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Abstract—Traffic flow exhibits different magnitudes of tempo-
ral patterns, such as short-term (daily and weekly) and long-term
(monthly and yearly). Existing research into road traffic flow
prediction has focused on short-term patterns; little research
has been done to determine the effect of different long-term
patterns on road traffic flow prediction. Providing more temporal
contextual information through the use of different temporal data
segments, could improve prediction results.

In this paper, we have investigated different magnitudes of
temporal patterns, such as short-term and long-term, through
the use of different temporal data segments to understand how
contextual temporal data can improve prediction. Furthermore,
to learn temporal patterns dynamically, we have proposed a
novel online dynamic temporal context neural network frame-
work. The framework uses different temporal data segments as
input features, and during online learning, the updating scheme
dynamically determines how useful a temporal data segment
(short and long-term temporal patterns) is for prediction, and
weights it accordingly for use in the regression model. Therefore,
the framework can include short-term and relevant long-term
patterns in the regression model leading to improved prediction
results.

We have conducted a thorough experimental evaluation with a
real dataset containing daily, monthly and yearly data segments.
The experiment results show that both short and long-term
temporal patterns improved prediction accuracy. In addition,
the proposed online dynamical framework improved predication
results by 10.8% when compared with a deep gated recurrent
model.

Index Terms—Artificial Neural Networks (ANN), Deep Learn-
ing, Deep Neural Networks (DNN), Recurrent Neural Network
(RNN), Gated Recurrent Unit (GRU), Convolutional Neural
Networks (CNN), Online Learning, Updating Scheme, Intelligent
Transport Systems (ITS), Time-series, Prediction, Regression,
Road Traffic Flow.

I. INTRODUCTION

With rapid urbanisation of cities and towns, traffic conges-
tion has become a critical issue for all metropolitan areas.
Due to space being a scarce commodity in most urbanised
areas, the only viable solution is better management of ex-
isting road infrastructures. Research in the last 20 years has
concentrated on building Intelligent Transport System (ITS)
through algorithm development, such as based on machine

learning approaches [1] with the most recent focus on deep
neural networks (DNNs). DNNs are favoured over shallow
learners due to their ability to efficiently extract complex latent
patterns embedded within the data [2], however, DNNs still
present some challenges for time-series prediction.

Existing work into road traffic prediction has focused on
using small training datasets, ranging from a few days to a
few weeks [3] [4]. However, a prediction model can only
be as good as its input data [5]. The temporal magnitude of
the training data will determine and restrict what temporal
cycles and patterns can be learnt. Despite this weakness, past
research have neglected to investigate what temporal patterns
are important and should be included within the training
dataset. Most assume only short-term patterns, such as hourly
and daily, are needed based on no prior investigations [3] [4].
Research by Williams and Hoel [6] has shown that traffic
flow in urbanised areas does exhibit weekly patterns linked
to the working week, however, other temporal patterns are
important. Traffic flow in urbanised areas also exhibits long-
term patterns, such as monthly and even yearly temporal
patterns. These patterns include, but not limited to, less traffic
during summer months and increased traffic in December and
January. Therefore, the inclusion of short-term and long-term
patterns within the training data could improve prediction
results.

Furthermore, DNNs, especially in the traffic flow prediction
field, are traditionally statically (not incrementally or online)
trained [7] [8] [9] [10]. Therefore, the learning capacity of
these models is restricted to patterns and events that occurred
during the training dataset, such as recurring traffic congestion.
This is impractical for real-life applications; road traffic flow
traffic data is complex and stochastic [11] therefore, their
prediction models must be able to adapt to previously unseen
events, such as non-recurring road traffic congestion or a
road traffic incident. One way to overcome this problem is
to use online learning. Online learning is a training technique
that uses the most recent sequential data point or points
to update the model’s weights and biases as soon as the
data is available; this can improve the prediction accuracy of



complex and stochastic sequential data, such as road traffic
flow. However, online learning does have its limitations. The
main disadvantage of online learning is the eventual loss of
the long-term temporal patterns embedded within the training
data. By continually updating the DNN’s weights and biases
based on the most recent data point or points, the model
will eventually converge to the short-term temporal patterns,
forgetting previously learnt long-term temporal patterns. This
is known as catastrophic forgetting. Therefore, research into
DNN’s architectures that can learn and retain short and long-
term temporal patterns during online learning need to be
investigated further.

