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Abstract

As global energy consumption is gradually increasing, a problem facing us is the en-
vironmental issues caused by the increasing energy demand. In order to overcome this
problem, photovoltaic (PV) energy has been widely used in many countries around the
world. Since the power generated by the PV systems mainly depends on the weather
conditions, how to effectively obtain the maximum possible power from the PV system
under various conditions is still a main problem. Furthermore, PV systems are also re-
quired to provide ancillary service as grid regulations and network codes have been also
continuously revised. Therefore, the PV technology issues associated with the operating
efficiency and system reliability improvement are still the ultimate goal to meet the rising
energy demand.

In this thesis, the PV-side control, such as maximum power point tracking (MPP-
T), global maximum power point tracking (GMPPT) and power reserve control (PRC),
are studied. The MPPT and GMPPT based on modified Beta methods are proposed to
overcome the technology issues involved with fast-changing weather conditions and PV
mismatching condition, respectively. The MPPT dynamic and steady-state efficiency are
firstly improved by Beta methods. Then, a PV string equivalent model is proposed to al-
low Beta methods to work under PV mismatching condition. Both of the simulation and
experimental results are validated the effectiveness of the proposed Beta methods.

Furthermore, a novel PRC method is also proposed to provide the ancillary service.
With the simple real-time MPP estimation, the proposed PRC method exhibits fast speed
and high robustness to estimate the MPP, and good compatibility with existing PV sys-
tems. The effectiveness of the proposed PRC method is also validated by simulation and
experimental results.

Key Words: Maximum Power Point Tracking (MPPT), Global Maximum Power
Point Tracking (GMPPT), Power Reserve Control (PRC) and Photovoltaic (PV) System
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Chapter 1

Introduction

1.1 Background

The role of energy is important to human being and it is also important to poverty alle-
viation and economic development [1]. Fig. 1.1 shows the projected global energy con-
sumption from 1990 to 2040 by different energy sources [2]. As shown in Fig. 1.1, it can
be seen that the demand of the global energy consumption is gradually increasing and
expected to rise around 18,000 million tons of oil equivalent (Mtoe) by 2040, which is
approximately 1.5 times compared to that by 2016. Therefore, access to sufficient energy
becomes a problem pressing many countries, particularly in development countries, such
as China [3].
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Fig. 1.1: Projected global energy consumption from 1990 to 2040 by energy source (in
million metric tons of oil equivalent).

However, the increasing energy demand will also cause environmental issues [3]. As
shown in Fig. 1.1, the historical and current energy consumption are dominated by fossil
fuels, such as coal, oil and natural gas. The consumption of the fossil fuels will produce
carbon dioxide and other greenhouse gases, and will consequently cause global climate
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change [4]. Therefore, there is a tradeoff between the economic development associated
with the increasing energy demand and the environmental impacts associated with the
fossil fuel consumption.

In order to balance this tradeoff, a transition from the current energy system domi-
nated by fossil fuels to a low-carbon one, such as renewable energies, is really essential.
However, a problem facing this transition is the relatively high cost of the renewable en-
ergies compared to the fossil fuel energies [5]. Generally, the levelized cost of electricity
(LCOE) is used as an index to compare different sources of electricity on a consistent
groundwork [6]. It can be given as:

LCOE =
sun of costs over lifetime

sum of electrical energy produced over lifetime
(1.1)

Since 2010, the US Energy Information Administration (EIA) has published the An-
nual Energy Outlook (AEO), with yearly LCOE-projections for future utility-scale facil-
ities to be commissioned in about five years’ time [7]. Table 1.1 shows the historical
summary of EIA’s LCOE projections [7]. From Table 1.1, it can be seen that the LCOE of
the renewable energies have a significant decrease, especially Photovoltaic (PV) energy.
It is expected that the LCOE of PV will be 59.1 USD per megawatt-hour in 2023, which
is really cost-effective compared to the other energies.

Table 1.1: Historical summary of EIA’s LCOE projections (2010 - 2018)

Estimation
Coal Natural Gas Nuclear

Wind
PV

in year for year onshore offshore
2010 2015 100.4 79.3 119.0 149.3 191.1 396.1
2011 2016 95.1 62.2 114.0 96.1 243.7 211.0
2012 2017 97.7 63.1 111.4 96.0 N/A 152.4
2013 2018 100.1 65.6 108.4 86.6 221.5 144.3
2014 2019 95.6 64.4 96.1 80.3 204.1 130.0
2015 2020 95.1 72.6 95.2 73.6 196.9 125.3
2016 2021 NB 57.2 102.8 64.5 158.1 84.7
2017 2022 NB 53.8 96.2 55.8 NB 73.7
2018 2023 NB 48.1 90.1 48.0 124.6 59.1
1 Unit in $/MWh.
2 NB refers to “Not built”.

Furthermore, according to Global market outlook 2018-2022 from European Photo-
voltaic Industry Association (EPIA), PV alone experienced more net power generating
capacity added than coal, natural gas and nuclear combined in 2017, as shown in Fig. 1.2
(a) [8]. Furthermore, it also reports that China alone installed nearly 1/3 of the world’s
PV capacities, as shown in Fig. 1.2 (b).
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Fig. 1.2: Global market outlook 2018-2022 from EPIA. (a) Net power generating capacity
(unit in GW) added in 2017; (b) Global PV markets total installed shares by end of 2017.

From the aforementioned discussion, it can be seen that the solar energy plays an
increasingly important role of balance the challenge between economic development and
environmental issues. However, the government policy and subsidies are still the major
motivation for the PV development [9]. Furthermore, unlike the fossil fuel energy, the
output power of the PV system are various and dependent on different weather conditions.
Therefore, the main problem facing us is how to obtain the maximum possible power
from the PV system [10]. Besides, as increasing penetration of PV system, a number of
conventional power plants will be replaced by PV power plants. As a consequence, it may
lead to critical frequency stability challenges [11]. Therefore, the PV technology issues
associated with cost reduction, operating efficiency and system reliability improvement is
still an ultimate goal to meet the rising energy demand.

1.2 Motivations and Objectives

1.2.1 Brief Introduction of PV System

According to [8], the grid-connected PV system are the most popular one in the current
PV market. Fig. 1.3 shows general block diagrams of a grid-connected PV configuration
with single-stage and two-stage [12].

As shown in Fig. 1.3 (a), the single-stage configuration consists of four parts, namely
PV generator, DC-AC inverter, LCL filter and power grid. Here, the PV generator converts
sunlight into DC electricity and the DC electricity is then converted into AC electricity
through the DC-AC inverter. Then, the AC electricity is delivered to the LCL filter and
a satisfactory total harmonic distortion (THD) of the injected current to the power grid is
finally achieved. It should be noted that the DC-link capacitor Cdc is to achieve the power
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Fig. 1.3: General block diagrams of the grid-connected PV configuration. (a) Single-
stage; (b) Two-stage.
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Fig. 1.4: General control blocks of the the grid-connected PV system.

decoupling in this configuration.

For the two-stage configuration, a DC-DC converter is added between the PV source
and the DC-AC inverter. Since a boost converter or a buck-boost converter can be inte-
grated into the DC-AC inverter, an accepted DC-link voltage can be achieved. It should
be also noted that Cdc is changed to the location between the DC-DC converter and the
DC-AC inverter.

Fig. 1.4 shows the general control blocks of the the grid-connected PV system [12].
According to [13], the control objectives of the grid-connected PV system can be divided
into two parts, namely PV-side control and Grid-side control. As increasing penetration
of PV system, some advanced functions, such as grid frequency regulation [11], become
a basic requirement. Therefore, the control objectives can be further divided into basic
functions and ancillary services [12].
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1.2.2 Fast-changing Weather Conditions

The electrical characteristics of a PV module under different weather conditions are plot-
ted in Fig. 1.5. The I-V and P-V curves show the maximum power point (MPP), which
represents the maximum power output extracted from the PV generator under certain
environmental conditions [14]. Therefore, maximum power point tracking (MPPT) is
extremely important, which can extract the maximum power from the PV generator.
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Fig. 1.5: I-V and P-V curves for PV characteristic under different weather conditions.

According to [15, 16], many MPPT methods have been proposed in the previous re-
search. Although these conventional MPPT methods provide a simple way to achieve
maximum power, the slow response to fast-changing weather conditions restrict the per-
formance of these MPPT methods.
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Fig. 1.6: Meteorological data of the desert location and the coastal location in June 9th,
2018. Top: UNLV, Nevada; and bottom: HUS, California.

The meteorological data of Humboldt State University (HSU) and University of Neva-
da, Las Vegas (UNLV), in June 9th, 2018 are given in Fig. 1.6 [17]. The solar irradiance
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Fig. 1.7: Changes of the MPPs in the HSU and UNLV based on the meteorological data
in June 9th, 2018.

in the HSU changes more frequently and dramatically than that of the UNLV due to the
different meteorological conditions. The temperature in the HSU is between 10◦C and
20◦C, while that in the UNLV is around 25◦C. Based on this meteorological data, the
changes of the MPPs in the HSU and the UNLV can be plotted in Fig. 1.7.

Since the changes of the MPPS is so significant during the time around from 8:00
to 14:00, the tracking the MPPs in the HSU is really challenging. Therefore, it is really
necessary to propose a fast-converging speed MPPT method.

1.2.3 PV Mismatching Condition

PV mismatching condition refers to some PV cells or modules which have different op-
erating conditions from one another [18]. As shown in Fig. 1.8, the PV mismatching
condition is caused by some PV cells or modules in a PV string or PV array are shaded or
aged in the different degrees.

Under this condition, the characteristics of the PV string or PV arrays show multiple
local maximum power points (LMPP) and a global maximum power points (GMPP).
Although many MPPT methods have been proposed in the previous research, the main
drawback of these MPPT methods is that they can only track the single MPP under the
uniform condition [19]. In order to solve this drawback, many global maximum power
point tracking (GMPPT) methods are also proposed [19]. However, the main drawback of
these conventional GMPPT methods is that they may overlook the GMPP and be trapped
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Fig. 1.8: PV mismatching condition caused by some PV cells or modules in a PV string
or PV array are shaded or aged in the different degrees.

at the LMPP. Therefore, a more accurate GMPPT method under various PSC patterns is
really essential to be proposed.

1.2.4 Ancillary Service Requirement

As increasing penetration of PV system, a large number of conventional power plants
will be replaced by the PV power plants. However, since the PV generations do not
have rotating parts, no inertial response in the PV systems can be provided during major
power disturbances [20]. As shown in Fig. 1.9, the frequency regulation capability is
affected if the PV system without ancillary service in the frequency support during load
increase. By contrast, the PV system based on the power electronics devices is able
to provide a fast frequency regulation if the PV system is involved with the ancillary
service. Therefore, the ancillary service requirement on the PV plants to participate in the
frequency regulation, becomes more and more important [21].

Power curtailment is believed as a cost-effected method for the grid frequency regula-
tion [22]. With the aid of the power curtailment method, the PV systems can be regulated
to work at a suboptimal power level rather the maximum power of the PV source, and then
the active power can be reserved in order to realize potential grid support. This method
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Fig. 1.9: Grid frequency deviation during load increase.

is also famous as power reserve control (PRC). Although some PRC methods have been
proposed, they may be not effective under various weather conditions, especially under
fast solar irradiance changing. Besides, how to estimate the MPP in the real time is also a
difficulty. Therefore, it is really essential to propose a more effective PRC method.

1.3 Main contributions

As previously discussed, the control objectives can be divided into the basic functions,
such as the MPPT and the GMPPT, and the ancillary services, such as power curtailment
method. Therefore, this thesis is focused on three aspects as follow:

• A fast-converging speed MPPT method under the fast-changing weather conditions
is proposed to improve the MPPT performance under fast-changing weather con-
ditions. The guideline of determination of the β parameters considering meteo-
rological data in different locations is provided. The adaptive scaling factor Beta
(ASF-Beta) method and zero oscillations perturb and observe (ZO-PO) method are
proposed to improve the MPPT dynamic and steady-state efficiency, respectively.
The simulation and experimental results validate that the proposed MPPT method
outperforms the various conventional MPPT methods. The related research is pub-
lished on top journals as shown below:

1. Li, X., Wen, H., Jiang, L., Xiao, W., Du, Y., Zhao, C., “An Improved MPPT
Method for PV System with Fast-Converging Speed and Zero Oscillation”,
IEEE Transactions on Industry Applications, 52 (6), pp. 5051-5064, Novem-
ber/December, 2016.

2. Li, X., Wen, H., Jiang, L., Hu, Y., Zhao, C., “An improved beta method with
auto-scaling factor for photovoltaic system”, IEEE Transactions on Industry

Applications, 52 (5), pp. 4281-4291, September/October, 2016.
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3. Li, X., Wen, H., Jiang, L., Lim, E.G., Du, Y., Zhao, C., “Photovoltaic mod-
ified -parameter-based MPPT method with fast tracking”, Journal of Power

Electronics, 16 (1), pp. 9-17, January 2016.

4. Li, X., Wen, H., Hu, Y., Jiang, L., “A novel beta parameter based fuzzy-logic
controller for photovoltaic MPPT application”, Renewable Energy, 130, pp.
416-427, 2019.

• A GMPPT method is proposed to overcome the drawbacks of the conventional
GMPPT methods, such as slow tracking speed and tracking failures. Then, a PV
string equivalent model is proposed to allow the modified Beta method to work un-
der PV mismatching condition. Finally, the improvement with the proposed method
has been validated by comparing with the other GMPPT methods under different
PSC patterns. The related research is published on top journals as shown below:

1. Li, X., Wen, H., Hu, Y., Jiang, L., Xiao, W., “Modified Beta Algorithm for
GMPPT and Partial Shading Detection in Photovoltaic Systems”, IEEE Trans-

actions on Power Electronics, 33 (3), pp. 2172-2186, March 2018.

2. Li, X., Wen, H., Chu, G., Hu, Y., Jiang, L., “A novel power-increment based
GMPPT algorithm for PV arrays under partial shading conditions”, Solar En-

ergy, 169, pp. 353-361, 2018.

• A novel PRC method with simple real-time MPP estimation is proposed to over-
come the drawbacks of the previous PRC method. The developed strategy exhibits
fast speed and high robustness to estimate the MPP, and good compatibility with
existing PV systems. The effectiveness of the PRC proposed method is also vali-
dated by simulation and experimental results. The related research is published on
top journals as shown below:

1. Li, X., Wen, H., Hu, Y., Jiang, L., Xiao, W., “A Novel Sensorless Photovolta-
ic Power Reserve Control With Simple Real-Time MPP Estimation”, IEEE

Transactions on Power Electronics, Accepted

1.4 Outlines

There are six chapters in this thesis, details of every chapter are introduced as follow:

• Chapters 1 presents the background and introduction of this whole thesis. The
motivations and objectives of the PV-sides control, namely MPPT, GMPPT and
PRC, are introduced.
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• Chapters 2 is a survey of MPPT. The PV output characteristics and models are
introduced. The MPPT operating principle is analysed. Various MPPT methods
based on three different groups are compared and discussed.

• Chapters 3 proposes an MPPT method which is improved by adaptive scaling fac-
tor Beta (ASF-Beta) method and zero oscillations perturb and observe (ZO-PO)
method. The guideline of determination of the β parameters is firstly provided.
Then, the control mechanism of the ASF-Beta method and the ZO-PO method,
which are used to increase tracking speed and minimize oscillations around the
MPP, are demonstrated Finally, various of simulation and experimental results are
provided to validate the superior performance of the proposed MPPT method over
traditional MPPT methods.

• Chapters 4 firstly reviews and compares the various of GMPPT methods. Then, a
PV string equivalent model and an modified GMPPT method are proposed, which
is more accurate to track the GMPP than the previous methods. Finally, the im-
provement with the proposed method has been validated by comparing with the
other GMPPT methods under different PSC patterns.

• Chapters 5 firstly reviews and compares the various of PRC methods. Then, a novel
PRC method with simple real-time MPP estimation is proposed to overcome the
drawbacks of the previous PRC method. The developed strategy exhibits fast speed
to estimate the MPP, high robustness, and good compatibility with existing PV
systems. Simulation and experimental results under various scenarios are provided
to validate the effectiveness of the proposed strategy.

• Chapters 6 presents conclusion and future work.

10



Chapter 2

Literature Review on Maximum Power
Point Tracking (MPPT)

2.1 PV Output Characteristics and Models

2.1.1 PV Output Characteristics

I-V and P-V curves are usually used to illustrate the outputs of PV output characteristics
[23, 24]. Generally, there are five main parameters to demonstrate the PV output charac-
teristics, such as such as open-circuit voltage Voc, short-circuit currentIsc, voltage at the
MPP Vmpp, current at the MPP Impp and power at the MPP Pmpp, as shown in Fig. 2.1.
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Vmpp

Impp

Isc

Voc

Pmpp

Fig. 2.1: Five main parameters for the PV output characteristics.

The PV manufacturing data sheet normally provides these parameters at standard test
condition (STC), where the solar irradiance is at 1000W/m2 and the cell temperature is
at 25◦. In this thesis, the Solarex MSX-60W is chosen and its electrical characteristics are
shown in Table 2.1.

Except the five main parameters as discussed above, temperature coefficients of open-
circuit voltage Kv and short-circuit current Ki are also very important to derive the PV
characteristics under different weather conditions. Fig. 2.2 demonstrates the strong de-
pendence of the PV output performances on different temperature and solar irradiance
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Table 2.1: The electrical characteristics of the MSX-60W

Parameter Variable Value

Maximum power Pmpp 60W
Voltage at maximum power Vmpp 17.1V
Current at maximum power Impp 3.5V

Open-circuit voltage Voc 21.1V
Short-circuit current Isc 3.8V

Temperature coefficient of Voc Kv −80mV/◦C
Temperature coefficient of Isc Ki 0.065%/◦C
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Fig. 2.2: PV characteristics under different weather conditions..

levels [23]. The temperature has a significant effect on Voc but a negligible effect on Isc.
At the meanwhile, Voc is logarithmic dependence on the solar irradiance and Isc is linearly
dependent on the irradiance.

