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Abstract: This paper re-examines the instrumental variable (IV) approach to estimating returns to 
education by use of compulsory school law (CSL) in the US. We show that the IV-approach amounts 
to a change in model specification by changing the causal status of the variable of interest. From this 
perspective, the IV-OLS (ordinary least square) choice becomes a model selection issue between 
non-nested models and is hence testable using cross validation methods. It also enables us to 
unravel several logic flaws in the conceptualisation of IV-based models. Using the causal chain 
model specification approach, we overcome these flaws by carefully distinguishing returns to 
education from the treatment effect of CSL. We find relatively robust estimates for the first effect, 
while estimates for the second effect are hindered by measurement errors in the CSL indicators. We 
find reassurance of our approach from fundamental theories in statistical learning. 
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1. Introduction 

Over the past century, compulsory school law (CSL) was introduced in virtually every middle 
and high-income country (Goldin 1998; Goldin and Katz 2007). Empirical investigations into the 
effect of the CSL on educational attainment and income were pioneered by Angrist and Krueger 
(1991). The authors used CSL indicators as instrumental variables (IVs) to ‘randomise’ latent ability 
across educational attainment groups to correct for the presumed inconsistency or beyond-sample 
bias in the ordinary least square (OLS) estimator. The empirical strategy is now common practice in 
research on the average return to education (ARTE) and the paper has since entered the standard 
economics curriculum, as evident from its appearance in two popular textbooks by Angrist and 
Pischke (2009, 2015). 

Despite the far-reaching influence of this strategy, the causal interpretation of the CSL-treated 
schooling coefficient remains contentious. This is reflected in two interlinked developments. First, 
the emergence of IV estimates that vary significantly with the choice of instruments. Angrist and 
Krueger (1991), who approximate CSL with quarter of birth dummies, find that the IV estimates are 
not statistically different from estimates obtained via OLS. 1  Acemoglu and Angrist (2001) and 
Stephens and Yang (2014) replicate the research design by Angrist and Krueger (1991) with 
alternative CSL indicators based on labour law and find IV estimates which, although significantly 

                                                 
1 E.g., column (5) versus (6) in Table 4, (7) versus (8) in Table 5, and (1) versus (2) and (5) versus (6) in Table 6 

in Angrist and Krueger (1991). More evidence in Hoogerheide and van Dijk (2006, Table 5) and in Harmon 
et al. (2003, sec. 5). 
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different from OLS estimates, are insignificant or negative.2 Second, a shift in the interpretation of 
the CSL instrumentalised returns to schooling coefficient despite identical model choice. Angrist and 
Krueger (1991) interpret their results as consistent estimates of the ARTE, whereas Stephens and Yang 
(2014, p. 1789) interpret their IV estimates as the effect of an additional year of education obtained 
due to CSL on income. 

The first development prompts the question of how to select one consistent IV estimate among 
a multitude of IV choices. The second development prompts questions over the causal meaning of 
the IV estimates. The literature has responded to these questions by declaring certain instruments as 
inadequate, e.g., see Angrist and Pischke (2015, p. 227) for the above cases and Stock et al. (2002) and 
Kolesár et al. (2015) more generally, and by pointing at sample heterogeneity in the CSL effect, see 
Stephens and Yang (2014), Angrist et al. (1996), and Angrist and Imbens (1995) more generally.3 
However, the credibility of this empirical strategy is still disputed methodologically; see Deaton 
(2009) and Deaton and Cartwright (2018). 

In this paper, we approach and analyse the contention from a different perspective. Drawing on 
fundamental concepts and theories from statistical learning, we argue that what is commonly 
described as a choice of consistent estimator is a choice of causal model design, whereby model choice 
has far more substantial implications for the consistency criterion than estimator choice. Further, a 
change in causal model design implies a change in the key causal variable, leading to a change in 
causal meaning of coefficient estimates. From this perspective, we can provide clarification regarding 
the questions raised and hopefully settle the methodological dispute. We demonstrate our arguments 
by replication and re-examination of two seminal studies by Angrist and Krueger (1991) (AK 
hereafter) and Stephens and Yang (2014) (SY hereafter).4 

The insights gained from this new perspective are a consequence of two observations. First, the 
essence of the IV approach is the modification of a presumed endogenous causal variable, whereby 
the causal variable is substituted by regressors produced from non-uniquely and non-causally 
specified, and non-optimally targeted regressions; see Qin (2015, 2018) for a more detailed 
methodological exposition. Empirical evaluation and selection of these generated regressors is hence 
a source of endless contention. Second, the theoretical proof of IV estimator consistency rests on the 
presumption that the associated model specification is globally valid. This presumption is unlikely 
to hold in practice, as revealed by the out-of-sample error decomposition, known as the bias-variance 
tradeoff in the statistical learning literature. Analysis of this decomposition points to model bias 
rather than estimator bias as the primary source of inferential bias. Further, the presumption rules 
out any form of empirical model selection, including the choice between different instruments. This 
presumption is hence in conflict with the practical application of the IV approach. 

Approaching the issue of modelling ARTE from this new perspective in Section 2, we show that 
the use of IV estimators amounts to making, albeit implicitly, the presumption of the education 
variable being an invalid conditional variable, thereby changing the causal model specification. 
Conceptualising the choice of the IV versus the OLS as one of causal model choice between non-
nested model alternatives, this presumption can be explicitly specified into testable hypotheses. 
Moreover, the conceptualisation reveals the need to clarify the causal role of the CSL instruments. 
The causal chain representation method by Cox and Wermuth (2004) is applied to unravel the shift 
in interpretation of causal parameter estimates. While promiscuous in the IV approach, the chain 

                                                 
2 See Angrist and Pischke (2015, Table 6.3) for a summary. 
3 This argument is related to the programme evaluation modelling literature where the treatment variable, a 

dummy, is endogenised; e.g., Harmon et al. (2003) and Ludwig et al. (2012, 2013). The average treatment 
effect (ATE) estimate becomes a local ATE (LATE) estimate confined to the complier group if the instrument’s 
effect is heterogeneous, e.g., see Angrist and Pischke (2009, chp. 4); Heckman and Urzua (2009); Deaton 
(2009); and Imbens (2010). However, this discussion is virtually irrelevant here as the treatment variable, i.e., 
CSL, has not been considered as endogenous in either studies. 

4 The two data sets used in these studies are both created from the 1980 US census but with different indicators 
and choice of control variables. The data used by SY is an extended version of the data and indicators used 
by Acemoglu and Angrist (2001). 
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representation makes possible the clear separation of two types of income effects: The ARTE with a 
possible moderation effect of CSL and the average treatment effect (ATE) of the CSL via schooling. 
The separation further enables us to assess risk of bias, i.e., omitted variable bias (OVB), measurement 
error, and selection bias, at the level of individual causal parameters. 

In Section 3, we find no evidence of convergence as a necessary condition for consistency of the 
IV models, regardless the choice of instruments by k-fold cross validation (CV). CV is an essential 
tool for out-of-sample comparison of model generalisability, stability, and consistency in statistical 
learning. Further, decomposition of the two income effects, ARTE and the ATE of CSL via schooling, 
in Section 4 reveals that firstly, relatively robust ARTE estimates across cohorts and data sets can be 
obtained when carefully choosing covariates. Secondly, the estimated ATE effects of CSL and the CSL 
moderation effects on schooling are undermined by considerable measurement-error problems in the 
CSL indicators provided in AK and SY. Specifically, by careful choice of covariates, we find a virtually 
invariant and empirically consistent ARTE estimate of 0.06, and a smaller ATE of the CSL estimates 
between 1–5% if using labour law indicators and 0.2–0.9% if using quarter of birth indicators. It 
should be noted, however, that the empirical analysis is limited by the available covariates and 
instruments provided by AK and SY. 

The empirical results in Section 4 show us how a causally explicit model design through 
statistical data learning enables us to clearly separate, empirically and conceptually, the causal 
meaning of parameter estimates and to assess the risk of inferential bias at the level of individual 
parameters. Methodological implications of these findings are extended in Section 5. Angrist and 
Pischke (2015, p. 227) discard the Acemoglu and Angrist (2001) study as ‘a failed research design’ 
and ascribe the failure to the choice of inappropriate CSL indicators. While we also find shortcomings 
in the CSL instruments, we delve deeper into the failure to reveal its root in equivocal causal model 
modifications by choosing the IV-based modelling approach. This choice virtually prevents direct 
and careful translation of causal postulates of interest into data-consistent conditional relationships. 
Although being constrained by the data sets provided in AK and SY, our re-examination of the CSL 
case clearly shows the importance of empirical model design and selection over estimator choice. 

