7 17.1 

80-84 25.7 14.8 21.2 14.4 24.4 15.9 23.0 16.7 26.8 17.8 20.3 16.7 29.6 19.6 23.4 16.4 25.1 18.9 25.8 20.9 

85+ 28.7 15.7 24.5 20.5 27.2 17.6 25.9 19.0 25.7 22.6 25.5 18.2 25.2 23.1 23.7 22.6 25.2 21.9 30.0 19.7 
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Appendix 2 continued. Further Results from Chapter 2. 
Table A2.4.  Incidence, per 100,000 persons, of Laryngeal Cancer in England, in five-year age categories, from 2002-2011 

Year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

Age Cat M F M F M F M F M F M F M F M F M F M F 

40-44 1.2 0.4 1.2 0.4 1.3 0.2 1.0 0.3 1.3 0.3 0.8 0.2 0.8 0.5 1.4 0.4 1.4 0.3 1.0 0.2 

45-49 3.2 0.5 3.9 0.7 2.6 0.5 3.1 0.9 3.6 0.9 3.0 0.3 4.0 0.4 2.9 0.6 3.0 0.6 3.3 0.8 

50-54 7.5 1.2 6.9 1.6 6.9 1.6 7.1 1.6 7.2 2.3 7.7 1.7 7.2 1.8 6.6 1.4 7.5 1.4 5.2 1.7 

55-59 13.5 2.8 13.7 2.0 13.0 1.5 13.1 2.1 11.4 1.9 12.4 2.0 10.9 1.9 12.7 1.9 12.7 2.6 12.6 1.8 

60-64 18.1 2.6 16.0 3.8 19.2 3.4 18.6 3.3 19.4 3.9 15.2 3.0 18.4 3.6 17.8 2.5 16.9 2.9 15.6 3.2 

65-69 20.8 4.1 20.0 4.3 19.8 3.3 20.1 3.2 21.8 3.6 22.9 3.1 20.6 3.2 20.3 3.9 22.5 4.4 20.9 4.1 

70-74 24.8 4.2 22.8 4.3 22.9 3.5 21.9 3.1 20.3 2.4 24.4 3.6 23.9 4.0 26.0 4.7 23.3 3.8 22.7 4.6 

75-79 22.9 3.7 26.2 4.1 28.3 4.6 24.2 5.3 22.5 3.6 21.8 3.1 24.2 3.0 23.5 3.3 24.6 3.5 24.7 4.6 

80-84 23.4 5.0 25.3 4.3 26.1 3.1 27.9 4.1 22.6 4.4 22.4 4.5 23.9 4.6 24.2 4.5 21.2 3.5 24.0 4.7 

85+ 18.6 3.2 23.0 3.3 22.8 3.2 25.9 2.7 22.9 3.2 28.2 2.9 27.1 3.2 18.1 2.7 21.6 3.1 26.2 3.3 
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Appendix 3.  Chapter 3 – Data Collection Sheet for Systematic Review 
Table A3.1. Data Collection Sheet for Systematic Review in Chapter 3 

Study Number 1 2 3 4 5 6 7 8 

Year  
       

First Author  
       

Country  
       

Study Type  
       

Aim of Study  
       

Inclusion criteria  
       

Exclusion Criteria  
       

Number in cohort  
       

Follow up time for Cohort studies  
       

Number Cases  
       

Controls  
       

Loss to follow up  
       

Age (mean) Cases   
       

Controls 
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Table A3.1 continued. Data Collection Sheet for Systematic Review in Chapter 3 

 Study 
Number 
 

1 2 3 4 5 6 7 8 

Male:Female Ratio Cases  
       

Controls  
       

Age at Menopause Cases  
       

Controls  
       

Use of HRT Cases  
       

Controls  
       

Duration of HRT Cases  
       

Controls  
       

Type of HRT Cases  
       

Controls  
       

Smoking Cases  
       

Controls  
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Table A3.1 continued. Data Collection Sheet for Systematic Review in Chapter 3       

Study Number  1 2 3 4 5 6 7 8 

Alcohol Cases  
       

Controls 
 

 
       

          

SES measure used 
 

 
       

SES results Cases  
       

Controls  
       

Newcastle Ottawa Score  
       

Comments  
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Appendix 4.   