In order to analyze the behavior of the PV output characteristics, it is necessary to
adopt an equivalent circuit model and relevant equations describing it.

2.1.2 PV Equivalent Circuit Models

An equivalent circuits model is usually used to represent PV cells or PV modules. Single-
diode model (SDM) is widely used in the previous research [25].

As shown in Fig. 2.3, the currentvoltage (I-V) characteristics according to the SDM
model are expressed as

Ipv = Iph − Id −
Vd
Rp

(2.1)
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Fig. 2.3: Equivalent circuit of single-diode model (SDM).

where Iph represents the photon current. Id is Shockley diode equation, which can be
expressed as:

Id = Is

[
e
Vd
ηVt − 1

]
(2.2)

where Is is the reverse saturation current of the diode and η is the diode ideality factor. Vd
and Vt refer to

Vd = Vpv + IpvRs (2.3)

Vt =
kT

q
(2.4)

where Vt is the thermal voltage, k is Boltzmann constant (1.38×10−23J/K), T(in Kelvin)
is the temperature of the p–n junction, and q is the electron charge (1.602 × 10−19C).
Substitute (2.2-2.4) into (2.1), it can be rearranged as:

Ipv = Iph − Is
[
e
Vpv+IpvRs

ηVt − 1
]
− Vpv + IpvRs

Rp

(2.5)

Since there are five unknown parameters in (2.5), this SDM is also known as five-parameter
PV model [25].

In order to obtain these unknown parameters, many parameter estimation techniques
have been proposed and evaluated in [26]. In this thesis, National Renewable Energy
Laboratory (NREL) System Advisor Model is used to obtain the parameters. Therefore,
the five unknown parameters can be obtained from Table 2.1 based on the NREL Sys-
tem Advisor Model. The obtained values of the five parameters at the STC are given in
Table 2.2.

In this thesis, the parameters η, Rp and Rs are assumed constant when the weather
conditions are changed [27]. Iph and Is under different solar irradiance and temperature
can be expressed as:

Iph =
[
Iph,STC +Ki(T − TSTC)

] G

GSTC

(2.6)

Is = Is,STC

(TSTC
T

)3
e
qEg
ηK

( 1
TSTC

− 1
T
) (2.7)

where G and T refer to values of solar irradiance and temperature; GSTC and TSTC refer
to values of solar irradiance and temperature at the STC; Iph,STC and Is,STC refer to Iph
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Table 2.2: Obtained five parameters based on National Renewable Energy Laboratory
(NREL) System Advisor Model

Parameter Variable Value at the STC

Photon current Iph 3.8091A
Diode saturation current Is 2.452e−10A
Reverse ideality factor η 0.97359

Parallel resistance Rp 161.0752Ω
Series resistance Rs 0.38659Ω

and Is at the STC; Eg is the bandgap energy of the semiconductor (Eg = 1.12eV for the
polycrystalline Si at 25◦).

2.2 MPPT Introduction

2.2.1 MPPT Operating Principle

The principle behind MPPT is the impedance match between the PV generator output and
the load condition [24]. Assuming that a PV panel is directly connected with a resistor
load, which is shown in Fig. 2.4 (a). The operating point is plotted as the intersection
between the I–V curve and load line when the resistance is 7.61Ω. If the PV module is
connected with a variable resistor, the operating point can move alone the PV I–V curve
by adjusting the value of the resistor, as shown in Fig. 2.4 (b).

Generally, the load requires either constant current or voltage, so the load impedance
cannot always be adjusted for the MPPT. Therefore, a controlled power interface, as
shown in Fig. 2.5, is connected between the PV generator and load to realise an equivalent
resistance to match the MPP. Assuming that a DC-DC converter is used as the controlled
power interface, where Iin and Vin are input current and voltage, respectively; Iout and
Vout are output current and voltage, respectively; d refers to the duty cycle of the DC-DC
converter.

Assuming that the DC-DC converter is ideal, the mathematical expression for the DC-
DC converter can be given by:

Vin =
Vout
M(d)

(2.8)

Iin = M(d) · Iout (2.9)

where M(d) is the voltage conversion ratio. Divide (2.8) by (2.9), it can be derived as:

Rin =
Vin
Iin

=
Vout/M(d)

M(d) · Iout
=

1

M(d)2
· Vout
Iout

=
Rout

M(d)2
(2.10)
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Fig. 2.4: Impedance match for the MPPT: (a) direct load match; (b) variable load match.

where Rin refers to the input resistance and Rout refers to the output resistance. Since the
input of the DC-DC converter is the PV source, (2.10) can be rewritten as:

Rpv =
Rload

M(d)2
(2.11)

where Rpv refers to the equivalent resistance of the PV source, and Rload represents the
load resistance.

It should be noted that there are different M(d) for different DC-DC converters, as
summarized in Table 2.3. Taking the boost converter as an example, its M(d) is given as
below:

M(d) =
1

1− d
(2.12)

Substitute (2.12) into (2.11), it can be derived as:

Rpv = Rload(1− d)2 (2.13)

From discussion above, the left terms in (2.13) can be regarded as the equivalent resis-
tance. Here, assuming a boost converter is used andRload is set to 25Ω, the corresponding
I-D-V curve is plotted in Fig. 2.6. By adjusting the value of d, the operating point alone
the PV I-V curve can be changed. With a certain value of d, the MPP can be located.
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Fig. 2.5: Controlled power interface between the PV generator and load.

Table 2.3: Summarization of M(d) and Rpv for different DC-DC converters

Converter M(d) Rpv

Buck d
1

d2
Rload

Boost
1

1− d
(1− d)2Rload

Buck-Boost − d

1− d
(1− d)2

d2
Rload

Cuk − d

1− d
(1− d)2

d2
Rload

SEPIC
d

1− d
(1− d)2

d2
Rload

2.2.2 MPPT Categorization Base on Algorithmic Characteristics

Generally, there are two aspects that need consideration to evaluate the performance of
MPPT methods [28], namely steady-state MPPT efficiency and dynamic MPPT efficien-
cy The steady-state MPPT efficiency refers to the efficiency of MPPT methods during
the steady-state stage when the weather conditions are not changed. Since the operating
point is around the MPP during the steady-state stage, the steady-state MPPT efficiency is
also used to describe the accuracy of the located MPP. Normally, the steady-state MPPT
efficiency should be very high (typically larger than 99%).

When the weather conditions are changed, the MPP needs to be relocated and this pro-
cess is called dynamic stage. During the dynamic stage, the efficiency of MPPT methods
demonstrates the speed that the MPP is relocated. According to the previous research, the
dynamic MPPT efficiency could be higher than 98% [10].

So far, a large number of MPPT have been proposed in the literature [15, 16, 29].
Based on the characteristics of the available MPPT methods, they can be roughly divided
into three groups [30, 31]:

• Heuristic method
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Fig. 2.6: I–D–V curve for impedance match with controlled power interface.

• Model-Based method
• Hybrid method

The heuristic method is based on trial-and-error approach [30, 31]. Firstly, the PV sys-
tem is disturbed by the algorithm. Then, the algorithm observes the effect caused by this
disturbance and take a proper action. This process is repeated until the optimal point
is found. Generally, the heuristic method is relatively simple and very effective under
different weather conditions. However, the drawback of such algorithms is its poor per-
formance in fast-changing weather conditions [31].

The model-based method relies on the mathematical model of the PV generator [32].
The MPP can be analytically determined by these algorithms, so the dynamic performance
of this algorithm is generally better than the heuristic method. However, the effectiveness
of the model-based method is affected by the PV model accuracy.

The hybrid method combines the heuristic method and the model-based method, which
adopts the their advantages and overcomes their drawbacks. [30, 31]. Generally, the hy-
brid method has two stages. In the dynamic stage, the model-based method is used to
estimate the vicinity of the MPP. Then, the heuristic method is used to locate the exact
MPP after the dynamic stage is changed to the steady-state stage.

2.2.3 MPPT Categorization Base on MPPT Implementation

Except the algorithmic characteristics, the MPPT methods can be also divided into five
groups based on the MPPT implementation, as shown in Fig. 2.7. Fig. 2.7 (a) shows the
most common implementation where the PV-side current sensor and/or voltage sensor are
required. It should be noted that the majority of the available MPPT methods are based
on this implementation [15]. By contrast, the output voltage sensor and/or current sensor
can be also used to realise the MPPT, as shown in Fig. 2.7 (b). However, this kind of
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implementation cannot guarantee the true MPPT [15].
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Fig. 2.7: Different MPPT implementations: (a) PV-side sensors; (b) Output sensors; (c)
Additional sensors with solar irradiance and/or temperature; (d) Additional sensors with
inductor current; (e) Additional sensors with thermography camera.

Additional sensors are also used in some MPPT implementations. As shown in Fig. 2.7
(c), the solar irradiance and/or temperature are measured and sent to the MPPT controller.
Generally, only the model-based methods and some MPPT methods also require this im-
plementation [31]. Besides, some MPPT method also requires to measure the inductor
current, such as sliding mode (SM) control [33], as shown in Fig. 2.7 (d). In recent years,
the thermography-based virtual MPPT is proposed in [34] where a thermography camera
is used to assist the MPPT, as shown in Fig. 2.7 (e). Although the effectiveness of these
implementations with additional sensors are validated, the cost and complexity of them
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are generally high due to more sensors used.
As aforementioned discussion, the MPPT implementation with the PV-side sensors

is the most generic MPTT algorithm. Therefore, in this thesis, only the MPPT methods
based on this implementation are studied.

2.3 Heuristic Method

2.3.1 Perturb and Observe and incremental conductance method

Perturb and observe (P&O) and incremental conductance (INC) method are the most ba-
sic heuristic method [30, 31]. The operating principle of the P&O method and the INC
method are summarized in Fig. 2.8 [35–39]. From Fig. 2.8, perturbation direction and
perturbation step size are needed to be decided by both of the P&O method and the INC
method [40, 41].

ΔP = P(k)-P(k-1)

ΔV = V(k)-V(k-1)

ΔI = I(k)-I(k-1)

ΔV = V(k)-V(k-1)

Based on 

(2.14a)-(2.14b)

Based on 

(3a)-(3c)

Start

Decision

Perturbation

Direction

Decision

Perturbation

Step size

Fixed step size, e.g. ΔD = 0.5%

Variable step size, e.g. ΔD = N ´ (ΔP/ΔV)

Update D(k)

P&O INC

Fig. 2.8: The summarized flowchart of the P&O method and the INC method.

Fig. 2.9 illustrates the how to determine the perturbation direction for the P&O method
and the INC method. As illustrated in Fig. 2.9, the perturbation direction for the P&O
method and the INC method are derived from the P -V characteristics, which can be
summarized as

P&O


∆P

∆V
> 0, Left of MPP (2.14a)

∆P

∆V
< 0, Right of MPP (2.14b)
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INC



∆I

∆V
> − I

V
, Left of MPP (2.15a)

∆I

∆V
= − I

V
, At MPP (2.15b)

∆I

∆V
< − I

V
, Right of MPP (2.15c)

where ∆P , ∆V and ∆I refer to the changes in power, voltage and current, respectively.
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Fig. 2.9: Determination of the perturbation direction for the P&O method and the INC
method.

Fig. 2.10 demonstrates the behaviors of the P&O method and the INC method during
the steady-state stage. The point A and C refer to the location on the left of the MPP and
the right of the MPP, respectively. The point B refers to the nearly coincident location
with the MPP. Assuming the operating point moves from the point A to the point B,
(2.14a) and (2.15a) are satisfied. Thus, the operating point will keep moving towards the
right side and reach the point C. At the point C, (2.14b) and (2.15c) are satisfied, so the
operating point moves back to the point B. Then, the operating point will keep moving
towards the left side since (2.14b) and (2.15c) are still satisfied. Finally, the operating
point will repeat this process following the trajectory (A) → (B) → (C) → (B) → (A).
Since there are three power/voltage levels in the steady-state stage, this behavior is also
famous as three-level oscillations [35].

In most of cases, both of these methods are able to make a correct movement towards
the MPP. However, these methods may make a wrong movement and drift from the MPP
under a sudden solar irradiance increase [10]. Fig. 2.11 shows the movement of the op-
erating point under the sudden irradiance changes. When the solar irradiance is suddenly
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Fig. 2.10: Steady-state three-level oscillations around the MPP.
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Fig. 2.11: Movement of the operating point under the sudden irradiance changes.

decreased, d is not changed at that moment. Hence, the operating point immediately
moves from MPP1 to A through the load line. At this time, since ∆P , ∆V and ∆I are
decreased, both of (2.14a) and (2.15a) are satisfied. Therefore, the P&O method and the
INC method correctly make a right movement towards MPP2 and there is no drift hap-
pened. When the solar irradiance is suddenly increased, the operating point immediately
moves from MPP2 to B. However, ∆P , ∆V and ∆I are increased and (2.14a) and (2.15a)
are also satisfied. Therefore, a wrong step change is made by the P&O method and the
INC method, and the operating point drifts away from the MPP1.

In terms of the perturbation step size, the fixed-step size is generally used for the
P&O and INC methods [35]. However, simultaneous optimization of the steady-state
performance and the dynamic performance is very difficult [10]. Fig. 2.12 shows that
the different fixed-step sizes for the P&O and INC method. Assuming that two different
fixed-step sizes, namely 1V and 0.5V, are used to track the MPP at the same starting
point. From Fig. 2.12, it can be seen that the method with the larger step size has a better
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Fig. 2.12: Performance of the different fixed-step size for the P&O and INC method.

dynamic performance. The method with the larger step size only requires 6 steps to reach
the MPP while that with the smaller step size needs 11 steps. After the MPP is reached,
the system oscillates around the MPP. As a consequence, the method with the smaller step
size has a better steady-state performance.

As aforementioned discussion, there are three drawbacks for the basic P&O and INC
methods:

• Steady-state oscillations during the steady-state stage
• Drift conditions under the sudden irradiance changes
• Simultaneous optimization of the steady-state performance and the dynamic perfor-

mance

In order to solve these problems, many modified or improved P&O and INC methods are
proposed and will be reviewed in the following sections.

2.3.2 Drift-Free Methods

In order to avoid the drift condition, there are many drift-free methods to solve this, such
as setting a constraint on step size [35] or power threshold ∆P [42]. However, it is
difficult to tune these parameters, and they may not be suitable for all of the weather
conditions.

As a matter of fact, another solation has been proposed in [43, 44] by incorporating
the information of ∆I in the decision part. Since the drift condition is normally hap-
pened during the irradiance increases, it is only required to incorporate ∆I in (2.14a) and
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(2.15a). Therefore, (2.14a) can be rewritten as below:
∆P

∆V
> 0 ∆I > 0, Right of MPP (2.16a)

∆P

∆V
> 0 ∆I < 0, Left of MPP (2.16b)

and (2.15a) can be rewritten as below:
∆I

∆V
> − I

V
∆I > 0, Right of MPP (2.17a)

∆I

∆V
> − I

V
∆I < 0, Left of MPP (2.17b)

No Drift

No Drift

MPP

MPP

Rapid 

increase

0I 

Rapid 

increase

0I 

Fig. 2.13: Movement of the operating point for the drift-free modified P&O method and
INC method.

Fig. 2.13 shows how the operating point changes under the rapid irradiance increase
for these drift-free methods. With the aid of ∆I incorporation, the drift-free method can
successfully eliminate the drift condition. Compared to the other drift-free methods in
[35, 42], the solution in [43, 44] is much simpler and more adaptive in different weather
conditions.

2.3.3 Variable-Step Methods

Generally, the variable-step size is used to solve the tradeoff between the steady-state and
dynamic performance. The step size can be automatically adjusted by the P -V curve
gradient [45–48], P -I curve gradient [49] and P -D curve gradient [50].

Among these methods, the P -V curve gradient is the most commonly used. Thus, the
step size ∆X can be expressed as below:

∆X = N ×
∣∣∣∣∆P∆V

∣∣∣∣ (2.18)
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where ∆X are commonly used as ∆D or ∆V , N is a fixed scaling factor adjusted at the
sampling period to regulate the step size [45].
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Fig. 2.14: Asymmetrical variable-step size method.

Fig. 2.14 shows the curve of the term, namely ∆P/∆V , is highly asymmetrical rel-
ative to the MPP. Consequently, it will result in a larger step size in the right-hand side
of the MPP and a smaller step size in the left-hand. Therefore, the value of N must be
used and tuned to balance this right-and-left asymmetry of the gradient of the P -V curve.
However, this value of N may not be suitable for all of the weather conditions. For ex-
ample, this asymmetry becomes more significant, when the solar irradiance decreases, as
marked in black dash lines in Fig. 2.14.
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Fig. 2.15: Symmetrical variable-step size method.
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Unlike the aforementioned asymmetrical variable-step size MPPT methods, a sym-
metrical variable-step size MPPT method is proposed in [51]. This method uses two
parameters, namely F and G, to regulate the step size, as shown below:

G = 1−
∣∣∣∣∆I

∆V

∣∣∣∣/∣∣∣∣ IV
∣∣∣∣ , Left of MPP (2.19a)

F = 1−
∣∣∣∣ IV
∣∣∣∣/∣∣∣∣∆I

∆V

∣∣∣∣ , Right of MPP (2.19b)

Then, the step size ∆X can be derived as below:

∆X =

{
∆N ×G, Left of MPP (2.20a)

∆N × F, Right of MPP (2.20b)

As shown in Fig. 2.15, the curve of F and the curve of G are highly symmetrical rel-
ative to the MPP. Furthermore, even if the weather condition changes, such as irradiance
decreases, the symmetry between F and G is still maintained. Therefore, this symmetri-
cal variable-step size MPPT method is more adaptive than the asymmetrical variable-step
size MPPT methods.