2. Model Specification of Schooling Effects Under CSL Treatment 

The main objective of both AK and SY is to obtain consistent estimates of the effect of education 
on income, known as the ARTE. They reject, as inconsistent, the OLS in favour of the IV estimator. In 
contrast to previous literature, we transpose the OLS versus IV estimator choice into a choice of non-
nested conditional models. This transposition leads us to re-evaluate the consistency claim 
underlying the choice of the IV approach and helps us to disentangle the seemingly conflicting causal 
interpretations presented in AK and SY. To facilitate the task, we adopt the subscript-based 
parametric notational methods used by Cox and Wermuth (2004) to highlight the consequence of 
different causal specifications on the parameters of regressors. 

Denote education by s, and income by y, the OLS-based approach of estimating ARTE amounts 
to proposing the following simple regression model: 𝑦 = 𝛼 + 𝛽 𝑠 + 𝜂 . (1)

(1) is perceived as an invalid conditional model by both AK and SY on the presumption that 𝑐𝑜𝑣 𝑠𝜂) ≠ 0. The presumption is based mainly on the argument that (1) suffers from omitted variable 
bias (OVB), i.e., 𝜂  contains variables which are not directly observable but collinear with s, such as 
aptitude. Their remedy is to utilise the CSL as a key instrument to block this bias. Specifically, the 
following regression is used to generate 𝑠 , the fitted response from (2): 𝑠 = 𝜋 . 𝐿 + 𝐼 𝜸 . + 𝑒    ⇒  𝑠 , (2)

where 𝐿 represents the CSL and 𝐼  a vector of other IVs. (2) is commonly referred to as the first stage 
of the two-stage least square (2SLS) estimator, to facilitate the following second-stage equation: 𝑦 = 𝛼 + 𝛽 𝑠 + 𝜂 . (3)
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From the perspective of model specification, (1) and (3) are de facto non-nested models. The 
necessary condition for having statistically significant 𝛽 ≠ 𝛽  is to generate 𝑠 , such that 𝑠 ≉𝑠.5 In general, since no unique set of IVs exist for (2) in practice, it is impossible to settle a priori on 
one unanimously agreed definition of 𝑠 .6 That implies that (3) should be seen as representing a 
multitude of non-nested models. Modellers are compelled to go through a model selection process, 
albeit implicitly through experimenting with various IV sets, as seen in both the AK and SY cases. 
One drawback of this implicit practice is the lack of model selection rules for guidance. 

Once the task is recognised as one of model selection rather than estimator selection, out-of-
sample cross validation (CV) methods, which are widely used in statistical learning, emerge as a 
useful toolbox to evaluate beyond-sample inferential bias. According to statistical learning theory, 
model selection is targeted at structural risk minimisation over a given hypothesis space that spans 
over the competing model specifications. A model is selected against its alternatives based on the 
interlinked criteria of generalisability (or predictivity), stability, and consistency, whereby Mukherjee 
et al. (2006) show that stability is equivalent to empirical consistency. CV methods are designed to 
assess predictivity and consistency by splitting the sample into k-folds, with k-1 folds being used to 
train the model and the kth fold to test the model. The competing model specifications can hence be 
evaluated by comparison of the relative mean squared error (MSE) in a k-fold CV, e.g., see Arlot and 
Celisse (2010), Shalev-Shwartz et al. (2010) and Zhang and Yang (2015). 7 

At the core of CV methods is the analysis of MSE through its decomposition into bias and 
variance, and the demonstration of the tradeoff between the two components. In particular, the 
analysis identifies model bias as the primary source of inferential bias, i.e., the bias component in the 
out-of-sample or the testing sample errors. Another fundamental insight from statistical learning is 
the recognition that theoretical models, i.e., formal constructs of prior knowledge, are the source of 
inductive bias. Hence, in the quest for structural risk minimisation, major attention is paid to the 
minimisation of inductive bias in model selection and model design, see e.g., Shalev-Shwartz and 
Ben-David (2014, Part I). In light of these fundamental theories, we see the need, in addition to the 
application of CV, of scrutinising carefully the process of how schooling effects on income under the 
CSL treatment are formalised into (3). Especially, whether the various contextual reasons supporting 
its formalisation, such as OVB and related measurement errors as well as selection bias, can justify 
the rejection of (1). 

Since the CSL effect on income via schooling is a sequential event, this can be represented by a 
reduction of the following recursive factorisation of the joint density, 𝑓 𝑦, 𝑠, 𝐿): 𝑓 𝑦, 𝑠, 𝐿) = 𝑓 𝑦|𝑠, 𝐿)𝑓 𝑠|𝐿)𝑓 𝐿) = 𝑓 𝑦|𝑠, 𝐿)𝑓 𝑠|𝐿), (4)

since 𝑓 𝐿) = 1 when retrospective cross-section data samples are used. When L is assumed to act as 
a rule of intervention, namely 𝑦 ⊥ 𝐿|𝑠, the conditional density in (4) can be further factorised: 𝑓 𝑦, 𝑠|𝐿) = 𝑓 𝑦|𝑠)𝑓 𝑠|𝐿). (5)

On the basis of (5), we can express the sequential nature of the ATE of L on y via s by the 
conditional expectation, 𝐸 𝑦, 𝑠|𝐿) = 𝐸 𝑦|𝑠)𝐸 𝑠|𝐿) . In a linear model setting, this expectation 
decomposition leads to the following chain model representation, see Cox and Wermuth (2004): 𝑦 = 𝛼 + 𝛽 𝑠 + 𝜂𝑠 = 𝛼 + 𝛽 𝐿 + 𝜂     (6)

It should be noted that (6) differs from (2) + (3) in two substantial ways. First, 𝛽  still embodies 
ARTE in (6). Second, the ATE of L on y, denoted by 𝛽 , is derivable from 𝛽 = 𝛽 𝛽 , whereas 
there lacks a clear parametric representation of this effect in the IV model. Although 𝜋 .  in (2) can 

                                                 
5 Notice that this requirement imposes a non-optimal prediction constraint on (2), in that the specification of 

this regression must avoid explaining the response variable as accurately as possible.  
6 See Qin (2015, 2018) for a more detailed analysis of the causal model modifying roles of the IV approach. 
7 The tool is not new to the impact evaluation literature, e.g., Athey and Imbens (2015). 
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be interpreted as the ATE on s, this parameter cannot be used in conjunction with 𝛽  in (3) to 
identify the ATE on y. 

An arguably useful tool to highlight these differences is the directed acyclic graph (DAG), see 
Cox and Wermuth (1996) and Wermuth and Cox (2011). The left panel of Figure 1 is a DAG of (6). It 
shows us that, when ATE, i.e., the effect of L forms the focal causal interest, s takes the role of an 
intermediate variable or a mediator, but when ARTE is the focal interest, L takes the role of a 
moderator exclusively for s. The second arrow segment, 𝐿 → 𝑠, can be ignored in the latter case, i.e., 
the case when (6) is reduced into (1). The middle panel is a DAG of (2) + (3).8 This IV-based model is 
focused on the first arrow segment, since its objective is to reject (1). Hence, the possibility of a causal 
chain extension is blocked, and L is used to target at producing 𝑠 ≉ 𝑠, making ATE of L on y 
unidentifiable—but neither is ARTE identifiable because s has been significantly modified. Therefore, 
the definition of 𝛽  needs to be modified. 

 
  

Figure 1. Directed acyclic graphs (DAGs) of returns to schooling under the compulsory school law 
(CSL) treatment. Notes: y denotes earnings; s, schooling; L, the CSL; and ℒ, its observable indicator. 
A node inside a square indicates a latent variable, and a solid node denotes a dummy/binary variable. 
Dotted lines indicate non-uniqueness; dissimilarity of 𝑠  from s is shown by a semicircle; the 
‘identity’ sign differentiates the first stage of the 2SLS, (2). 

