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Tropical peat swamp forests are invaluable for their role in storing atmospheric carbon,

notably in their unique below-ground reservoirs. Differing from terra firme forests, the

peat-forming function of tropical swamps relies on the integrity of discrete hydrological

units, in turn intricately linked to the above-ground woody, and herbaceous vegetation.

Contemporary changes at a local, e.g., fire, to global level, e.g., climatic change, are

impacting the integrity, and functioning of these ecosystems. In order to determine the

level of impact and predict their likely future response, it is essential to understand past

ecosystem disturbance, and resilience. Here, we explore the impact of burning on tropical

peat swamp forests. Fires within degraded tropical peatlands are now commonplace;

whilst fires within intact peat swamp forests are thought to be rare events. Yet little is

known about their long-term natural fire regime. Using fossil pollen and charcoal data

from three peat cores collected from Sarawak, Malaysian Borneo, we looked at the

incidence and impact of local and regional fire on coastal peat swamp forests over the last

7,000 years. Palaeoecological results demonstrate that burning has occurred in these

wetland ecosystems throughout their history, with peaks corresponding to periods of

strengthened ENSO. However, prior to the Colonial era c. 1839 when human presence

in the coastal swamp forests was relatively minimal, neither local nor regional burning

significantly impacted the forest vegetation. After the mid-nineteenth century, at the onset

of intensified land-use change, fire incidence elevated significantly within the peatlands.

Although fire does not correlate with past vegetation changes, the long-term data reveal

that it likely does correlate with the clearance of forest by humans. Our results suggest

that human activity may be strongly influencing and acting synergistically with fire in

the recent past, leading to the enhanced degradation of these peatland ecosystems.

However, intact tropical peat swamp forests can, and did recover from local fire events.

These findings support present-day concerns about the increase in fire incidence and

combined impacts of fire, human disturbance and El Niño on peat swamp forests, with

serious implications for biodiversity, human health and global climate change.

Keywords: disturbance, fire, human impact, palaeoecology, peat swamp forests, resilience, tropical peatlands,

vegetation change
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INTRODUCTION

Tropical peatlands constitute one of the most effective mediums
through which we can mitigate the ongoing global rise in carbon
emissions (Page et al., 2011; Lawson et al., 2015). This is only the
case however, if these peatlands are in an intact state (Dommain
et al., 2014). The peat swamp forests of Southeast Asia, covering
an area of 25 million ha (Page et al., 2011), hold c. 12%, some
69 Giga tons, of the total carbon stored in the world’s peatlands
(Page et al., 2011). The performance of these peat swamps as
a carbon sink relies on a tight interrelationship between the
landscape, vegetation, and hydrological conditions (Page et al.,
1999; Dommain et al., 2010; Posa et al., 2011), making the forest
component of this ecosystem vital for its maintenance.

Tropical peat swamp forests are formed in environments
where water-logged conditions develop, coupled with high
humidity (Liong and Siong, 1979; Andriesse, 1988; Dommain
et al., 2014). Waterlogging creates an anaerobic environment,
in which limited decomposition can occur, resulting in an
accumulation of layers of leaves, and woody matter from
the resident vegetation. Though not restricted to low-lying
areas, coastal peat domes are common across Southeast Asia
(Dommain et al., 2011). Their development is thought to have
started c. 7000 Cal. year BP (Dommain et al., 2014), after the mid-
Holocene sea-level highstand, prior to sea-level fall and coastal
progradation (Dommain et al., 2011).

These coastal peat swamp forests provide multiple ecosystem
services to many different communities. At a global level, they
are hugely important for their carbon storage and sequestration
potential (Dommain et al., 2014); the peat swamp forests of
Malaysia store 9.1 Giga tons of carbon, c. 2% of the volume
globally stored in peat despite comprising <1% of the global
area (Page et al., 2011), and have been sequestering it for
thousands of years (Dommain et al., 2011, 2014). With much
of the region’s lowland forest habitat of mineral soils having
already been converted into agriculture or other uses (Miettinen
et al., 2016), the peat swamp forests also act as a refuge for a
vast array of flora and fauna (Yule, 2010), and a primary habitat
for specially-adapted species, such as blackwater fish (Thornton
et al., 2018).

Despite this, peat swamp forests are being lost at a rapid pace:
in Southeast Asia between 2000 and 2010, 56% were converted
to plantations (Miettinen et al., 2012b), in addition to the area
lost through logging and other development (Koh et al., 2011).
In particular, fire is considered one of the most important drivers
of land-use change and vast areas of these tropical peat swamps
burn every year (Razali et al., 2010; Phua et al., 2012; Gaveau et al.,
2014), especially on the island of Borneo (Langner and Siegert,
2009; Hoscilo et al., 2011; Miettinen et al., 2016).

Burning has increasingly affected the peat swamp forests of
Southeast Asia in the last 2 to 3 decades (Taylor, 2010) and
is now claimed to be one of the most profound threats to
peatland habitats (Lee, 2000; Razali et al., 2010), as well as to all
rainforest ecosystems (Laurance, 2003). However, natural fires,
predominantly caused by lightning strikes, have constituted an
important part of the ecosystem dynamics in these tropical peat
swamps (Taylor et al., 2001) by creating gaps in which succession

can occur. A study on peat swamp forests inWestern Kalimantan
suggests that fire has been a component of the landscape for at
least the last 30,000 years (Anshari et al., 2001), and in Singapore,
for the last 23,000 years (Taylor et al., 2001).

