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Emission of nitrogen oxides (NOx) from chemical processing of materials is a 

serious environmental concern, frustrating the development of many innova-

tive technologies. For example, sulfonitric oxidation is the most widely used 

method for processing carbon nanotubes (CNTs), producing a large amount of 

NOx. As a result, large scale applications of CNTs for downstream purposes 

remain challenging. Herein, a NOx-free oxidation method is proposed for CNTs 

processing. It starts with mechanically grinding, and then oxidizing the CNTs 

by hydroxyl radicals in sealed reactors. Such processed CNTs are shorter, 

possess balanced surface oxygen containing groups without compromising 

the original CNT integrity, and can disperse readily in water. These are desir-

able for making various CNT composites, including those with conducting 

polymers for supercapacitors. The reactors in the process are industrially 

adoptable, promising a great technological and commercial future. 
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Photochemical smog, a secondary pollution to air formed by 

nitrogen oxides (NOx) reacting with airborne particulates, cata-

lyzed by sunlight, can irritate eyes, throats, and lungs of humans 

and cause other related diseases, and transportation risk.[1a–c] Of 

course, NOx has other detrimental environmental and ecological 

C. Wei, B. Akinwolemiwa 
International Doctoral Innovation Centre 

Faculty of Science and Engineering 
University of Nottingham Ningbo China 

Ningbo 315100, P. R. China 

Q. Wang, Dr. L. Xia, Dr. D. Hu, Dr. B. Tang, Dr. L. Yu, Prof. G. Z. Chen 

Department of Chemical and Environmental Engineering 
Faculty of Science and Engineering 

and Key Laboratory of More Electric Aircraft Technology of Zhejiang Province 
University of Nottingham Ningbo China 

Ningbo 315100, P. R. China 

E-mail: Linpo.Yu@nottingham.edu.cn 

Dr. L. Guan, Prof. G. Z. Chen 

Department of Chemical and Environmental Engineering 
Faculty of Engineering 

University of Nottingham 
Nottingham NG7 2RD, UK 

E-mail: George.Chen@nottingham.ac.uk 

The ORCID identification number(s) for the author(s) of this article 
can be found under https://doi.org/10.1002/adsu.201900065. 

© 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, 
Weinheim. This is an open access article under the terms of the Creative 
Commons Attribution License, which permits use, distribution and 
reproduction in any medium, provided the original work is properly cited. 

DOI: 10.1002/adsu.201900065 

                           impacts such as greenhouse effect and acid 

rain (which causes acidification of soil/ water, 

plants withering, and corrosion to 

buildings).[2a,b] The fact is that NOx exists in a 

minimum amount in nature, but mostly 

resulting from anthropogenic activities.[3a,b] 

Hence, NOx emission is under stringent 

regulation and a massive effort has been put 

for NOx abatement worldwide.[3b] Current 

NOx removal technologies include selective 

catalytic reduction, wet scrubbing, adsorption, 

electron beam, electrocatalytic, and 

bioprocessing.[4a–d] However, their large-scale 

applications are hindered either by the high 

cost and energy consumption of the process, 

or the substandard removal efficiency.[4a–d] 

This frustration retards many new materials 

and related technologies from contributing to 

wealth growth. 

A good example is carbon nanotubes 

(CNTs) which were discovered as early as 

mid 1980s[5a] and had promised many mate-rial and 

technological innovations.[5b–d] Unfortunately, these have not 

happened, largely because of NOx (see more details below). 

Interestingly, both CNTs and graphenes are popular for many 

applications, particularly electrochemical energy storage (EES) 

devices, such as supercapacitors.[5c,d] Graphenes might exhibit 

higher specific capacitance in a small quantity,[6a,b] but cannot 

provide effective electronic and ionic conduction when building 

devices with a big mass.[6c] On the contrary, CNTs hold a greater 

advantage for EES devices. They are comparable with graphenes 

in many aspects,[5c] but would not pack densely as graphenes. 