Now, we are in the position of examining the contextual reasons underlying (3) to find out 
whether the IV-induced modification helps resolve the problems that the approach is intended. 
Although OVB is stated as the primary problem by AK, it is further compounded, in their justification 
for the IV route, with two problems—measurement error and selection bias. In view of the current 
modelling purpose, the concern over measurement error in s is unwarranted because ARTE is not 
ARTA (average returns to aptitude).9 In other words, measurement error is irrelevant in (1) unless 
we change its prior stance to explicitly specify s as an imperfect indicator of the latent variable, 
‘aptitude’. However, measurement error can provide 𝛽  in (3) with a plausible interpretation 
differently from that of 𝛽 . However, this interpretation would undermine the basic IV-based claim 
of 𝛽  being the consistent estimator of ARTE with respect to s, and openly recognise (1) and (3) as 
two different models, with (3) effectively yielding ARTA. As for selection bias, the argument extends 
to the situation where CSL treatment could alter the population composition of educated workers, as 
compared to that of the pre-treatment population, e.g., through a diluted concentration level of 
‘aptitude’ (see Angrist and Pischke 2009, chp. 4). Consequently, the post-treatment schooling effect 
becomes significantly different from the pre-treatment one due to a change in level of ‘aptitude’ for 
different years of schooling post-treatment. Two problems hinder this argument. First, there lacks a 
credible way to verify that a compositional shift, if it has occurred, is adequately reflected by 𝑠  
generated via (2). From the perspective of retrospective cross-section data, empirical assessment of 
the possibility of such a shift entails disaggregation. Specifically, we need to carefully divide the 
available samples into two parts—an L-treated part versus a CSL unaffected part—so as to investigate 

                                                 
8 Unfortunately, DAGs in several existing publications have misrepresented the IV approach as one of causal 

chain extension, e.g. Figure 7.8 in Pearl (2009) and Figure 6 in Abadie and Cattaneo (2018).  
9 The inapplicability of the measurement errors-based arguments in the present context can also be seen from 

the fact that almost no signs of expected OLS attenuations caused by measurement error concerns can be 
found in AK or SY, namely that the OLS estimates should be statistically insignificant and smaller in 
magnitude than the IV estimates, e.g., Durbin (1954). 
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whether there exists a parametric difference: 𝛽 . ≠ 𝛽 . , where 𝑠  denotes schooling of the L-
treated part, and 𝑠  the treatment unaffected part.10 Even if the inequality is supported by data, the 
evidence alone is insufficient for rejecting s as a valid conditional variable for y at the aggregate level, 
e.g., see Engle et al. (1983) and also Qin et al. (2019). Second, the argument assumes a role of L in 
conflict with its role in the IV treatment of OVB—that the instrument must be unrelated to the omitted 
variable under the suspicion of causing OVB. 

The above analysis not only casts doubt over the explanatory capacity of the IV-based model (3), 
but also draws our attention to the need to clarify the expected role of L in accordance to our 
modelling purposes. Clearly, if ATE forms part of our inferential interest, we should not reduce 
model (6) to (3). Let us turn to this treatment effect. Model (6) tells us that 𝛽 = 𝛽 𝛽 ≠ 𝛽  in 
general unless 𝛽 = 1 can be verified, which is highly unlikely in view of available findings, e.g., 
see Goldin and Katz (2011). Hence, we should expect that 𝛽 ≪ 𝛽 . However, if ATE is the only 
parameter of our interest, the chain route of (6) appears a long way round, because 𝛽  can be 
estimated directly from: 𝑦 = 𝑎 + 𝛽 𝐿 + 𝜖 . (7)

Unfortunately, this direct route is unfeasible in the samples used by AK and SY because L, a 
notional variable for CSL, is latent and approximated by various observable indicators, ℒ . 
Consequently, measurement errors are likely to result in 𝛽 ℒ ≠ 𝛽 𝛽 ℒ, when ℒ is used in (7) instead 
of L. For instance, SY have identified this kind of defectiveness of CSL indicators, due to their 
entanglement with regional factors and other controls. On the other hand, a particular case of 𝛽 ℒ ≠𝛽 𝛽 ℒ signals its associate ℒ being a defective indicator, as it fails to embody the assumed rule of 
intervention. This failure can be identified via checking 𝛽 ℒ. ≠ 0 of the following regression: 𝑦 = 𝛼 + 𝛽 .ℒ𝑠 + 𝛽 ℒ. ℒ + 𝜀 . (8)

In other words, a test of 𝛽 ℒ. = 0 using (8) can be exploited as an additional criterion for the 
purpose of ℒ selection; see Zhang et al. (2017) for implications of measurement error in estimating 
causal chain models. A DAG illustration of this situation is given in the right panel of Figure 1. 

The advantage of the chain route becomes even more evident when the presence of control 
variables, denoted by Z, is taken into consideration. Although Z is chosen primarily from 
consideration of 𝑐𝑜𝑣 𝑠𝑍) ≠ 0, some variables in Z are likely to be correlated with ℒ, such as age and 
regional dummies in the two data sets by AK and SY. The DAGs with Z included are shown in Figure 2. 
The potential correlation would complicate the estimation of ATE. Extend (6) by Z: 𝑦 = 𝛼 + 𝛽 . 𝑠 + 𝑍 𝜷 . + 𝜀𝑠 = 𝛼 + 𝛽 𝐿 + 𝜀                        𝑍 = 𝜶 + 𝐿𝜷 + 𝜺                        (9)

The corresponding chain representation of the ATE becomes decomposed into two parts: 𝛽 = 𝛽 . 𝛽 + 𝜷 . 𝜷 = 𝛽 + 𝛽 . (10)

Now, only the first component, 𝛽 , in (10) corresponds to the ATE of L via s. Model (7) is not 
fit for estimating this parameter. 

  

                                                 
10 We have empirically evaluated the hypothesis of a structural shift. Results are detailed in Appendix B. We 

find no supporting evidence of such shift.  
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Figure 2. DAGs augmented with Z. Notes: See the notes in Figure 1 for the definitions of the various 
symbols. 

3. Evaluation of Model Consistency 

Section 2 has shown that the IV approach amounts to a model re-specification by replacement 
of 𝑠  with 𝑠  as the valid conditional variable, thereby altering the causal interpretation of the 
coefficient estimates. This re-specification is based on the premise of inconsistency of the OLS model 
specification relative to its IV counterpart. By exposing the IV approach as a model re-specification, 
the estimator choice is transposed into one of non-nested model selection, which is testable by use of CV. 

In the following, we first replicate results presented by AK and SY, while focusing mainly on 
SY, to identify conditions under which instrumental validity is achieved and then, by use of CV, 
reassess these results against the criteria of generalisability and consistency. Since the CSL is latent, 
it is approximated by observable indicators, ℒ. Quarterly birth dummies are chosen by AK (ℒ ).11 
SY, with reference to Acemoglu and Angrist (2001), propose two alternative indicators based on state 
school and labour law. These indicators capture required years of schooling (ℒ ) and compulsory 
attendance (ℒ ).12 

Let us inspect the replicate of SY’s results (see Figure 3). The IV-based model specifications 
appear to lack empirical consistency and robustness relative to their OLS counterpart. 𝛽  fails to 
show convergence and standard errors remain large as the sample size increases. Although these 
findings are common in the literature, their implications are rarely discussed; see Deaton and 
Cartwright (2018). 

Different choices of CSL indicators for generating different 𝑠  result in considerable alteration 
of the estimation results in SY, as compared to AK. Only in SY, the choice of indicators leads to an 
apparent success in finding  𝛽 ≠ 𝛽. Further scrutiny through replication of SY’s Tables 1 and A2 
suggests that their CSL indicators are largely invalid instruments. Column (1) in T1B of our Table 1 
is the only exception, with no rejection of Sargan’s null of valid overidentifying restrictions and 
rejection of Hausman’s null of OLS estimator consistency relative to IV. Although the validity of 
instruments is not rejected for column (2) in T1A of Table 1, the IV estimates remain insignificant. 

In contrast to 𝑠, 𝑠  seems to strongly correlate with covariates such as interaction terms that 
allow for regional differences in year of birth effects. The inclusion of these interaction terms leads to 
large changes in 𝛽 , whereas 𝛽 remains virtually invariant; see Figure 3 and columns (2) and (4) of 
T1A and T1B in Table 1. At the same time, the inclusion of interaction terms invalidates the claim of 
endogeneity if using ℒ  indicators and leads to an insignificant 𝛽  estimate if using ℒ  
indicators. The sensitivity of IV estimates to regional factors has already been pointed out by SY and 

                                                 
11 The indicator choice is based on the insight that the CSL requires a minimum age which must be reached 

before students can drop out of school. Those born in the first quarters of the year reach this age sooner than 
those born in later quarters and hence are less constrained by the law than their peers. Accordingly, AK 
define three birth dummies for those born in the first (ℒ ), second (ℒ ), and third (ℒ ) quarter of the year; 
see also Angrist and Krueger (1992). 

12 As in AK, the indicators compose of three dummies. ℒ , ℒ , and ℒ  capture those with minimum of 
7 or below, 8, and 9 or above required years of schooling and ℒ , ℒ , and ℒ  capture those with 8 or 
below, 9, and 10 or above years of compulsory school attendance. See SY for a detailed definition of the 
indicators. 
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reiterated by Hoogerheide and van Dijk (2006, Table 5).13 This raises the question of whether ℒ  
solely represent the CSL treatment; a potential case of measurement error in these indicators. 

 
Figure 3. Ordinary least square (OLS) and instrumental variable (IV) estimator consistency. Notes: 
IV1 and OLS1 are IV and OLS estimates without regional control variables, and IV2 and OLS2 are IV 
and OLS estimates with regional control variables included. The x-axis provides the sample size and 
the y-axes coefficient values. The bars indicate the 95% confidence interval. Source: SY, Table 1. 