2.3.4 Parabolic Prediction

Parabolic prediction method is another heuristic method [52–54]. It can be demonstrated
that a parabolic curve gives a good approximation of the P -V characteristics, as shown in
Fig. 2.16. A quadratic polynomial can be written as:

Ppv = aV 2
pv + bVpv + c (2.21)

Assuming that three points in the P -V curve are known, namely (V1 P1), (V2 P2) and (V3

P3). The parameters a, b and c can be obtained:

a =
P1

∆V 12 ·∆V 13
+

P2

∆V 21 ·∆V 23
+

P3

∆V 31 ·∆V 32
(2.22)

b = −P1(V 2 + V 3)

∆V 12 ·∆V 13
+
P2(V 1 + V 3)

∆V 21 ·∆V 23
+
P3(V 1 + V 2)

∆V 31 ·∆V 32
(2.23)

c =
P1 · V 2 · V 3

∆V 12 ·∆V 13
+

P2 · V 1 · V 3

∆V 21 ·∆V 23
+

P3 · V 1 · V 2

∆V 31 ·∆V 32
(2.24)

where
∆Vij = Vi − Vj i, j = 1, 2, 3. (2.25)

The iteration process for the parabolic prediction method is demonstrated in Fig. 2.17.
Initially, three points on the P -V curve are measured and a, b and c can be obtained. Then,
the operating point will move to the reference voltage Vref :

Vref = − b

2a
(2.26)
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Fig. 2.16: Approximation of the P -V characteristics by a parabolic curve.

After the operating point moves to the new position, the power value at this new
position P4 will be compared with P1, P2 and P3. The lowest power point of the four
will be dropped and the rest of the three points will be used for the next iteration. This
iteration will be continuously repeated until the MPP is reached.

(I) (II)

(III)
(IV)

MPP MPP

MPP MPP

P1
P2

P3

P4

Vref

Fig. 2.17: Iteration process for the parabolic prediction method.

The advantage of this method is its fast convergence speed. However, this convergence
speed is highly depended on the selected initial points. Besides, the implementation of
this method is also difficult since an extra consideration should be enforced if the solar
irradiance is changed [54].

2.3.5 Fuzzy Logic Control (FLC)

Fuzzy logic control can be also regarded as a heuristic method. Generally there are three
stages for the the FLC method [15], which is shown in Fig. 2.18. In the first stage, the
numerical input variables are converted into equivalent linguistic variables as input fuzzy
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Fig. 2.18: Structure of the fuzzy logic controller.
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NB NS ZE PBPS

Fig. 2.19: Membership functions of five fuzzy levels.

sets. In the second stage, the input fuzzy sets are converted into output fuzzy sets through
the inference with the fuzzy rule base table. Finally, the output fuzzy sets are converted
into the numerical variables as the output.

To be more specific, the input variables could be the error E and the change in error
∆E, which can be calculated by the gradient of P-V curve [55] as follow:

E(k) =
P (k)− P (k − 1)

V (k)− V (k − 1)
(2.27)

∆E(k) = E(k)− E(k − 1) (2.28)

where P (k) and V (k) are PV output power and voltage respectively at time k.
Five fuzzy levels are used for membership functions (MFs), such as NB (negative

big), NS (negative small), ZE (zero), PS (positive small), and PB (positive big). Since the
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Table 2.4: Rule base table with five fuzzy levels.

E
∆E

NB NS ZE PS PB

NB PB PB PS PB PB
NS PB PS PS PS PB
ZE NS NS ZE PS PS
PS NB NS NS NS NB
PB NB NB NS NB NB

∆P/∆V curve is highly asymmetric at the MPP, as illustrated in Fig. 2.14, the MFs of
E(k) with five fuzzy levels have to be carefully designed in order to ensure the symmetric
feature of the output variable ∆D [56]. The designed MFs with five fuzzy levels are
demonstrated in Fig. 2.19, which shows that the output variable ∆D is symmetric around
zero. These specific 25 fuzzy rules are also clearly shown in Table 2.4.

The FLC method generally exhibits a better performance than other heuristic methods
especially under varying atmospheric conditions [56–58]. However, the performance of
the FLC is heavily relied on the designer’s knowledge of the system. For example, the
number of fuzzy rules is high, which increases the difficult of FLC design and implemen-
tation.

2.4 Model-Based Method

2.4.1 Linear Approximation

Linear approximation methods are based on the linear relationship, as shown in Fig. 2.20.
The fractional open-circuit voltage (FOCV) method [59] and fractional short-circuit cur-
rent (FSCC) method [60] use the linear relationship between the Vmpp and Voc, and Impp
and Isc, respectively. For the FOCV method, the linear relationship is expressed as below

Vmpp ≈ KFOCV Voc (2.29)

where KFOCV is a constant of proportionality, which is between 0.71 and 0.78. Similarly,
the linear relationship for the FSCC method is described as

Impp ≈ KFSCCIsc (2.30)

where KFSCC is a constant of proportionality, which is generally found to be between
0.78 and 0.92.

The FOCV method and FSCC method provide a simple and effective way to estimate
the MPP. The advantages of these methods are their fast tracking speed, no steady-state
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Fig. 2.20: Linear relationship between the Vmpp and Voc, and Impp and Isc.

oscillations and no drift conditions. However, it is not so accurate to obtain a high steady-
state MPPT efficiency. Besides, both of these methods need an additional circuit for
online measurements of Ipv and Vpv [60]. As a consequence, a short circuit or periodi-
cal disconnection are required, which results in more power loss and higher cost of the
system.

2.4.2 I-V Curve-fitted Method

I-V curve-fitted method is usually used to extract the physical parameters, such as Rs,
Rp and even the solar irradiance [61]. Recently, some new I-V curve-fitted Methods
are proposed, which is based on polynomial models [62, 63]. This kind of the methods
requires pairs of voltage and current values to estimate the parameters of the polynomial
models.

Taking [63] as an example, equation (2.1) is firstly simplified as (2.31). The details of
this simplification can be found in [63].

I = α + βV γ (2.31)

where α, β and γ are constants and can be calculate by only three pairs of voltage and
current values namely (v1 i1), (v2 i2) and (v3 i3). Taking the first derivative of (2.31), it
can be written as:

I ′ = β·γ·V
(γ−1) (2.32)

The means of the three pairs of voltage and current values can be written as

I ′12 =
i2 − i1
v2 − v1

I ′23 =
i3 − i2
v3 − v2

(2.33)

V12 =
v1 + v2

2
V23 =

v2 + v3
2

(2.34)

Combining (2.32) with (2.33) and (2.34) yields

I ′12 = β·V
(γ−1)
12 I ′23 = β·V

(γ−1)
23 (2.35)
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Fig. 2.21: Demonstration of the I-V curve-fitted method.

Then, γ can be calculated as

γ =

ln(
I ′12
I ′23

)

ln(
V12
V23

)
+ 1 (2.36)

Combining (2.35) with (2.36) yields

β =
I ′12

γ·V
(γ−1)
12

(2.37)

Finally, α can be obtained

α = I1 − β·V γ
1 (2.38)

After α, β and γ are obtained, the estimated I-V curve as well as the estimated MPP
can be obtained too. As illustrated in Fig. 2.21, it can be seen that the estimated MPP is
very close to the actual MPP.

Compared to the heuristic methods, the I-V curve-fitted method only requires four
steps to reach the vicinity of MPP. It is also validated that the dynamic performance of the
I-V curve-fitted method is generally better than the heuristic methods [63]. However, this
I-V curve-fitted method requires proper selection of the location for three pairs of voltage
and current. It is pointed out that the first point (v1 i1) must be in the left of the MPP, the
third one (v3 i3) must be in the left and the second one (v2 i2) must be between the first
and the third. If all of the points are located in the left side of right side of the MPP, the
accuracy of the estimation will be significantly affected, as illustrated in Fig. 2.22.

2.5 Hybrid Method

2.5.1 MPP-locus Method

M. Sokolov and D. Shmilovitz proposed the standard MPP-Locus method in [64]. The
basic principle of this method is demonstrated in Fig. 2.23.
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Fig. 2.22: Bad selection of the location for three pairs of voltage and current: (a) all of
the points are located in the left side; (b) all of the points are located in the right side.

As shown in Fig. 2.23, the locations of the MPPs under the different solar irradiance
are nearly to form an emulated straight line [65]. Based on this fact, this method is always
to force the operating point to nearly maintain on this straight line to reduce the tracking
time. Assuming that the weather condition, such as solar irradiance, is changed, the
operating point moves from the point 1 to the point 2′. Then, the operating point directly
moves to the point 2 by the MPP-Locus method. Finally, the P&O method or the INC
method will be used to exactly locate the MPP position [66].

The advantages of this method is its good dynamic performance, especially when the
solar irradiance is suddenly changed. However, this method has a poor tracking perfor-
mance under low solar irradiance levels or various temperature conditions [67].

2.5.2 Beta Method

Beta method is a very unique MPPT method. Unlike the aforementioned MPPT methods,
an intermediate variable, β, rather than power or voltage is used to track the MPP The
theory of the Beta method is illustrated in [68] and the intermediate variable β is given as:

β = ln
( Ipv
Vpv

)
− c× Vpv (2.39)

where c = q/(NsηkT ) is the diode constant.

31



Emulated Load

Resistive Load

1

3

2
'

2

Shift to the left

Fig. 2.23: Basic principle of the MPP-Locus method.

Start

Sense V, I

Switch into hill climb 

method or other 

conventional methods

Update D

No

Yes

Stage One

Stage Two

 ( ) ln ( ) ( ) ( )
a

k I k V k c V k   

min max
( )

a
k    ( )

a g
D N k    

( ) ( 1)D k D k D   

Fig. 2.24: Flowchart of the Beta method.
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Firstly, the Beta method is required to determine the bounding range of β, namely
βmin, βmax, which is based on the weather conditions. Then, if the value of β is within
the range of β, it means that the operating point is close the MPP. Thus, the fixed step
P&O method can be used to exactly locate the MPP. Otherwise, if the value of β is out of
this range, it means that the operating point is far from the MPP. Hence, a variable step
∆D is used, which can be expressed as:

∆D = N ×
(
β(k)− βg

)
(2.40)

where β(k) is the present value of β,N is the scaling factor, and βg is a guiding parameter.
This process can be summarized in Fig. 2.24.

The previous simulation and experimental results from [69, 70] comprehensively eval-
uated main MPPT methods and it is believed that the Beta method exhibits a fast tracking
speed in the dynamic stage, small oscillations in the steady-state stage and relatively easy
implementation. However, some parameters, such as N and βg, have to be tuned careful-
ly to avoid the bad performance [71]. In other words, the dynamic performance of this
method will be affected if N and βg are not properly tuned. Furthermore, the steady-state
oscillations still exists, which is affected the steady-state efficiency. Besides, how to de-
sign the bounding range of β is also not clearly defined and evaluated. Therefore, the
potential of this method is not fully exploited.

2.6 Summarization of the reviewed aforementioned MPPT
methods

Fig. 2.25 summarized the reviewed aforementioned MPPT methods. The aforementioned
MPPT methods are categorized into three groups as previously discussed in Section 2.2.2.

There are 8 different common features for the MPPT methods, which are summarized
and shown at the bottom of Fig. 2.25. The three different colors, red, yellow and green,
are referred to negative, neutral and positive, which are related to these 8 MPPT features.

From Fig. 2.25, it is clearly to evaluate each of these MPPT methods. Most of the
MPPT methods are able to track the true MPP except the linear approximation method.
Only parabolic prediction method and the I-V curve-fitted method are required to set a
proper initial points.

It should be noted that the tracking speed is generally good for half of the MPPT
methods, especially for the model-based method and hybrid method. However, it requires
proper tuning of the parameters related to the characteristic of the algorithm. Besides,
the steady-state oscillations for the most of the MPPT method are not really eliminated,
which are also quite important.
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Fig. 2.25: Summarization of the reviewed aforementioned MPPT methods.
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Chapter 3

An Improved Beta Method With
Adaptive Scaling Factor and Zero
Oscillation

In this chapter, an improved Beta method is proposed, which consists of two sub-algorithms:

1. Adaptive scaling factor Beta (ASF-Beta) method for the dynamic stage.
2. Zero oscillations perturb and observe (ZO-PO) method for the steady-state stage.

The content of this chapter has been published in the following paper:

1. Li, X., Wen, H., Hu, Y., Jiang, L., “A novel beta parameter based fuzzy-logic con-
troller for photovoltaic MPPT application”, Renewable Energy, 130, pp. 416-427,
2019.

2. Li, X., Wen, H., Jiang, L., Xiao, W., Du, Y., Zhao, C., “An Improved MPPT Method
for PV System with Fast-Converging Speed and Zero Oscillation”, IEEE Transac-

tions on Industry Applications, 52 (6), pp. 5051-5064, November/December, 2016.

3. Li, X., Wen, H., Jiang, L., Hu, Y., Zhao, C., “An improved beta method with auto-
scaling factor for photovoltaic system”, IEEE Transactions on Industry Applica-

tions, 52 (5), pp. 4281-4291, September/October, 2016.

4. Li, X., Wen, H., Jiang, L., Lim, E.G., Du, Y., Zhao, C., “Photovoltaic modified
-parameter-based MPPT method with fast tracking”, Journal of Power Electronics,
16 (1), pp. 9-17, January 2016.

3.1 Proposed Improved Beta Method

The main loop of the proposed method is illustrated in Fig. 3.1. Compared to the conven-
tional Beta method, an adaptive scaling factor is used by the proposed ASF-Beta method.
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Table 3.1: Values of β under various irradiance and temperature

No. Irradiance temperature β

1 1000W/m2 45◦C -15.4505
2 1000W/m2 5◦C -18.3431
3 300W/m2 45◦C -15.9587
4 300W/m2 5◦C -19.0214

Therefore, the ASF-Beta method becomes less dependent on tuned parameters. Further-
more, the the steady-state oscillations can be totally eliminated by the ZO-PO method. As
a consequence, the steady-state efficiency can be significantly improved.

Start

βmin < β(k) < βmax 

ASF-Beta

Update d(k+1)

Yes No

ZO-PO

Fig. 3.1: Main loop of the proposed method.

3.1.1 Determination of Beta Parameters

According to [68, 70–72], the range of β depends on the working environment of the
PV system. Table 3.1 demonstrates working environmental conditions and the calculated
magnitudes of β. The relationship among β, voltage and power under various irradiation
and temperature conditions is indicated in Fig. 3.2. From Table 3.1 and Fig. 3.2, the range
of β is determined as βmin = −19.02 and βmax = −15.45.

In [73], the authors pointed out that the evaluation and performance on MPPT should
consider non-ideal factors depended on weather conditions. Moreover, the performance
of P&O method by using the meteorological data of two distinct locations is explored to
evaluate the optimal step size. Therefore, it is also essential to use the meteorological
data to evaluate the range of β. In this thesis, the meteorological data of the HSU and the
UNLV are used, which are plotted in Fig. 3.3.
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Fig. 3.2: Determination of β range based on the working environmental conditions.

Fig. 3.4 illustrates the corresponding simulated values of power and β at the MPP
in the daytime. Since the solar irradiance has more remarkable effect on the generated
power than temperature, it can be seen that the simulated power has a similar trend as the
solar irradiance. However, the temperature has more remarkable effect on the values of β
compared to the solar irradiance. Therefore, the trends of the temperature and the values
of β are the similar.

Furthermore, during the daytime, the corresponding simulated values of β generally
stays within the range between βmin and βmax. It proves that the set of β parameters in
Table 3.1 and Fig. 3.2 are able to work in the whole year under the real weather condition.

3.1.2 Adaptive Scaling Factor Beta (ASF-Beta) Method

Generally, the scaling factor for the conventional Beta method is based on trial-and er-
ror method [72]. Fig. 3.5 demonstrates that different values of the scaling factor N are
implemented for the conventional Beta method.

From Fig. 3.5, it can be seen that the larger value of N shows the better performance
when the irradiation changes significantly. However, too large value of N can cause the
too large duty cycle, which can result in the undesired performance. In contrast, the
smaller N can avoid this undesired situation. However, the tracking speed is relatively
slow when the irradiation increasing. Therefore, the medium value of N is chosen for
optimization in the previous research [72].

In order to avoid the tuning the values of scaling factor by trial-and error method,
adaptive scaling factor is really necessary. Therefore, the adaptive scaling factor Beta
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Fig. 3.3: Meteorological data of the HSU and the UNLV in the daytime: (a) HSU in
2015/01/19 (top) and 2015/07/31 (bottom); (b) UNLV in 2015/01/16 (top) and 2015/07/24
(bottom).
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Fig. 3.4: The corresponding simulated value of power and β at the MPP in the daytime:
(a) HSU in 2015/01/19 (top) and 2015/07/31 (bottom); (b) UNLV in 2015/01/16 (top) and
2015/07/24 (bottom).
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Fig. 3.5: Scaling factor sweeping for the conventional Beta method.
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(ASF-Beta) method is proposed to overcome this problem in this thesis [71].