Instead, they always offer a porous packing structure that is 

needed for ion conduction.[6c] 

However, commercially available CNTs are highly curved 

because of defects, and have large aspect ratios and high surface 

energy.[5b,7a,b] As a result, they can easily tangle together but hardly 

suspend stably in water. Additionally, their inactive surfaces 

discourage interactions with other materials when CNTs are 

adopted as the doping or structural components in various EES 

materials (composites in most cases).[5c,d,7c] Several methods have 

been proposed to tackle these issues. For example, surfactants and 

polymers were used to help CNTs to suspend in water,[8a,b] but 

could not help interactions between the CNTs and other active 

components.[8c] Covalent functionalization can modify the 

properties of CNTs effectively through various reactions, such as 

oxidation, nitrogenation, sulfonation, cycloaddition, and 

halogenation,[7d,8d] among which oxidation is the most important 

method. The CNTs functionalized with oxygen containing 

mailto:Linpo.Yu@nottingham.edu.cn
mailto:George.Chen@nottingham.ac.uk
https://doi.org/10.1002/adsu.201900065.
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Scheme 1. a) Flow charts of procedures of conventional and NOx-free processes used in this work. b) SEM images of (clockwise) pristine CNTs, CT-

CNTs, BMW-CNTs, and BFHT-CNTs, and schematic illustration of changes of the CNTs following different oxidative processing routes to CT -CNTs, 

BMW-CNTs, and BFHT-CNTs. 

groups (OCGs) can also act as the precursors for other covalent 

functionalizations.[8e] There are many approaches to oxidize CNTs, 

involving wet chemical methods,[7d,8d,e] photo-oxidation,[5c,9a] and gas 

phase treatment.[9b] For example, gas phase oxidation by ozone is a 

dry and simple process to increase the hydrophi-licity of single 

walled CNTs.[9c,d] A more popular and widely used bench-scale 

method is to partially oxidize multiwall CNTs by sul-fonitric acid 

(mixed concentrated H2SO4 and HNO3) to encourage surface 

functionalization with various OCGs, and suspension in water.[5c,7a,9e] 

However, sulfonitric treatments always emit a large amount of NOx 

fumes as exemplified in Figure S1a in the Supporting Information. 

Consequently, there is still no industrial use of this method for 

oxidative processing of CNTs. Furthermore, the extent of the 

sulfonitric treatment must be carefully controlled to avoid 

overoxidation of the CNTs that can lead to a low yield and structural 

damage.[9e] Thus, it is highly desirable to develop a NOx-free, less 

structure damaging, and upscalable process for CNT oxidation to 

realize those material innovations promised more than three decades 

ago. 

The Piranha solution (PS) is a mixture of H2SO4
 and H2O2 (3:1 to 

7:1 v/v) (v for volume), and can oxidize various carbonaceous 

substances such as CNTs.[9f,g] Piranha oxidation is NOx-free while 

the unused H2SO4 can be recycled.[10a,b] Reactions (Rcts) (1) and (2) 

are naturally occurring in the PS.[11a–c] Normally, Rct (1) is more 

dominant, but Rct (2) determines the power of Piranha oxidation. 

Although HO• has a high oxidizing potential (2.8 V vs standard 

hydrogen electrode),[11c,12a] Piranha oxidation of CNTs was 

actually found not as strong as sulfonitric oxidation.[5c,7a] One of 

the reasons is that HO• has  

a lifetime of only few nanoseconds in water, and hence may 
perish before reaching the surface of entangled CNTs[12b–d] 

 

 

 

Herein, we propose a new and NOx-free oxidative process 

to achieve partially oxidized CNTs (PO-CNTs) with sub-

stantial OCGs (Scheme 1a). The process consists of initial 

mechanical breakage (ball milling (BM)) of the long and 

entangled CNTs, and then Piranha oxidation in a sealed 

reactor under mild heating, helping increase the HO•
 amount 

in the PS with or without Fenton’s reagent. Such an oxidative 

process is referred to as mechano-Fenton–Piranha oxidation in 

the work. The as-produced PO-CNTs in this work behaved 

highly satisfactorily in composites of polypyrrole/ CNTs 

(PPy/CNTs) for supercapacitors according to the well-

established methods of assessment.[13a,b] All the oxidized 

CNTs are regarded as PO-CNTs. For convenience, the abbre-

viations denoting the CNTs treated by different processes are 

tabulated in Table 1, where a process will be ticked if it was 

used in the treatment of the corresponding PO-CNTs. The 

abbreviations of PO-CNTs are further explained in the foot-

notes of Table 1. 