Table 1. Sargan and Hausman test for instruments used by SY. 

 T1A (𝓛𝑺𝒀𝟏) T1B (𝓛𝑺𝒀𝟐) 
White Males Aged 40–49 Aged 25–54 Aged 40–49 Aged 25–54 

 (1) (2) (3) (4) (1) (2) (3) (4) 𝛽 (OLS) a 0.073 ** 0.073 ** 0.063 ** 0.063 ** 0.073 ** 0.073 ** 0.063 ** 0.063 ** 𝛽  (2SLS) a 0.095 ** −0.020 0.097 ** −0.014 0.142 ** 0.092 ** 0.140 ** 0.086 ** 
Tests:         

Sargan b 
(p-value) 

0.99 
(0.6088) 

4.65 
(0.0977) 

17.99 
(0.0001) 

7.51 
(0.0234) 

0.64 
(0.7271) 

0.83 
(0.6589) 

12.75 
(0.0017) 

17.57 
(0.0002) 

Hausman 
(p-value) 

3.80 
(0.0512) 

9.67 
(0.0019) 

43.24 
(0.0000) 

36.32 
(0.0000) 

16.33 
(0.0001) 

0.53 
(0.4671) 

150.29 
(0.0000) 

3.28 
(0.0701) 

Fixed effects:         
State of birth Yes Yes Yes Yes Yes Yes Yes Yes 
Year of birth Yes Yes Yes Yes Yes Yes Yes Yes 
Region x Yob No Yes No Yes No Yes No Yes 

Additional 
controls: 

None None 
Age quartic, 
census year 

Age quartic, 
census year 

None None 
Age quartic, 
census year 

Age quartic, 
census year 

Notes: Sargan and Hausman added through replication. Source: SY Tables 1 and A2. a Robust and 
cluster adjusted standard errors are used. b Wooldridge’s extension of Sargan’s test of overidentifying 
restrictions is performed. ** Significant at the 1% level.  

The insignificance and empirical inconsistency of 𝛽 , identified in Figure 3 and Table 1, could 
also be caused by a negligible share of ‘compliers’ in the full sample; a point made by Oreopoulos 
(2006) in the context of the CSL effect when using minimum years of schooling indicators, and also 
mentioned by SY as a possible explanation for their results. We hence investigate whether 
instrumental validity can be achieved when focusing on a sub-sample with a high complier share. 
We follow AK’s lead and divide the sample by those obtaining 12 years of schooling (school) and 
those who obtain more than 12 years of schooling (higher). The former sub-sample has a high share 
of compliers, while the latter sub-sample comprises mainly always takers. Results are reported and 

                                                 
13 CSL indicators based on quarter of birth dummies face similar problems, and Bound and Jaeger (2000) and 

Carneiro and Heckman (2002) show an entanglement of indicators with social status. 
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discussed in Appendix A. We do not find stronger evidence for instrument validity but make two 
interesting observations. Firstly, most IV estimates turn insignificant for the ‘higher’ sub-sample, 
confirming the high share of always takers. Secondly, OLS estimates reveal shrinking ARTE for those 
with more years of schooling, especially for the 1940–1949 born cohort. This cohort entered the labour 
market in the early 1980s in the middle of a recession, potentially explaining the low returns to higher 
education. This effect is concealed in the IV models, given the localness of the CLS instruments. 

We now turn to CV to formally compare the two non-nested models (1) versus (3). Figure 4 
shows that the OLS-based models clearly outperform the IV-based models in generalisability, 
stability, and consistency, even though the CV experiment presented here does not adjust for degrees 
of freedom.14 Remarkably, results for AK are close to—or even worse than for—SY, despite the 
finding of 𝛽 ≈ 𝛽  in AK. 

  

Figure 4. Ratio of average mean square cross validation (CV) error of IV to OLS with Increasing K. 
Notes: Mean squared error (MSE) is the average of 10 repetitions of the k-fold CV. The curves 
represent the ratio of the average MSE of the IV model and the OLS counterpart. A value greater than 
1 indicates a smaller MSE for OLS than for IV. 

As expected, the MSE decreases as the training sample increases, that is, with increasing k, for 
both models. However, the IV-based model shows no sign of convergence as training samples grow. 
When decomposing the MSE into test bias and variance, we find little evidence of asymptotic bias in 
the OLS estimates; see Figure 5. For the AK case, the IV bias is larger at smaller k and decreases 
towards no bias at larger k. Given the small bias in general, the large difference in the MSE between 
the two models clearly stems from a greater variance of the IV model specification, putting the 
consistency claim of IV into question. While our findings are specific to the CSL case and the chosen 
instruments, results by Young (2017), who re-evaluates 1359 published IV regressions, suggest that 
the conclusion drawn from the CV exercise are the norm rather than an exception. 

Overall, experimenting with the model design in SY and AK, we find, contrary to what is 
expected, that the OLS-based model outperforms the IV-based ones in terms of generalisability, 
stability, and consistency, regardless the choice of CSL indicators. 

                                                 
14 The IV approach uses up more degrees of freedom than the OLS counterpart due to the first stage. Therefore, 

the MSE of the IV model specification understates the error when compared to the OLS counterpart. 

1.0286
1.02865
1.0287
1.02875
1.0288
1.02885
1.0289
1.02895
1.029

1.0079

1.00795

1.008

1.00805

1.0081

1.00815

1.0082

1.00825

k10 k50 k100 k300

M
SE

 R
at

io
 IV

2/
OL

S

M
SE

 R
at

io
 IV

1/
OL

S

A. SY Tables 1 (IV1) and A2 (IV2)

IV1 IV2

2.2205

2.221

2.2215

2.222

2.2225

2.223

2.2235

1.0033
1.0034
1.0035
1.0036
1.0037
1.0038
1.0039

1.004
1.0041

k10 k50 k100 k300

M
SE

 R
at

io
 IV

2/
OL

S2

M
SE

 R
at

io
 IV

1/
OL

S1

B. AK Table V Col. 1-2 (IV1) and Col. 5-6 (IV2)

IV1 IV2



Econometrics 2019, 7, 36 10 of 20 

 

  

Figure 5. Average CV bias with increasing k. Notes: The CV bias is the average of 10 repetitions of the 
k-fold CV. Bars on the estimation bias indicate one standard deviation over the 10 repetitions. 
Numbers of folds shown on the x-axis. 

4. Different Income Effects 

Section 3 has provided us with no evidence for 𝑠 being in invalid causal variable and we now 
probe into the causal role of 𝐿. In Section 2, we could distinguish between two income effects: (a) The 
ARTE effect, 𝛽 . , and (b) the CSL effect or ATE of the CSL via schooling, 𝛽  as specified in (9). 

4.1. Estimating ARTE: 𝛽 .  

The presentation of varying OLS-based ARTE estimates by AK and SY, despite the use of almost 
identical samples, indicates problems in the choice of appropriate covariates. Therefore, we proceed 
with the question of how to specify Z in order to find an empirically adequate specification of (9), 
which is as parsimonious as possible and can also align the ARTE estimates by AK and SY data, 
respectively. This is achieved through, firstly, unification of the coding of the education variable and 
secondly, a parsimonious model specification. 

Towards a unification of the education variable, the AK education variable is capped at 17 years 
to resemble the SY education variable. The unification is found to play a vital role in aligning the 
ARTE estimates across the two data sets.15 We rely on AK’s division between those born in the 1930s 
and 1940s, respectively, using observations from the 1980 census. Towards a more parsimonious 
model, year of birth dummies included by both AK and SY are replaced with quadratic age (age2).16 
Regional dummies for individual states are replaced by a single variable distinguishing between four 
regions for SY and nine regions for AK data (region). Considering a possible regional effect on school 
quality, variables capturing school quality (pupilt, term, reltwage) suggested by Card and Krueger 
(1992a, 1992b) are used by SY and included in our model as well. 

Earlier sub-sample experiments, reported in Appendix A, reveal variation in the ARTE estimates 
with the level of education. The variation reflects ‘sheepskin effects’, which are well documented 
phenomena in the literature17 and clearly discernible in the AK and SY data; see Figure A1 and Table 

                                                 
15 Ideally, we would use uncapped schooling variables, but the transformation in the SY schooling variable is 

irreversible.  
16 Coefficients on year of birth dummies are found to decline with years, revealing non-linearity. These 

patterns can be almost perfectly replicated with a quadratic age variable. See also Murphy and Welch (1992) 
for the non-linear relationship between experience and wage earnings. 