The contributions and novelty of this work include:
1) we have investigated different magnitudes of temporal

patterns (long-term and short-term), through the use
of different temporal data segments to understand how
contextual temporal data can improve prediction; and

2) we have developed a novel online dynamic temporal
context neural network framework. The framework uses
different temporal data segments as input features, and
during online learning, the updating scheme is able to
dynamically determine how useful different temporal
data segments are, and weight them accordingly for use
in the regression model. Therefore, the model is able
to include relevant long-term temporal patterns in the
regression model leading to improved prediction results.

The rest of this paper is organised as follows: Section II
presents the State-of-the-art in Deep Neural Networks for
Time-Series Prediction with regards to Road Traffic Flow;
Section III describes the Methodology used for the exper-
imentation; Section IV details the Experimental Evaluation;
and Section V discusses the Conclusion and Future Work.

II. STATE OF THE ART IN DEEP LEARNING
TRAFFIC FLOW PREDICTION MODELS

In this section, we will review and assess DNNs architec-
tures for time-series prediction with regards to road traffic flow.

Traditionally, DNNs are used for static tasks such as image
classification, however, thanks to algorithm development by
Hinton et al. [12] and advances in computing power, they can
now be explored further for time-series prediction. DNNs have
been proven to provide better prediction results for complex
noisy data; their long computational chain of layers are able
to extract complex latent patterns embedded within the data
[13]. The first publication, to the best of our knowledge,
using DNNs for road traffic flow prediction was Lv et al.
in 2014 [14]. Lv et al. stated that shallow prediction models
learned an inadequate compressed representation of the rela-
tionship between the input and the output data. Therefore, a
DNN is needed to ascertain the stochastic and complex non-
linear properties of road traffic data. Despite this most ANNs
designed for road traffic flow prediction are predominately
shallow learners with only one hidden layer [14]. Therefore,
one area of DNNs which has not yet been fully explored is
time-series prediction for road traffic flow. More research into
developing deep architectures to improve prediction accuracy

for road traffic flow is now possible and needed. Research
by Bartlett et al. in 2019 [13] determined that the most
suitable deep regression models for road traffic flow prediction
were the GRU and LSTM ANNs. Basic RNNs are unable to
capture long-term dependencies within the temporal data; their
learning capacity is limited to between five and ten-time lags.
This severely restricts their temporal context and thus, their
prediction accuracy. LSTM and GRU models, however, are
able to identify latent patterns over numerous time lags, lead-
ing to improved prediction results. Therefore, the long-term
temporal patterns embedded within the training data are crucial
for road traffic flow prediction [13]. However, these models do
have constraints, they are limited by their training data. The
magnitude of the training data will determine what temporal
patterns can be learnt. Therefore, deep LSTM and GRU ANNs
will be the focus of this review, with attention to temporal
data size and pre-processing, along with online/incremental
learning.

The LSTM model [15] is an adaptation of a basic RNN
model. By the addition of an internal memory (known as a cell)
and a constant error carousel, the model is able to preserve
the error during training and overcome the vanishing gradient
problem suffered by basic RNN models. Zhao et al. in 2017
[3] used an LSTM model to predict road traffic flow. The input
data, 500 observation points over 19 days with a time-step of
five minutes, was preprocessed using an origin-destination cost
(ODC) matrix to find the temporal and spatial corrections. This
was done to simplify the relationships between the spatial and
temporal data points to help the model find a relationship be-
tween the input and output data. The ODC matrix was then fed
into an LSTM model. The prediction results were compared to
five other statistical and machine learning models, including
a basic RNN. Zhao et al. determined that the LSTM was the
most accurate. Furthermore, preprocessing the input data in
an origin-destination matrix did improved prediction accuracy.
However, the predictions were not compared to a GRU model
and no justification why 19 days of traffic flow data were
given. Furthermore, no incremental learning was used. Shi
et al. in 2018 [16] used an LSTM model to predict household
energy loads. The input data, 48 hours of 929 household’s
energy loads (divided into pools of ten) with a time-step of 30
minutes, was preprocessed using a pooling layer. The pooling
layer added nine other neighbouring houses’ energy loads as
an input feature for the LSTM model. This was done to prevent
over-fitting to the training data and to compensate for the small
training dataset. The predictions were compared to three other
machine learning models and determined that the LSTM was
the most accurate. However, a convolutional neural network
(CNN) may have been more suitable for pooling neighbouring
household loads which was not considered. Furthermore, no
justification was given to why a small training dataset was
used, nor was any incremental learning implemented.