Small-scale forest burning by humans, largely as part of
shifting cultivation practices (Haberle et al., 2001), has been
recorded in forests in Sarawak from the early Holocene (Hunt
and Premathilake, 2012). More recently however, fires are
reported to have increased in frequency, magnitude, and impact
in peat swamp forests in eastern Kalimantan (Hope et al., 2005),
in Australasia over the last few centuries (Mooney et al., 2011),
and across other areas of Southeast Asia in the last 2 or 3 decades
(Taylor, 2010). How much recent fire frequency has increased
relative to historical levels, and what impact it has had in shaping
ecosystem dynamics in the peat swamp forests of Sarawak, is
still poorly understood. These constitute important knowledge
gaps for the ongoing management of fire within these peatland
ecosystems, as has been proven elsewhere (Marrs et al., 2018).

This study aimed to investigate the patterns of fire, both
local and regional in scale, in Sarawak’s coastal peat swamp
forests, using a long-term ecological approach. Three sediment
sequences were extracted from peatlands on the coast of northern
Borneo, where peat swamp forests dominated in the past (Cole
et al., 2015), replaced now by degraded peatlands. Cole et al.
(2015) demonstrated that peat swamp forest plant communities
persisted for thousands of years in these locales, showing
resilience through periods of climatic variability and other
forms of disturbance; but that these communities have become
more unstable in the recent past, coinciding with increases in
indicators of human presence in the landscape. The overall
objective of this paper is to explore more closely the presence,
dimensions and impact of fire in these forests over the Late
Holocene: to determine the change in frequency and magnitude
of past burning in these (previously) intact ecosystems, infer
the likely causes of any changes and examine if/how fire has
influenced forest composition. Through reconstructing past
burning regimes and vegetation change from these three fossil
records, this work addresses three key research questions: (i)
What is the natural fire regime in these swamps, and how has it
changed through time?; (ii) What caused such patterns of fire in
the landscape?; and (iii) How do the changing fire regimes impact
the peat swamp forest vegetation? Results provide insights into
past fire regimes, and their drivers, across three coastal peatland
ecosystems, demonstrating the differing impacts of burning on
the forest communities over time.

MATERIALS AND METHODS

Data Collection
The State of Sarawak, in northern Borneo, contains the greatest
proportion of Malaysia’s peat swamp forests, covering an area
of approximately 3,000 km2 or 2% of the State (Miettinen
et al., 2012a), and its deforested peatlands, which extend over
an additional 11% (FAO, 2012). Until recently, the peat swamp
forests of Sarawak were denounced as “marginal wastelands”
(Sawal, 2003), of little use except in the absence of alternative
land. As such, large-scale conversion has occurred (Miettinen
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FIGURE 1 | Map showing the geographical location of Sarawak, Malaysian Borneo (inner box), within Southeast Asia, annotated with the main settlements (blue

circles), and three peat swamp sites (red circles) from which cores were extracted: DPL (Deforested Peatland), PSF (Peat Swamp Fragment), and CPL (Converted

Peatland). Sarawak State Boundary is demarked by a gray line; peatland areas by brown shading [courtesy of Wetlands International: “Malaysia peat lands,” accessed

through Global Forest Watch (www.globalforestwatch.org) (17/04/2019)].

et al., 2012b), predominantly for agricultural production (Koh
et al., 2011), where fire is commonly used to clear the forest
vegetation (Wooster et al., 2012).

Sedimentary cores were extracted using a hand-held
coring device, from three peatlands across the Miri and Batu
Niah Districts of north-east Sarawak: Deforested Peatland
from Senadin, Kuala Baram (04

◦

30′47′′N, 114
◦

2′47′′E), an
area of degraded peatland covering >50 km2; Peat Swamp
Fragment from Sungai Dua Forest Reserve (04

◦

21′24′′N,
114

◦

0′21′′E), a c. 2 km2 fragment of secondary peat swamp
forest; and Converted Peatland from Sungai Niah (03

◦

52′4′′N,
113

◦

42′43′′E), an agriculture-forest matrix of c. 1 km2

(Figures 1, 2). Though these three sampled sites cover a
relatively narrow geographical range of 80 km along the coast
of northern Borneo, since there is limited variation in climate,
geology and land-use across the region, they are sufficiently
representative of the coastal peat swamp ecosystems of Sarawak,
and potentially those at a greater distance within insular
Southeast Asia.

Using standard palaeoecological techniques (Bennett and
Willis, 2001), the sediment cores were analyzed at set intervals
for fossil pollen, microfossil, and macrofossil charcoal, and
mineral magnetic material (magnetic susceptibility) (see
Supporting Material for more information on the methods used
in sediment and pollen preparation and analysis).

Chronology
To determine the age-depth relationship of the three sedimentary
profiles, samples containing bulk organicmaterial, were extracted
from each peat core, prepared for 14C dating and analyzed with
AMS radiocarbon dating techniques, at the 14Chrono Center
in the Archaeology and Palaeoecology Department, Queen’s
University Belfast, and the SUERC AMS Laboratory, NERC
Radiocarbon Facility. (See Wust et al., 2008, for a critique
of sampling techniques of tropical peat cores for radiocarbon
dating). The coding package Clam (Blaauw, 2010) in R Core
Team (2012), with a Northern Hemisphere correction, i.e.,
the IntCal04 curve, was used to calibrate the conventional
radiocarbon dates, and construct the best-fitting age-depth
models (see Figure S1).