Ball milling can break CNTs to create more tube-ends and 

other defects which are both more likely oxidized.[7a,14a,b] In this 

work, wet ball milling was adopted as the first step to increase 

the hydrophilicity of the CNT surface,[18a] shorten 



3 

 
  

 
 

Table 1. Summary of the treated CNTs with relevant process details. 

   

Abbreviations BM 

 Oxidant   Reactora
)  

Sulfonitric acid Piranha solution Fenton–Piranha solution A B C 

CT-CNTs 

BM-CNTs 

MWD-CNTs 

BMW-CNTs 

HT-CNTs 

BHT-CNTs 

FHT-CNTs 

BFHT-CNTs 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

√ 
 

a)Reactors A, B, and C correspond to an open reactor (Figure S1a, Supporting Information), a microwave digester (Figure S1b, Supporting Information), and a hydro-thermal 

reactor (Figure S1c, Supporting Information), respectively. BM is ball milling. 1) CT-CNTs: CNTs from conventional treatment of sulfonitric oxidation, 2) BM-CNTs: CNTs 

grounded by ball milling, 3) MWD-CNTs: CNTs treated by Piranha solution in a microwave digester, 4) BMW-CNTs: Piranha oxidation of BM-CNTs in a microwave digester, 5) 

HT-CNTs: CNTs treated by Piranha solution in a hydrothermal reactor, 6) BHT-CNTs: BM-CNTs treated by Piranha solution in a hydrothermal reactor, 7) FHT-CNTs: CNTs 

treated by Fenton–Piranha oxidation in a hydrothermal reactor, and 8) BFHT-CNTs: obtained from ball milling and Piranha–Fenton oxidation in a hydrothermal reactor. All the 

oxidized CNTs are regarded as PO-CNTs. 

the length of CNTs, and decrease the size of the CNT 

agglomerates.[14a,b] The cluster size of BM-CNTs was found to 

decrease with an increase of the milling speed (Figure 1a). 

More details for optimal ball milling are given in Figures S2 

and S3 in the Supporting Information, confirming that higher 

speed milling could produce shorter CNTs in smaller clusters. 

Then, Fenton’s reagent was used to accelerate the generation 

of HO• and other radicals according to Rcts (3) and (4).[9b,15] A 

sealed reactor can also help increase the amount of HO• by 

depressing the oxygen gas generation as described in Rct (1), 

leading to a favor on Rct (2) according to Le Chat-elier’s 

principle.[16a] The sealed reactor can be either an oil-bath heated 

hydrothermal reactor[11a,16b] or a microwave digester[16c] under a 

quasi-hydrothermal condition 

 

Figure 1. a) Particles size distribution of CNTs milled under different rotation speeds. b) Oxygen atomic concentration of MWD -CNTs and HT-CNTs at 

different reaction temperatures. c) OAC of pristine CNTs, BMW-CNTs, and BFHT-CNTs at ball milling speed from 600–1000 rpm. MWD-CNTs were 

obtained at a reaction temperature of 120 °C and reaction time of 3 h. HT-CNTs were obtained at a reaction temperature of 80 °C and reaction time 

of 3 h. d) Zeta potentials of pristine CNTs, BMW-CNTs, and BFHT-CNTs at ball milling speed from 600–1000 rpm.
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    A series of Piranha oxidation experiments were conducted in a 

