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 ABSTRACT This paper analyzes in detail the effect of a simple solution for ground leakage 
current mitigation applicable to transformerless three-phase Current Source Inverter (CSI). The 
circuit modification solution is assessed for both traditional CSI topology and for CSI with an 
additional seventh switch, in literature named CSI7 (or H7), in particular with the splitting of the 
DC input inductance. In the present work the solution is applied to grid-connected converters for 
string photovoltaic applications: scope of the circuit modification is to provide an internal return 
path from the wye-connected capacitors of the output CL filter. This additional return path is able 
to significantly reduce the ground leakage current without adversely affecting THD. The 
performance of the proposed solution is assessed by numerical simulations in case of a string of 
PV modules and the different behavior of CSI and CSI7 topologies is thoroughly investigated. 
Furthermore, the 

 
definition of VcmZC is assessed by applying it to the common mode equivalent circuits for CSI7 
with additional return path and their validation by means of a two-step simulation. Simulation 
results and experimental validation show good agreement and confirm that the proposed 
solution is able to strongly reduce the ground leakage current. 

 

 INDEX TERMS current source inverter, photo-voltaic power systems, ground leakage current, 
renewable energy sources. 

 

 

I. INTRODUCTION 
 

URRENT Source Inverter (CSI) topologies consti- 
C 

tute an alternative solution to the Voltage Source In-verter 

(VSI) paradigm, and they have been exploited for medium 

voltage applications [1]. Because of the intrinsic voltage 

boosting behavior and with the development of high-

frequency switching devices, they have been investigated 

for single-stage photovoltaic (PV) inverter solutions [2], [3]. 

Because no electrolytic capacitor is needed for the DC link, 

a microinverter realized with a CSI would have a lifetime  
similar to the one of the PV panel [4]. 
 

The usual installation of PV panels implies the presence of 

a metal frame to which the solar cells are assembled. In the 

case of large installation, the metal frame constitutes a 

sizeable part of the structure. For safety reasons, the metal 

surfaces must be grounded, to prevent the electrocution of 

 
 

 

the personnel and to detect faults towards ground. Although 

necessary from the point of view of the safety, because of the 

presence of a parasitic capacitance between the solar cells 

and the metal frame, it is possible for ground leakage current 

to flow through the circuit composed of the electrical grid, the 

parasitic capacitance and the metal frame of the panel. The 

magnitude of this current can be high and can constitute a 

safety risk itself, if precautions are not taken 

[5].  
The issue of the ground leakage current has been addressed 

extensively for the VSI topologies, where usually modified 

structures of the power electronics are adopted [6], [7]. Also 

passive solutions based on common mode filters have been 

proposed [8]. 
 
Because of the development of the semiconductor devices 

and market needs, reverse blocking devices did not achieve 
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performance comparable to the devices without reverse volt-age 

blocking capabilities. This has forced the CSI adopters to add 

diodes in series to the switches, with the obvious drawback of 

increasing the conduction losses. A modification to the CSI 

topology have been performed, with the attempt of solving the 

efficiency issue, has been recently proposed for PV system [9], 
 
[10]. In this paper, a simple solution is analyze to dramatically 

reduce the ground leakage current of a CSI7 converter used for 

PV systems. It is worth mention-ing that the development of 

wide-bandgap semiconductors with bi-directional voltage 

blocking capability may reverse this trend in the near future, 

making CSI topologies even more competitive. An initial version 

of this work has been presented at the IEEE ECCE2018 [11], in 

the present version, a comprehensive study of the common 

mode circuit is carried out and additional results are reported. 

 

The paper is organized as follows: Section II 

describes the CSI7 topology, Section III shows the 

novel approach for ground leakage current reduction. 

A performance compari-son between CSI and CSI7 is 

shown in Section IV. Section V explains the design 

criteria and Sections VI and VII present the results. 

 
II. CSI7 TOPOLOGY 
 
Figure 1 shows the CSI7 topology, where an 

additional de-vice is added to the full-bridge with 

respect to the traditional CSI topology. 
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FIGURE 1: Schematic of CSI7 topology. 

 
As for the three-phase VSI, there are six admissible active space 

vectors (SV), but there are three zero vector, obtained by causing a 

leg short circuit with one of the three legs. Although these are 

admissible states also for the CSI7 topol-ogy, the main advantage is 

to employ S7 to generate the zero vector. In this way, the 

conduction losses during the zero state are dramatically reduced 

(only one device carrying the current instead of four). If a sizeable 

amount of reactive power must be processed by the converter (as 

per some grid regulations), the voltage over S7 could be reversed, 

causing the body diode to switch on. If this operation can happen, a 

series diode must be introduced to S7. 
 