Material Transfer Agreement for 

UK Biobank Data 
 

 

 

  

The Material Transfer Agreement 

received from the UK Biobank can 

be found inserted here. 
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Appendix 5.  Full list of Variables 

Considered Contained in the 

Development Dataset 
 

General Exercise 

Encoded anonymised participant ID 
Number of days/week of moderate physical 
activity 10+ minutes 

Sex 
Number of days/week of vigorous physical 
activity 10+ minutes 

Year of birth Place of Birth 
Month of birth Place of birth in UK - north co-ordinate 

Date of attending assessment centre Place of birth in UK - east co-ordinate 

UK Biobank assessment centre Screening-related Variables 

Age at death Ever had bowel cancer screening 

Date of death Ever had prostate specific antigen (PSA) test 

Underlying (primary) cause of death: ICD10 
Ever had breast cancer screening / 
mammogram 

Contributory (secondary) causes of death: ICD10 Ever had cervical smear test 

Ethnic background Early-life and Family History 
Weight Adopted as a child 

Age when attended assessment centre Part of a multiple birth 

Age at recruitment Maternal smoking around birth 

Country of Birth (non-UK origin) Father still alive 

Home location at assessment - east co-ordinate 
(rounded) 

Fathers age at death 

Home location at assessment - north co-
ordinate (rounded) 

Mother still alive 

Pulse rate Number of full brothers 

Number of children fathered Number of full sisters 

Handedness (chirality/laterality) Mothers age at death 

Skin colour Number of older siblings 

Hair colour (natural, before greying) Birth weight 

Facial ageing Illnesses of father 

Country of birth (UK/elsewhere) Illnesses of mother 

Length of mobile phone use Illnesses of siblings 

Weekly usage of mobile phone in last 3 months Non-accidental death in close genetic family 

Usual side of head for mobile phone use Socio-Economic Variables 

Sleep duration Age completed full time education 

Snoring Qualifications 

Medical History Current employment status 

Blood clot, DVT, bronchitis, emphysema, asthma, 
rhinitis, eczema, allergy diagnosed by doctor 

Job code – deduced 

Medication for cholesterol, blood pressure, 
diabetes, or take exogenous hormones 

Current employment status - corrected 

Medical History continued Socio-Economic Variables 

Diastolic blood pressure, automated reading Townsend deprivation index at recruitment 
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Appendix 5  continued. Full list of Variables in the Model Development Dataset 

Systolic blood pressure, automated reading Average total household income before tax 

Body mass index (BMI) Home area population density - urban or rural 

Body fat percentage Particulate matter air pollution (pm10); 2010 

Number of self-reported non-cancer illnesses Particulate matter air pollution (pm2.5); 2010 

Number of operations, self-reported Nitrogen dioxide air pollution; 2010 

Number of treatments/medications taken Nitrogen oxides air pollution; 2010 

Overall health rating Smoking-related Variables 

Long-standing illness, disability or infirmity Current tobacco smoking 

Had major operations Past tobacco smoking 

Diabetes diagnosed by doctor Smoking/smokers in household 

Fractured/broken bones in last 5 years Exposure to tobacco smoke at home 

Other serious medical condition/disability 
diagnosed by doctor 

Exposure to tobacco smoke outside home 

Taking other prescription medications Light smokers, at least 100 smokes in lifetime 

Had other major operations Age started smoking in former smokers 

Age high blood pressure diagnosed Type of tobacco previously smoked 

Age diabetes diagnosed Number of cigarettes previously smoked daily 

Age angina diagnosed Age stopped smoking 

Stomach/abdominal pain for 3+ months Ever stopped smoking for 6+ months 

Age hay fever, rhinitis or eczema diagnosed 
Number of unsuccessful stop-smoking 
attempts 

Age asthma diagnosed Likelihood of resuming smoking 

Operative procedures - main OPCS Age started smoking in current smokers 

Diagnoses - main ICD10 Type of tobacco currently smoked 

Interpolated Year when non-cancer illness first 
diagnosed 

Number of cigarettes currently smoked daily 
(current cigarette smokers) 

Interpolated Age of participant when non-
cancer illness first diagnosed 

Time from waking to first cigarette 

Non-cancer illness code, self-reported Difficulty not smoking for 1 day 

Medication for cholesterol, blood pressure or 
diabetes 

Ever tried to stop smoking 

Mouth/teeth dental problems Wants to stop smoking 

Vascular/heart problems diagnosed by doctor Smoking compared to 10 years previous 