microwave digester and hydrothermal reactor at different 

temperature for different reaction time. The optimized reaction 

temperature for MWD-CNTs and BHT-CNTs are 120 and 80 C, 

respectively (Figure 1b). The oxygen atomic concentrations 

(OACs) and zeta potentials of CNTs versus ball milling speed are 

shown in Figure 1c,d, respectively. The relevant data of pristine 

CNTs and MWD/HT-CNTs are also presented as dashed lines 

and hollow symbols, respectively, in both Figure 1c,d. BMW-

CNTs possess higher OAC compared with MWD-CNTs (Figure 

1c), indicating that BM-CNTs are more favorable for the 

oxidative process than pristine CNTs due to the substantial 

reactive sites in BM-CNTs such as tube-ends and defects.[7a,14a,b] 

Additionally, the smaller CNT clusters size can help to reduce the 

transportation time for HO• to approach CNT surfaces and thus 

more CNTs can react with HO•.[14a,15] The OAC of BMW-CNTs 

increases with increase in rotation speed (Figure 1c). Hereby, a 

high milling speed is advantageous for introducing OCGs in 

CNTs. The effect of Fenton’s reagent was investigated by 

oxidizing CNTs in a hydrothermal reactor with different oxidants. 

The OAC of BHT-CNTs exhibits a roughly 30% increase 

compared with that of HT-CNTs (Figure S8, Supporting 

Information), which can be explained by the same reason for the 

OAC increase of BMW-CNTs. There was a 10% rise in the OAC 

of PO-CNTs when the Piranha solution (producing HT-CNTs) 

was replaced by Fenton–Piranha solution (producing FHT-CNTs) 

in a hydrothermal reactor (Figure S8, Supporting Information). 

Such rise can be attributed to the catalytic effect of Fe2triggering 

the continuous production of HO• in the reaction solution for 

CNTs oxidation.[9b,15] Due to the synergic drives from ball milling 

and Fenton reaction in the oxidative process of CNTs, the OAC 

of BFHT-CNTs is higher than that of HT-CNTs. Moreover, the 

OAC of BFHT-CNTs increases with increase in milling speed 

(Figure 1c). 

Zeta potential represents the electrostatic interaction between 

colloidal particles which determines the colloidal stabilities of 

suspensions.[8a,9e] Zeta potentials of BMW-CNTs are more 

negative than that of MWD-CNTs (Figure 1d). Moreover, the 

zeta potentials of BMW-CNTs are proportional to the milling 

speed indicating that BM-CNTs are more advantageous to 

introducing OCGs in CNT surfaces. These OCGs can reduce the 

hydrophobicity of CNTs and enhance the stability of CNT 

suspensions.[8a,9e] The zeta potentials of BFHT-CNTs are more 

negative than that of BHT-CNTs or FHT-CNTs (Figure S8, Sup-

porting Information) due to the same reason as discussed for 

Figure 1c. Also, the zeta potential of BFHT-CNTs increases in 

the negative direction with increase in rotation speed of ball 

milling and they are in the range of 35 to 45 mV. It means 

BFHT-CNTs can suspend in water moderatly.[18c] More details for 

the explanation of Fenton reaction and optimization of the 

reaction temperature and time for CNTs oxidation in these two 

sealed reactors can be found in Figures S4–S10 in the Supporting 

Information. It was observed that higher milling speed and 

Fenton’s reagent helped produce CNTs with more OCGs from  

the data analysis of thermogravimetric analysis (TGA), X-ray 

photoelectron spectroscopy (XPS), Raman spectroscopy, and 

zeta potential. For instance, Raman spectroscopy revealed that 

the edge defects of CNTs increased with the ball milling speed 

(see Figures S3b, S5b, and S10b in the Supporting Information). 

Thus, the OCGs can be more effectively functionalized on the 

ball milled CNTs than the ones without ball milling. 