Reconstructing Past Burning Regimes
A size-class analysis of fossil charcoal, i.e., differentiating
between macrofossil and microfossil charcoal, was performed
to investigate changes in local and regional fire regimes,
respectively, in each site through time (Whitlock and Larsen,
2002). Macrofossil charcoal particles, henceforth macrocharcoal,
were isolated from each 1 cm3 sample extracted for pollen
analysis, by passing the sample through a 150µm sieve. This
process divides the macro- and microfossil components of the
sediment. The resulting macrofossil isolates were then observed
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FIGURE 2 | Photographs of each study site: (A) Deforested Peatland, an area

of degraded peatland covering >50 km2 (with a fire burning in the distance

when this photograph was taken); (B) Peat Swamp Fragment, a c. 2 km2

fragment of secondary peat swamp forest; and (C) Converted Peatland, an

agriculture-forest matrix of c. 1 km2 (Photographs taken by L.E.S.C).

under a light microscope and the complete macrocharcoal
content counted to give a measure of the number of particles
per cm3 at simultaneous intervals with fossil pollen counts.
Fossil charcoal particles are identifiable as black, opaque,

block-shaped, and angular (Clark, 1988). The microfossil
charcoal concentration, henceforth microcharcoal, was counted
at the same intervals. Since microcharcoal particles are both
small, i.e., <150µm, causing them to separate out with the
pollen component during the sieving of samples, and resistant
to the processing performed to isolate fossil pollen grains and
spores, they can be counted on the same slides prepared for
pollen analysis. Clark’s point count method (Clark, 1982), which
converts standardized count data into concentration values,
measured in cm2/cm3, was used to quantify the microcharcoal
concentration in thin section. Macrofossil charcoal is used to
broadly reconstruct local fire events, since the larger charcoal
particles produced during fires, i.e., those >150µm, will be
heavier and less easily transported by wind or other vectors away
from the burning focus, and thus concentrate around it.Whereas,
microcharcoal, comprising smaller and therefore lighter charred
particles, can be transported over large distances from the site of
burning, and therefore signal regional fire events (Clark, 1988).

Reconstructing Vegetation Change Over
Time
Due to the diversity of species in the peat swamp flora and
differing levels of pollen production, and to allow for an
interpretation of the palaeo-plant communities (for example
Muller, 1963), taxa identified in the fossil pollen record were
allocated to ecological groups (seeTable S2, SupportingMaterial)
using various publications from the region (Anderson, 1964,
1980; Stuijts, 1993; Coode et al., 1996; Anshari et al., 2001,
2004). A pollen sum was then calculated and used to estimate
the relative abundance of each taxa and each ecological group
through time, giving a percentage score, e.g., PSF%. The different
ecological groups are defined as follows: total PSF (TotPSF),
which encompasses all peat swamp forest (PSF) associated taxa;
the mature PSF community (PSF); the pioneer PSF community
(PSF+) (indicative of transient canopy openings within a
closed peat swamp forest); taxa of degraded peatlands (DP)
(signaling spatially and temporally greater forest discontinuities
on peat); taxa of other forests not occupying peat substrates
(OF); coastal vegetation (CV) (e.g., mangroves); and Open
vegetation, comprising taxa which dominate highly disturbed,
open-canopied areas, for example Poaceae, Cyperaceae, and
ferns (both of monolete and trilete morphologies). This latter
ecological group is used as an indicator of human impact:
Poaceae can be associated with human presence in forested
palaeo-environments (Bush, 2002), and Cyperaceae and ferns are
documented as characteristic of unmanaged degraded peatlands
(Miettinen and Liew, 2010). These taxa can also produce
unusually large volumes of pollen per plant, which can bias the
interpretation of the vegetation composition of the landscape
in palaeo studies (Bush, 2002). For this reason, and for their
utility as anthropogenic indicators, Open vegetation was not
included within the pollen sum but reported as a separate
response variable.

Significant pollen assemblage zones were constructed using an
optimal splitting by information content technique on all pollen
data, after assessing the number of zones that were significant
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via a broken stick modeling approach across multiple analyses
(Bennett, 1996). Psimpoll version 4.26 (Bennett, 1994) was used
to display all pollen, spore, and charcoal records (Figure 3, and
Figures S2, S3).

Data-Handling Techniques
In order to explore the fire regime of each core and specifically
when/if peaks in fire activity have occurred through time,
the macrocharcoal and microcharcoal data (C), recorded as
cm2/cm3 and particles/cm3, respectively, were transformed to
isolate such peaks from background noise. Firstly, background
burning levels were assessed, and secondly, peaks in fire
activity isolated from these. Prior to the transformation, both
sets of data were divided by the sediment accumulation
rate calculated in Clam, to produce a rate of macrocharcoal
and microcharcoal accumulation through time, measured in
cm2/year and particles/year, respectively. This reduced the
chances of fossil charcoal peaks in the sedimentary records being
an artifact of sediment accumulation variability rather than real
elevations in fire activity through time (Higuera et al., 2012). Both
sets of fossil charcoal data were then resampled in the first step
of the transformation, using a natural logarithm to stabilize the
variance in the datasets and isolate the background fire activity,
Cback, i.e., the baseline fire activity recorded in each sediment
profile, using the following equation:

Cback = log(C + 1)

The second step then involved subtracting this background trend
from themacrocharcoal andmicrocharcoal data, to create a series
of residuals, i.e., peaks:

Cpeak = C − Cback

This transformation thus provides a record of fossil charcoal
fluctuation, Cpeak, through time for all three sites (see Figure S2,
Supporting Material), in which unusually intense burning
incidences are highlighted. Although the true rate of fire events
cannot be estimated due to unequal sampling intervals, episodes
of increased burning frequency can be inferred where there are a
greater number of elevated peaks within a period of time.