Compared to (2.40), the guiding parameter βg is removed and the step size is updated
as:

∆D =

{
N × (βa(k)− βmin), for βa(k) > βmax (3.1a)

N × (βa(k)− βmax), for βa(k) < βmin (3.1b)

where (3.1a) and (3.1b) refer to the step size when the solar irradiance is decreased and
increased, respectively. Then, the adaptive scaling factor N shown in (3.1) is derived by:

N =

{
1, for β(k − 1) < βmax (3.2a)
β(k)−βmin
β(k−1)−β(k) , for β(k − 1) > βmax (3.2b)

N =

{
1, for β(k − 1) > βmin (3.3a)
β(k)−βmax
β(k−1)−β(k) , for β(k − 1) < βmin (3.3b)

where (3.2) and (3.3) refer to the changes of N when the solar irradiance is decreased and
increased, respectively; β(k − 1) refers to the previous value of β.

MPP1

MPP2
A1

βmin

A2 A2'

βmin 

βmax 
2A


2A
'

1MPP


2MPP


1A


1 2A A
 

2A min
 

1 2A A '
 

2A ' min
 

Fig. 3.6: Demonstration of the ASF-Beta method under the sudden irradiance changes.

Fig. 3.6 demonstrates the tracking process of the ASF-Beta method. When solar ir-
radiance is decreased, the operating point will move from the point MPP1 to A1. At this
time, the present and previous of β have relationships as below:{

β(k) = βMPP1 < βmax (3.4a)

β(k − 1) = βA1 > βmax (3.4b)
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(3.1a) and (3.2a) are used to derivative the step size and its scaling factor, respectively.
Then, when the operating point moves to the point A2, both of β(k) and β(k − 1) are
larger than βmax: {

β(k) = βA1 > βmax (3.5a)

β(k − 1) = βA2 > βmax (3.5b)

Thus, the scaling factor is tuned by (3.2b):

N =
βA1βA2

βA2βmin
=

β(k)− βmin
β(k − 1)− β(k)

(3.6)

where βA1βA2 and βA2βmin refer to the length between the point A1 and A2, and the point
A2 and βmin, respectively. If A2 is far from the MPP2, βA1βA2 is smaller than βA2βmin.
Consequently, the value of N and the step size becomes larger, and the operating point
moves faster. By contrast, if A′2 is close to the MPP2, βA1βA′

2
is larger than βA′

2
βmin.

Therefore, the value of N becomes smaller and the step size can be well tuned. After
serval repeats of this process, the operating point moves into the range of β, and the P&O
method is used to locate the exact MPP. Finally, the working principle of the ASF-Beta
method is summarized in Fig. 3.7.
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Fig. 3.7: The flowchart of the ASF-Beta method.

When the solar irradiance is increased or the load is changed, similar processes to
obtain N and step size can be analyzed as aforementioned discussion, which will not be
presented here.
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3.1.3 Zero Oscillations Perturb and Observe (ZO-PO) Method

According to [35], three-level perturbations around the MPP point are typically happened
when the conventional P&O method reaches its steady-state stage. As shown in Fig. 3.8
(a), the levels of power and duty cycle are following the trajectory A→ B→ C→ B→
A. The level of duty cycle, B, is the middle level, Dmid, which occurs twice in every four
sampling periods of Tp. Moreover, the corresponding power level, Pmid, is the highest
compared to the other levels. As description in Section 2.3.1, the operating point will
repeat the following trajectory A→ B→ C→ B→ A, as shown in the top of Fig. 3.9. In
order to eliminate the steady-state oscillations, the ZO-PO method is used to identify and
maintain Dmid during the steady-state stage.

Fig. 3.8 (b) demonstrates the basic idea of the ZO-PO method. D1, D2, D3 and D4

refer to the values of the duty cycle in every four sampling periods of Tp. The criterion,
“D1 =D3” or “D2 =D4”, is used to identifyDmid. Once the defined criterion is satisfied,
the algorithm makes sure that the operating point has reached the MPP. Then, a variable
“counter” is activated and this variable will be self-increased until it is equal to four. The
reason for setting “counter” is to avoid the measurement errors caused by noise.

Once counter is equal to four, the ZO-PO method will consequently maintain at Pmid
until an environmental change is happened. The power difference ∆P during each period
is continually calculated and a threshold e is defined. If ∆P is larger than e, it indicates
that the environmental change has been happened. The reason for setting e is used to
avoid the small power variation caused by the measurement error, such as noise.

Fig. 3.10 demonstrates the principle of the ZO-PO method. Initially, the MPP is not
reached yet and counter equals to 0. At time 0.81s, the algorithm finds that D2 equals
to D4, so counter is self-increased and counter becomes 1. After the whole period
of 4Tp, counter becomes to 4 and the middle point is identified. As a consequence,
the middle level will be maintained until weather conditions are changed. Finally, the
working principle of the ZO-PO method is summarized in Fig.3.11.
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Fig. 3.11: The flowchart of the ZO-PO method.

3.2 Simulation Results

3.2.1 Simulation Setup

Fig. 3.12 shows the schematic of the proposed PV system. Generally, it consists of a PV
generation (like a PV module), a DC-DC converter, an load and an MPPT controller. The
data sheet of the PV module used in the simulation is shown in 2.1. The input capacitor
Cin, output capacitor Cout, inductor L and switching frequency for the boost converter are
470uF, 47uF, 1mH and 10kHz, respectively. A variable resistor is used as the load.

MPPT

Controller

ipv

vpv

Cin

L

Cout

R

PWM

Fig. 3.12: Schematic of the proposed PV system.

The sampling time for the MPPT controller, Tp, is derived from [35], which is calcu-
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lated by

Tp ≥ Tε ∼= −
1

ξ · ωn
· ln(ε) (3.7)

where ωn = 1/
√
L · Cin, ξ = 1/(2 · Rmpp) ·

√
L/Cin, and ε = 0.1. In this thesis,

ωn = 1459rad/s, Rmpp = 4.89Ω and ξ = 0.1493 (at 1000W/m2), Rmpp = 11.70Ω and
ξ = 0.0623 (at 400W/m2). Consequently, Tε = 0.0106s (at 1000W/m2) and Tε = 0.0253s

(at 400W/m2). Therefore, Tp is set as 0.03s, which is slightly larger than Tε = 0.0253s at
400W/m2.

3.2.2 Simulation Results for the Proposed Method

Fig. 3.13 illustrates the simulation results of the proposed method under the strong solar
irradiance variation. Ipv, Vpv and Ppv refer to the current, voltage and power extracted by
the different methods; D is the duty cycle of the DC-DC converter. The solar irradiance
level decreases from 1000W/m2 to 400W/m2 at 0.5s and increases to 1000W/m2 at 2.5s.
The load resistance is fixed at 30Ω during this period.

From Fig. 3.13, it can be seen that the proposed has a fast tracking speed during the
solar irradiance changes. Besides, there is no oscillations during the steady-state stage.
Detailed tracking process is illustrated in Fig.3.14 and Fig. 3.15.

Fig. 3.14 shows the zoom view and tracking process of the simulation results when
the solar irradiance decreases. Initially, the solar irradiance is 1000W/m2 from 0s to 0.5s.
At this period, the operating point is working at the point A and the branch (G) is used
according to Fig. 3.11. At 0.5s, the solar irradiance decreases to 400W/m2. At this time,
the operating point immediately moves from the point A to the point B via the load line.
When the point B is reached at the next sample point 0.51s, the ASF-Beta method is used
via the branch (A) according to Fig. 3.7. As a consequence, the operating point moves
from the point B to the point B1. Then, the algorithm goes through the branch (B) and the
operating point moves to the point B2 at 0.54s. After this, the ZO-PO method is activated
via the branch (E). After the ZO-PO method is activated, the ZO-PO method identifies
Dmid at 0.75s since the criterion “D1 = D3” is firstly satisfied. Then, the algorithm goes
through the branch (F) and Dmid is detected after a time of 4Tp. Finally, the algorithm
goes through the branch (G) and d is maintained at 38.3%. As a consequence, there is no
oscillations after 0.84s.

When the solar irradiance is increased, a similar process is illustrated in Fig. 3.15.
However, it should be noted that the ASF-Beta method is used through the branch (C) and
(D) rather than the branch (A) and (B). It is clearly seen that the difference between the
performance of the ASF-Beta method during the solar irradiance increase and decrease.
As shown in Fig. 3.14 (b), the operating point “jumps” roughly same distance as the
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trajectory B→B1→B2. By contrast, the operating point gradually “jumps” further as the
trajectory D→D1→D2→D3. The simulation results validate that the proposed ASF-Beta
method is successful to adaptively tune its step size.

Fig. 3.16 illustrates the simulation results of the proposed method under the week solar
irradiance variation. The solar irradiance level decreases from 400W/m2 to 100W/m2 at
0.5s and increases to 400W/m2 at 2.5s. During this period, the load resistance is fixed at
80Ω. As shown in Fig. 3.16, the similar results, such as adaptively tuning step size and
no oscillations, can be found.

Fig. 3.17 illustrates the simulation results of the proposed method under the load vari-
ation. The load resistance decreases from 60Ω to 30Ω at 0.5s, and then increases back
to 60Ω at 2s. The solar irradiance level is kept constant at 600W/m2 during this period.
From Fig. 3.17, the similar results, such as adaptively tuning step size and no oscillations,
can be found.

3.2.3 Comparison Between the Proposed Method and Other MPPT
Methods

Fig. 3.18, Fig. 3.19 and Fig. 3.20 shows the simulation results of the fixed step size P&O
method, variable step size INC (VSSINC) method, Beta and the proposed method un-
der strong solar irradiance variation, week solar irradiance variation and load variation,
respectively.

From these simulation results, it can be seen that the P&O method takes the longest
time to track the MPP when the solar irradiance or load is changed. A total time around
1.3s is required to track the MPP under the strong solar irradiance variation and the load
variation; while a much longer time around 2.2s is needed during the week solar irradiance
variation. The slow tracking speed of the P&O method definitely results in significant
dynamic power loss. Besides, three-level oscillations can cause the extra power losses
during the steady-state stage.

Compared to the P&O method, the VSSINC method has a better performance in the
dynamic stage. The VSSINC method generally has a fast tracking speed when the solar
irradiance is changed to the high level (e.g. 400W/m2 to 1000W/m2). By contrast, the
VSSINC method has a poor performance if the solar irradiance is changed to the low level.
Taking Fig. 3.19 as an example, when the solar irradiance is decreased from 400W/m2 to
100W/m2, the VSSINC method is unable to track the MPP within 3s. As shown in (2.18),
the step size of the VSSINC method is determined by two factors: one is ∆P/∆V and
the other is N . When the solar irradiance is low, the value of ∆P/∆V is much lower than
that under high solar irradiance level. As a consequence, the step size of the VSSINC
under the low solar irradiance level is smaller than that under the high level. Although
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tuning a larger value of N can remedy the embarrassed circumstances under the lower
solar irradiance level to some degrees, it may affect the performance under the higher
level.

Regardless to the changes of the solar irradiance levels, the conventional Beta method
generally has a good performance in the dynamic stage, especially when the solar irradi-
ance is changed to the low level (e.g. 1000W/m2 to 400W/m2 and 400W/m2 to 100W/m2).
However, when the solar irradiance is changed to the high level, such as 400W/m2 to
1000W/m2, the conventional Beta method is relatively slow. The reason for it is that the
value of N is too small. However, if the value of N is too big, it may cause the undesired
performance shown in Fig. 3.5.

Apart from the dynamic performance, it is clearly seen that the P&O method, the
VSSINC method and the conventional Beta method have the steady-state oscillations.

3.2.4 Comparison of the Power Loss Caused by Different MPPT Meth-
ods

In order to highlight the advantages of the proposed method, the power loss for dynamic
stage and steady-state stage Ploss is defined as [72, 74, 75]:

Ploss =

∑
Pmax(t)−

∑
Ppv(t)∑

Pmax(t)
(3.8)

where Pmax is the theoretical maximum power under a certain solar irradiance value; t
refers to the total tracking time used by the different MPPT methods to find the MPP for
the dynamic stage or the time after reaching the MPP if the steady-state stage is consid-
ered.

Fig. 3.21 compares the power loss caused by different MPPT methods during the
dynamic stage and the steady-state stage. The calculated power loss during the dynamic
stage with the P&O method is the highest among all of the simulated MPPT methods.
Apart from the scenario that the load is increased from 30Ω to 60Ω, the calculated power
loss during the dynamic stage with the proposed method is the lowest. Since a fixed step
size is used by the P&O method and the conventional Beta method, the power loss during
the steady-state stage for them are almost same, which are higher than other methods. Due
to a variable step size, the power loss for the VSSINC method during the steady-state stage
is smaller than that with P&O method and the conventional Beta method. Furthermore,
the power loss for the proposed method during the steady-state stage is the smallest one
under all irradiance levels due to no oscillations.
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Fig. 3.21: Comparison of the power loss caused by different MPPT methods

3.3 Experimental Results

In order to verify the effectiveness of the proposed method, several experiments were
performed on the experimental prototypes, as shown in Fig. 3.22. A boost converter is
used as the power interface and its specifications are illustrated in Table 3.2. The PV
emulator, Chroma ATE-62050H-600S, is used to emulate the PV module characteristics.
The dSPACE DS1104 is used as a control platform where the various MPPT methods are
implemented. The electronic load, IT8514C+, is used for load variation.

Electronic load

dSPACE

Boost

PV emulator

Fig. 3.22: Experimental prototype of the PV system with MPPT control.

The parameters in terms of solar irradiance and load variation in the experiments are
the same as those in the simulation. The experimental results of the P&O method are
illustrated in Fig. 3.23. From Fig. 3.23, it can be seen that the average time to track the
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Table 3.2: Main components for the boost converter

Parameter Value

Electrolytic capacitor C1 (PV side) 470uF
Electrolytic capacitor C2 (Load side) 47uF
Inductor L 1mH
IGBT IRG4PH50U
Diode RHRG30120
Current transducer LA25-NP
Voltage transducer LV25-P
Switching frequency 10kHz

new MPP for the P&O method is around 10s. Besides, the steady-state oscillations are
very obvious in all cases, which results in power loss.

Fig. 3.24 shows that the experimental results of the VSSINC method. Generally, the
tracking time for the failing transient is much longer than that for the rising transient.
Moreover, it can be seen that the VSSINC method can not track the MPP during the
failing transient (400W/m2 to 100W/m2). It is also clear to see the oscillations in the
steady-state stage.

Fig. 3.25 shows that the experimental results of the conventional Beta method. The
average tracking time for it is around 2s-5s. Besides, the performance of the failing tran-
sient is slightly better than that for the rising transient. The steady-state oscillations are
also obvious in all cases.

Fig. 3.26 demonstrates that the proposed method exhibits the shortest time to track
the MPP compared with the other MPPT methods. During the steady-state stage, no
oscillations can be observed by unitizing the proposed method. Therefore, the overall
performance under both of the dynamic stage and the steady-state stage is better than the
other MPPT methods.
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Fig. 3.23: Experimental results of the P&O method: (a) strong solar irradiance variation;
(b) week solar irradiance variation; (a) load variation.
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Fig. 3.24: Experimental results of the VSSINC method: (a) strong solar irradiance varia-
tion; (b) week solar irradiance variation; (a) load variation.
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Fig. 3.25: Experimental results of the conventional Beta method: (a) strong solar irradi-
ance variation; (b) week solar irradiance variation; (a) load variation.
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Fig. 3.26: Experimental results of the proposed method: (a) strong solar irradiance varia-
tion; (b) week solar irradiance variation; (a) load variation.
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Chapter 4

Modified Beta Algorithm for Global
Maximum Power Point Tracking
(GMPPT)

In practice, the PV source generally consists of several PV modules, which are connected
in series and formed into a PV string. As shown in Fig. 4.1, when the PV string is under
the uniform insolation condition, the I-V curve and and P-V curve of the PV string (solid
line) has one MPP. Therefore, the aforementioned MPPT methods in Chapter 2 and the
proposed ASF-Beta & ZO-OP method can successfully track the MPP.

Typically, a bypass diode is added in parallel for each PV module for preventing hot
spot effect when one or serval PV modules are shaded. However, adding the bypass diode
will change the I-V characteristic curve. As shown in Fig. 4.1, there are multiple peaks on
the I-V curve and P-V curve (dash line) when the PV string is under the partial shading
condition (PSC). Generally, there are only one global MPP (GMPP) and several local
MPPs (LMPP) among these peaks. Since the conventional MPPT methods are designed
to track the single peak and they are not able to identify the GMPP, they may be trapped
at the LMPP.

The content of this chapter has been published in the following paper:

1. Li, X., Wen, H., Hu, Y., Jiang, L., Xiao, W., “Modified Beta Algorithm for GMPP-
T and Partial Shading Detection in Photovoltaic Systems”, IEEE Transactions on

Power Electronics, 33 (3), pp. 2172-2186, March 2018.

2. Li, X., Wen, H., Chu, G., Hu, Y., Jiang, L., “A novel power-increment based GMPP-
T algorithm for PV arrays under partial shading conditions”, Solar Energy, 169, pp.
353-361, 2018.
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4.1 Literature Review on the GMPPT Methods

In order to address the PSC issues, a great number of global maximum power point track-
ing (GMPPT) methods have been proposed and discussed [19, 76]. Based on the main
features of the GMPPT methods, they can be categorized into several groups, namely seg-
mental search methods [77–79], power increment methods [80, 81], soft computing (SC)
methods [82–94], load line methods [95, 96] and 0.8Voc model methods [97–100]. In the
following section, these GMMPT methods will be compared and reviewed.

4.1.1 Various PSC Patterns

Due to the different shadow degrees of the PV string, many different PSC patterns can
be formed. Taking three PV modules connected in series in the PV string (3s1p) as an
example. As shown in Fig.4.2, there are six main PSC patterns for the 3s1p. The highest
peak is denoted as 1, the middle peak is denoted as 2 and the lowest peak is denoted as 3.
It should be noted that all of the PSC patterns in Fig. 4.2 can occur. Therefore, the GMPP
method must be able to track all of the PSC patterns. In the following subsection, these
PSC patterns will be used to demonstrate whether the reviewed GMPPT methods are able
to track the GMPP.