Medication for pain relief, constipation, 
heartburn 

Previously smoked cigarettes on most/all days 

Heel bone mineral density (BMD) T-score, 
automated (left) 

Why stopped smoking 

Age heart attack diagnosed Why reduced smoking 

Age emphysema/chronic bronchitis diagnosed 
Number of cigarettes previously smoked daily 
(current cigar/pipe smokers) 

Age deep-vein thrombosis (DVT, blood clot in 
leg) diagnosed 

Age stopped smoking cigarettes (current 
cigar/pipe or previous cigarette smoker) 

Age pulmonary embolism (blood clot in lung) 
diagnosed 

Smoking status 

Gestational diabetes only Ever smoked 

Facial pains for 3+ months Pack years of smoking 

Spells in hospital 
Pack years adult smoking as proportion of life 
span exposed to smoking 

Illness, injury, bereavement, stress in last 2 
years 

Alcohol-related Variables 

Female-Hormone Related Variables Alcohol intake frequency 

Age when periods started (menarche) Average weekly red wine intake 

Female Hormone continued Alcohol continued 
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Appendix 5. continued.  Full List of Variables in the Development Dataset 

Had menopause 
 
Average weekly champagne plus white wine 
intake 

Number of live births Average weekly beer plus cider intake 

Birth weight of first child Average weekly spirits intake 

Age at first live birth Average weekly fortified wine intake 

Age at last live birth Alcohol usually taken with meals 

Ever had stillbirth, spontaneous miscarriage or 
termination 

Alcohol intake versus 10 years previously 

Ever taken oral contraceptive pill Reason for reducing amount of alcohol drunk 

Age started oral contraceptive pill Former alcohol drinker 

Age when last used oral contraceptive pill Alcohol consumed 

Ever used hormone-replacement therapy (HRT) Red wine intake 

Age at hysterectomy Rose wine intake 

Bilateral oophorectomy (both ovaries removed) White wine intake 

Pregnant Beer/cider intake 

Age started hormone-replacement therapy 
(HRT) 

Fortified wine intake 

Age last used hormone-replacement therapy 
(HRT) 

Spirits intake 

Age at menopause (last menstrual period) Other alcohol intake 

Ever had hysterectomy (womb removed) Alcohol drinker status 

Time since last menstrual period Diet-related Variables 
Length of menstrual cycle Cooked vegetable intake 

Number of stillbirths Salad / raw vegetable intake 

Number of spontaneous miscarriages Fresh fruit intake 

Number of pregnancy terminations Dried fruit intake 

Age of primiparous women at birth of child Oily fish intake 

Age at bilateral oophorectomy (both ovaries 
removed) 

Non-oily fish intake 

Cancer-related Variables Processed meat intake 

Number of self-reported cancers Poultry intake 

Cancer diagnosed by doctor Beef intake 

Cancer code, self-reported Lamb/mutton intake 

Interpolated Year when cancer first diagnosed Pork intake 

Interpolated Age of participant when cancer 
first diagnosed 

Cheese intake 

Date of cancer diagnosis Milk type used 

Type of cancer: ICD10 Spread type 

Age at cancer diagnosis Bread intake 

Reported occurrences of cancer Bread type 

Histology of cancer tumour Cereal intake 

Behaviour of cancer tumour Cereal type 

Type of cancer: ICD9 Salt added to food 

Sexual History Tea intake 

Age first had sexual intercourse Coffee intake 

Lifetime number of sexual partners Coffee type 

Ever had same-sex intercourse Water intake 

Lifetime number of same-sex sexual partners Major dietary changes in the last 5 years 

 Variation in diet 

 Breastfed as a baby 

 Never eat eggs, dairy, wheat, sugar 
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Appendix 6.  Rules applied for 

Managing Variables 

 

Category Criteria for removal of variable/data 
point 

Missing Data >40% missing data 

Duplicate Cancer Diagnosis Same histological type of cancer recorded 
at same sub-type within 1 week of 
original diagnosis 

Repeated Measures All variables representing repeated 
measures (i.e. data not collected at first 
visit) 