To investigate the relationship between fire and peat swamp
forest vegetation through time, multivariate analyses were carried
out. Principal Components Analysis (henceforth PCA) was
performed in CANOCO (ter Braak and Smilauer, 2002) to
explore and graphically represent the nature of the relationships
between all recorded environmental variables and both internal
and external peat swamp forest dynamics. Data were square-
root transformed and species scores were divided by standard
deviations and scaled according to inter-species correlations.
Internal dynamics are represented by changes in PSF% and
PSF+%, and external dynamics by the four key ecological groups
in the landscape, i.e., TotPSF, DP, OF, and CV%. To analyse the
strength of the correlation between firstly fire, and secondly all
environmental variables, Monte Carlo Permutation Tests were
performed, using 999 restricted permutations by sample, to
account for the time-series nature of the data.

RESULTS

(i) What Is the Natural Fire Regime in These
Coastal Peat Swamps? How Has It
Changed Toward the Present Day?
Fire has been present in all three sites through time (Figure 3, and
Figure S2). Fluctuations in macrocharcoal and microcharcoal
levels vary within and between cores, though there are several
distinct phases of elevated magnitude and frequency of burning
as follows.

2,800–1,800 Cal. year BP
Within the Peat Swamp Fragment and Converted Peatland
sites, there is a coincident increase in size, i.e., magnitude,
of macrocharcoal peaks, and microcharcoal for the latter
site, between approximately 2,800–1,800 Cal. year BP. These
magnitudes do not exceed those seen in the last 200 years
however. In the Converted Peatland site the magnitude
and frequency of macrocharcoal peaks and frequency of
microcharcoal peaks appear to be greater prior to c. 5,000
Cal. year BP, coinciding with the local presence of a mangrove
ecosystem (Figure 3). After this period, levels of macrocharcoal,
and microcharcoal demonstrate very low magnitudes in all three
sites until the next period of elevated burning, from c. 200 Cal.
year BP.

200 Cal. year BP to Present
Over the last 200 years, macrocharcoal and microcharcoal levels
indicate an increase in both magnitude and frequency of local
and regional burning, respectively, in all three sites. These
results further suggest that levels of burning exceed those seen
throughout the fossil charcoal records of all cores. Microcharcoal
levels in the Deforested Peatland and Peat Swamp Fragment
sites, especially, greatly exceed those recorded in the past. The
exception to these historically-novel elevations of fossil charcoal
is in the Converted Peatland site, though not associated with a
peat swamp vegetation community (Figure 3).

(iii) How Do the Changing Fire Regimes
Impact the Peat Swamp Forest Vegetation?
Peat swamp forest is considered the baseline vegetation at
all three sites over the Late Holocene period, given that this
ecosystem type has dominated the vegetation profiles since its
development in each location. Each sediment core records a
different peat development history, with Deforested Peatland
having the most recently accumulated peat soils, starting from
approximately 1,500 Cal. year BP; in Converted Peatland, organic
matter started to accumulate in the substrate of an estuarine
mangrove ecosystem several thousand years prior, though the
forest associated with peat swamps did not develop until c. 2,800
Cal. year BP; and in Peat Swamp Fragment the onset of peat
development arose c. 3,500 Cal. year BP (See Figure S3, for
summary pollen diagrams).

Since the inferred onset of peat swamp development, the
percentage of pollen from the total PSF ecological group
(aggregate dark and light green components on the pollen sum
diagram, Figure 3) has been relatively constant in each site
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FIGURE 3 | Pollen summary diagrams for each site: (A) Deforested Peatland; (B) Peat Swamp Fragment; and (C) Converted Peatland, showing the sediment

stratigraphy, magnetic susceptibility, five different ecological groups (represented by the following colors: PSF dark green, PSF+ light green, DP brown, OF orange and

CV yellow), open vegetation (light gray), and macrocharcoal and microcharcoal (red). Significant pollen zones are shown for each (labeled D-, P-, and C-, respectively).

TotPSF% comprises the sum of PSF% and PSF+%, and is represented by the division between PSF+% and DP%.

Frontiers in Forests and Global Change | www.frontiersin.org 6 August 2019 | Volume 2 | Article 48

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


Cole et al. Fire in Tropical Peatlands

TABLE 1 | Monte Carlo Permutation Test results, performed to analyse the strength of the relationship between changes in the vegetation in each site and

(a) microcharcoal and macrocharcoal, and (b) all recorded environmental variables, i.e., macrocharcoal, microcharcoal, magnetic susceptibility and open vegetation

(only the strongest relationship is displayed).

Site Environmental variable F-statistic p-value Degrees of freedom†

DEFORESTED PEATLAND

(a) Internal Microcharcoal 0.14 0.892 61

Macrocharcoal 0.82 0.553 61

External Microcharcoal 0.57 0.476 125

Macrocharcoal 1.77 0.180 125

(b) Internal Magnetic Susceptibility 6.28 0.078 61

External Magnetic Susceptibility 12.75 0.094 125

PEAT SWAMP FRAGMENT

(a) Internal Microcharcoal 1.75 0.482 99

Macrocharcoal 0.74 0.477 99

External Microcharcoal 3.51 0.142 101

Macrocharcoal 0.55 0.527 101

(b) Internal Open vegetation 4.21 0.155 99

External Microcharcoal 3.51 0.142 101

CONVERTED PEATLAND

(a) Internal Microcharcoal 2.04 0.097 117

Macrocharcoal 1.66 0.685 117

External Microcharcoal 6.08* 0.014 237

Macrocharcoal 0.84 0.723 237

(b) Internal Magnetic Susceptibility 15.59 0.262 117

External Open vegetation 9.55* 0.015 237

*Significant relationship at p < 0.05 level.
†
Number of sampled sediment levels per core: Deforested peatland, 33; Peat swamp fragment, 52: Converted Peatland, 61.