Scanning electron microscopic (SEM) images of the pristine 

CNTs, CT-CNTs, BMW-CNTs, and BFHT-CNTs are presented 

in Scheme 1b, respectively. The samples were prepared by drop-

ping 10 L of the CNT suspension of 40 mg L1 on a silicon 

wafer. Scheme 1b shows on the left side a typical agglomerate of 

hundreds of entangled CNTs with an average diameter over 1 

m, which is too large for stable suspension in water. CT-CNTs 

could stably suspend in water and had the shortest length leading 

to the smallest agglomerate among all the CNT samples in 

Scheme 1b. Some tiny fragments can be seen in the top-right 

image of Scheme 1b due to the strong sulfonitric oxidation. Both 

BMW-CNTs and BFHT-CNTs were shorter than pristine CNTs, 

but longer than CT-CNTs (Scheme 1b). The TEM images of the 

four CNTs are shown and described in Figure S11 in the 

Supporting Information. The structural integrity of PO-CNTs was 

also confirmed by the thermogravimetric analysis as shown in 

Figure S12a in the Supporting Information. The weight losses of 

BFHT-CNTs and BMW-CNTs are much smaller than the one of 

CT-CNTs at the same temperature in TGA, revealing that BFHT-

CNTs and BMW-CNTs have greater thermal stability than CT-

CNTs. This is because less OCGs in the structure of BMW-CNTs 

and BFHT-CNTs after the oxidation cause less damages. Such 

properties were transmitted to the respective PPy/PO-CNTs 

composites as shown in Figure S12b in the Supporting 

Information. 

The suspensions of both BMW-CNTs and BFHT-CNTs are 

more stable than the pristine CNTs, also suggesting that the sur-

faces of BMW-CNTs and BFHT-CNTs have more OCGs. Photo-

graphs of the BMW-CNT and BFHT-CNT suspensions that stood 

still for over 20 days can be found in Figure S13 in the 

Supporting Information. The suspension stability of the pristine 

CNTs and PO-CNTs are also further confirmed by UV–vis in 

Figure S14 in the Supporting Information. It should be noted that 

the yields of BMW-CNTs and BFHT-CNTs were as high as 80–

95%. In contrast the yield of CT-CNTs was only 40–65%. 

X-ray photoelectron spectroscopy was applied to study the 

elemental constitution and chemical bonding of functional-ized 

CNTs.[7a,9e,17a] The spectra of the pristine CNTs, CT-CNTs, BMW-

CNTs, and BFHT-CNTs are shown in Figure 2a, while the 

deconvolutions of the XPS O1s of CT-CNTs, BMW-CNTs, and 

BFHT-CNTs are interpreted in Figure 2b–d, respectively. XPS C1s 

shows a peak at 284.5 eV (in pink circles) and O1s at 532.0 eV (in 

purple circles) in Figure 3a.[17a,b] The peak heights can correlate to the 

elemental contents.[17a,b] The calculated content of oxygen in pristine 

CNTs, CT-CNTs, BMW-CNTs, and BFHT-CNTs were 0.33, 11.26, 

4.72, and 5.69 at%, respectively. The oxygen content in CT-CNTs 

was markedly higher than that in BMW-CNTs and BFHT-CNTs, 

indicating a larger amount of OCGs in the surface of CT-CNTs than 

that of the other two PO-CNTs. 

Deconvolutions of XPS O1s for different PO-CNTs showed 

the existence of two main types of OCGs. The peaks at 532.2– 

532.54 eV can be attributed to carbonyl groups (C=O), while 
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Figure 2. a) XPS spectra of the pristine CNTs, CT-CNTs, BFHT-CNTs, and BMW-CNTs. Deconvolutions of the XPS O1s of b) CT-CNTs, c) BMW-CNTs, and d) 

BFHT-CNTs. 