Therefore, researchers are still using small training datasets
with no justification. Small training datasets do not take
advantage of the model’s ability to link cause and affect over
many time lags. This may be due to the big data issue. An



LSTM cell has a complex structure which results in a high
computational cost. Therefore, using a large volume of training
data with an LSTM model would result in lengthily, perhaps
unfeasible, training times. One way to speed up training time
would be to use a less computationally heavy model.

Cho et al. in 2014 [17] put forward another adaptation of
an RNN to solve the vanishing gradient problem, the GRU
neural network. Similar to the LSTM, the GRU can be trained
to retain information over many time lags through the use of
gates. GRU models are still in their infancy, therefore, there is
limited research regarding them, with most papers performing
comparative studies. Bartlett et al. in 2019 [13] compared
different DNNs for the prediction of road traffic flow, including
a deep LSTM and deep GRU model, and determined that the
deep GRU model was most successful in terms of accuracy
and computational speed. However, state-of-the-art research in
other prediction domains, such as text and speech prediction,
are using hybrid GRU models to preprocess the data before
using a regression layer, such as a GRU, for prediction. The
use of a preprocessing layer may improve prediction accuracy.
Therefore, hybrid models which include other ANN structures,
such as CNNs, should be explored further.

A CNN [18] is a feed-forward neural network that uses
the geographical proximity of its input data points to add a
geospatial dimension to the prediction function being learnt.
Consequently, CNNs are traditionally used when the input
data can be expressed in terms of a map, such as image
analysis. Nevertheless, many other data sources possess similar
characteristics. CNNs combined with RNNs have been used
in image/text analysis experiments such as Peris et al. in 2016
[19], Lopez-Martin et al. in 2017 [20], and Wang et al. in
2016 [21]. This research has paved the way for CNNs to be
used for road traffic flow prediction models. Road traffic flow
data not only exhibits temporal patterns but also has strong
spatial dependencies; it can also be influenced by the number
of vehicles up and downstream from the point of prediction.
Therefore, CNNs can be explored further for road traffic flow
prediction. Wu et al. in 2018 [8] built upon the research by
Wang et al. and developed a hybrid model to predict road
traffic flow. Two GRU layers were used to detect temporal
features while three CNN layers were used to detect spatial
features. Their outputs were combined into a single regression
layer to make a prediction. Additionally, in order to detect
patterns across different time lags, three different segments of
historical input data (all 105 minutes in length) were used. The
segments were from: 1) immediately preceding the prediction,
2) exactly one day before the prediction, and 3) exactly one
week before the prediction. The input segments were also
preprocessed in an attention model before entering the RNN or
CNN layers. Three months of data from 33 sensors were used
to train and test the model to predict multiple time horizons
of five minutes. Its results were compared to five state-of-the-
art time-series prediction models, and Wu et al. determined
that the GRU and CNN hybrid model was the most accurate.
However, assumptions are made over the temporal segments.
It has been assumed that only the daily and weekly temporal

patterns are significant; no consideration was given to monthly
or yearly patterns. Furthermore, the model was only trained
statically, it has assumed that the relationship between the
temporal data segments is constant. Once the model has learnt
the temporal and spatial relationships contained within the
training data it has no opportunity to update these relationship
based on the current data. Therefore, it does not lend itself to
real-life applications such as road traffic incidents. A model
which includes online learning would be more appropriate.

In conclusion, CNNs are still in their infancy in terms
of application. Many papers exploring architecture hybrids
within image analysis and text/speech analysis have started
to cross over into time-series prediction, however, one major
hurdle that needs to be overcome for CNNs to make a
significant impact on time-series prediction is its ability to
detect short and long-term patterns embedded within the data.
Furthermore, another issue highlighted by the literature review
is the lack of consensus over what magnitude of temporal
data that should be used, or, if providing historical temporal
data from distant time lags ago can provide context and
improve prediction accuracy. Most research fails to address
the temporal element of input data. The limited research that
does address the temporal element does not compare their
model with and without the addition of the temporal data to
assess its impact on the model’s accuracy [16]. Furthermore,
the additional temporal data is often chosen through expanding
the current temporal dataset [22], which may be irrelevant, or
with no justification[8]. Banko and Brill [5] identified that that
input data used was the most important element of a successful
machine learning model. Therefore, further research into input
data for DNNs and temporal data is vital.