The vegetation is split into internal PSF dynamics, i.e., the most significant recorded factors associated with PSF% and PSF+% dynamics, and external landscape dynamics, i.e.,

factors most strongly linked with changes in all ecological groups in the landscape (TotPSF, DP, OF, and CV%). [999 restricted permutations by sample (allowing a time-series analysis)

were used to calculate F-statistics and p-values].

through time, fluctuating c. 80%. However, in the Peat Swamp
Fragment and Converted Peatland sites, the total PSF proportion
declines in the last c. 500 years. The indicator group for turnover
within the peat swamp forest, PSF+, does not appear to follow
a pattern within or across sites, thus demonstrating internal
dynamism throughout the past. Open vegetation levels in all sites
remain low until c. 200 Cal. year BP, with the exception of an
anomalous peak in the Peat Swamp Fragment prior to 2,000 Cal.
year BP. This notable increase in open vegetation taxa suggests
that there was a higher incidence of open-canopied areas in the
vicinity of these sites in the last several 100 years.

Both internal peat swamp forest dynamics and external
landscape change do not appear to correlate with fire, whether
local or regional in scale (Table 1). The exception is the
relationship between microcharcoal and external ecological
change in the Converted Peatland site. Here, regional burning
is correlated with vegetation fluctuations in the wider landscape
(F-statistic = 6.08, p-value = 0.014): as microcharcoal levels
increase, the degraded peat ecological group (DP), and to an
extent non-PSF-related forest taxa (OF), increase (Figure 4C).
In terms of other environmental variables, the peat swamp
forest and landscape vegetation within the Deforested Peatland
site appears to correlate most with magnetic susceptibility
changes, and in the Peat Swamp Fragment with changes in
open vegetation and regional fire, albeit all non-significantly. In

the Converted Peatland site, PSF dynamics had the strongest
association with magnetic susceptibility, and landscape dynamics
were significantly correlated with changes in open vegetation
(F-statistic= 9.55, p-value= 0.015).

Despite each core exhibiting different ecological patterns, one
key trend is visible from the ordination diagrams: increases in
open vegetation are correlated in all three sites with the pollen
samples counted within the last c. 200 years (see circled clusters,
Figure 4). In the Converted Peatland and Peat Swamp Fragment
cores, the degraded peat ecological group is also associated
with this recent landscape trend, and across all sites, Trema
(Cannabaceae), increases during this period (see Figure S3,
Supporting Material).

DISCUSSION

This investigation has provided novel insights into the local
to regional patterns of past burning across three peatland sites
over the Late Holocene, the potential drivers of this pattern
and its influence on the peat swamp forest vegetation. Fossil
charcoal analysis found there to be no consistent fire regime
across the three studied peat swamp forest ecosystems on the
coast of Sarawak over the last 2,000–7,000 years. Palaeoecological
results also demonstrate that fire has not had a significant impact
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FIGURE 4 | PCA Ordination diagrams for coring sites (A) Deforested Peatland, (B) Peat Swamp Fragment, and (C) Converted Peatland, showing the relationships

between the recorded environmental variables (i.e., macrocharcoal, microcharcoal, magnetic susceptibility, and open vegetation), and temporal changes in (i) internal

PSF dynamics: mature (PSF%), and pioneer PSF taxa (PSF+%), and (ii) external landscape dynamics: the ecological groups comprising total PSF (TotPSF%),

degraded peat (DP%), other forest (OF%), and coastal vegetation (CV%). In (A), the 1st axis of the ordination explains 33.3% of the variance in the distribution of the

ecological groups and the 2nd axis, 4.4%; with the inclusion of environmental variables, this percentage variance accounted for by the 1st and 2nd axes becomes

(Continued)

Frontiers in Forests and Global Change | www.frontiersin.org 8 August 2019 | Volume 2 | Article 48

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


Cole et al. Fire in Tropical Peatlands

FIGURE 4 | 87.1 and 11.4%, respectively. In (B), 11.3% variance is attributed to the 1st axis and 2.2% to the 2nd axis, with the explained variance increasing to 79.5

and 15.4%, respectively, when environmental variables are accounted for in the assessment of directional distribution of taxa. In (C), 43.9 and 3.1% are due to the 1st

and 2nd axes, and 93.1 and 6.6%, respectively, when environmental variables are included. As Table 1 demonstrates, only microcharcoal and open vegetation are

significantly correlated with external landscape dynamics in the Converted Peatland site. All samples dated within the last 200 Cal. year BP have been highlighted

(represented by a thicker cross), and encircled where they have a notable association with environmental variables, i.e., predominantly open vegetation.

on either internal peat swamp forest vegetation communities
or ecological change within the wider landscape through
time. Rather, patterns of burning appear to be predominantly
idiosyncratic and drivers of vegetation change predominantly
anthropogenic, influenced by changes in the political, social, and
economic environment of the region in the last two millenia.