A degree of freedom of the Space Vector Modulation (SVM) 

is to select the sequence of the active and zero states. It has 

been shown in [9] that he alternated SVM (in Figure 
 
2) allows improving both the ground leakage current both 

the grid power quality. By alternating the sequences during 
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the odd and even sextant, it is possible to reduce harmonic 

excitation of the output filter, improving the power quality. 
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FIGURE 2: Alternated SVM 

 

 
III. CSI7 TOPOLOGY WITH COMMON-MODE 

RETURN PATH  
Figure 3 shows the modified connection to the midpoint of the DC 
 
input voltage through two capacitors Cmid with the objective of 

reducing the ground leakage current. A similar approach has 

been attempted for a single-phase VSI converter in [8]. In the 

present manuscript, no additional common mode chokes are 

necessary and the solution is customized for a three-phase CSI. 

Advantages and disadvan-tages of this kind of approach will be 

analyzed in this section. 

In order to carry out the analysis, a new definition of 
 
common mode voltage will be used: VcmZC is the 
common mode voltage at the zero current condition. 
This modification is necessary, because, differently 
from the case of the VSI, the common mode voltage 
of the CSI depends on the actual current. 
 

For completeness sake, the presence of two Cmid is 
not mandatory, as the return path could also be directly 
connected to each of the sides of the input capacitors. 
Objective of the following sections is to guide the 
 
engineers in the design of Cmid so that an acceptable 
leakage current reduction as well as the minimization of 
the circulating current of the converter can be achieved. 
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FIGURE 3: Schematic of CSI7 topology with integrated 

iCM return path. 

 

As reported in the scientific literature, the high 

frequency content of the common mode voltage 

determines a ground leakage current to flow through 
the parasitic capacitance of the PV panels [12] 
 

According to literature, in CSI the vcm can be 
calculated by using the star point of the three-phase grid 
voltage as voltage reference, [1], [13], resulting in eq.(1). 



 V + V 
 

vcm = 
P0 N0 
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taking into consideration the additional return path in case of   

(1) traditional CSI topology, the circuit during the zero state becomes the 
one shown in Fig.8. In this figure it is possible to see that  

As anticipated and shown in eq. (1), vcm depends on the 

value of icm. For this reason, the quantity vcmZC (identifies 

the vcm signal with zero icm) will be used for the analysis. 
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FIGURE 5: Common mode circuit of CSI 

with integrated iCM return path. 

 
The common mode circuit of a grid-connected CSI con-

verter is shown in Figure 4. The inductor LCM is a three-

phase common-mode choke that is quite often adopted for 

electromagnetic interference (EMI) mitigation in off-the-shelf 

power converters. Because the common mode inductor is 

connected in series with the parasitic capacitance, an 

appropriate choice of the parameter must be operated, so 

that the the switching harmonics are at higher frequency. 

Having the resonance at lower frequency also allows for an 

improvement of the power quality, as the common mode 

circuit could act as a secon-order filter for the common mode 

voltage harmonics.  
In Figure 5 the common mode circuit of the CSI7 with 

integrated return path is depicted. As can be seen, a switch 
models the decoupling of the mains and the DC input when 

the zero vector is applied. As it appears evident from the cir- 
 
cuit, the return path is more effective if the impedance 2Cmid 
 
and 3Cf is lower than the path composed of the inductors and 

the parasitic capacitance. In fact, the two branches act as a 
 
current divider for the icm.  

Although the integrated return path could be applied 

to any CSI-based topology, it will be shown in the next 

section that the magnitude of the current flowing 

through this additional branch could be too high. 

 
there is a circuit formed by only one of the capacitors Cmid and 
 
DC input inductors LDC =2 (due to the presence of the two diodes) 

and the output CL filter connected as in Fig. 8 together with the grid 

phase voltages. Since before the application of the zero 
 
vector the voltages across the capacitors Cf are very close to the 

grid phase voltages, and the voltage across every Cmid is equal 
 
to VDC =2 a large current can flow in the resulting multi-

resonant circuit.  
Figure 7 summarizes the switches sequence for the first 

sextant in case of CSI7 topology with Alternated modula-tion. In 

case of CSI7 topology, the zero state is applied by turning 
 
on the additional seventh switch S7 with all the other switches 

off, as shown in Fig.7-1. When introducing the additional return 

path, the circuit becomes the one depicted in Fig.9. With the 

CSI7 topology is possible to use the return path, because 

during the zero state the voltages on filter capacitors don’t 

change significantly thanks to the discon-nection of the 
 
main full-bridge outputs from Cf capacitors.  