 

Figure 3. Cyclic voltammograms (CVs) of the different a1) CNTs and b1) PPy/PO-CNTs composites with 5 wt% of polytetrafluoroethylene (PTFE) binder in the 

potential range of −0.5 to 0.5 V versus Ag/AgCl at a scan rate of 5 mV s−1 in 3 mol L−1 KCl electrolyte. The counter electrode was a graphite rod. Nyquist plots of 

the different a2) CNTs and b2) PPy/CNTs composites at 0 V versus Ag/AgCl. Inset: A zoomed view is indicated. 
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the peaks at 533.3–533.8 eV to the carbon-oxygen singe bond (C—

O).[9e,17a,b] From Figure 2b, it can be seen that the majority of OCGs 

in CT-CNTs were C=O groups, whiles the OCGs in BMW-CNTs 

and BFHT-CNTs consisted of both C—O and C=O groups. The 

deconvolutions of C1s of pristine CNTs and PO-CNTs are in 

consistency with the results of O1s deconvolu-tion (Figure S15, 

Supporting Information). The temperature programmed desorption 

(TPD) results of the CNT samples can support the discussions 

above (Figure S16, Supporting Information) and provide more 

details in OCGs on the CNTs. It suggests that sulfonitric oxidation 

modified the CNTs with more OCGs at higher oxidation states 

(68.74% of C=O groups). 

In contrast, the CNTs treated by the PS alone in an open 

refluxing reactor achieved a low oxygen content of 2.35 at% of 

which only 11.32% were C=O (Figure S17, Supporting Informa-

tion). It could be that, when HO• attacked the CNTs, C—O was 

produced (Schemes S1–S3, Supporting Information). Further 

oxidation from C—O to C=O would require additional oxidants on 

site, but HO• has a short life in water and also undersupply due to 

Rct (1). C=O may also form directly if HO• reacted with the 

defects which were however rare in pristine CNTs. 

It should be mentioned that there are always iron impurities in 

both the as-received CNTs (CNT: 98 wt%) and PO-CNTs treated 

by the mechano-Fenton–Piranha oxidation. However, an enlarged 

view of Figure 2a is shown in Figure S17c in the Supporting 

Information indicating that there is no iron or its compounds on the 

surface or outer layers of these CNT samples. It is reasonable to 

assume that the iron impurity should be located inside the tubes 

and the integrity of these PO-CNTs makes it difficult to wash this 

iron impurity away by acid. It is known that soluble redox 

impurity like iron (II and III) has a shuttle effect to minimize the 

energy capacity of the electrode materials. It is essential to wash 

away all the iron impurity from the CNT samples by acid. In our 

case, the main iron impurity was inside the CNTs and had very 

low possibility to contact with the electrolyte when the CNTs were 

used as the electrode materials. The other iron impurity outside the 

CNTs was washed away during the washing process as described 

in the Supporting Information. 

Upon ball milling, shorter CNTs in smaller agglomerates were 

produced with newly generated defects. In the sealed reactor, the 

supply of HO• was also increased. As a result, C—O could be fur-

ther oxidized into C=O (Scheme S4, Supporting Information). 

Hence, there were higher contents of oxygen and greater per-

centages of C=O in both BMW-CNTs and BFHT-CNTs. 

Different CNT oxidation processes are compared, showing that 

the sulfonitric treatment involves massive NOx emission which is 

absent in Piranha oxidation (Scheme 1a). Sulfonitric oxidation of 

CNTs can be violent, producing a greater amount of OCGs in CNTs 

surfaces and cutting down the pristine CNTs into shorter tubes and 

fragments (Scheme 1b), which also schematically presents the 

intermediate and final products of ball milling and Piranha oxidation 

processes. It is very important that ball milling made CNTs shorter 

in smaller aggregates with added defects. These changes make it 

easy for the reaction with HO•. It can be concluded that BMW-

CNTs are averagely shorter than BFHT-CNTs based on the UV–vis 

results (Figure S14, Supporting Information). 