(i) What Is the Natural Fire Regime in These
Coastal Peat Swamps? How Has It
Changed Toward the Present Day?
Results from this study demonstrate the presence of fire, to
some degree, throughout the past within these coastal peat
swamp forests, in accordance with findings from elsewhere in
the region (Anshari et al., 2001; Taylor et al., 2001). However,
there is no apparent “natural” or predictable baseline for the
local or regional burning regime. Instead, evidence suggests that
there were two notable episodes of increased fire across sites,
overlaying a background of heterogeneity. In line with other
studies, there are lengthy periods, for example between c. 1,800–
500 Cal. year BP, where fire frequency and magnitude appear to
be low. Hope et al. (2005) found that fire was a rare occurrence
in peat swamp forest at a distance from rivers before 3,000 years
ago, and from contemporary work, Miettinen et al. (2012c), and
Cattau et al. (2016) report the near absence of burning in intact
peat swamp forests in Sumatra and Kalimantan, respectively. The
large elevation in local and, to an extent, regional burning in the
Converted Peatland site prior to 5,000 Cal. year BP can likely
be explained by the existence of an estuarine ecosystem during
that period. It is probable that charcoal from extra-local fires was
washed in with tidal currents and accumulated in the mangrove
muds (a process enabling both micro- and macro-sized particles
to travel and become deposited), since past mangrove ecosystem
dynamics are not strongly associated with fire (e.g., Alongi, 2008).
Thus, these earlier elevated levels of burning are likely associated
with tidally-influenced mangrove communities, rather than peat
swamp forests.

Two episodes where considerable coherence and elevation in
the fossil charcoal records do occur across sites, suggestive of
increased regional burning, or pervasive landscape change, are
as follows: the first between approximately 2,800–1,800 Cal. year
BP, and the second, within the last 200 years. In order to explore
the factors that could have influenced these fire patterns over the
Late Holocene, records of regional climate and information on
local anthropogenic land-use change were sourced.

(ii) What Caused Such Patterns of Fire in
This Landscape?
In general, climate did not appear to have a significant impact
on the burning regime in any of the three sites through time.

However, the first simultaneous episode of elevated local and
regional burning observed between c. 2,800–1,800 Cal. year
BP, coincides with a period of climatic drying in the Tropics
that is reported to occur in the interval 2,000–3,000 Cal. year
BP (Woodroffe et al., 2003; Selvaraj et al., 2007) (Figure 5).
Anshari et al. (2001) report a similar increase in microfossil
charcoal particles during this period, in a peat core extracted
fromWest Kalimantan, and suggest that increased ENSO-related
climatic variability may have been one reason for such an
increase, predominantly through causing stress to previously
stable ecosystems. They also refer to human disturbance as a
potential driving force for greatly elevated charcoal to pollen
ratios recorded from c. 1,400 year BP (Anshari et al., 2001).

In order to assess the probable anthropogenic influence on
burning regimes in the coastal peat swamp forests studied here,
there is a complex history of human-environment interactions
(Figure 5) that warrants consideration. Evidence for the first
human presence in northern Borneo comes from a “Deep
Skull” found in the Niah Caves in northeast Sarawak, which
has been dated to over 35,000 Cal. year BP (Barker et al.,
2007). Other work suggests that people have been living in
this area for even longer (Hunt and Premathilake, 2012), and
using fire to clear forest vegetation (Hunt and Rushworth,
2005). During the late Pleistocene and much of the Holocene,
low-density human communities in Borneo would have had
limited impact on their densely-forested environment, and
their activities, predominantly as hunter-gatherers and shifting
cultivators, are unlikely to have extended far beyond the edges of
peat domes, or from river-based transport networks (Hope et al.,
2005). Large-scale landscape modification started to happen with
the establishment of Colonial rule. Captain James Brooke, the
first Viceroy of Sarawak, landed on Borneo’s shores in 1839,
and proceeded to organize her politics and landscape. Captain
Brooke’s goals were to improve levels of peace amongst the
resident communities and to increase the productivity of the
land (MacDonald, 1956). Fire would have played an important
role in this strategic landscape conversion. At this time, people
searched for land on which to farm and secure rights, in some
cases turning to the relatively under-exploited peat swamps.
Interview data suggests that people began living in these areas
from c. 1850, but the majority settled in peatlands much later, i.e.,
the early 1970s (Cole, 2013). Approximately 100 years after the
first settlement, mechanization had drastically increased, along
with the wealth and population of the State; developing this
waterlogged “wasteland” on a large scale became both more
feasible and more financially rewarding. Selective logging in the
coastal peat swamps started in the early 1950s and constituted a
key income for the State for 20 years. It continues today, although
with declining extraction rates due to the much-depleted tree
stocks. Prior to the Environmental Quality Act of 1974 (Dolmat,
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FIGURE 5 | Composite diagram illustrating the environmental, anthropogenic, and peat swamp forest ecological changes occurring within the study region over the

last 3,000 years, from the first distinct phase of elevated burning across two sites (CPL and PSF, Figure 3). Historical and climatic drivers of past fire incidence within

Sarawak’s coastal peatlands have been identified through a literature search and interviews (Cole, 2013), with the most recent 200 years hosting a period of significant

socio-political change. Variability in macrocharcoal peaks (Cpeak , measured in peak component charcoal accumulation rate (cm3/yr), see Figure 2, Supporting

Material) and TotPSF% (percentage of pollen sum) across all cores are represented on separate axes, aligning with one chronological scale. (For more information on:

ENSO variability, see Table S3, Supporting Material; and the history of political development in Sarawak, see (Cramb et al., 2009) and references therein).

2005), open burning to clear peat swamp forest was legal,
and thus would have been used extensively by smallholder
and plantation farmers. After this time, only small controlled
burns were permitted by the Department of the Environment,
and clearance fires were replaced by large machinery that also
drained, compressed and piled peat in preparation for the
establishment of oil palm and pulpwood plantations, amongst
other land uses. Such modification of the land, in particular the
drying caused by drainage, makes peatlands more vulnerable
to fire (Page et al., 2002; Hoscilo et al., 2011; Taufik et al.,
2018), whether ignited by natural or anthropogenic sources
(Cattau et al., 2016).