Irrelevant Variables Remove all variables not listed in 
Appendix 5. 
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Appendix 7.  TRIPOD Checklist 
Topic Checklist Item Section in Thesis Page Number 

Title and Abstract    

Title Identify the study as developing and/or 
validating a multivariable model, the target 
population and the outcome to be predicted 

Title Page – Chapter 6 
Title Page- Chapter 7 

127 
147 

    

Abstract Summary of objectives, study design, 
setting, participants, sample size, predictors, 
outcome, statistical analysis, results and 
conclusions 

6.1 127 

    

Introduction    

Background and Objectives Explain medical context and rationale for 
development/validation of the model 

1.4 12-13 

 Specify the objectives, including whether the 
study describes development, validation or 
both 

1.4 12-13 

Methods    

Source of data Describe the source of the data 
Specify the key study dates (start and end of 
accrual) 

4.3.2 62-3 
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Topic Checklist Item Section in Thesis Page Number 

Participants Specify key elements of the study setting, 
including number and location of centres. 
Describe eligibility criteria 
Details of treatment received, if relevant 

4.3.2.2 63 

    

Outcome Clearly define the outcome that is predicted 
by the prediction model, including how and 
when assessed 
 
Report any actions to blind assessment of 
the outcome 

4.3.4 66-7 

    

Predictors Clearly define all predictors used including 
how and when they were measured 
 
Report any measures to blind assessment of 
predictors 

4.3.2.3 64-5 

    

Sample Size Explain how the study size was arrived at 4.3.2.2 64 

    

Missing Data Describe how missing data were handled 
with details of any imputation method 

4.4.3 69 
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Topic Checklist Item Section in Thesis Page Number 

Statistical Analysis Methods Describe how predictors were handled 
 
Specify the type of model, any predictor 
selection and method for internal validation 
 
For validation, describe how the predictors 
were calculated 
 
Specify all measures used to assess model 
performance and, if relevant, to compare 
multiple models 

4.3.5 
 
 

4.4.5.3 and 4.5.1 
 

4.3.2.3 
 
 

7.2 

67 
 
 

72 & 73-4 
 

64-5 
 
 

148 

    

Risk Groups Provide details on how risk groups were 
created, if done 

N/A N/A 

    

Development vs Validation For validation, identify any difference from 
the development data in setting, eligibility 
criteria, outcome and predictors 

7.1 147 
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Topic Checklist Item Section in Thesis Page Number 

Results: Participants Describe the flow of participants through 
the study, including the number of 
participants with and without the outcome 
Describe the characteristics of the 
participants (basic demographics, clinical 
features, available predictors), including the 
number of participants with missing data for 
predictors and outcome 
 
For validation, show a comparison with the 
development data of the distribution of 
important variables (demographics, 
predictors and outcome). 

 
 
 

Table 5.19 
 
 
 
 
 
 

Table 7.1 

 
 
 

124-26 
 
 
 
 
 
 

151-52 

Results: Model Development Specify the number of participants and 
outcome events in each analysis. 
 
If done, report the unadjusted association 
between each candidate predictor and 
outcome 

6.1 
 
 

Table 6.1 

127 
 
 

130 

    

Results: Model Specification Present the full prediction model to allow 
predictions for individuals (i.e. all regression 
coefficients, and model intercept) 

Table 6.2 135 

    

Results: Model Performance Report performance measures with CI’s for 
the prediction model 

7.4.1 154 
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Topic Checklist Item Section in Thesis Page Number 

Results: Model updating If done, report the results from any model 
updating 

7.5 156 

    

Discussion    

Limitations Discuss any limitations of the study  6.8.1 144-46 

    

Interpretation For validation, discuss the results with 
reference to performance in the 
development data and any other validation 
data 
 
Give an overall interpretation of the results, 
considering objectives, limitations, results 
from similar studies, and other relevant 
evidence 

 
 

7.7.1 
 
 
 
 
 

7.8 

 
 

161 
 
 
 
 
 

164 

    

Implications Discuss the potential clinical use of the 
model and implications for future research 

9.7 and 9.8 190-91 

    

Other information    

Supplementary information Provide information about the availability of 
supplementary resources, such as web 
calculator and datasets 

n/a n/a 

    

Funding Give the source of funding and the role of 
funders for the present study. 

n/a n/a 
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