17 See, for instance Angrist (1995); Murphy and Welch (1992); Card (2001); Trostel (2005); and Clark and 
Martorell (2014). This shift in the population education composition also explains the finding by Goldin and 
Katz (2000). 
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A2, Appendix A. A binary variable (uni) is thus added as a classifier for those who obtained a 
university degree (15 or more years of schooling). 

The key results of this model search are reported in Table 2, alongside those from the ‘Original’ 
models by SY and AK. We refer to our more parsimonious model specifications as ‘Alternative’ in 
the table. A closer alignment of return to schooling estimates across data sets is achieved with the 
‘Alternative’ model specification, which outperforms the ‘Original’ specification in terms of model 
fit by a margin. OLS estimates point to a relatively constant 𝛽 .  of about 0.06 across data sets and 
cohorts, and our ARTE estimates are roughly in line with findings by Acemoglu and Angrist (2001), 
who report estimates of 0.061 and 0.075 respectively. 

Table 2. Parsimonious specification of (9). 

 Original Alternative 
 SY a AK SY a AK 

 1930–1939 1940–1949 1930–1939 1940–1949 1930–1939 1940–1949 
1930–
1939 

1940–
1949 𝛽 ,  0.0751 ** 0.0622 ** 0.0630 ** 0.0519 ** 0.0600 ** 0.0643 ** 0.0576 ** 0.0648 ** 

[95% CI] 
[0.074–
0.077] 

[0.061–
0.063] 

[0.062–
0.064] 

[0.051–
0.053] 

[0.058–
0.062] 

[0.063–
0.066] 

[0.057–
0.059] 

[0.064–
0.066] 

AIC b 714,262.9 1,034,376 594,994.7 858,645.2 705,271.2 1,018,112 594,343.4 858,594.8 
Adj.-R2 0.0119 −0.0232 0.1745 0.1354 0.1217 0.0968 0.1761 0.1355 

Consist. c 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Z d 

age2 age3 age4 yob31-
yob39/yob41-yob49 

sob1-sob55 

ageq, ageq2, race, 
married, smsa, neweng 

midatl, enocent, wnocent, 
soatl, esocent, wsocent, 

mt, year20-year 28 

age2, mar, emp, jail, 
handcap, pupilt, term, 
reltwage, uni, region 

age2, married, race, 
smsa, uni, region 

Notes: 1980 census, data for SY white male with positive weekly earnings, data for AK male with 
positive weekly earnings. a 95% confidence interval based on cluster adjusted standard errors in SY 
data. b Akaike information criteria. c Entner et al. (2012) test for consistency. The row reports the 
correlation coefficient between 𝜀  in (9) and the residuals from the auxiliary regression, with a value 
close to 0 confirming consistency. Non-Gaussianity of the residuals was tested before and strongly 
supported by data. d See SY and AK for variable names. ** Significant at the 1% level.  

Following the observations in Table 2, we note that the risk of OVB for 𝛽 .  comes from 
inadequately specified 𝑍. Hence, we evaluate the choice of 𝑍 by use of a simple statistical test of 
consistency developed by Entner et al. (2012). Recalling the DAG in Figure 2, we can immediately see 
that in the presence of OVB, that is, missing covariates in 𝑍 , the residuals 𝜀  in (9) would be 
statistically dependent on 𝑠. Entner et al. (2012) exploit this insight by means of a simple two-step 
algorithm to test the consistency of 𝛽 .  against the risk of OVB. In a first step, the key conditional 
variable 𝑠 is regressed on the set of covariates Z.18 If residuals of this auxiliary regression are non-
Gaussian—Gaussian residuals are a rarity in large cross-sectional data sets—it is tested for being 
statistically independent between 𝜀  from (9) and the error term of the auxiliary regression in a 
second step. If independence is confirmed, 𝛽 .  is consistent with regards to the choice of covariates 
Z. The test results are reported in the last row of Table 2. In all cases, consistency is strongly supported 
by the data. 

4.2. Estimating the ATE of the CSL via Schooling: 𝛽  

Given the potential measurement error in CSL indicators identified by SY and briefly discussed 
in Section 3, we follow Section 2 and conduct two simple experiments to further test the 
appropriateness of the indicator choice before continuing with the estimation of 𝛽 . Since CSL is 
only binding for school leavers, we would expect the ATE to be insignificant or at least smaller for 

                                                 
18 The auxiliary regression takes the form 𝑠 = 𝛼 + 𝑍 𝜷 . + 𝜀 . If 𝜀  is non-Gaussian, statistical 

independence between 𝜀  and 𝜀  confirms consistency of 𝛽 .  in (9). 
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those with higher education than for those without. Following this reasoning, we estimate the middle 
equation of (9) using sub-sample groups by educational attainment with the expectation that 𝛽 ≠ 0 
for School and 𝛽 = 0 for Higher. 

It is shown in Table 3 that, although 𝛽  tends to be larger for the School sub-sample than for 
the Higher sub-sample, none of the indicators confirms the hypothesis of 𝛽 = 0  for Higher. 
Noticeably, the size of those 𝛽 ≠ 0 in the first cohort has almost doubled that of the second cohort 
in the case of SY indicators. This shift appears to reflect a general shift towards more years of 
education. As seen from Table A1 (Appendix A), the share of those attaining less or equal the 
minimum years of schooling is halved in the later cohort. 

Table 3. 𝛽  in (9) via sub-sampling on educational attainment. 

 SY AK 
 𝓛𝑺𝒀𝟏 𝓛𝑺𝒀𝟐 𝓛𝑨𝑲 

1930–1939 
School Higher School Higher School Higher 

Coef. t-stat a Coef. t-stat a Coef. t-stat a Coef. t-stat a Coef. t-stat b Coef. t-stat b 𝛽 ℒ  0.38 * 2.50 0.06 0.69 0.18 1.84 −0.1 ** −4.33 −0.1 ** −8.74 0.02 1.17 𝛽 ℒ  0.35 * 2.49 0.07 0.91 −0.02 −0.23 −0.05 * −1.98 −0.1 ** −8.43 0.05 ** 3.10 𝛽 ℒ  0.18 1.25 0.06 0.75 0.39 ** 3.99 −0.1 ** −4.27 −0.03 * −2.39 −0.00 −0.04 
 𝓛𝑺𝒀𝟏 𝓛𝑺𝒀𝟐 𝓛𝑨𝑲 

1940–1949 
School Higher School Higher School Higher 

Coef. t-stat a Coef. t-stat a Coef. t-stat a Coef. t-stat a Coef. t-stat b Coef. t-stat b 𝛽 ℒ  0.70 ** 11.34 0.13 ** 3.47 0.24 ** 4.59 −0.05 −1.57 −0.1 ** −9.89 0.04 ** 3.71 𝛽 ℒ  0.69 ** 10.61 0.25 ** 7.63 −0.03 −0.57 0.03 1.00 −0.1 ** −7.82 0.06 ** 5.09 𝛽 ℒ  0.42 ** 6.25 0.19 ** 5.75 0.21 ** 3.40 −0.06 * −2.11 −0.02 * −2.45 0.03 * 2.25 

Notes: 1980 census, data for SY white male with positive weekly earnings, data for AK male with 
positive weekly earnings. a Robust cluster adjusted standard errors. b Robust standard errors. ** 
Significant at the 1% level. * Significant at the 5% level. 

In a second step, we test whether the rule of intervention  𝛽 ℒ. = 0 holds for the different CSL 
indicators by estimation of (8) with additional controls Z. In reference to earlier experiments, we 
conduct the test for the School sub-sample in addition to the full sample estimation. It is shown in 
Table 4 that the condition 𝛽 ℒ. = 0 is validated for SY’s ℒ  indicator across cohorts and also for 
AK’s ℒ  indicator for the early born cohort. However, it is violated without exception if using ℒ  
as CSL indicator. Where conditional independence is rejected in Table 4, we have also failed to 
confirm 𝛽 = 0 for the Higher sub-sample in Table 3, and rejected instrument validity in Table 1 and 
Table A2 Appendix A. In cases like this, we should be cautious with the estimate of 𝛽  via the 
chain representation of (10). 