4.1.2 Segmental Search Method

The basic idea of the segmental search method is to gradually reduce the searching range
to find the GMPP. The segmental search methods are generally based on the mathemat-
ical theories, such as Lipschitz characteristics [77] and Fibonacci sequence [78, 79]. In
this thesis, the dividing rectangles (DIRECT) method, which is based on the Lipschitz
characteristics, is used to demonstrate the main features of the segmental search method.

According to [77], the Lipschitz condition can be written as:

|p(v)− p(v1)| ≤M |v − v1| ∀v, v1 ∈ [a, b] (4.1)

where p(v) refers to the power-voltage function; v1 is a sampled point and v is a variable;
M is Lipschitz constant, which is uniformly continuous and bounded on [a, b]. Then, the
upper and lower bounds on the values of the function p(v) refer to:

p(v1)−M |v − v1| ≤ p(v) ≤ max
v∈[a,b]

{p(v)} ≤ p(v1) +M |v − v1| (4.2)

If v1 is at the center of [a, b], it can be derived from (4.2) that

p(v) ≤ max
v∈[a,b]

{p(v)} ≤ p(v1) +M
b− a

2
(4.3)
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Fig. 4.3: Demonstration of the tracking process for the DIRECT method.

Fig. 4.3 demonstrates the tracking process for the DIRECT method, where p(v) refers
to the P -V curve; a and b refer to the lower and upper bounding, respectively; V1 refers
to the center point of [a, b] and p(v1) refers to the value at the point V1; max

v∈[a,b]
{p(v)} is

equivalent to the value at the GMPP.
In the first iteration, the value at the point V1 is sampled. Then, the interval of [a, b] is

divided into three subintervals, namely Area1, Area2 and Area3. The values at the center
point in the sub-intervals, namely V2 and V3 in Area2 and Area3, respectively, are sam-
pled too. The DIRECT method then evaluates three samples to decide the next sampling
interval, which is defined as potentially optimal interval (POI). Assuming interval j is the
POI and there exists a rate of change constant K̃ > 0 such that [101]:

p(vj) + K̃
(aj − bj)

2
≥ p(vi) + K̃

(ai − bi)
2

∀i (4.4)

The inequality (4.4) implies that the interval with the highest function value at the
center point is the POI. As a result, the Area3 is selected and a further triple division is
made, namely Area31, Area32 and Area33. By continuously taking further divisions, the
interval of [a, b] can be effectively replaced by smaller subintervals successively. This
process will be continuously repeated until the subinterval is close to the vicinity of the
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Fig. 4.4: Incorrect tracking of GMPP using the DIRECT method under a certain PSC
pattern.

GMPP.

The advantages of the DIRECT method are its solid mathematical foundation and
straight-forward algorithm implementation. However, the initial interval has to be select-
ed properly since the DIRECT method may not track the GMPP under a certain PSC
pattern. As shown in Fig. 4.4, the Area1 is selected as the POI since the value at V2 is
higher than that at V3. As a consequence, a further triple division is made and the LMPP
in the Area2 is misjudged as the GMPP.

4.1.3 Power Increment Method

The power increment method is firstly proposed in [80]. Fig. 4.5 demonstrates the track-
ing process of the power increment method [80]: Firstly, a fixed power interval is used to
search the entire P-V curve. Then, the operating point progressively jumps upon higher
power levels until no more power can be increased. Finally, the P&O method is employed
to accurately locate the GMPP.

The advantage of the power increment method is its universality and effectiveness
for various PSC patterns. However, the performance of the method in [80] is mainly
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determined by the value of the fixed power interval [76]. As shown in Fig. 4.5, a large
power interval requires less tracking step to the GMPP while it may also result in the
GMPP overlook. By contrast, a small power interval can avoid the overlook while it
results in the GMPP overlook. Furthermore, a power command rather than duty cycle
command or voltage command has to be directly used to control the DC-DC converter,
which is also difficult to be implemented [76]. As a consequence, this method has to use
a special control circuit.

In [81], a modified power increment method is proposed. Unlike the conventional
power increment method, the modified method can use duty cycle command to control the
DC-DC converter. The power, voltage and load lines rather than the fixed power interval
are used and the next moving position can be determined. The results in [81] validates
the modified power increment method has a higher accuracy than the conventional power
incremental method. Its tracking process is demonstrated in Fig. 4.6.

Assuming that the PV system starts at the operating point P1. The corresponding value
of voltage V (k), current I(k) and power P (k) can be measured. The reference power Pref
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and the reference voltage Vref are then obtained by:

Pref = P (k) + ∆P (4.5)

Vref = V (k)−∆V (4.6)

Then, the power and voltage lines (dash gray lines) are imposed on the I-V curve by Pref
and Vref , respectively. The purple point, Pref1 (the intersection between these two lines),
will become the next desired point. However, this intersection may be not always on the
I-V curve. By assisting with the load line (purple line), Rpv,ref is obtained by

Rpv,ref = Pref/Vref (4.7)

Assuming a buck-boost converter is used, we have

M(d) = − d

1− d
(4.8)

Substitute (4.8) into (2.11), it can be derived as:

d =

√
Rload√

Rload +
√
Rpv

(4.9)

Substitute (4.7) into (4.9), the duty cycle in the next time D(k + 1) will be updated by

D(k + 1) =

√
Rload√

Rload +
√
Rpv,ref

(4.10)
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Then, the intersection betweenRpv,ref and the I-V curve will be the exactly desired point,
P2.

If P (k) is larger than the previous one P (k−1), the aforementioned processes will be
repeated. When the operating point moves from the point P3 to the point P4, the value of
power at the point P4 is found smaller than that at the point P3. It indicates that the point
P3 is one of the peaks and the point P4 is located at the valley between the two peaks.
Then, the calculation of Pref will be changed as to avoid the GMPP overlook

Pref = P (k) (4.11)

Then, D(k + 1) will be updated by (4.10).
The aforementioned process will be repeated continuously until the operating point

reaches Vmin, which refers to the low voltage boundary (red dash line). If the measured
voltage is lower than Vmin, it indicates that the whole I-V curve is scanned. Then, the
operating point will move to the point P3, which is recorded as the maximum power.
Finally, the P&O method will be activated to exactly locate the GMPP.

4.1.4 SC Methods

The SC methods include artificial bee colony (ABC) [91], particle swarm optimization
(PSO) [82–88], FLC [89], simulated annealing (SA) [93], grey wolf optimization (GWO)
[92], ant-colony optimization (ACO) [94], firefly algorithm (FA) [90], and so on. All of
them show good performance under various PSC patterns. Among of the aforementioned
methods, the PSO method is a powerful searching algorithm which was modeled from
the pattern observed in bird flocking and fish schooling by Eberhart and Kennedy in 1995
[83]. Two of the most important characteristics of the PSO method are its ability to
communicate information and learn from this information. Therefore, the PSO method is
selected as an example to demonstrate the main features of SC Methods.

In order to adapt the PSO method in the PV system, a number of particles with d-
ifferent duty cycles di, or called particles positions, are used. Fig. 4.8 demonstrates the
movement of particles during the GMPP tracking process.

di(k + 1) = di(k) + vi(k + 1), i = 1, 2, ..., N (4.12)

where vi is the velocity of particle i, k is the number of perturbation iteration and N is the
total number of particles.

vi(k + 1) = ωvi(k) + c1r1(Pbest,i − di(k)) + c2r2(Gbest − di(k)) (4.13)

where ω is the inertia weight; Pbest,i is the personal best position of particles i and Gbest

is the global best position of the particles in the entire population; c1 is the cognitive

72



( 1)
i

d k 

( )
i

d k

( 1)
i

d k 

best
G

, best i
P

( )i

wv k  1 1 , 
( )

best i i
c r P d k

 2 2
( )

best i
c r G d k

x

y

Fig. 4.7: Movement of particles during the GMPP tracking process.

P
o
w

er
(W

)
C

u
rr

en
t(

A
)

Pbest

Gbest 

d1(k)

Particles

1
st
 Iteration 2

nd
 Iteration 3

rd
 Iteration

Gbest 

d2(k)

d3(k)

d1(k)
d2(k)

d3(k)

d1(k-1)

d2(k-1)

d3(k-1)

Pbest

C
onver

gin
g 

to
 G

bes
t 

Gbest 

GMPP is 

nearly tracked

Converging 

to Gbest 
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coefficient, c2 is the social coefficient; and r1, r2 ∈ U(0, 1) which are random parameters.
Furthermore, the corresponding power at the different positions of a particle, for every
two consecutive iterations, is compared to obtain the best position with highest power.
The function used to evaluatePbest,i of each particle is described by

P (di(k + 1)) > P (di(k)) (4.14)

where P (di(k)) is the power at the duty cycle of the ith particle in the kth iteration.
Fig. 4.8 demonstrates the tracking process of the PSO method. Assuming that there

are three particles used for the PSO method. In the first iteration, the three particles d1,
d2 and d3 are initialised which are marked with blue diamond, purple square and green
hexagram, respectively. The term Pbest,i − di(k) in (4.13) is zero and the corresponding
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velocity is only due to Gbest term. Among these particles, d3 is the Gbest so d1 and d2
will converge towards Gbest in the second iteration. Due to the fact that all of particles
are better than their pervious iteration, the velocity direction of these particles remains
unchanged and subsequently moves towards Gbest. After several iterations, all of the
particles will be converged to the vicinity of the GMPP.

According to the previous research [76], the PSO method has a relatively high accu-
racy to track the GMPP under different partial shadowing conditions. Furthermore, there
is no oscillation once the GMPP is found, since the velocity of particles is zero. How-
ever, the main drawback of the standard PSO method is the long searching time for the
re-initialization, which is caused by a large searching area and many tracking steps before
convergence. When a large variation in the solar irradiance is happened, it is worthwhile
to re-initialize the PSO method to track the new GMPP. On the other hand, when the solar
irradiance experiences a small variation (which occur continuously in an actual PV sys-
tem), the standard PSO method will have to be re-initialized multiple times to be able to
track the MPP continuously. If the PSO algorithm is re-initialized for too small changes
in the system, it will rarely be able to reach convergence. Consequently, this will result
in a long tracking time and a high power losses [88]. Besides, many parameters related
to the PSO method have to be properly tuned which is heavily relied on the designer’s
knowledge of the system.

4.1.5 Load Line Method

The load line method is proposed in [95, 96], and a linear function is preset as:

RL =
Vstring,oc
Istring,sc

(4.15)

where Vstring,oc and Istring,sc refer to the open-circuit voltage and the short-circuit current
for the PV string, respectively.

Fig. 4.5 demonstrates the tracking process of the load line method. Assuming that the
PV string is initially under the uniform insolation condition (black solid curve) and the
operating point is at the point A (red dot). The tracking rules for the load line method are
as follows:

When the PSC occurs, the operating point moves from the point A to the point B,
which is marked as the sequence 1©. At this time, the voltage reference Vref is changed
as:

Vref = RL × Ipv(k) (4.16)

As a consequence, the operating point will move to the point C, which is marked as the
sequence 2©. After that, the P&O method or the INC method will be used to track the
exact MPP, which is marked as the sequence 3©.
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The advantage of the load-line method is its fast tracking speed. Since only one step 2©
is need to move the operating point to the vicinity of GMPP, the tracking time is generally
fast. However, the main drawback of this method cannot guarantee that the GMPPs can
be always tracked.

Fig. 4.5 demonstrates the tracking process of the load line method under different
PSC patterns. It is clearly seen that the load line method is able to find the right GMPP
under the Pattern II. However, it is embarrassed that the point C is just trapped in the
valley between the two peaks under the Pattern I and the Pattern III. As a consequence,
the operating point may move towards either the left or the right. As shown in Fig. 4.5 ,
it is possible to find the right GMPP under the Pattern I, while it is impossible to find the
right GMPP under the Pattern III.

4.1.6 0.8 Voc Model Method

0.8Voc model method is firstly proposed in [97] and modified in [98–100]. The 0.8Voc
model method assumes that the distance between any two successive peaks is around
80% of Voc. Fig. 4.11 demonstrates the tracking process of the 0.8Voc model method by
H. Patel. Initially, the P&O method is used, which is marked as the sequence 1©. When
the first peak is tracked, a large voltage step, which is recommended around 0.7Voc, is
applied to jump to the next peak, which is marked as the sequence 2©. Then, the the P&O
method is used again to track the next peak. This process is repeated until the current peak
is lower than the previous one, which indicates that the previous one is the GMPP. Finally,
the operating point comes back to the previous peak, which is marked as the sequence 3©.
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The 0.8Voc model method proposed by H. Patel is very straightforward and easy to
be implemented. Furthermore, the global searching of this method is also very effective
since only the vicinities of the 0.8Voc areas rather than the whole P -V curve are searched.
However, there are several drawbacks for this 0.8Voc model method. Firstly, the overall
tracking speed of this method is generally slow since each peak must be determined by
the P&O method, marked as blue dots in Fig. 4.11.

Secondly, this method may overlook the GMPP due to the sequence 3©. Fig. 4.12
demonstrates the failure tracking process of the 0.8Voc model method by H. Patel. As-
suming that the operating point starts from the left side. After one peak is tracked, the
operating point will move to the next vicinity of 0.8Voc area. If the next peak is lower than
the previous one, it indicates that the previous one is the GMPP. Then, the algorithm will
skip to search the next 0.8Voc area and the operating point will move back the previous
peak. However, if the real GMPP is just located at the skipped area, the algorithm will
overlook this real GMPP, which is trapped at the LMPP.

Thirdly, even though the real GMPP is not always overlooked, the 0.8Voc model is
not always true as pointed out in [102]. Fig. 4.13 demonstrates that the voltage interval
between the two successive peaks is generally larger than 0.8Voc. Therefore, an incorrect
global peak will be detected by scanning the wrong region of the P -V curve.
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Fig. 4.11: Demonstration of the tracking process for the 0.8Voc model method by H. Patel.

4.2 Proposed Beta Algorithm for GMPPT and Partial Shad-
ing Detection

4.2.1 PV String Equivalent Model

Fig. 4.14, Fig. 4.15 and Fig. 4.16 illustrate the operation stages of 3s1p PV string under the
PSC. The I-V curve of the PV string is obtained by summing the voltage point-by-point
for each value of the common current. The module A is fully illuminated with 1000W/m2,
while the module B and C are partially illuminated with 800W/m2 and 600W/m2, respec-
tively. A bypass diode is connected in parallel with each PV module to avoid the occur-
rence of hot spot under the PSC [102]. Based on the number of conducted bypass diodes,
three different operation stages are divided to analyze the operation of the PV string.

Fig. 4.14 demonstrates the stage I, where two bypass diodes are conducted. As shown
in Fig. 4.14, the module B and C are bypassed and the PV string current flows through the
module A. As a consequence, the string current Istring is determined by the characteristic
of module A. At the meanwhile, the module B and C show the identical characteristics of
independent voltage sources Vd, which refers to the forward voltage drop of the bypass
diodes [103]. Here, the string voltage VString can be demonstrated as:

VString = Vpv + (−Vd) + (−Vd) (4.17)

In the stage II, only the module C is bypassed, which can be simply represented as
Vd. As shown in Fig. 4.15, Istring is mainly determined by the module B. At this time, the
part of the I-V curve for module A is approximated as a straight line and the module A
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can be regarded as a linear voltage source Vs [103]. Here, the string voltage VString can
be updated as:

VString = Vs + Vpv + (−Vd) (4.18)

Vstring

Istring

1000W/m
2

Module A

800W/m2 600W/m2

+-+-

Module B Module C

- +
VpvVs

+-+- +-

Vs

+ + =

Fig. 4.16: Stage III of 3s1p PV string under the PSC.

In the stage III, no module is bypassed. As shown in Fig. 4.16, the module C takes the
majority of the I-V characteristic of the PV string. Both of the module A and B represent
as Vs and the string voltage VString is updated as:

VString = Vs + Vs + Vpv (4.19)

From the aforementioned analysis, it can be seen that the I-V curve of the PV string is
always determined by a key module [103]. Based on this phenomenon, tracking the whole
PV string is equivalent to tracking each key modules of the PV string at the different
voltage intervals. Therefore, the equivalent voltage of the key module Veq can be written
by

Veq = VString − (n− 1)× Vs + (m− n)× Vd (4.20)
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where m indicates the total number of PV modules in one PV string, and n is obtained by

n =



1, 0 < VString <= α · Voc

2, α · Voc < VString <= 2 · α · Voc

...,

m, (m− 1) · α · Voc < VString <= m · α · Voc

(4.21)

where Voc refers to the open-circuit voltage of PV modules, α refers to a variable which
is varying within 0.8 and 0.97 [102]. In order to make sure that every peak is in their own
divided segment, α is set as 0.95 in this thesis.

In (4.20), Vd is set as 0.8V and Vs which is approximately expressed as [103, 104]

Vs ≈
VMPP,stc − Voc,stc

IMPP,stc

× IString + Voc,stc (4.22)

where VMPP,stc and IMPP,stc refer to voltage and current at the MPP under the STC.

4.2.2 Modified Beta Method

With the aforementioned equivalent PV string model, the Beta method in [71, 72] can
be modified to track the GMPP under the PSC. Substitute (4.20), (4.21) and (4.22) into
(2.39), it can be derived as:

βeq = ln
(IString

Veq

)
− c× Veq (4.23)

where βeq refers to the equivalent value of β.
Fig. 4.17 shows the PV stringI-V curve. By using (4.23), the equivalent Veq and βeq

curves can be also plotted in Fig. 4.17. As shown in the top of Fig. 4.17, the PV string
I-V curve is divided into four segments by using (4.21). The rightmost segment is not
considered since the the power peaks unlikely occurs in there. Therefore, the left three
segments of the equivalent I-V curves and β-V curves for the key modules are shown in
the bottom of Fig. 4.17. It is clearly seen that all the peaks are located in the defined range
of β.