Until several 100 years ago, local fires (those within peat
swamp forest) would predominantly have been driven by natural
disturbances such as lightning strikes, especially during dry
climatic periods, i.e., El Niño years (Hope et al., 2005). Human
disturbance would have beenminimal (Sawal, 2003), restricted to
activities such as subsistence sago cultivation: a crop that grows
well on marginal lands (Donner, 1987). Within the last 200 years
however, the coincidence of data showing dramatic increases
in the magnitude and frequency of local and regional fire (and
open areas), with the reporting and documenting of increased
human interaction with Sarawak’s coastal peat swamp forests,
suggests that humans were responsible for these elevations in
burning. Significant landscape exploitation by people is likely
to have started after Colonial Rule was established in Sarawak
approximately 170 years ago. The following quote, attributed to
the Second Raj of Sarawak, Charles Brooke, in 1867, illustrates
the attitude toward “idle” forested land that would have driven
large-scale landscape conversion: “[We want] to see the jungle

falling left and right and people settled over what are now lonely
wastes and turning them into cultivated land.” The dramatic
recent increase in burning peatlands has also been recorded in
Sumatra (Miettinen et al., 2012c) and across Southeast Asia (Van
Eijk et al., 2009; Dohong et al., 2017).

(iii) How Do the Changing Fire Regimes
Impact the Peat Swamp Forest Vegetation?
Results from this study suggest that fire has not caused significant
disturbance to these three coastal peat swamp forests through
time. Even during episodes of elevated burning in the past, for
example during the inferred dry phase between c. 2,800–1,800
Cal. year BP, there is no decline in the peat swamp forest or
apparent impact on the vegetation within these ecosystems. In
terms of internal peat swamp forest dynamics through time, the
fluctuation between mature and pioneer taxa does not correlate
with fire incidence, again suggesting that, in general, burning
has not played a significant role in the regeneration of these
ecosystems. Since anthropogenic burning is hypothesized to have
only started in the last two centuries, it appears that the natural
burning regimes in each site, which have been predominantly
idiosyncratic, have not had a significant negative impact on these
peat swamp forests. An exception to this appears in the results of
the Converted Peatland site, where regional fire appears to have
a significant impact on peat swamp forest ecosystem abundance
within the wider landscape. Further sampling is required to
decipher reasons for this unusual finding in the Converted
Peatland site.

In contrast to the long-term burning and peat swamp
forest vegetation dynamics, as levels of local and regional fire
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elevate to historically-novel levels in the most recent past,
declines in peat swamp forest within the landscape and an
apparent lack of regeneration within the forests, suggests fire
is now impacting on these ecosystems. However, the most
influential drivers of peat swamp forest change across sites
appear to be disturbances associated with anthropogenic activity:
open vegetation, signifying forest clearance, and magnetic
susceptibility, indicating disturbance and/or drying in the peat
substrate. These relationships are strongest in the recent past
(Figure 4), coinciding with and, most probably, driving the
large elevations in local and regional fire, as suggested by other
studies in this region (Lee, 2000; Langner and Siegert, 2009;
Van Eijk et al., 2009). Despite these associations between peat
swamp forest and environmental variables, it is important to
note that the only significant relationship observed in this study
occurs between open vegetation and external landscape change,
i.e., a decline in peat swamp forest, in the Converted Peatland
site. Further evidence for the predominantly anthropogenic
origin of fire within peat swamp forest in the last 200 years,
is the coincident increase in ferns, Poaceae and other non-
woody taxa of open areas (Hoscilo et al., 2011), such as Trema
(Cannabaceae). This plant has been associated with the creation
of gaps within the peat swamp forest greater than those resulting
from local disturbances (Flenley and Butler, 2001), such as wind-
throw (Anderson, 1964).

In conjunction, the results from the three studied sediment
cores strongly suggest that fire has been present in tropical peat
swamp forests for thousands of years and that it is not the
most prominent driver of long-term or recent changes in coastal
peat swamp forest vegetation, contrary to the common concern
expressed in the literature on the sustainable management of
tropical peat swamp forests today (for example Razali et al.,
2010; Miettinen et al., 2012c). Instead, human impact has had
the most influence on internal peat swamp forest dynamics and
peat swamp forest decline: with this disturbance manifesting
only in the last c. 200 years and at unprecedented levels when
compared to the last 7,000 years. In reality, it is likely that various
forms of human disturbance, notably forest clearance, drainage
and fire, occur simultaneously and act synergistically in these
landscapes, exacerbating impacts, reducing forest regeneration
potential and thus jeopardizing the resilience of these peat
swamp forests.

To explore the relationship between fire, its drivers and
vegetation change at a higher temporal resolution, further
sampling, and the use of additional proxies, would be required.
Though individual fire events can be identified from fossil
charcoal records extracted from peat deposits, palaeoecological
data is best suited to identifying historical trends in fire
regimes (Remy et al., 2018). Observing a true response of
the vegetation to an incidence of burning, or another form
of disturbance, can also be challenged by differing rates
of pollen production amongst species and varying distances
over which pollen grains are transported, in turn affected
by the changing characteristics of the canopy around the
coring site, amongst other constraints (Davies et al., 2018).
Signals of regional burning can, in particular, be affected by
canopy cover, since microcharcoal particles can be caught in

the vegetation overlying the forest floor; this can reduce the
volume of microcharcoal that is found in sediment profiles
causing potential under-estimations of fire incidence and
intensity at a regional scale. However, this potential under-
estimation is not considered a significant obstacle in this
and other palaeo-environmental reconstructions in tropical
peatland ecosystems (e.g., Hope et al., 2005). Due to these
various factors, interpretations of the data reported in this
study have been limited to broad trends, and thus give an
impression of ecosystem level sensitivity to burning during the
Late Holocene.