III. METHODOLOGY

A. The Proposed Framework

 

Fig. 1. The proposed framework

We have developed a novel online dynamic temporal context
neural network (DTC) framework, as shown in Fig. 1. The
framework uses different temporal data segments as input
features, and, during online learning, the updating scheme
can dynamically determine how useful different temporal data
segments are for prediction accuracy. The different temporal
data segments are weighted according to their usefulness for
the regression model and added the current observations.



Therefore, the framework can include short and relevant long-
term temporal patterns in the regression model leading to
improved prediction results.

The framework can be divided into three distinct compo-
nents: 1) an input layer, 2) the model layer, and 3) the update
scheme layer, as seen in Fig. 1. Each layer will now be defined
in more detail.

1) The Input Data Layer:
Unlike traditional regression neural networks, the proposed
framework has two sources of input data. The sources of input
data for the input data layer are: 1) the current observations
(D1), and 2) the corresponding different temporal data seg-
ments (D2).

The current observations (D1) are the traffic flow observed
immediately before the prediction point (t + 1). The current
observations dataset is a 7d array, as shown in Equation 1,
containing the total traffic flow and its breakdown into six
different vehicle classes as shown in Table I. Vehicle classes
are used as input features (f ) for both the DTC model and
regression model based on prior research which demonstrated
that vehicle classes can improve prediction results [1].

D1 =


f1,t f2,t ... fn,t
f1,t−1 f2,t−1 ... fn,t−1

f1,t−2 f2,t−2 ... fn,t−2

... ... ... ...
f1,t−n f2,t−n ... fn,t−n

 (1)

TABLE I
AN EXTRACT FROM THE CURRENT (t) TRAFFIC FLOW OBSERVATIONS (D1)

Total Total Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
t 147 12 123 2 9 2 1

t−1 139 10 115 0 10 1 3
t−2 142 9 117 1 9 2 3
t−3 148 8 119 3 11 0 7

... 12 1 8 0 2 1 0
t−n 58 3 51 0 4 0 0

The different temporal data segments (D2) are the corre-
sponding data that is one day, one week, one month, and
one year before the prediction point (t + 1). Each temporal
data segment is a 7d array containing seven different features
(fi ⇒ i ∈ Z : 1 ≤ i ≥ 7), the total traffic flow and its break-
down into six different vehicle classes matching the current
observations’ shape and structure, as shown in Equation 1.
In total, the different temporal data segments dataset is a
28d array, as shown in Equation 2, where d denotes daily,
w denotes weekly, m denotes monthly, and y denotes yearly
data segment.

D2 =

 f[d1,dn],t f[w1,wn],t f[m1,mn],t f[y1,yn],t

f[d1,dn],t−1 f[w1,wn],t−1 f[m1,mn],t−1 f[y1,yn],t−1

f[d1,dn],t−2 f[w1,wn],t−2 f[m1,mn],t−2 f[y1,yn],t−2
... ... ... ...

f[d1,dn],t−n f[w1,wn],t−n f[m1,mn],t−n f[y1,yn],t−n

 (2)

Both sources of input data, current observations and
different data segments (D1 and D2), are passed to the model
layer for processing.

2) The Model Layer:
The model layer contains two models with different architec-
tures: 1) the DTC model architecture, and 2) the regression
(GRU) model architecture.

The proposed DTC model has a CNN structure. Tradition-
ally, CNN structures are used for static tasks where input
data can be expressed in terms of a map, such as image
analysis or classification. In addition, cutting edge research
into time-series prediction has used CNN to find geospatial
relationships between different geographical locations to help
improve prediction accuracy. Our proposed model is different
from previous time-series prediction models using CNNs as
we seek to find relationships between different magnitudes of
temporal data segments. The model uses the different temporal
data segments (D2) to dynamically determine how useful it
is for the regression model (GRU) to produce an accurate
prediction. It does this by weighting the input segments.
What differentiates the proposed model from traditional CNN
architectures is; 1) we have used temporal data as an input
features (fi), therefore, in the proposed model the kernel
scrolls ‘across’ the temporal data segments (D2) and not down
the temporal data like traditional arrangements of CNNs, 2)
the kernel (k) used to detect temporal patterns is rectangular
and not square as traditionally used in CNNs, so the kernel
(k) only convolves across one line of input data at once, 3)
the model uses downsampling to obtain the most relevant
temporal data, therefore, no padding function is used unlike
in traditional CNN structures to maintain the dimensions of
the input data, and 4) the stride (s) used for the kernel (k)
is equal to width of the kernel (k = s) to ensure that each
data point is only convolved over once by the kernel (k) per
layer (`). This enables the DTC to reduce the dimensionality
of the input data while ensuring no replications are passed on
to the regression model. The DTC model will now be defined
in more detail. The proposed DTC model’s input is the 28d
array of different temporal data segments (D2); its structure
is a CNN, as shown in Equation 2. In the convolutional layer
a convolution kernel (k), also known as a filter or feature
detector, convolves (slides) over the different temporal data
segments (D2) input features (fi) until every input feature has
been passed over, moving left to right. Therefore, temporal
data is used as an input feature in the array columns and rows,
contrary to traditional CNN structures. The convolutional
operation (k[x, y]), where x and y define the current position
of the kernel (k) in the dataset D2, can be defined as