4.2.3 Algorithm Flowchart and Tracking Process

Fig. 4.18 and Fig. 4.19 illustrate the main loop and the search mode, respectively. As
illustrated in Fig. 4.18, the proposed method initially measures IString and VString, and
Veq, n, Vs and βeq, which are determined by (4.20)-(4.23). Then, the proposed method is
divided into three processes, namely the ASF-Beta, the ZO-PO and the search mode.
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In order to distinguish the tracking processes, the legends with various colors are
marked in Fig. 4.18. The ASF-Beta is firstly used to locate the β range [71, 72]. Once
the β range is reached, the search mode is activated and the operating point will move
towards the next neighborhood of peaks, as shown in Fig. 4.19. Then, the next β range
is reached by the ASF-Beta and the Search Mode is activated again. This process will be
repeated until all of the β range are tracked. Finally, the area of the GMPP can be detected
and the ZO-PO method is used to find the exact GMPP.
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Fig. 4.20: Demonstration of the tracking process for the proposed method under the u-
niform condition. (a) Movements of the operating points. (b) Corresponding simulation
results.
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In order to help understand the proposed method, two examples of the tracking process
is given in Fig. 4.20 and Fig. 4.21. Fig. 4.20 shows the PV system starts up under the
uniform solar irradiance, where all of the PV modules are at 1000W/m2. There are 8
processes as shown below:

(1) Initially, assuming the PV system starts up from the rightmost. The initial value of n,
namely nini, is set as 3 and “Flag” is set as 1.

(2) Firstly, the branch (A) is went through, as illustrated in Fig. 4.20 (b). By using the
ASF-Beta method, the operating point is gradually moving the β range in the third
segment and reach it at time 0.18s.

(3) Then, the branch (C) is went through to activate the search mode. At this time,
“nini == m” is satisfied so “sign” is set as 1 and “Flag” is set as 3. It indicates the
operating point will move towards the left, marked as blue block in Fig. 4.19. At
time 0.21s, the second β range in the second segment is reached.

(4) At time 0.24s, the ASF-Beta method is activated again to reach the next β range.

(5) Then, the branch (C) is went through to activate the search mode again. However,
at the time 0.27s, the operating point is still in the second segment. Therefore,
“n = nold&&(Flag == 3||Flag == 4)” is satisfied, and the branch (B) is went
through. As a consequence, the operating point is forced to move the next segment
at time 0.3s.

(6) The ASF-Beta method is activated again and the β range in the first segment is
reached at time 0.33s.

(7) After all of the β range has been searched, the algorithm goes to the determination
process. It is found that the GMPP is located in the third segment.

(8) Finally, After several steps, the GMPP is located.

At time 1s, two of the modules are then shaded to 800W/m2 and 600W/m2 Thus, the
tracking process of the PSC is demonstrated in Fig. 4.21 (a).

(1) At time 1.02s, it detects that the value of βeq is out of the β range, which indicates the
PSC is happened. At this time, the operating point is located in the second segment.
Thus, nini is set as 2 and “Flag” is set as 1. Pmax and Dmax are cleared.

(2) Then, the branch (A) is went through and the the first β range is located at time 1.05s.
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(3) Since both “nini == m” and “nini == 1” are not satisfied, the purple block of the
search mode is went through, as shown in Fig. 4.19. Then, two steps are used to
reach the first segment at time 1.11s.

(4) Since the operating point has been already in β range so the ASF-Beta method is
skipped.

(5) Then, “Flag” is set as 4, which indicates that the leftmost has been already reached.
Therefore, the operating point moves back to the second segment at time 1.14s and
starts to move the third segment.

(6) Then, the operating point moves to the third segment at time 1.17s.

(7) The β range is located by ASF-Beta method again at time 1.23s.

(8) Finally, all of the β range have been searched, and the GMPP is detected in the current
segment. Therefore, the branch (D) is went through and the ZO-PO method is
activated.

Finally, Fig. 4.22 summarises the whole tracking process for the proposed method.

4.3 Simulation Results

Fig. 4.23 shows the system block diagram of the proposed PV system based on Buck-
Boost converter. It consists of a PV string, resistive load, buck-boost converter and
GMPPT controller. The input capacitorCin, output capacitorCout, inductor L and switch-
ing frequency for the boost converter are 470uF, 47uF, 1mH and 10kHz, respectively.

Fig. 4.24 shows the tested PSC patterns for the simulations. Three PV modules, So-
larex MSX-60W, are connected in series. The electrical parameters of the Solarex MSX-
60W is shown in 2.1.

In order to highlight the advantages of the proposed GMPPT method, the compar-
isons of the proposed GMPPT method with the power incremental method by [80] and
the 0.8Voc model method by [98] are simulated. Since the performance of the power in-
cremental method relies upon the selected power search step, ∆Pinterval, different values
of ∆Pinterval are chosen as 20W and 10W . Furthermore, since the power incremental
method and the 0.8Voc model methods utilize the P&O and INC method when the global
search is done, the step size for them is chosen as 0.5%.
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Fig. 4.21: Demonstration of the tracking process for the proposed method under the PSC.
(a) Movements of the operating points. (b) Corresponding simulation results.
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Fig. 4.23: System block diagram of the proposed PV system based on Buck-Boost con-
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4.3.1 Simulation Results for the Pattern I

The simulation results for pattern I is illustrated in Fig.4.25 to Fig.4.28. Fig.4.25 (a) shows
the simulation results of pattern I for the power incremental method with ∆Pinterval =

10W . It can be seen that the power incremental method with a small ∆Pinterval requires
0.45s to complete the global searching. Fig.4.25 (b) demonstrates the movements of
the operating points. Initially, the operating point starts from the vicinity of Voc, which
is marked as P1. Then, the operating point is followed as the trajectory movement as
P1→ · · · → P7 (in blue texts). At point P7, it is found that the power at P7 is lower than
that at P6, which indicates that point P6 is one of the peak. Then, the operating point
moves to point P8, and the operating point is followed as the trajectory movement as P8

→ · · · → P14 (in green texts). At point P14 , the entire P -V curve has been searched and
the power at P6 is still the highest one. Therefore, the operating point comes back to point
P6, and the P&O method is activated to find the GMPP at point P15.

Fig.4.26 (a) shows the simulation results of pattern I for the power incremental method
with ∆Pinterval = 20W . It can be seen that the power incremental method with a large
∆Pinterval just needs 8 steps to scan the whole P -V curve. However, it has to use extra
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Fig. 4.25: Simulation results of pattern I for the power incremental method with
∆Pinterval = 10W : (a) simulation waveforms; (b) movements of the operating points.
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Fig. 4.26: Simulation results of pattern I for the power incremental method with
∆Pinterval = 20W : (a) simulation waveforms; (b) movements of the operating points.
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waveforms; (b) movements of the operating points.

93



P
p

v
(W

)
V

p
v
(V

)
I p

v
(A

)
D

(%
)

GMPP 118.97W

54.30V

2.19A

46.96%

(a)

(1)
(3)

(2) (4)
(5)

GMMP

βmax 

βmin 

(1)

(3)
(2)

(4)
(5)

P
o

w
er

(W
)

β
 

(b)

Fig. 4.28: Simulation results of pattern I for the proposed method: (a) simulation wave-
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0.18s to find the exact GMPP by P&O method. Fig.4.26 (b) demonstrates the movements
of the operating point. The operating point starts from P1 and gradually moves towards the
higher power level. At the point P3, the next operating point should be point P′4. Unfor-
tunately, the point P′4 is not located on the P -V curve due to large ∆Pinterval. Therefore,
the operating point moves to point P4 and overlooks the first peak. Then, the operating
point moves to point P5 and follows the trajectory as P5 → · · · → P8. Although the first
peak is overlooked, P4 is still higher than P8 after the entire P -V curve has been searched.
Therefore, the operating point comes back to point P4, and more steps have to be used to
move the GMPP at the point P9

Fig.4.27 (a) shows the simulation results of pattern I for the 0.8Voc model method.
Since the INC method has to use to determine the exact locations of every peak, this
method requires 0.57s to find the GMPP, which is the longest. Fig.4.27 (b) demonstrates
the movements of the operating point. Initially, INC method is used and the blue dash
arrow with (1) is marked. When the first peak is found, its subroutine is executed to skip
towards the next 0.8Voc area as marked green curve arrows with (2). In this subroutine,
the reference voltage Vref is determined by

Vref = Vmpp1 + 0.8× Voc (4.24)

where Vmpp1 is the voltage at the first peak. Then, D(k) is determined by

D(k) =

√
Rload√

Rload +
√
Rpv

(4.25)

where Rpv is determined by

Rpv =
Vref

Istring(k − 1)
(4.26)

This subroutine is continuously repeated until the different in two successive current val-
ues ∆I is smaller than a threshold ∆Imin. Then, the INC method is used again and the
second peak is found, which is marked as blue dash arrow with (3). As step (4), the sub-
routine is repeated again to move the next 0.8Voc area. Finally, the third peak is found by
the INC method and it is identified as the GMPP.

Fig.4.28 (a) shows the simulation results of pattern I for the proposed method. It can
be seen that the proposed method only needs 6 steps to identify as the GMPP, which is
much faster than the power incremental method and the 0.8Voc model method. Further-
more, it should be noted that the proposed method does not have any oscillation at the
steady-state stage while the other methods do. Fig.4.28 (b) demonstrates the movements
of the operating point. Compared to the 0.8Voc model method, the proposed method just
reaches the vicinities of the each peak rather. Furthermore, compared to the power in-
cremental method, the proposed method is more targeted. Thus, the proposed method is
more effective to find the GMPP.
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4.3.2 Simulation Results for Pattern II

Fig.4.29 shows the simulation results of pattern II for the power incremental method with
∆Pinterval = 10W . It can be seen that the power incremental method with a smal-
l ∆Pinterval requires 14 steps to finish the global searching at time 0.42s. By contrast,
as shown in Fig.4.29, the power incremental method with a large ∆Pinterval only requires
9 steps to find the vicinity of GMPP.

The 0.8Voc model method requires 23 steps to locate the GMPP. As shown in Fig.4.31,
the INC method is used to track the exact peak in the the trajectory (1), (3) and (5).
Therefore, the tracking time for the 0.8Voc model method is the longest, which is 0.69s.
By contrast, the proposed method requires less time to find the GMPP, which is 0.27s.

4.3.3 Simulation Results for Pattern III

Fig.4.33, Fig.4.34, Fig.4.35 and Fig.4.36 show the simulation results of pattern III. From
the simulation results, only the proposed method and the power incremental method with
∆Pinterval = 10W can correctly locate the GMPP, which requires 0.3s and 0.48s respec-
tively. The the power incremental method with ∆Pinterval = 20W and the 0.8Voc model
method can only track the leftmost peak.

From Fig.4.33 (b), it can be seen that the power incremental method with a small
∆Pinterval is able to identify the GMPP. However, it has to use more than 15 steps to scan
the whole P -V curve. By contrast, the power incremental method with a large ∆Pinterval

requires only steps to finish the scan, which is shown in Fig.4.34 (b). However, the real
GMPP is overlooked and the leftmost LMPP is identified as the GMPP.

Fig.4.35 (b) demonstrates the movements of the 0.8Voc model method under pattern
III. When the second peak, Pmpp2, is found and compared with the first peak, Pmpp1, the
0.8Voc model method returns the first peak. By contrast, the proposed method only needs
9 steps to finish the scan and correctly identify the GMPP. As shown in Fig.4.36 (b), the
ASF-Beta method and the search mode are alternatively changed as following trajectory
(1)→ · · · → (5). At the trajectory (6), the GMPP is identified and the ZO-PO method is
used to find the real GMPP.

4.4 Experimental Results

In order to verify the effectiveness of the proposed algorithm, the proposed method is
compared with the power incremental method by [80] and the 0.8Voc model method by
[98] via the experiment. The experimental prototype is shown in Fig.4.37. A buck-boost
converter is used as the power interface where the specification of the main components
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Fig. 4.29: Simulation results of pattern II for the power incremental method with
∆Pinterval = 10W : (a) simulation waveforms; (b) movements of the operating points.
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Fig. 4.30: Simulation results of pattern II for the power incremental method with
∆Pinterval = 20W : (a) simulation waveforms; (b) movements of the operating points.
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Fig. 4.31: Simulation results of pattern II for the 0.8Voc model method: (a) simulation
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Fig. 4.32: Simulation results of pattern II for the proposed method: (a) simulation wave-
forms; (b) movements of the operating points.
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Fig. 4.33: Simulation results of pattern II for the power incremental method with
∆Pinterval = 10W : (a) simulation waveforms; (b) movements of the operating points.
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Fig. 4.34: Simulation results of pattern II for the power incremental method with
∆Pinterval = 20W : (a) simulation waveforms; (b) movements of the operating points.
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Fig. 4.35: Simulation results of pattern II for the 0.8Voc model method: (a) simulation
waveforms; (b) movements of the operating points.
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Fig. 4.36: Simulation results of pattern II for the proposed method: (a) simulation wave-
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Fig. 4.37: Experimental test bench for the GMPPT.

Table 4.1: Main components specification for the prototype

Parameter Value

Electrolytic capacitor Cin 470uF
Electrolytic capacitor Cout 100uF
Inductor L 1mH
IGBT IRG4PH50U
Diode RHRG30120
Current transducer LA25-NP
Voltage transducer LV25-P
Switching frequency 20kHz

is shown in Table 4.1. The PV emulator and control platform are same as the Chapter 3.

The three PSC patterns are used in the experiment, which are same as the simulation.
In order to make a fair comparison, all of the methods have 2 seconds for the initial time,
which is marked as the red dash lines.

Fig.4.38 and Fig.4.39 show the experimental results for pattern I. The power incre-
mental method is also started from the vicinity of Voc, whose duty cycle is set at 20%.
At time t=2s, the power incremental method starts to search the P -V curve by using
∆Pinterval. For ∆Pinterval = 10W , 7.5s (15 steps) is needed to reach the vicinity of the
GMPP. Unlike the simulation, the real GMPP is occasionally found by the power incre-
mental method when ∆Pinterval = 20W is used. Thus, the overall tracking time for the
the power incremental method with ∆Pinterval = 20W is only 4.5s (9 steps).

The 0.8Voc model method uses the INC method to find the first peak, as shown in
Fig.4.39 (a). When the first peak is found, a large voltage increment by 0.8Voc is used to
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Fig. 4.38: Experimental results for pattern I: (a) the power incremental method with
∆Pinterval = 10W ; (b) the power incremental method with ∆Pinterval = 20W .
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reach the second peak. This 0.8Voc model method requires 18 steps to locate the GMPP,
which is also the longest as same as the simulation results. Compared to the 0.8Voc model
method, the proposed method only requires 9 steps to reach the GMPP. Furthermore, there
is no oscillation for the proposed method at the steady-state while the other methods do.

For pattern II, the experimental results are illustrated in Fig.4.40 and Fig.4.41. The
power incremental method with ∆Pinterval = 20W requires 4.5s to detect the GMPP
vicinity and extra 2.5s to find the real GMPP. Therefore, its overall tracking time is 7s,
which is slightly longer than the proposed method (6s). Following the proposed method,
the power incremental method with ∆Pinterval = 10W requires 7.5s. The 0.8Voc model
method also requires the longest time (11s).

For pattern III, the experimental results are illustrated in Fig.4.42 and Fig.4.43. The
power incremental method with ∆Pinterval = 20W and the 0.8Voc model method can-
not correctly find the GMPP, which is similar to the simulation results. As shown in
Fig.4.42 (b) and Fig.4.43 (a), the LMPP is located. The power incremental method with
∆Pinterval = 10W requires the shortest time (3.5s) to detect the GMPP vicinity and extra
5.5s to find the real GMPP. Therefore, the proposed method is still the shortest (5.5s).

4.4.1 Evaluation of the Experimental Results

The summarization of these GMPPT method for the three PSC patterns is illustrated in
Table 4.2. In Table 4.2, the term “Time” indicates the required tracking time for GMPP.
Since both of the power incremental method with ∆Pinterval = 20W and the 0.8Voc model
method can only track the LMPPs for pattern III, “Time” for these two method refer to
the required tracking time for LMPP.

The terms “Tracking” refers to the dynamic tracking efficiency, which can be ex-
pressed as

ηdyn =

∑TM
0 Ppv

Pmax · TM
(4.27)

where Ppv and Pmax refers to measured values of the power and the theoretical maximum
value of the power, respectively; TM refers to the total measurement time. TM should
be set as the required longest tracking time for all of the tested GMPPT method [74].
Therefore, in this thesis, TM is set as 9s, 11s and 9s for Pattern I, Pattern II and Pattern
III, respectively.

The term “Steady-state” refers to the steady-state efficiency. After the GMPP is found,
the P&O method or INC method is used. Then, a three-level oscillation with a period of
4Tp is commonly happened [35, 75]. Therefore, the steady-state efficiency is expressed
as

ηstat =

∑TM+4·Tp
TM

Ppv

Pmax · 4 · Tp
(4.28)
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From Table 4.2, it is clearly seen that the proposed method has the highest dynamic
and steady-state efficiency. Furthermore, it should be noted that the steady-state efficiency
for the power incremental method with ∆Pinterval = 20W and the 0.8Voc model method
are the lowest for Pattern III. The reason for that is that they are trapped at the LMPP.
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Chapter 5

Power Reserve Control With Simple
Real-Time MPP Estimation

In recent years, PV systems have been increasingly integrated into the power grid [20].
As the penetration level of PV systems increases, a large number of conventional power
plants will be replaced by the PV power plants [105]. As a consequence, the overall
system inertia and the reserved power provided for the primary and secondary control
will be reduced [106–108]. Therefore, the Rate of Change of Frequency (RoCoF) and the
frequency deviation of the power system will be affected and consequently lead to critical
frequency stability problems [109].