Table 4. Test for the rule of intervention β ℒ. = 0 using (8) extended by 𝑍. 
 SY a AK b 

 1930–1939 1940–1949 1930–1939 1940–1949 
 Full School Full School 𝓛𝑨𝑲 𝓛𝑨𝑲 
 𝓛𝑺𝒀𝟏 𝓛𝑺𝒀𝟐 𝓛𝑺𝒀𝟏 𝓛𝑺𝒀𝟐 𝓛𝑺𝒀𝟏 𝓛𝑺𝒀𝟐 𝓛𝑺𝒀𝟏 𝓛𝑺𝒀𝟐 Full School Full School ℒ1 −0.001 0.041 ** 0.007 0.041 ** 0.014 0.041 ** 0.007 0.046 ** −0.007 * −0.008 * −0.01 ** −0.005 
 (0.0133) (0.0081) (0.0185) (0.0100) (0.0125) (0.0099) (0.0146) (0.0106) (0.0030) (0.0039) (0.0024) (0.0035) ℒ2 0.011 0.028 ** 0.029 0.030 ** 0.016 0.047 ** 0.020 0.052 ** −0.004 −0.009 * 0.012 ** 0.010 ** 
 (0.0139) (0.0062) (0.0189) (0.0078)  (0.0126) (0.0081) (0.0142) (0.0085) (0.0030) (0.0039) (0.0024) (0.0035) ℒ3 0.021 0.060 ** 0.033 0.063 ** 0.033 ** 0.078 ** 0.031 * 0.082 ** 0.001 −0.003 0.012 ** 0.017 ** 
 (0.0144) (0.0103) (0.0196) (0.0113) (0.0122) (0.0122) (0.0140) (0.0124) (0.0030) (0.0038) (0.0023) (0.0034) 

Notes: 1980 census, data for SY white male with positive weekly earnings, data for AK male with 
positive weekly earnings. Z as specified in ‘Alternative’ in Table 4. Standard errors reported in 
parentheses. a Robust cluster adjusted standard errors. b Robust standard errors. ** Significant at the 
1% level. * Significant at the 5% level. 

Table 5 provides 𝛽  estimated via (10). Where conditional independence is verified, the chain 
approximation yields significant ATE estimates that confirm our expectation of 𝛽 . ≫ 𝛽 . The 
estimated ATE almost doubles for the later born cohort from 1–3 to 3–5% using ℒ  indicators. The 
ATE estimates using AK indicators are relatively constant across both sub-samples and cohorts. It 
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should be noted that the negative sign here actually implies a positive ATE, because people born in 
the first three quarters ℒ , ℒ , and ℒ  are associated with less years of schooling as compared to 
those born in the fourth quarter. The CSL effect is strongest for those born in the first quarter and 
weakens with the second and third quarter born consecutively. 

Table 5. Estimated average treatment effect (ATE) of CSL, β ℒ , using chain models (9) and (10). 

 SY a AK b 

 1930–1939 1940–1949 1930–1939 1940–1949 
 Full School Full School Full School Full School 
 𝓛𝑺𝒀𝟏 𝓛𝑺𝒀𝟐 𝓛𝑺𝒀𝟏 𝓛𝑺𝒀𝟐 𝓛𝑺𝒀𝟏 𝓛𝑺𝒀𝟐 𝓛𝑺𝒀𝟏 𝓛𝑺𝒀𝟐 𝓛𝑨𝑲 𝓛𝑨𝑲 ℒ1 0.025 ** 0.011 0.022 * 0.011 * 0.054 ** 0.016 * 0.048 ** 0.016 ** −0.009 ** −0.007 ** −0.007 ** −0.007 ** 
 [12.5] [2.56] [6.25] [3.40] [88.4] [6.26] [125] [20.8] [99.2] [75.2] [112] [95.4] ℒ2 0.005 −0.003 0.021 * −0.001 0.033 ** −0.004 0.045 ** −0.002 −0.006 ** −0.006 ** −0.004 ** −0.005 ** 
 [0.97] [0.12] [6.16] [0.05] [35.4] [0.39] [107] [0.32] [43.4] [70.0] [34.3] [60.4] ℒ3 0.004 0.012 0.011 0.023 ** 0.027 ** 0.002 0.028 ** 0.014 ** −0.002 * −0.002 * −0.003 ** −0.002 ** 
 [0.44] [3.86] [1.56] [15.9] [20.3] [0.12] [37.8] [11.4] [4.62] [5.68] [15.1] [6.00] 

Notes: 1980 census, data for SY white male with positive weekly earnings, data for AK male with 
positive weekly earnings. See Tables 3 and 4 for 𝛽 .  and 𝛽  estimates, respectively. Significance 
of 𝛽 ℒ  based on χ2 statistics estimated following Weesie (1999), reported in brackets. a Robust cluster 
adjusted standard errors. b Robust standard errors. ** Significant at the 1% level. * Significant at the 
5% level. 

Direct ATE estimates 𝛽 ℒ  obtained via (7) exceed estimates obtained via chain approximation 
for the later born cohort; see Table 6. The effect is indicative of positive indirect CSL effects through 
control variables Z in later years. Further, chain approximations using SY indicators are much more 
varied across cohorts than across sub-samples, due to the varying estimates of 𝛽  in Table 3. 

Table 6. Estimated ATE of the CSL β ℒ  via (7). 

 SY a AK b 

 1930–1939 1940–1949 1930–1939 1940–1949 
 Full School Full School Full School Full School 
 𝓛𝑺𝒀𝟏 𝓛𝑺𝒀𝟐 𝓛𝑺𝒀𝟏 𝓛𝑺𝒀𝟐 𝓛𝑺𝒀𝟏 𝓛𝑺𝒀𝟐 𝓛𝑺𝒀𝟏 𝓛𝑺𝒀𝟐 𝓛𝑨𝑲  𝓛𝑨𝑲  ℒ1 0.033 0.037 ** 0.014 0.053 ** 0.127 ** 0.077 ** 0.121 ** 0.095 ** −0.014 ** −0.012 ** 0.008 ** 0.005 
 (1.74) (2.87) (0.65) (3.80) (5.61) (3.41) (6.17) (5.35) (−4.23) (−3.10) (3.02) (1.43) ℒ2 −0.010 0.022 −0.0004 0.024 0.114 ** 0.050 * 0.119 ** 0.060 ** −0.009 ** −0.016 ** 0.009 ** 0.006 
 (−0.62) (1.48) (−0.02) (1.69) (5.74) (2.28) (6.60) (3.40) (−2.87) (−3.92 (3.64) (1.49) ℒ3 0.014 0.071 ** 0.006 0.106 ** 0.110 ** 0.095 ** 0.105 ** 0.125 ** 0.0005 −0.005 0.010 ** 0.016 ** 
 (0.77) (4.85) (0.31) (6.49) (5.75) (3.88) (5.90) (6.03) (0.17) (−1.24) (4.05) (4.48) 

Notes: 1980 census, data for SY white male with positive weekly earnings, data for AK male with 
positive weekly earnings. t-statistics reported in parentheses. a Robust cluster adjusted standard 
errors. b Robust standard errors. ** Significant at the 1% level. * Significant at the 5% level. 

Our finding of a moderate positive ATE of CSL on income (when using labour law indicators) 
is generally in line with findings reported in the literature; see Acemoglu and Angrist (2001); Lleras-
Muney (2002); Oreopoulos (2006); and Goldin and Katz (2011). 

5. What Have We Learnt? 

Angrist and Pischke (2015, p. 227) discard the Acemoglu and Angrist (2001) study as ‘a failed 
research design’ and ascribe the failure to inappropriate CSL indicators, while maintaining the IV 
approach as appropriate. Conceptualising the IV approach as model choice and experimenting with 
the data sets used by AK and SY, our analysis exposes nescience about the causal model alternation 
nature of the IV approach to be the root cause of the failure instead. 

Primarily, the model choice perspective enables us to transpose the IV-OLS choice into the 
selection between non-nested models with rival conditional variables. Since consistency is an 
asymptotic property, this selection can be assisted by CV methods from statistical learning. Our CV 
experiments show that the OLS-based models outperform the IV-based models in terms of 
generalisability and stability, regardless the choice of CSL indicators. 
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Careful examination of the causal implications of the CSL effects on ARTE by causal chain model 
representation helps us expose several logical flaws in the conceptualisation of IV-based models. 
First, it is incorrect to refer to 𝛽  as a consistent estimate of ARTE when 𝑠 ≉ 𝑠. Second, the way 
in which 𝑠  is generated entangles ARTE with the ATE by CSL in a non-unique manner, reaching 
deadlock in resolving the ambiguity over the causal interpretation of 𝛽 . Third, the argument for 
using IVs to treat measurement errors due to omission of correlated latent variables such as aptitude 
is unwarranted because ARTE is defined explicitly on education, not aptitude, which entails the 
specification of ARTA as the parameter of interest. 

Experiments with models (9) and (10) show us that relatively robust 𝛽 .  estimates are 
attainable for ARTE, whereas this is not the case with various ATE estimates. The latter finding tells 
us that measurement error in CSL indicators is indeed a major concern, a result which confirms the 
common diagnosis of weak and/or inappropriate IVs in the literature. However, our results warn 
against the IV route as a dead-end in general when using IV to treat a latent variable problem since, 
in this case, measurement error in IVs is inevitable and also when prior knowledge suggests the need 
for explicit multivariate model specification with clear differentiation between moderator and 
mediator effects; see Arlot and Celisse (2010). 