Despite the limitations of long-term ecological studies, the
insights gained through these data greatly extend our ability
to understand the ecological functioning of ecosystems (Willis
et al., 2010; Cole et al., 2015), particularly in response to
fire. The findings can be used to infer how the intact peat
swamp forests, and degraded peatlands, may respond to future
disturbances and thus develop informed management strategies
(Davies et al., 2014). In contemporary ecosystems that now exist
predominantly in a degraded state (as is increasingly the case
for Southeast Asia’s peat swamp forests (Murdiyarso et al., 2009),
long-term ecological data also enable us to define the parameters,
and resilience, of their intact condition.

Management Implications
The causes of fire are complex, and include underlying
cultural, political and socio-economic conditions, not simply
environmental factors (Stolle et al., 2003; Langner and Siegert,
2009; Carlson et al., 2012; Shimin Sze et al., 2018). However, when
considering peat swamp forest management, it is important to
note that degraded, in comparison to relatively intact peatlands,
are more susceptible and fundamentally less resilient to fire (for
example Page et al., 2002; Van der Werf et al., 2008; Wösten
et al., 2008; Hoscilo et al., 2011). The interaction between
different drivers of disturbance requires further investigation
when considering management interventions. This study has
demonstrated however, that recent forms of anthropogenic
disturbance, likely driving elevated incidences of burning, are
unprecedented in the ecological history of these ecosystems.

Draining and/or forest clearing, which accompanies the
majority of peat swamp forest land-use change, leads to highly
flammable conditions, and inevitably subsidence (Hooijer et al.,
2011) and ongoing carbon emissions (Wijedasa et al., 2018). This
often results in peatlands becoming “unmanaged wastelands”
or entirely converted to agriculture (Miettinen et al., 2012b).
Restoration of such areas is being attempted in peatlands in
Central Kalimantan (Page et al., 2009) and across Indonesia
(BRG, 2018), but unless these areas are protected against fire,
notably through re-wetting (Dommain et al., 2010), restoration
may prove impossible (Van Eijk et al., 2009).

Contemporary studies have shown that the impacts of
local fire within peat swamp forests can be severe: once the
substrate has been ignited, fires can burn both above and,
devastatingly, below-ground for many months (Goldammer and
Seibert, 1989; Goldammer, 1992; Saharjo and Nurhayati, 2006;
Posa et al., 2011), destroying meters of peat. In addition to
destroying the current understory vegetation, these fires can
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hinder regeneration post-fire (Saharjo and Nurhayati, 2006;
Cole, 2013), and thus reduce the possibility of future recovery,
especially if soil seed banks are disturbed (Posa et al., 2011).

Unusually intense and frequent fires can also disturb natural
regeneration cycles, such as those that have burnt in Indonesia’s
inland peat swamps during the recent extreme drought events
of strong El Niño years, exemplified by the 1997–1998 episode
(Page et al., 2009). Biomass burning during this period released
vast amounts of carbon (between 0.81 and 2.57 Gt) into
the atmosphere (Page et al., 2002). In addition, these fires
caused a host of serious health and environmental problems
in the region (Marlier et al., 2013), as well as disrupting
economic activity (Varma, 2003; Aiken, 2004). Although the
coastal peatlands of Southeast Asia appear to have been less
impacted by these climatic events in the past (Dommain
et al., 2011), managing for increased fire risk during dry
El Niño years [(Pan et al., 2018) and indeed non-El Niño
years, with recent land-use change causing an elevation in
burning uncoupled with ENSO (Gaveau et al., 2014)], may
help to prevent a recurrence of these disastrous effects in the
future (Phua et al., 2007, 2012). Fire risk mapping, looking at
impacts of infrastructure, for example roads and settlement,
may also help (Razali et al., 2010; Shimin Sze et al., 2018),
since historical fire incidence in peatlands in Kalimantan
has been associated with accessibility (Hope et al., 2005).
Furthermore, if the international mechanisms being developed
to encourage countries to reduce their carbon emissions through
forest conservation, such as the Reducing Emissions from
Deforestation and Degradation (REDD+) scheme (FAO, 2012),
are to include tropical peat swamp forests, the huge volumes
of carbon gases released from peat fires will need to be
abated (Murdiyarso et al., 2010).

At present, large scale burning of tropical peat is largely
confined to Indonesia, but tropical peatlands are not only found
in Southeast Asia: vast areas have recently been mapped in the
Peruvian Amazon (Draper et al., 2014) and the central Congo
Basin (Dargie et al., 2017). Currently, these ecosystems are largely
intact and as such of huge global significance (Watson et al.,
2018); but this could change if they are not protected from the

multiple threats to which they could soon be exposed (Roucoux
et al., 2017; Dargie et al., 2018), including the more pervasive
threat of climate change (Wang et al., 2018).

If recent elevated trends in burning can be prevented,
predominantly through halting forest clearance and drainage,
this and other studies (e.g., Hope et al., 2005; Hapsari et al.,
2018) provide evidence that peat swamp forests can recover.
However, in the face of current conversion rates and future
land-use planning in the region (Miettinen et al., 2012b, 2016;
Gaveau et al., 2016; Wijedasa et al., 2017), potential disturbance
by fire must be a central consideration in the more responsible
management of these carbon-rich ecosystems.
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