kD2 = k ⊗ fi : fi ∈ D2[x, y] (3)

In the proposed model the magnitude of the movement made
to the right is known as a stride (s) and is defined the same
length as the convolutional kernel (k), therefore, s = k, and is
a rectangle, unlike traditional CNN kernels. This constraint has
been set to ensure each feature (fi) is passed over only once in
each layer (`) per kernel (k) to ensure that the output contains
no duplication. At each stride (s) the weights (wi) in the kernel
(k) are multiplied by the corresponding indices (d ∈ D2)
position (x and y) underneath in the temporal segments data



 

Fig. 2. The proposed Dynamic Temporal Context Framework

(k⊗d) to create the convolution. The calculated values are used
to create one output value, as shown in Equation 3, and used
to construct the feature map (M ), as shown in Fig. 2. What
is considered an important temporal pattern by the proposed
model is learned during the training process. Multiple kernels
(k) can be used to detect multiple important temporal patterns
in the temporal data segments. Every hidden layer (`h) has at
least one kernel (k), and the depth of the feature map (M ) is
determined by the number of kernels in the hidden layer (`h).
The number of kernels (k) and hidden layers (`h) the DTC
contained was optimised through grid search.

It should be noted that although the literature refers to the
above process as a convolution, technically the implementation
in the proposed model, and most other implementations of
CNNs, used a correlation operation. Both operations are
closely related, with both being a neighbourhood operation.
The only significant difference between the two operations is
during the calculation of a convolution the kernel (k) is rotated
180◦; the kernel (k) does not rotate during the correlation
calculation. Therefore, for clarification, in the paper when
referring to the convolution operation of our proposed model,
we are referring to a correlation operation.

The convolutional operation is linear, therefore, an acti-
vation layer (`a) follows the convolutional layer to account
for the non-linear relationship between the data points. In
the proposed model a rectified linear unit (ReLU), as seen
in Equation 4, activation function was used.

r(m) =MAX(0,m) : m ∈M (4)

An ReLU was used to normalise the output of the DTC
between the range of 0−x, to ensure the none of the temporal
data segments would be negatively weighted. The feature map
(M ) is then fed the activation layer (`a); a ReLU function (r)
was applied to each data point (m) in the feature map (M )
matrix to transform the data into the set range. The output
of the activation layer (`a), the activation map (A), contains
the same dimensions as its input, the feature map (M ). The

activation map (A) is then fed into the pooling layer (`p).
The pooling layer (`p) is used to condense the temporal data
segments while preserving the important temporal patterns
(features (f ). A sliding window is used to move across the
activation map (A), and one value is chosen per stride (s),
as shown in Fig. 2. Again, the stride is equal to the size of
the window (s = k) to ensure no duplication in the output.
Therefore, the activation map (A) is downsampled and reduced
in width, to a width of qp, as shown in Equation 5, where qa is
the width of the activation layers (`a) input. The value chosen
in the sliding window is the largest value (max pooling).

qp =
qa − k
s

+ 1 (5)

Traditionally, the output of the pooling layer (`p) is calculated
as

o =
q −K + 2P

s
+ 1 (6)

where p represents a padding function added to increase the
dimensions of the output data back to its original magnitude.
However, as downsampling was the aim of the proposed
model, no padding function (p) was used in the proposed
model.