Summarizing the issues of the application of the return path, 

the proposed solution is only viable in case of CSI7 topologies 

with split input inductors, as the split input induc-tors limit the 
 
value of iRP , as it can be seen by analyzing the common-mode 

circuit of Fig. 5: in case of a single input in-ductor the equivalent 

impedance related to LDC disappears. 

 
V. CONSIDERATIONS ON DC SPLIT 

CAPACITANCE VALUES  
The design of the split capacitance must achieve 
the two objectives:  

minimization of the split capacitance to 
reduce the cost and weight of the converter  

reduction of the ground leakage current icm 
minimization of the current in the return path iRP  
These requirements translate into the need of a 

consider-ably low impedance of the overall return path  
at the harmonic frequencies of vcmZC . It is important  
to highlight that the output filter 3Cf is connected in 
series to the return path, so increasing the value of 
the split capacitance much above the output filter 
ones would lead to no additional current reduction. 
 

The common mode impedance icm=vcmZC (j!) of the 
circuit of Fig. 5 is evaluated. The parameters are listed in 
TABLE 1 and 2 and the results are shown in Fig. 10.  

The same parameters will be used in Section VI for 
the numerical simulations.  

As can be seen from the graph of Fig. 10, values in the 
range of uF for the return path capacitor allows for a   

IV. CLASSIC CSI VS CSI7 BEHAVIOR  
Figure 6 shows the switches sequence for the first sextant in 

case of CSI topology with Alternated modulation. In case of 

traditional CSI topology, the zero state is applied by turning 
 
on the switches S1 and S2, as shown in Fig.6-1. When 

 
marked attenuation, whereas increasing Cmid above 7 uF, 
 
there is no significant benefits. If Cmid = 0, it means that 
the CSI converter does not have a return path.  

The resulting ground leakage current depends not only on 

the value of the common mode impedance, but also on the 
 
value of the common mode voltage vcmZC . For this reason, 
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FIGURE 6: Switch configuration of Classic CSI during Alternated modulation (sequence covers one half period):  
(1) zero vector; (2) overlap time; (3) active vector; (4) overlap time; (5) zero vector. 
 

 
the harmonic component is evaluated in Figs 11 and 12. 
The main switching harmonics are located at twice the  
switching frequency 2fs = 50kHz whereas the harmonics 

introduced by the space vector modulation are at 3fgrid. 

As anticipated, the selection of the return path  
capacitor Cmid must also comply with a limitation of the 
return path current. The value 7uF represents the 
optimum of the ca- pacitance size and leakage current 
minimization, but a lower value could be chosen to limit  
the magnitude of the return path current iRP . 

 

VI. NUMERICAL SIMULATIONS 
 
All the numerical simulations were carried out in Matlab - 

PLECS environment considering a string PV source com-

posed by a varying number of PV modules, working under 

MPP condition. The same parameters of TABLE 2 are used, 
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considering 150nF/kWp as the worst case scenario, 
that translates into 37:5nF for each module. 
 

Two sets of simulations were carried out separately, in 

order to assess the internal return path solution feasibility in 

case of different CSI topologies operated with Alternated 

modulation and to assess the usefulness of the developed 
 
CM equivalent circuits under the definition of VcmZC .  

The first set of simulations is aimed at verifying the 
ef-fectiveness of the proposed internal return path  
solution at reducing icm value in CSI7 topologies.  

For a better modelling of the actual condition, a 
common mode choke with inductance equal to  
Lcm=3x2mH is con-sidered, as explained in Section II.  

TABLE 1 summarizes all the relevant simulation 

parame-ters for the power converter simulations.  
A simulation comparison between three different topolo- 
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FIGURE 7: Switch configuration of CSI7 during 

Alternated modulation (sequence covers one half 

period): (1) zero vec-tor; (2) overlap time; (3) active 

vector; (4) overlap time; (5) zero vector. 
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FIGURE 8: Zero state simplified circuit in case of CSI 

Topology with integrated iCM return path 

 

 
gies with alternated SVM is carried out in Figure 13 con-

sidering the ground leakage current as benchmark: CSI, 

CSI7 and CSI7 with return path (CSI7+RP). Even with a 

visual inspection of the waveforms, it is evident that there 

is a significant benefit changing from a CSI topology to a 

CSI7 one. CSI7+RP reduces the ground leakage current 

even further. 
 

Figure 14 shows the phase voltage, grid current and iRP 
 
in the case of CSI7+RP. Return path current iRP results 
0.17 A (rms) with a phase current of 1.41 A (rms). 

An analysis of the current flowing through the filter  
capac-itors ICf shows that no great difference exists 
between the topologies.  