Although BMW-CNTs and BFHT-CNTs possessed less OCGs 

than CT-CNTs, the former suspended in water with sufficient 

stability for the synthesis of PPy/CNT composites which were  

then assessed for capacitive charge (energy) storage.[13a,b,17c] 

Cyclic voltammograms (CVs) of the different CNTs in between 

−0.5 and 0.5 V versus Ag/AgCl at 5 mV s−1 are shown (Figure 

3a1). All these CVs are rectangular, indicating capacitive 

charging and discharging. As expected from the effect of OCGs, 

the CVs prove that all PO-CNTs exhibited markedly larger 

capacitance than the pristine CNTs. The calculated specific 

capacitance, Csp, agreed with the XPS analysis of the OCG types 

and contents. A Csp value of 33.0 F g−1 was achieved for CT-CNTs, 

compared to 23.5 F g−1 for BMW-CNT, and 24.7 F g−1 for BFHT-

CNT, because of the different amounts and types of OCGs on the 

PO-CNT surfaces.[18a,b] The different Csp values can also be 

explained by the different interruptions of electron delocalization 

by the OCGs on the CNTs.[6c,18c] 

Nyquist plots of electrochemical impedance spectroscopy (EIS) 

for different CNTs at 0 V versus Ag/AgCl are presented in Figure 

3a2. It was found that the knee frequency of CT-CNTs (31.6 Hz) 

was much lower than BMW-CNTs (316.0 Hz) and BFHT-CNTs 

(794.3 Hz). Generally, the higher the knee frequency is, the faster 

the charge transfer rate can be.[13a,b] The higher knee frequencies of 

BMW-CNTs and BFHT-CNTs can be ascribed to the better 

preserved structures in both BMW-CNTs and BFHT-CNTs, 

retaining the high electronic conductivity of CNTs and hence high 

charge transfer rate. 

CVs of the PPy/CNT composites are shown (Figure 3b1). The 

calculated Csp values of the PPy/CT-CNT, PPy/BMW-CNT, and 

PPy/BFHT-CNT composites were 153.2, 166.1, and 192.0 F g−1, 

respectively. Because the amount of PPy was approximately the 

same in all the PPy/CNT composites, their Csp values would depend 

strongly on the electronic conductivity and charge transfer rate. 

This can be further confirmed by the Nyquist plots in Figure 3b2 

where the PPy/CT-CNT has the lowest knee frequency (PPy/CT-

CNT: 15.9 Hz, PPy/BMW-CNT: 100.0 Hz, and PPy/BFHT-CNT: 

199.5 Hz), and consequently the slowest charge transfer rate in all 

composites as indicated by the largest semicircle of PPy/CT-CNT. 

When the knee frequency is considered, the interrelationship 

among the three composites is in consistence with that among the 

three PO-CNTs (Figure 3a2,b2), suggesting that the interaction 

between CNTs and PPy may be greatly affected by the OCGs in 

the CNT surfaces and reservation of CNT structures. After 1000 

CV cycles in the potential range from −0.5 to 0.5 V versus 

Ag/AgCl, the capacitance retention before and after cycling are 

85.7%, 89.3%, and 91.5% for PPy/CT-CNTs, PPy/BMW-CNTs, 

and PPy/BFHT-CNTs, respectively, as shown in Figure S18 in the 

Supporting Information. The higher structural integrity of BMW-

CNTs and BFHT-CNTs are inherited to the corresponding 

PPy/PO-CNTs composite so the composite can resist the stress and 

fatigue due to repeated intercalation and depletion of ions during 

cycling. 

In summary, we have proposed an environment-friendly (i.e., 

NOx-free) mechano-hydrothermal process to efficiently oxidize 

CNTs without damaging changes in structure. In the new process, 

the initial ball milling produces shorter and more end-and surface-

defected CNTs in smaller agglomerates, which can facilitate the 

oxidation by HO• and produce CNTs with balanced amounts and 

types of OCGs in the follow-on Piranha–Fenton oxidation. It has 

been shown that sealing and mild heating the oxidation reactor, 

which resembles a quasi-hydrothermal condition, can maintain a 

sufficient supply of HO• by avoiding 
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decomposition of H2O2 into water and the oxygen gas. Such 

produced CNTs remain highly electronically conducting and 

suspend well in water. They can form composites with polypyr-

role effectively for capacitive charge storage. Moreover, our new 

method should be industrially adaptable, offering a NOx-free 

replacement for the widely used sulfonitric oxidation method for 

CNT processing with a particular promise for making various 

CNT-based energy storage materials at large scales. 
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