Different from the existing time-series models using CNN
where the prediction models are based on static data, our
proposed DTC model is dynamic and seeks to find a relation-
ship between different magnitudes of temporal data segments
promptly. In the proposed DTC model, the output is the most
relevant temporal features (S) for prediction. The selected tem-
poral features (S) are then added to the current observations
(D1) to create the current dataset (C) and passed through to
the regression model (GRU), as shown in Fig. 2. Based on
previous research [13] the regression layer used was a deep a
GRU model. A GRU model works through the use of gates;
each gate is a neural network. The gates included in a standard
GRU cell are an update gate and a forget gate, as shown in Fig.
2 in the regression model cell. The current input (ct ∈ C) and



the previous hidden state (ht−1) is added together and passes
through the update gate, as shown in Equation 7. The update
gate decides what data should be forgotten and what should
be added. A Sigmoid activation function is used to squash the
values of the input between zero and one, where b is the bias.

u = σ(wcuct + whuht−1 + bu) (7)

Next, the same input (ct and ht−1) is passed through the reset
gate with a Sigmoid activation function (as shown in Equation
8). The reset gate is used to decides how much of the past
information should be forgotten, as shown in Fig. 2.

r = σ(wcrct + whrht−1 + br) (8)

The hidden state (h) is then updated using the reset gate and
the current input (ct) (as shown in Equation 9), where the
product of the reset gate (rt) and the weighted previous hidden
state (whhht−1) is the Hadamard product.

ht = tanh(wchct + (1− rt) ◦ whhht−1 + bh) (9)

Finally, the hidden state is updated using the update gate to
determine what information from the current memory should
be stored, as shown in Equation 10.

ht = zt ◦ ht−1 + (1− zt) ◦ ht (10)

The output then predicts the number of vehicle (yt) at the next
time point (t + 1), as shown in Fig. 2. Once the regression
model, GRU, has made its first prediction (yt) using the test
data, the prediction (yt) and the actual value (at+1) are then
passed to the Update Scheme layer, as shown in Fig. 1.

3) The Update Scheme Layer:
The primary objectives of the Update Scheme layer are:
1) to update the weights and biases in the DTC model to
dynamically and timely adjust the most relevant temporal
features from the temporal data segments dataset (D2) for use
in the regression model, and 2) to update the weights and
biases in the GRU model to allow the model to adjust and
adapt to changing temporal trends within the time-series data.
This was done through online learning. Once a prediction (yt)
has been made, the actual value (at) is added as a new line
of observations to the current observations dataset (D1) and
its corresponding temporal data segments are added to D2, as
shown in Fig. 2. The prediction (yt) and actual observation
(at) are then compared, and its error, ε (yt− at), is computed
and passed back to the DTC model. This is done to update
the model’s weight (wi) and biases (bi) contained within the
kernels (ki) to allow the model to dynamically adjust the
most relevant temporal data segments for regression based
on the most recent time-series data. This is achieved through
the use of a stochastic gradient descent method [23] and a
small window of the most recent data segments in dataset D2.
During backpropagation, using a small window of the most
recent data in D2, the gradient of the error (ε) is found with
respect to the DTC model’s weights (wi) and biases (bi) using
differentiation, as seen in Equation 11.

δε

δwi
and

δε

δbi
(11)

The error’s (ε) gradient is then backpropagated through the
model, from the output layer (`o) to the input layer (`i), to
find the global minima. In each layer (`) the gradient is scaled
by a learning rate (l) as shown in Equation 12.

wi,t = wi,t−1 − l
δε

δwi
and bi,t = bi,t−1 − l

δε

δbi
(12)

The weights (wi) and biases (bi) in the kernel (ki) within
the DTC model are then updated accordingly to minimise the
error (ε). Once the DTC model is updated, the new temporal
features are selected (s1,t+1−sn,t+1) and added to new current
observations (D1) to create an updated current dataset (C), as
shown in Fig. 2. A window of the new current dataset (C), is
then fed to the regression model (GRU) to update the weights
(wi) and biases (bi) in the GRU layers. The regression model
is updated to improve the prediction accuracy of the overall
model by adapting to temporal trends within the time-series
data.

The regression model is also updated using stochastic gra-
dient descent method [23]. The current input (ct+1 ∈ C) and
the previous hidden state (ht) is added together and passed
through the update gate, as shown in Equation 7. The GRU cell
processes the input as described in Equation 7 to 10, and the
gradient of the error (ε) is found with respect to the regression
model’s weights (wi) and biases (bi) using differentiation,
as seen in Equation 11. The error’s (ε) gradient is, again,
backpropagated through the regression model, from the output
layer (`o) to the input layer (`i), to find the global minima.
In each layer (`) the gradient is scaled by a learning rate (l)
as shown in Equation 12. The weights (wi) and biases (bi)
within the regression model are then updated accordingly to
minimise the error (ε). Once the Updating Scheme has updated
the regression model, a new prediction is made (yt+1) and the
cycle continues.