Finally, we find clear guidance and reassurance of our approach from the fundamental concepts 
and theories in statistical learning. In particular, model bias is identified as the primary source of 
model-based inferential bias. No theoretically postulated model should be taken as globally correct 
prior to empirical verification, and structural risk minimisation should be regarded as the key task of 
empirical studies. Applied research should thus be focused on agnostic probably approximately 
correct (PAC) learning. Once we fully recognise the untenability of the presumption of theoretically 
postulated models as globally correct, an implicit presumption underlying the IV-choice over OLS, 
the methodological defects of this estimator-centred research strategy transpire. 
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Appendix A 

Complier Sub-Sample Experiment 

Since most people remain in school beyond the required years, the great majority of the sample 
belongs to a sub-population for which the ATE of the CSL on schooling is expected to be 0. In other 
words, the CSL is potentially binding only for school leavers, but by and large not for those who have 
continued education beyond the compulsory years of schooling. Using ℒ  indicators, roughly 
4.11% of the 1930–1939 born cohort complies19 with the law. The share of compliers is even smaller 
for the later-born cohort with 2.31%. Using ℒ  indicators instead, the share of compliers is similarly 
small with 4.18 and 2.53% in the 1930s and 1940s birth cohorts, respectively (see Table A1). Our rough 
estimates of complier shares are slightly lower than in Bolzern and Huber (2017), who report a 
complier share of 6–12% for European countries based on comparison of mean potential outcomes 
using binary treatment and instrument variables. 
  

                                                 
19 Compliers are overestimated here as the group includes some always takers that would have completed the 

years of schooling required by law, regardless of the law.  
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Table A1. Composition of CSL compliers, defectors, and always takers for ℒ . 
Composition of CSL Compliers for SY 𝓛𝑺𝒀𝟏 

 𝓛𝑺𝒀𝟏𝟏 = 𝟏 𝓛𝑺𝒀𝟏𝟐 = 𝟏 𝓛𝑺𝒀𝟏𝟑 = 𝟏 Total Years of Schooling Untreated 
1930–1939 

Equal 1.37% 5.48% 4.10% 4.11% ℒ : <7 3.75% 
Less 2.09% 4.00% 10.19% 6.97% ℒ : <8 5.88% 
More 96.45% 90.57% 85.71% 88.50% ℒ : <9 12.28% 

N 54,992 116,112 193,730 366,381 N (% of total) 1547 (0.42%) 
1940–1949 

Equal 0.45% 2.23% 2.90% 2.31% ℒ : <7 3.20% 
Less 0.69% 1.55% 5.40% 3.75% ℒ : <8 5.28% 
More 98.86% 96.22% 91.70% 91.71% ℒ : <9 8.87% 

N 86,252 112,481 337,979 548,870 N (% of total) 12,158 (2.22%) 
Composition of CSL Compliers for SY 𝓛𝑺𝒀𝟐 

 𝓛𝑺𝒀𝟐𝟏 = 𝟏 𝓛𝑺𝒀𝟐𝟐 = 𝟏 𝓛𝑺𝒀𝟐𝟑 = 𝟏 Total Years of Schooling Untreated 
1930–1939 

Equal 5.23% 4.11% 5.03% 4.18% ℒ : <8 5.09% 
Less 3.65% 10.67% 10.52% 7.44% ℒ : <9 10.79% 
More 91.20% 85.22% 84.45% 88.38% ℒ : <10 14.73% 

N 116,797 179,705 36,489 366,381 N (% of total) 33,390 (9.11%) 
1940–1949 

Equal 1.79% 3.00% 3.16% 2.53% ℒ : <8 2.53% 
Less 1.38% 5.64% 6.09% 4.30% ℒ : <9 5.41% 
More 96.83% 91.36% 90.74% 93.17% ℒ : <10 8.37% 

N 131,875 297,498 82,481 548,870 N (% of total) 37,016 (6.74%) 

Notes: ‘N’ is sample size, ‘equal’ is share of those with years of education equal to school law, and 
‘less’ years of education and ‘more’ years of education, respectively, for those treated by the respective 
law. For the untreated group, share of those with less than 7, 8, and 9 years of education among 
untreated is given. ‘Total’ compares ‘Untreated’ against total of the sample in the equal to the law, 
less than the law, and more than the law of schooling categories. 

Following from the above, the difference in the IV estimates for the ARTE when using different 
CSL indicators is commonly explained to be the result of localised treatment, i.e., treatment which is 
confined to specific complier groups; see SY and Angrist et al. (1996) and Angrist and Imbens (1995) 
more generally. We utilise these insights and examine the localness using sub-sample data. We 
replicate SY Tables 1 and A2 and AK Tables V and VI using sub-samples to separate ‘always takers’ 
from ‘compliers’, drawing on the above considerations underlying Table A1.20 Specifically, those 
who receive 12 or less years of schooling are allocated to the School sub-sample and those with more 
years of education are allocated to the Higher sub-sample. Further, the tails of the two sub-samples, 
Higher and School, are cut to investigate whether dissimilarities between the sub-samples arise due to 
outliers (cf. Figure A1). The aim of this experiment is to examine the empirical consistency of the two 
models under the localised treatment condition. 

The IV model estimates are close to the OLS counterparts for most of the School sub-sample, 
while 𝛽  is insignificant for the Higher sub-sample, confirming our conjecture of 0 ATE by CSL 
treatment for the latter sub-sample (Table A2).21 The only IV-based model specification that yields 𝛽 ≠ 𝛽 with instruments that are not refuted across the two cohorts is based on ℒ  indicators for 
the School sub-sample. Interestingly, the OLS estimates, while significant and positive throughout all 
sub-samples and cohorts, vary across sub-samples, with the ARTE decreasing for those attaining 13 
to 15 years of education.22 

                                                 
20 The separation remains imperfect, as some always takers will be contained in the complier group.  
21 The only exception is the later-born cohort with AK’s model specification, where all return to education 

estimators are insignificant or diagnostics reveal problems with the model design. 
22 This effect is more pronounced for the later-born cohort, potentially due to educational inflation. These data 

patterns are undetectable by the CSL-based IV method, since instruments narrowly target school goers but 
not those attaining higher education and large standard errors hide significant difference across cohorts. 
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Figure A1. Years for schooling density. Notes: AK education variable is capped at 17 years of 
schooling for comparability between the AK and SY data sets. 

Table A2. Estimation of 𝛽 via sub-sampling on educational attainment. 

 1930–1939 Born 1940–1949 Born 
Years of School Higher School Higher 

Schooling ≤12 7–12 13–15 ≥13 ≤12 7–12 13–15 ≥13 
SY 𝛽 (SY) 0.0613 ** 0.0587 ** 0.0546 ** 0.0935 ** 0.0612 ** 0.0596 ** 0.0273 ** 0.0641 ** 

[95% CI] a 
[0.0602–
0.0625] 

[0.0573–
0.0601] 

[0.0476–
0.0615] 

[0.0912–
0.0957] 

[0.0599–
0.0624] 

[0.0581–
0.0611] 

[0.0223–
0.0322] 

[0.0625–
0.0657] 𝛽  (with ℒ ) 0.0942 ** 0.0860 * −0.2577 −0.0218 0.1008 ** 0.2072 ** 0.4449 0.2292 

[95% CI] a 
[0.0623–
0.1261] 

[0.0094–
0.1626] 

[−0.809–
0.2937] 

[−0.585–
0.541] 

[0.0710–
0.1305] 

[0.0558–
0.3586] 

[−0.101–
0.991] 

[−0.124–
0.583] 

Sargan 
0.66 

(0.7198) 
0.17 

(0.9173) 
2.43 

(0.2963) 
5.44 

(0.0660) 
2.07 

(0.3549) 
3.59 

(0.1661) 
8.58 

(0.0137) 
22.7 

(0.0000) 

Hausman 
4.07 

(0.0437) 
0.49 

(0.4859)  
1.43 

(0.2325) 
0.17 

(0.6805) 
7.02 

(0.0081) 
4.63 

(0.0315) 
2.93 

(0.0867) 
0.98 

(0.3230) 𝛽  (with ℒ ) 0.1596 ** 0.1411 * −0.5833  0.0831 0.0836 ** 0.0671 0.3829 0.0168 

[95% CI] a 
[0.1182–
0.2010] 

[0.0193–
0.2630] 

[−1.76–
0.591] 

[−0.341–
0.5073] 

[0.0499–
0.1172] 

[−0.030–
0.164] 

[−0.203–
0.969] 

[−0.267–
0.3004] 

Sargan 
0.21 

(0.8990) 
11.7 

(0.0028) 
3.06 

(0.2171) 
0.56 

(0.7563) 
7.27 

(0.0264)  
4.23 

(0.1209)  
2.33 

(0.3123)  
9.23 

(0.0099) 