The performance comparison considering a different num-ber 

of PV modules vor the CSI7+RP is reported in Table 4. The 

increase of the modules implies an increase of the ground 
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FIGURE 9: Zero state simplified circuit in case of 

CSI7 Topology with integrated iCM return path 
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FIGURE 11: vcmZC with 8 PV modules 
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FIGURE 12: FFT of vcmZC with 8 PV modules  
 

  TABLE 1: Power Converter Parameters  
 

             
 

   
L

DC 
Name   Value Unit     

 

      2 mH     
 

   f
S    25 kHz     

 

   Tov    2 us     
 

   Vgrid (line-to-line)   400 V (rms)    
 

   f
grid    50 Hz     

 

   Lf    1.4 mH     
 

   Lcm    2 mH     
 

   Cf    1.5 uF     
 

   Rg    4.7 Ohm     
 

   C
mid    7 uF     

  
 
 
leakage current. It can be seen that this increment is non  
linear (more than proportional) because the increase of CP V 

reduces the effectiveness of the return path if considering the 
 
same value of Cmid, for different number of modules. In fact, 
 
an increased CP V would reduce the impedance of the grid 
return path compared to the internal return path. 

From the same table it is possible to see that the  
RMS value of iRP is proportional to the number of PV 
modules due to the proportional increase of the  
harmonic amplitudes of vcmZC . The value of the 
return path current is always moderated.  

The power losses of the devices in case of 8 PV modules, 

with and without the return path, were computed in PLECS 

environment using GW15N120H3 (15A, 1200V) MOSFET 

and RHRG30120 (30A, 1200V) diodes. The presence of the 

return path affects in no noticeable manner the power loss.  
A second set of simulations was used to assess the pro-posed 

CM equivalent circuits. The applied method is a two-step process 

comprising a first step during which the con-verter operation is 
 
simulated with zero CP V and with the disconnection of icm RP. 
 
The resulting VcmZC is measured and applied to the equivalent 

CM circuit (see Fig. 5 by means of a controlled voltage source, 

in order to obtain the expected 

 

TABLE 2: Nameplate values of the PV module used in 
simulations. 
 

Name Value Unit 
Vmpp 30.3 V 
Impp 8.24 A 

CP V
single  module 37.5 nF 
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FIGURE 13: Simulation results. icm with CSI (a), 

CSI7 (b) and CSI7+RP (c). PV source composed 

by 4 modules (1kW).  
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FIGURE 14: Simulation results. Voltage and  
cur-rent (green trace, x100) and iRP 
waveforms in case of CSI7+RP. PV source 
composed by 4 modules (1kW). 



TABLE 3: Simulations results. Performance 

comparison in case of 4 PV modules 
 

Name Icm [A (rms)] Icf [A (rms)] THD[%] Iu IRP [A (rms)] 
CSI 950 3.02 29.18 % - 
CSI7 17 2.953 0.978 % - 

CSI7+RP 3.5 2.954 0.983 % 0.17 
 
TABLE 4: Simulation results summary with CSI7+RP 

and CSI7 (only for Icm between brackets) 
 

Name 2 PV modules 4 PV modules 8 PV modules Unit 
P

modules 500 1000 2000 W 
C

P V 75 150 300 nF 
Icm 0.51 (8.3) 3.5 (17) 13.7 (33.5) mA (rms) 
I
RP 66 170 290 mA (rms) 

THD[%] Iu 0.99 0.98 1.08 %  

 

quantities icm and iRP .  
A subsequent simulation of the entire converter with the 

 
specified value of CP V and with the connection of the 

addi-tional return path is then run and the resulting same 

quantities are compared against each other. Since the 

additional return path is not technically feasible in case of 

traditional CSI, all the simulation were carried out only for 

the CSI7 topology with return path. 
 

Figures 15 and 16 show respectively the iCM waveform 

and a zoomed-in view of the same: as it can be seen by 

comparing the results obtained with the actual converter 

simulation against the ones from the equivalent CM 

circuit, there is a very good level of agreement.  
The same considerations apply in case of figs. 17 and 18, 

that show respectively the iRP waveform and a zoomed-in 

view of the same. Comparing the results obtained with the 

actual converter simulation against the ones from the equiv-

alent CM circuit results in an excellent level of agreement. 

The good agreement was obtained despite the neglecting of 

the power converter behavior during overlap times. 