In order to overcome the frequency stability problems, grid regulations and network
codes are continuously revised to deal with the intermittent nature of PV power and grid
security [110]. Therefore, power reserve control (PRC) in PV systems is required to take
part in the system frequency regulation. Usually, this PRC can be realized by two meth-
ods: providing energy storage devices or power curtailment [111]. The former normally
uses batteries to realize the power reserve [112–114]. However, the drawbacks of this
method is high initial investment and limited lifetime. Besides, integrating batteries into
PV systems also increase the overall system cost and complexity, which is not so cost
effective [115].

Alternatively, the power curtailment method is much simpler, lower implementation
cost and easier to be adopted in the current power system [116–120]. The basic idea of
this method is the PV systems working at a suboptimal power level rather the maximum
power of PV panels by modifying the maximum power point tracking (MPPT) techniques,
and then the active power can be reserved in order to realize potential grid support. Fur-
thermore, the concept of the power curtailment method is also used for other utility s-
cale technology [121], such as constant power generation control (CPGC) [122–124] and
power ramp-rate control (PRRC) [125–129]. Although the main concern of this method
is associated with energy loss caused by the curtailed PV power [130], the reduction of
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Fig. 5.1: I-V and P -V characteristic curves with the operating point at the curtailed level
Plimit.

the energy can also reduce the thermal loading of switching devices. Consequently, the
inverter lifetime can be increased as a compensation [131].

Fig. 5.1 shows the basic concept and typical curves of PV panels with the PRC. As
shown in Fig. 5.1, the PV power Ppv is regulated at the curtailed level Plimit, which can
be calculated as:

Ppv = Plimit = Pavai −∆P (5.1)

where Pavai refers to the maximum available power and ∆P refers to the required amount
of reserved power. Generally, ∆P is determined by the system operator. Pavai is af-
fected by the weather conditions such as solar irradiance and temperature, thus, fast and
effectively estimating Pavai, tracking Plimit and maintaining ∆P at a certain level under
dynamic conditions is the key issue [132].

The content of this chapter has been published in the following paper:

1. Li, X., Wen, H., Hu, Y., Jiang, L., Xiao, W., “A Novel Sensorless Photovoltaic Pow-
er Reserve Control With Simple Real-Time MPP Estimation”, IEEE Transactions

on Power Electronics, Accepted

5.1 Literature Review on PRC Methods

So far, many methods for the determination of the available power, Pavai, have been
proposed and can be categorized into two categories: measurement based methods and
curve-fitting based methods.
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Fig. 5.2: Principle diagram of the Pavai measurement method for the PRC method by
using solar irradiance and temperature sensors.

5.1.1 Measurement Based PRC Methods

In the first category, Pavai is measured rather than estimated. Besides, most of them have
additional hardware requirements.

PRC Method by Using Solar Irradiance and Temperature Sensors

In [133, 134], combined with the PV array characteristic model, an accurate measurement
of the solar irradiance and temperature is required to calculate Pavai. As shown in Fig. 5.2,
a linear regression is used to calculate Pavai, as shown below:

Pavai = d+ a1T + a2T
2 + b1G+ b2G

2 + cTG (5.2)

where G and T refer to the measured value of solar irradiance and temperature, respec-
tively; d, a1, a2, b1, b2 and c are regression coefficients which are derived and stored in
the PV controller’s on-board memory. ∆P is changed by the frequency regulation block
in order to response a grid frequency event. After Pavai and ∆P are obtained, Plimit can
be calculated via (5.1). Then, the block, rapid active power control (RAPC), is used to
convert Plimit into voltage command Vlimit. Finally, the control signal PWM is obtained
by comparing Vlimit and the PV voltage Vpv via the voltage controller.

This method is straight-forward and very effective in obtaining Pavai in the real time.
However, the additional sensors required for the solar irradiance and temperature mea-
surement will increase the cost and complexity of the whole system. Besides, this method
is difficult to be implemented in the existing system.
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Fig. 5.3: Principle diagram of the Pavai measurement method for the PRC method by
periodically entering MPPT mode.

PRC Method by Periodically Entering MPPT Mode

In [135], the system periodically enters the fractional open-circuit voltage MPPT mode to
estimate Pavai. As shown in Fig. 5.3, the power at 80%Voc can be approximately regarded
as Pavai. Assuming that the operating point is initially located at point A1. When the solar
irradiance is increased, the operating point will move to point A2. Then, the operating
point moves to the point at 0.8Voc to measure the Pavai, which is marked as 1©. Once
Pavai is measured, this method perturbs the operating point until reaches the curtailed
power Plimit, which is marked as 2©.

This method is also very straightforward to understand and easy to be implemented
in the existing system. However, this method is not able to obtain Pavai in the real time.
Besides, since the dc-link capacitor will buffer the PV power increase during the operating
point jumping to the point at 0.8Voc, the dc-link voltage is increased, which may raise
over-voltage concern without proper control.

PRC Method by Using A Coordinate Control Strategy

In [136], a coordinated control strategy is proposed for PV strings in a master-slave mode.
It assumes that two PV strings have similar solar irradiance and temperature profiles since
they are located close to each other. As shown in Fig. 5.4, the master PV string uses the
MPPT algorithm to track its MPP while the slave PV string directly utilizes the tracked
MPP result as its Pavai. Even if the solar irradiance is changed, Pavai can be still obtained
in the real time.
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Fig. 5.4: Principle diagram of the Pavai measurement method for the PRC method by
using a coordinate control strategy.

The advantage of this method is the accurate regulation of the reserved power and
the stable operation. However, the two PV systems have to be identical rated power and
geographically located close to each other with communication systems. It is also difficult
to be implemented in the existing system.

5.1.2 Curve Fitting PRC Method

In the second category, the PRC methods generally use curve fitting to estimate Pavai.
With serval sampled operating voltage and current points, the whole P -V curve can be
fitted and Pavai can be estimated.

PRC Method by Using Newton Quadratic Interpolation (NQI) Method

In [137], the P -V curve is approximately fitted to a parabolic curve with three sampled
points by the Newton quadratic interpolation (NQI) method, which is also called parabolic
method [52, 54, 138]. Accordingly, the peak of this fitted parabolic curve is considered
as Pavai.

Although the effectiveness of the NQI method has been validated in [137], the accura-
cy of estimated Pavai may be affected by the selection of the three sampled points [52]. As
shown in Fig. 5.5, the different sampled points could result in different parabolic curves.
As a consequence, the estimated Pavai is also varying and the accuracy of Pavai will be
suffered. Besides, this method is not able to obtain Pavai in the real time.
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PRC Method by Using Least Squares (LSQ) Method

In [139], the least squares (LSQ) method is used for the Pavai estimation in real time. As
shown in Fig. 5.6, this method samples a large set of current and voltage values at the
right side of the MPP. With these sampled points, not only Pavai can be estimated, but the
whole P -V curve can be obtained.

More important thing is that this method can estimate Pavai while the operating point
is working at a reduced power level. However, the control implementation seems cum-
bersome since five parameters are required for the single-diode PV model in the real time
MPP estimation. Furthermore, the operating point with a curtailed power level for this
method is allocated at the right-hand side of the MPP, which may result in the instability
issue during the fast decreasing irradiance condition [135].

5.1.3 Selection of the Suboptimal Point

As shown in Fig. 5.1, there are two possible suboptimal points to regulate the power
working at Plimit, namely point A and B. Some of the relevant papers prefer the system
working at point B due to higher converter efficiency and faster dynamic response [133,
134, 137, 139], while some of them prefer point A due to the concern about unstable
operation at point B [135, 136]. Therefore, it is very essential to select the suboptimal
point.
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Fig. 5.6: Principle diagram of the Pavai estimation method for the PRC method by using
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Stability Issue

Fig. 5.7 demonstrates the stability issue when the solar irradiance is suddenly decreased.
Assuming that the initial solar irradiance is 1000W/m2 and 0.2Pavai is reserved for ∆P .
When the solar irradiance is suddenly decreased to 600W/m2 or 200W/m2, the operating
point at A and B will straightly go down along the dot lines.

As shown in Fig. 5.7, both A and B points will stay at the lower solar irradiance level.
However, if higher percentage of Pavai (e.g., 50%) is reserved for ∆P , point B may fall
into the area beyond the Voc when the solar irradiance is decreased to 200W/m2. It should
be pointed out that PV systems are not allowed to immediately disconnect from the grid
[136]. Under this condition, the PV system is not able to produce any power to the grid, so
the PRC operation becomes unstable. However, compared to point B, whatever the solar
irradiance is changed or percentage of Pavai is reserved, the PRC at point A is always
stable.

Perturbation Interval

Apart from the stability issue, it is also important to choose the parameter of the perturba-
tion interval Tp. Tp is used to ensure that the period between two successive perturbations
is longer than the setting time of PV power transient [140]. Generally, Tp should be prop-
erly selected at the MPP region (or referred as the constant power region, CPR) [23].
However, when the PV system is regulated at either point A or point B, the system is
actually working at the linear region of the I-V curve. As shown in Fig. 5.8, the linear
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Fig. 5.7: Stability issue for the two suboptimal points when the solar irradiance suddenly
is decreased.

regions at point A and point B are called as the constant current region (CCR) and the
constant voltage region (CVR), respectively [141]. Therefore, the selection of Tp should
be carried out considering the features of CCR or CVR if point A or point B is selected.
According to [140], Tp in the CCR and the CVR can be derived by:

Tp ≥ Tε ∼= −
1

ζ · ωn
· ln
(
ε
√

1− ζ2
)

(5.3)

where ωn = 1/
√
L · Cin, ζ = 1/(2 ·Rpv) ·

√
L/Cin, and ε = 0.1.

Fig. 5.9 shows that PV power transients under different regions and different solar
irradiance. A step change in duty cycle is used to sweep the I-V curve of the PV module.
Since Rpv in the CCR is much smaller than that in CVR, the required setting time in the
CCR is much longer than that in the CVR, as demonstrated in Fig. 5.9. In other words, a
smaller Tp could be used in the CVR rather than the CCR. Therefore, the PRC at point B
could have a faster tracking speed than that at point A.

5.1.4 Comparison and Discussion

The main features of the previous PRC methods are summarized in Table 5.1. As pre-
viously discussed, the aforementioned methods shows some limitations in terms of addi-
tional hardware requirements, implementation difficulty, and estimation speed.
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5.2 Proposed Power Reserve Control Method

In order to overcome the drawbacks of the previous PRC methods, a novel PRC strate-
gy with simple real-time MPP estimation is proposed in this thesis. With the proposed
control, two operating points at the left side of the true MPP are sampled to obtain the
short-circuit current through estimation rather than the measurement by using additional
hardware circuits. Then, the Lambert-W function is used to derive the MPP voltage and
further the total available power Pavai. The proposed strategy requires no additional hard-
ware such as the irradiance and temperature sensors, and it can be easily implemented in
existing PV systems. With this strategy, cumbersome procedures of curve fitting with so-
phisticated operating points sampling and key parameters determination in the real-time
MPP estimation by using the conventional PRC methods can be eliminated. This strategy
is effective to provide the grid frequency support under various weather conditions even
under fast solar irradiance changing condition. The proposed control can provide the grid
frequency support through the direct converter duty cycle control.

5.2.1 Maximum Available Power Estimation

Due to the concern about the stability, point A is selected as the suboptimal point for the
PRC. As aforementioned discussion, a higher Tp has to be used to ensure the setting time
is long enough to reach the steady state. A pair of voltage and current in the CCR are
sampled in this algorithm to estimate Pavai. It is undoubted that three or more sampled
points can improve the algorithm robustness against noise caused by measurement bias.
However, if three or more Tp time periods are required to estimate Pavai, the estimation
speed will be affected. As a matter of fact, the noise can be effectively reduced by setting
the higher Tp [142, 143], so it is not really necessary to sample more points. Therefore, the
proposed method only requires two sampled points to estimate Pavai. The whole process
of Pavai estimation is demonstrated in Fig. 5.10.

From Fig. 5.10, the CCR can be expressed in a linear formula. Assuming two any
points in the current-source region is known, the slope of the linear formula can be ex-
pressed as

m =
I(k)− I(k − 1)

V (k)− V (k − 1)
(5.4)

wherem refers to the slope of the current-source region; I(k) and V (k) refer to the present
value of sampled current and voltage, respectively; and I(k−1) and V (k−1) refer to the
previous value of sampled current and voltage, respectively. Then, the intercept of this
linear formula, namely short-circuit current (Isc) can be also obtained:

Isc = I(k)−mV (k) (5.5)
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Fig. 5.10: Process of Pavai estimation.

Since current at the MPP (Impp) has a near linear relationship with Isc, Impp can be ex-
pressed as:

Impp = KIscIsc, 0.78 < KIsc < 0.92 (5.6)

where KIsc is constant [15].

Furthermore, it can be also seen that the MPP locations for different solar irradiance
levels approximately lie on a straight line called as voltage linear reference (VLR) [144],
marked as a red dash line in Fig.5.10. Therefore, Vmpp can be approximately expressed as
a linear relationship function [144] or a nonlinear relationship function by using Lambert-
W function [145]. In this paper, Lambert-W function is used to obtain Vmpp, namely:

Vmpp ∼= ηW


Impp

(
1 +

Rs+
√
RpRs+R2

s

Rp

)
Is

−RsImpp (5.7)

After Impp and Vmpp are obtained, Pavai can be estimated as

Pavai = Pmpp = VmppImpp (5.8)

In order to accurately estimate Pavai, KIsc is a critical parameter. The MSX-60W
PV module is used as the PV source, which is shown in Table 2.1. The values of KIsc

under different solar irradiance and temperature are given in Fig. 5.11. If KIsc is set as
0.92, Pavai can be calculated by the equations (5.4)-(5.8). Then, the difference between
calculated Pavai and the real maximum power Preal is defined as Perror. From Fig. 5.11,
the absolute value of Perror is only around 0.2W, which can be negligible.
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5.2.2 Proposed control scheme

In [135, 136], a two-stage grid-connected PV inverter is used to validate the PRC method
that they proposed. It consists of two power converters, namely a PV-side DC-DC con-
verter and a grid-side DC-AC inverter. Generally, the PV-side DC-DC converter is re-
sponsible to regulate the PV power working at Pmpp or Plimit and the grid-side DC-AC
inverter is used to deliver the extracted PV power to the AC grid. Since the DC and AC
power are decoupled in the two-stage configuration, the PV-side control and the grid-side
control are also decoupled. Thus, a simplified PV system with a boost converter and a
resistive load is used to validate the PRC method proposed in [139]. In this paper, the
boost converter with a DC load is used for simplicity, as shown in Fig. 5.12.

As shown in Fig. 5.12, the proposed control scheme consists of two working modes,
namely the MPPT and the PRC. The proposed control scheme samples Vpv and Ipv from
the PV side and produces PWM to realize the MPPT or the PRC. Flag and ∆P are two
external signals provided by the system operator, which are feeded to the proposed control
scheme. Flag is used to switch the working modes between the MPPT and the PRC, and
∆P is set as the required amount of reserved power. Whichever the working mode is the
MPPT or the PRC, Pavai will be sent to the system operator and the system operator can
decide to choose Flag or ∆P .

Fig. 5.13 shows the flowchart of the proposed control scheme. Initially, Vpv and Ipv
are continually sampled, and then, Flag and ∆P are provided by the system operator. If
Flag is equal to zero, the working mode will switch to the MPPT mode, marked as block
1 in Fig. 5.13. Then, a MPPT method, such as perturb and observe (P&O) method, is
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used to track the MPP, and the present value of sampled power, P (k), is set as Pavai in
the steady-state stage. If Flag is not equal to zero, the working mode will switch to the
PRC mode, as marked a block 3 in Fig. 5.13. Then, Isc, Impp, Vmpp, Pavai and Plimit can
be determined in turn.

If the operating point is too far away from Plimit, a large step size should be used:

∆D =

{
∆Dmax, P (k)− Plimit > Pth (5.9a)

−∆Dmax, P (k)− Plimit < −Pth (5.9b)

∆D refers to step size, ∆Dmax refers to the maximum step size and Pth is defined as a
threshold. Otherwise, the proposed algorithm will perturb around Plimit with a small step
size.

∆D =

{
∆Dmin, P (k) > Plimit (5.10a)

−∆Dmin, P (k) < Plimit (5.10b)

where ∆Dmin refers to the minimal step size.
As aforementioned discussion, Pavai can be estimated as long as the operating point

at the CCR. Fig. 5.14 shows that the values of ∆I/∆V around Plimit are approximately
equal to zero even though the solar irradiance is different. Therefore, ∆I/∆V can be
used as an index, which determine whether the operating point is at the CCR Then, it can
be expressed as:

mth < m(k) =
∆I

∆V
=

I(k)− I(k − 1)

V (k)− V (k − 1)
< 0 (5.11)

where m(k) refers to the present value of ∆I/∆V . Since the value of ∆I/∆V around
Plimit is not exactly equal to zero at the CCR, a threshold,mth, and a boundary are defined
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Fig. 5.13: Flowchart of the proposed control scheme.

in (5.11). As marked in a block 2 in Fig. 5.13, if the value ofm(k) is within this boundary,
the algorithm will go through the block 3. Otherwise, the algorithm will go through the
block 2 and move towards the CCR.