Hausman 24.6 
(0.0000)  

1.86 
(0.1732) 

1.79 
(0.1807) 

0.002 
(0.962)  

1.72 
(0.1896) 

0.02 
(0.8799) 

1.75 
(0.1862) 

0.11 
(0.7419) 𝛽 (AK)  0.0565 ** 0.0583 ** 0.0442 ** 0.0591 ** 0.0701 ** 0.0734 ** 0.0153 ** 0.0405 ** 

[95% CI] 
[0.0551–
0.0578] 

[0.0564–
0.0601] 

[0.0371–
0.0515] 

[0.0575–
0.0607] 

[0.0686–
0.0716] 

[0.0715–
0.0753] 

[0.0105–
0.0201] 

[0.0393–
0.0416] 𝛽  (with ℒ )  0.0864 ** 0.1107 ** 0.0295 −0.0446 0.0067 −0.0040 0.0606 0.2612 ** 

[95% CI] 
[0.0357–
0.1372] 

[0.0288–
0.1926] 

[−0.309–
0.368] 

[−0.147–
0.058] 

[−0.051–
0.0641] 

[−0.078–
0.0696] 

[−0.268–
0.3888] 

[0.1580–
0.3644] 

Sargan 
24.4 

(0.7088) 
24.2 

(0.7217) 
33.4 

(0.2633) 
30.1 

(0.4097) 
60.8 

(0.0005) 
59.6 

(0.0007) 
38.0 

(0.1230) 
33.5 

(0.2587) 

Hausman 
1.35 

(0.2447) 
1.60 

(0.2054) 
0.01 

(0.9320) 
4.44 

(0.0352) 
4.84 

(0.0279) 
4.37 

(0.0367) 
0.07 

(0.7863) 
27.5 

(0.0000) 
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Notes: SY data follows model specification (1) Tables 1 and A2; AK data follows Tables V and VI 
columns (5) and (6) model specifications. The discrepancy between OLS estimates obtained with SY 
and AK data sets is due to differences in the construction of the education variable; see Table 3 and 
discussion. p-values for Sargan and Hausman test in parentheses. a Standard errors cluster adjusted. 
** Significant at the 1% level. * Significant at the 5% level. 

Appendix B 

Testing for a CSL-Induced Shift in the Schooling Effect: 𝛽 . ≠ 𝛽 ̃ .  

If the introduction of the CSL has altered the ability composition of workers, the post-treatment 
schooling effect, 𝛽 . , might differ from the schooling effect before treatment, 𝛽 ̃ . , namely 𝛽 . ≠ 𝛽 ̃ . . To investigate if such a parameter shift has occurred, break-point Chow tests are 
conducted. The test requires careful sub-sample division conditional on the L-treatment and also 
different choices of CSL indicators. 

For the AK law indicators, the treated group is defined as those born in the first and second 
quarters of the year, while the untreated group is defined as those born in the remaining quarters. 
Since the CSL is binding for only a minority of the treated group—as evident from the negligible 
share of compliers (Table A1, Appendix A) 23 —the ability composition is unlikely to render a 
significant parameter shift using the full sample. As before, sub-sample division is used to minimises 
defectors and always takers in the treated group of the School sub-sample. A parametric shift should 
hence be discernible for the School but not the Higher sub-sample. As can be seen from Table A3, 
despite the careful sub-sample division, the null hypothesis of no break point cannot be rejected at 
the 5% level in all experimental settings. 

For the SY indicators, the sub-sample division is slightly more complicated. ℒ  indicators 
capture the minimum years of schooling and school attendance required by the respective state’s 
labour and education law, but only few states had no law in place over the sample periods, which 
results in a rather small sub-sample for the untreated. Further, the nature of the CSL indicators 
enables us to minimise defectors and always takers even further in the treated group of the School 
sub-sample. The treated group is re-defined as those among the School sub-sample who received 
treatment under a particular law and leave school right after the minimum years of schooling 
required by the law are completed. The sub-sample is denominated School Binding. Although the 
treated group does not fully capture those compliant to the law, the group fully encompasses those 
compliant while minimising the number of those defecting in the group under the given information. 

Table A3. Test for ℒ -induced parametric shift 

 1930–1939 1940–1949 
 Full School (7–12) Higher (13–15) Full School (7–12) Higher (13–15) 

Chow Test (Treated-Full) a 
0.65 

(0.4184) 
0.72 

(0.3949) 
0.19 

(0.6652) 
0.76 

(0.3842) 
0.25 

(0.6137) 
0.18 

(0.6673) 

Chow Test (Untreated-Full) b 
0.56 

(0.4549) 
0.63 

(0.4286) 
0.19 

(0.6617) 
1.05 

(0.3053) 
0.17 

(0.6769) 
0.18 

(0.6673) 

Notes: 1980 census, males with positive weekly earnings. p-values in parentheses. a The treated sub-
sample is defined as those born in the first and second quarters. b Untreated sub-sample is defined as 
those born in the third and fourth quarters. 

As can be seen from Table A4, using ℒ  indicators, the break-point Chow tests provide no 
evidence for a treatment induced parametric shift in the ARTE parameter at the 1% significance level, 
and some evidence at 5% significance level for the School Binding sub-sample. Using ℒ  as 
indicator, there is some evidence for a parametric effect for the later born cohort. The effect is absent 
from the Higher sub-sample as expected, but detectable at the 5% level for the Full sample and School 

                                                 
23 Although Table A1 (Appendix A) is based on SY data, the patterns are likely to be identical for the AK data. 
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sub-sample. However, given measurement errors identified for the ℒ  indicators in Table 4, the 
evidence is too weak to conclude on a parametric shift. 

Table A4. Test for ℒ -induced parametric shift in 𝛽 .  

1930–1939 
 Full School (7–12 y) Higher (13–15 y) School Binding c 
 𝓛𝑺𝒀𝟏 𝓛𝑺𝒀𝟐 𝓛𝑺𝒀𝟏 𝓛𝑺𝒀𝟐 𝓛𝑺𝒀𝟏 𝓛𝑺𝒀𝟐 𝓛𝑺𝒀𝟏 𝓛𝑺𝒀𝟐 

Chow Test (Treated-Full) a 
0.01 

(0.9172) 
1.80 

(0.1797) 
0.01 

(0.9236) 
0.06 

(0.8056) 
0.46 

(0.4990) 
0.09 

(0.7693) 
1.26 

(0.2607) 
2.59 

(0.1076) 

Chow Test (Untreated-Full) b 
0.02 

(0.8848) 
0.37 

(0.5417) 
0.03 

(0.8574) 
0.10 

(0.7556) 
0.38 

(0.5395) 
0.20 

(0.6569) 
4.45 * 

(0.0350) 
0.19 

(0.6596) 
1940–1949 

 Full School (7–12 y) Higher (13–15 y) School Binding c 
 𝓛𝑺𝒀𝟏 𝓛𝑺𝒀𝟐 𝓛𝑺𝒀𝟏 𝓛𝑺𝒀𝟐 𝓛𝑺𝒀𝟏 𝓛𝑺𝒀𝟐 𝓛𝑺𝒀𝟏 𝓛𝑺𝒀𝟐 

Chow Test (Treated-Full) a 
2.24 

(0.1342) 
2.28 

(0.1312) 
1.49 

(0.2220) 
1.96 

(0.1617) 
0.02 

(0.8847) 
0.00 

(0.9896) 
0.00 

(0.9580) 
14.05 ** 
(0.0002) 

Chow Test (Untreated-Full) b 
5.04 

(0.0248) 
4.23 * 

(0.0396) 
3.25 

(0.0713) 
6.06 * 

(0.0138) 
0.05 

(0.8195) 
0.02 

(0.8966) 
0.26 

(0.6115) 
2.41 

(0.1206) 

Notes: 1980 census, white males with positive weekly earnings. p-values in parentheses. a The treated 
sub-sample is defined as those born in a state with some school law in place, that is, minimum years 
of schooling unequal to 0. b Untreated sub-sample is defined as those born in a state with no school 
law in place, that is, minimum years of schooling equal to 0. c Definition of treated and untreated 
change for this experiment. The treated sub-sample is defined as those who drop out after the 
minimum years of schooling and the untreated sub-sample comprises of the remaining observations. 
** Significant at the 1% level. * Significant at the 5% level. 

Overall, the evidence for the presence of an L-treatment-induced parametric shift is weak and 
rattled with deficiencies in the CSL indicators. However, if the substantive interest is with a data-
consistent ARTE effect, data patterns originating from sheepskin effects and educational inflation are 
found to be of far greater concern than an L-treatment-induced parametric shifts (see Table A2 
Appendix A and Table 2). 
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