 
VII. EXPERIMENTAL VALIDATION  
A power electronics converter implementing the CSI7 and 

CSI7 with return path capabilities was realized and the pro-

totype is shown in Fig. 19. The goal of the experiments is to 

evaluate the performance related to the ground leakage 

current of the different architectures. To decouple the effects 

of a real grid, the prototype is run in island operation. A 

balanced resistive load (value 252 Ohm) is used as load and 

the other experimental parameters match the ones used in 
 
the simulations (TABLE 1). The DC voltage VDC = 120V with 

a CP V = 100nF . The reference current is 0:91A) (rms) to 
 
match an equivalent grid voltage Vgrid (line-to-line)= 400V 

(rms). Because of the intrinsic boost operation of the CSI, 

the input voltage must be lower than the line-to-line output 

voltage.  
The results are shown in Figures 20 and 21. A 

phase voltage with the ground leakage current icm and 

return path current iRP for both solution is shown.  
Although several assumptions were made in the simulation 

part and several non-linear effects of the power converter 
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FIGURE 15: Waveform comparison of ICM : upper trace - 
actual converter; lower trace - equivalent CM circuit. 
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FIGURE 16: Zoomed-in waveform comparison of ICM : 
solid line - actual converter; dashed line - equivalent 
CM circuit. 
 

 
were not modeled, the mitigation of icm from 25:3mA (rms)  
to 4:5mA (rms) is confirmed. The current of the return 
path amounts to 129mA (rms).  

In order to obtain a better agreement between simulations 

and experiments a better modeling of the power switches Sx 

should be carried out. The non linear output capacitance of 

the power transistors and the junction capacitance of the 

diodes should be taken into consideration in the simulation 

of the entire actual converter. 

 
VIII. CONCLUSION  
This work analyzed the critical aspects of ground leakage 

current in CSI grid-connected converters for string photo- 
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FIGURE 17: Waveform comparison of IRp: upper trace 
- actual converter; lower trace - equivalent CM circuit. 
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voltaic applications.  
This manuscript carried out an in-depth analysis of the 

ground leakage current for Current Source Inverters used in 

grid-connected photovoltaic applications. The proposed ap-

proach in order to study and mitigate ground leakage currents in 

CSI inverter comprises two areas of intervention: first is to 

provide an internal return path for the common mode current, 

then suitable CM equivalent circuits are developed to which 
 
apply the definition of VcmZC (common-mode voltage with 

zero stray capacitance). 

The novelty of the proposed approach relies in the use of 

two additional capacitors in the DC link whose mid-point is 

connected to the star point of the CL output filter. The 

internal return path does not lose its effectiveness even 
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FIGURE 19: CSI7 power converter prototype  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 20: Experimental results. CSI7 topology, iu(t)  
RL (upper trace, 200V/div.), and icm(t) (lower trace, 
100mA/div.).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 21: Experimental results. CSI7+RP topology, 

iu(t) RL (upper trace, 200V/div.),iRP (t) (middle trace, 

500mA/div.) and icm(t) (lower trace, 20mA/div.). 



TABLE 5: Experimental and simulation results 

comparison (simulation results between brackets)   
 CSI7 CSI7+RP Unit 

Icm 25.3 (17) 4.5 (3.5) mA (rms) 
I
RP n.a. 129 (170)mA (rms) 

 

 
when employing only one additional capacitor (of doubled 

capacitance) connected between the star point of the CL 

filter and the positive or negative terminal of the DC Source.  
This creates an internal return path with lower 

impedance that prevents the ground leakage current 

from flowing into the grid.  
Thorough study of the different behaviour between tradi-tional 

CSI and CSI7 topology demonstrated that the internal return 

path is technologically feasible only for CSI7 topol-ogy, 
 
due to the large iRP in case of traditional CSI topology. 
 

Following the definition of VcmZC , different 
common-mode equivalent circuits for CSI and CSI7 
with additional return path were developed and were 
validated by means of a two-step simulation process:  
comparing the relevant waveforms of icm and iRP of 
the entire converter against the ones of the simplified 
CM circuit resulted in an excellent agreement.  

Thanks to the CSI7 topology, the internal return path is able to 

significantly reduce the ground leakage current. Specifically, the 

internal return path requires only the pres-ence of a split input DC 
 
capacitance Cmid and it does not require a dedicated connection to 

the grid neutral conductor. In sizing Cmid there is a point of 

diminishing returns, after which the attenuation of icm do not 

improve significantly even for very large values of Cmid. Simulations 

and ex-perimental results are in good agreement and show that the 

proposed solution is able to strongly reduce the ground leakage 

current. The expected slight increase in power losses does not 

substantially affect power conversion efficiency of the CSI7 

converter. Accurate power losses analysis, together with a more 

detailed modeling of the power switches non-linear output 

capacitance will be the subject of future works. 
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