5.2.3 Grid Frequency Support Scheme

From Fig. 5.12, three signal ports, Flag, ∆P and Pavai, are encapsulated. The three
encapsulated signal ports can be directly controlled by system operator. Therefore, how
to use these signals to support the grid frequency responses will be demonstrated in this
subsection.

Fig. 5.15 demonstrates how the proposed method supports the grid frequency re-
sponse. Based on the changes of ∆P and ∆G, there are three possibilities:

Only ∆P changes

Assume that the solar irradiance is maintained unchanged. When a major contingency
happens, such as a sudden reduction of the generator output power, the reserved power
should be provided to response the grid frequency. Then, ∆P will be decreased by the
system operator, as shown in Fig. 5.15 (a). If all of the reserved power have to immediately
feed to the grid, Flag in the flowchart Fig. 9 will be set as “0” and the operation mode
will be changed to the MPPT mode by the system operator. Then, some fast MPPT
methods, such as Beta method [71], can make the operating point immediately move the
MPP within several seconds. After the grid frequency is restored back, Flag is set as “1”
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according to the flowchart shown in Fig. 9 and the operation mode is changed to the PRC
mode in order to restore ∆P again, as shown in Fig. 5.15 (b).

It should be noted that the operating point is actually working at the PRC under this
situation. The measured m(k) is always satisfied with the equation (5.11), and the pro-
posed method only goes through the block 3 in Fig. 5.13.

Only ∆G changes

Assume that ∆P is maintained unchanged. When the solar irradiance is changed, it is
essential to maintain the reserved power ∆P always at a certain value during this period.
Fig. 5.15 (c) and (d) demonstrates the changes of solar irradiance ∆G. Assuming that
point A is the initial point before the change of ∆G happened and point C is the optimal
point after the change of ∆G happened. Whatever ∆G decreases or increases, the operat-
ing point will directly go down or go up from A to B. At this time, since point B is already
in the CCR, the proposed method just slightly perturbs the operating point as shown in
the block 2 in Fig. 5.13. The perturbation in the converter duty cycle is expressed as:

∆D =

{
∆Dmin, ∆I < 0 (5.12a)

−∆Dmin, ∆I > 0 (5.12b)

Both of ∆P and ∆G will change

Fig. 5.15 (e)-(h) demonstrates the case with both the changes in ∆P and ∆G. Point A
and C refer to the initial point and the optimal point, respectively. Whatever ∆P and ∆G

decrease or increase, the operating point will directly go down or go up from A to B. From

130



C
u

rr
en

t(
A

)
C

u
rr

en
t(

A
)

Pavai

Plimit 

Pavai

Plimit 

A

CB

A

C B

A

CB

Pavai

Plimit A

C B

Pavai

Plimit 

(e) (f)

ΔG↓  ΔG↑

ΔP↓

ΔP↑

ΔP↓

ΔG↓  ΔG↑

(g) (h)

ΔP↑

C
u

rr
en

t(
A

)
C

u
rr

en
t(

A
)

ΔG↓  

Pavai

Plimit 

Pavai

Plimit 

A

C B A

CB

ΔG↑

(a) (b)

(c) (d)

MPP MPP
ΔP↑ΔP↓

Fig. 5.15: Demonstration of grid frequency support scheme by the proposed method. (a)
∆P decreases; (b) ∆P increases; (c) ∆G decreases; (d) ∆G increases; (e) ∆P and ∆G
decrease; (f) ∆P decreases and ∆G increases; (g) ∆P increases and ∆G decreases; (h)
∆P and ∆G increase.

131



P
o
w

er
(W

)
Δ

P
(W

)

V
o
lt

a
g
e(

V
)

C
u

rr
en

t(
A

)

Time(s) Time(s)

Ppv

Pideal Pavai

Vpv

Ipv

PRC
MPPT MPPT

ΔPideal

ΔP

Fig. 5.16: Simulation results for the proposed control scheme when ∆P is changed.

Fig. 5.15 (e)-(h), whatever the changes in ∆P and ∆G are positive or negative, B is very
close to C. Therefore, the proposed method just slightly perturbs the operating point with
a small step size change obtained with the equation (5.10). Otherwise, considering that B
is far away from C, a large step size change obtained from the equation (5.9) is used.

5.3 Simulation

In order to prove the effectiveness of the proposed control scheme, a boost converter is
used, as shown in Fig. 5.12. The input capacitor, output capacitor, inductor and switching
frequency for the boost converter are 470uF , 47uF , 1mH and 20kHz, respectively. The
output DC voltage is 24V. Dmin and Dmax are set as 0.5 and 2, respectively. KIsc is set as
0.92 and mth is set as -0.02. The perturbation time for the proposed method, Tp, is 0.03s.

5.3.1 Reserved Power Command Change

Fig. 5.16 shows that simulation results for the proposed control scheme when ∆P is
changed. Ppv, Vpv and Ipv refer to the PV output power, voltage and current, respectively.
Pavai refers to the maximum available power estimated by the proposed control scheme
and Pideal refers to the ideal maximum power. ∆P refers to the power reserved by the
proposed control scheme and ∆Pideal refers to the power which should be reserved by the
system.

Initially, the PV system works at the MPPT mode. At time 0.5s, the PRC is activated
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Fig. 5.17: Simulation results for the proposed control scheme when ∆G is changed.

and ∆P is set as 10W. After that, ∆P is changed in every 0.5s varying among 10W, 15W
and 20W. Finally, the MPPT mode is activated at time 3s. During the whole simulation
time, the solar irradiance maintains at 1000W/m2.

As shown in Fig. 5.16, the proposed control scheme successfully tracks with the step
changes of ∆P . The actual reserved power ∆P is just fitted to the profile of ∆Pideal.
Since the operating point is already in the CCR, Pavai can be directly obtained. To be
more specific, it requires averagely 2 to 3 steps to response the step changes of ∆P .
Therefore, the tracking speed is also very fast.

5.3.2 Solar Irradiance Change

Fig. 5.17 shows that simulation results for the proposed control scheme when ∆G is
changed. ∆P is fixed at 10W during the whole simulation time, while the PRC mode
is activated during the time 0.5s to 5s. The solar irradiance maintains at 600W/m2 from
0s to 1s, and increases by 100W/m2 in every 0.5s until it reaches 1000W/m2. Then, the
solar irradiance decreases by 100W/m2 in every 0.5s until 600W/m2. Finally, the solar
irradiance maintains at 600W/m2 again, from 4.5s to 5.5s.

As shown in Fig. 5.17, the proposed control scheme also successfully tracks when
∆G is changed. The proposed control scheme only needs 2 or 3 steps to reach the new
Plimit when the solar irradiance changes. ∆P is just fitted to the profile of ∆Pideal and
∆P almost maintains at 10W during the PRC mode.
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5.3.3 Both of Reserved Power Command and Solar Irradiance Change

Fig.5.17 shows that simulation results for the proposed control scheme when ∆P and
∆G are changed. The PRC mode is activated during the time 0.5s to 3s. The initial solar
irradiance and ∆P are 1000W/m2 and 20W, respectively. At time 1s, 1.5s, 2s and 2.5s,
both of the solar irradiance and ∆P are changed as following trajectory:

• 1000W/m2→ 900W/m2→ 1000W/m2→ 900W/m2→ 1000W/m2

• 20W→ 15W→ 10W→ 15W→ 20W

As shown in Fig. 5.17, the proposed control scheme also successfully tracks when
∆P and ∆G are changed. The proposed control scheme also needs 2 or 3 steps to reach
the new Plimit and ∆P is just fitted to the profile of ∆Pideal.

5.3.4 Comparison with the Other PRC Method

In order to highlight the advantages of the proposed method, the control scheme by A.
Sangwongwanich [135] is used to make a comparison. Based on the operational principle
in [135], the control scheme in [135] is well optimized. Same simulation setup as the
proposed is used, the simulation results for the control scheme in [135] are shown in
Fig. 5.19.

As description in [135], the fractional open-circuit voltage MPPT method is period-
ically used to measure Pavai rather to estimate it. As shown in Fig. 5.19, the operating
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Fig. 5.19: Simulation results for the control scheme by A. Sangwongwanich when the
solar irradiance is changed.

point directly moves to the position of 0.8Voc when the solar irradiance changes. Once
Pavai is measured, the operating point is gradually perturbed to Plimit. Power and voltage
ripples during the changes of the solar irradiance can be clearly seen from Fig. 5.19.

In order to compare the performance of the proposed method and the control scheme
in [135], the movements of the operating points and the corresponding operating trajecto-
ries by using these two methods are demonstrated in Fig. 5.20. Fig. 5.20 (a) illustrates the
movements of the operating points by using the proposed method when the solar irradi-
ance is increased. It can be seen that the operating point straightly goes up, marked as (1)
in Fig. 5.20 (a). Since the operating point is already in the CCR, Pavai can be estimated
at the optimal Plimit, marked as (2) in Fig. 5.20 (a). Compared to the proposed method,
the control scheme in [135] has to move the position of 0.8Voc to measure Pavai rather
to estimate it. As a consequence, one more step as marked red text (2) in Fig. 5.20 (b)
is needed. Furthermore, the movement to 0.8Voc also causes several extra steps back to
Plimit.

The operating trajectories by using the proposed method and the control scheme in
[135] are also demonstrated in Fig. 5.20, where the red dots refer to the operating tra-
jectory for the MPPT mode while the blue dots refer to that for the PRC mode. Unlike
the control scheme in [135], the proposed control scheme only needs to work around the
CCR to estimate Pavai. It is not necessary to sample the points around the MPP region.
That is the reason why the proposed control will be regulated always operating at Plimit.
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5.4 Experimental results

In order to verify the effectiveness of the proposed PRC method, the experimental tests
are carried out with the experimental prototypes shown in Fig. 5.21. Main specification
of the main components are identical to the simulation. The PV emulator Chroma ATE-
62050H-600S, which is a programmable DC supply, is used to emulate solar module
characteristics. The dSPACE DS1104 is adopted as a control platform where the proposed
PRC method is implemented in it. The electronic load, IT8514C+, is used and it works
at the constant voltage (CV) mode The sampling time Tp for the proposed method in the
experiments was set as 0.1s.

Fig. 5.22 shows that experimental results for the proposed control scheme. A constant
solar irradiance profile of 1000W/m2 is used to be evaluated. Three values of ∆P , name-
ly 10W, 15W and 20W, are used to verify the effectiveness of the proposed method when
∆P changes. As shown in Fig. 5.22 (a), the proposed control scheme successfully tracks
with the step changes of ∆P . The actual reserved power ∆P is just fitted to the profile of
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Fig. 5.21: Experimental setup of the simplified PV system with a boost converter.

∆Pideal.

Furthermore, the proposed method is also verified when the solar irradiance changes.
Similar to the simulation, ∆P is fixed at 10W during the whole experiment time and the
solar irradiance varies from 600W/m2 to 1000W/m2. As shown in Fig. 5.22 (b), the
proposed control scheme also successfully tracks with the solar irradiance changes. The
proposed control scheme only needs several steps to reach the new Plimit when the solar
irradiance changes. ∆P is just fitted to the profile of ∆Pideal and ∆P almost maintains at
10W during the PRC mode.

In order to further verify the effectiveness of the proposed method in real life, the real-
field meteorological data are programmed in the PV emulator. The meteorological data of
two distinct locations, namely University of Nevada, Las Vegas (UNLV) and Humboldt
State University (HSU), California, are selected as shown in Fig. 5.23 (a) and Fig. 5.24
(a), respectively. It is noticeable that meteorological profiles in UNLV and HSU refer to
a non-cloudy day and a cloudy day, respectively. Besides, the solar irradiation could vary
dramatically in a daily day, however, the temperature just changes slightly.

It should be also noted that the original irradiance data is at 1 min resolution, which
takes 7 to 8 hours to carry out the one experiment for one days data. In order to save
the experimental time, the resolution of irradiance data has been updated as 2 seconds.
Furthermore, a period of time (i.e, from 7:49:00 to 15:43:00 in UNLV and from 8:13:00
to 16:03:00 in HSU) is adopted to accelerate the experiment.

Fig. 5.23 (b) shows that the PRC mode with 10W reserved power is used in a clear day.
It can be seen clearly that ∆P is just fitted to the profile of ∆Pideal and the power reserve
can be accurately controlled at 10W during the whole process. Besides, another test
with the operational mode transition (i.e., MPPT→PRC→MPPT) is also verified in this
clear day. As shown in Fig. 5.23 (c), it should be noted that the response time between the
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MPPT mode and the PRC mode is also very quick and the power reserve can be accurately
controlled at 10W during the PRC mode.

Fig.5.24 (b) and (c) show that the PRC mode with 10W and 20W reserved power
and the operational mode transition is used in a cloudy day, respectively. It can be seen
that the proposed method is also very effective under fast solar irradiance changing as
well as operational mode changes. As a conclusion, these experimental results verify
effectiveness of the proposed method under various weather conditions.
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Fig. 5.22: Experimental results for the proposed control scheme. (a) ∆P is changed; (b)
Solar irradiance is changed.
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Fig. 5.23: Experimental results for the proposed control scheme under a clear day. (a)
Solar irradiance and ambient temperature profiles in UNLV, Nevada, 24th Jul. 2015; (b)
PRC mode with 10W reserved power is used in the whole process; (c) Both MPPT mode
and RC mode with 10W reserved power are used.
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Fig. 5.24: Experimental results for the proposed control scheme under a cloudy day. (a)
Solar irradiance and ambient temperature profiles in HSU, California, 31th Jul. 2015; (b)
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis has investigated PV-side control for the PV system. The fast-converging speed
MPPT method under the fast-changing weather conditions, the more accurate GMPPT
method without failures and the more effective PRC method to estimate the MPP in the
real time have been proposed. The improved performance by these proposed method has
been validate by simulation and experiment. The applied algorithms are summarized as
follows:

• The ASF-Beta method and the ZO-PO method are proposed to improve the MPP-
T dynamic and steady-state efficiency, respectively. The adaptive scaling factor is
used by the proposed ASF-Beta method, which reduces the system dependency on
the tuned parameters. Furthermore, the steady-state oscillations can be totally elim-
inated by the ZO-PO method. According to the simulation and experimental results,
the dynamic and steady-state efficiency of the proposed method are approximately
95% and 99.8%, respectively, which are much higher than those of the conventional
MPPT methods.

• The PV string equivalent model has been built up, thus, the I-V curve with multiple
peaks can be equivalent represented as several I-V curves with single peak. There-
fore, the GMPPT tracking for PV strings under various partial shading conditions is
significantly simplified. Following this mathematical model, the conventional Be-
ta method is modified to proposed a novel GMPPT method. Both simulation and
experimental comparison of the proposed GMPPT method with other widely dis-
cussed algorithms are conducted for different PSC patterns. The overall dynamic
tracking efficiency can reach average of 87% under different PSC patterns.

• The novel PRC method with simple real-time MPP estimation is proposed to over-
come the drawbacks of the conventional PRC methods. Originated from the linear
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characteristic of PV curves in the CCR and the Lambert-W function for voltage
linear reference, Pavai is estimated separately in separate steps rather directly mea-
sured or estimated. The proposed PRC method does not require any additional
hardware and cumbersome procedures of curve fitting with sophisticated operating
points sampling by using the conventional PRC methods are also eliminated. The
developed strategy exhibits fast speed and high robustness to estimate the MPP, and
good compatibility with existing PV systems. Simulation and experimental results
under various scenarios are provided to validate the effectiveness of the proposed
strategy.

6.2 Future Work

6.2.1 GMPPT Method Based on Modified Voltage Lines

As pointed in Chapter 4, the 0.8Voc model is not always true, especially for long PV
strings [102]. As shown in Fig. 6.1, some of the peaks are not really at the multiple of
0.8Voc. It may scan the wrong region of the P -V curve and lead to incorrect global peak
detection [102]. As a consequence, the effectiveness of these methods may be affected.

Fig. 6.1: Conventional voltage lines based on 0.8Voc under the different PSC.

An explicit expression in (4.20), (4.21) and (4.22) can be used to obtain modified
voltage lines, as demonstrated in Fig. 6.2. With the modified voltage lines, the locations of
the multiple MPPs can be easily derived. Therefore, the adoption of this idea in proposing
a new GMPPT method could be a promising work for the future
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Fig. 6.2: Modified voltage lines based under the different PSC.

6.2.2 Distributed Maximum Power Point Tracking (DMPPT)

When the PV mismatch condition occur, power is partial lost, such as A2 area in Fig. 6.3;
or some PV modules have to not work at their own MPP and the power in the area A1 has
to be lost. Since the GMPPT techniques cannot efficiently solve this problem, distributed
maximum power point tracking (DMPPT) architecture has been proposed.
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Fig. 6.3: Power loss caused by the PSC.

The DMPPT architectures can maintain high MPPT efficiency even under PV mis-
matching conditions because each PV module is individually controlled by an MPPT
controller [146, 147]. Therefore, the PV mismatching problem caused by partial shadow-
ing or PV aging can be radically solved. Generally, the DMPPT methods can be classified
into two types as shown in Fig. 6.4 [146, 147]. As shown in Fig. 6.4(a), since the full
power from PV modules has to be processed into DC-DC converters, it is called the full
power processing (FPP). By contrast, only a fragment of power from PV modules need
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to be processed through DC-DC converters, so it is called differential power processing
(DPP).
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Fig. 6.4: Two architectures of the DMPPT: full power processing (FPP); differential pow-
er processing (DPP).

So far, both of the architectures have been proven as an effective way to solve PV
modules mismatching, and both of them require to use MPPT controller for each DC-DC
converters. Since conventional MPPT methods generally require both of current sensor
and voltage sensor, the hardware implementation for both of the architectures is really
high. Therefore, it is very necessary to proposed sensorless MPPT techniques to reduce
the number of the required sensors.
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