IV. EXPERIMENTAL EVALUATION

In this section, we have focused on two research questions:
1) how do different temporal data segments affect prediction
accuracy? 2) can a dynamic temporal context framework that
is able to include both short-term and relevant long-term
temporal patterns improve prediction accuracy?

A. Data Description

Both the proposed dynamic temporal context and deep gated
recurrent unit model were applied to an existing real-life
dataset collected from a typical busy urbanised arterial road
between Manchester and Liverpool, UK. The dataset consisted
of three months of data collected between 1st January to 31st
March 2016, with a time horizon of five minutes (26,195 data
point). Historic datasets, referred to as temporal data segments,
were added as input features to to to give the data temporal
context. The temporal data segments added to the original
dataset were the previous day, week, month, and year, as
shown in Table II.

All temporal data segments were three months in length,
with a time horizon of five minutes, and 26,195 data points, to



TABLE II
TEMPORAL DATASETS

Dataset Description
1 Current dataset with no temporal data segments
2 Current dataset with previous day temporal data segment
3 Current dataset with previous week temporal data segment
4 Current dataset with previous month temporal data segment
5 Current dataset with previous year temporal data segment
6 Current dataset with all temporal data segments

correspond with the original dataset. The input data had input
also had input features of different vehicle classes, as shown
in Table III, as different vehicle classes have been shown to
improve prediction accuracy [1].

TABLE III
CLASSES OF VEHICLE TYPE

Class No. Vehicle Type
1 Motorcycles
2 Car or Van
3 Car or Van with Trailer
4 Rigid Goods
5 Articulated HGV
6 Bus or Coach

Therefore, the total dataset contains 26,195 data points 35
different input features. Two months of the dataset was used
to train and validate the framework and one month was used
for testing. No data points were missing, therefore, no pre-
cleaning of the data was necessary.

B. Model Architectures and Hyperparameters

There is currently no standard procedure or analytical
calculation to determine the optimal structure or setup for any
ANN, therefore, the architecture and hyperparameters of all
neural networks used during experimentation were optimised
using prior knowledge from the literature review or heuristics
through grid search.

The setup of all weights and biases were randomly ini-
tialised based on work by Zhao et al. in 2017 [3]. The dropout
rates were optimised at 50% fitting based on work by [24]
in 2014 [24]. The optimiser used during training and online
learning was a stochastic gradient descent method, AdaMax,
designed by Kingma and Ba in 2014 [23]; this optimiser was
chosen as it is an adaptive gradient method which keeps an
exponentially decaying average of the past gradients, therefore,
suitable for online learning.

All other hyperparameters and architectural structures, such
as the number of layers, nodes, learning rate, update window
size, were found using a random grid-search. The grid-search
searched through different architectural structures ranging
from two to six layers (excluding any input and output layers)
with different hyperparameters to find the optimal setup for
all models.

C. Performance Metrics

In order to evaluate and compare the accuracy of all the
models, a performance metric was used. The Root Mean
Squared Error (RMSE), as shown in Equation 13, was used
to measure the average deviation between the predicted value
and the actual value of the road traffic flow.

RMSE =

√∑n
t=1(yt − at)2

n
(13)

yt is the predicted value at time t, a is the actual value at time
t, and n is the number of time steps predicted.

D. The Evaluation of Different Temporal Data Segments and
the Proposed Dynamic Temporal Context Framework

To examine how different temporal data segments affect
prediction accuracy, we have applied a deep gated recurrent
unit model to six different datasets, as shown in Table II). For
each dataset, the model was run multiple times to optimise the
parameters and to ensure significance. In total 3,600 models
were trained.

TABLE IV
THE PREDICTION ACCURACY OF DIFFERENT TEMPORAL DATASETS USING

A DEEP GATED RECURRENT UNIT MODEL FOR ROAD TRAFFIC FLOW

Model Temporal Dataset RMSE (%)
Deep Gated Recurrent Unit 1 14.644
Deep Gated Recurrent Unit 2 13.950
Deep Gated Recurrent Unit 3 13.575
Deep Gated Recurrent Unit 4 14.010
Deep Gated Recurrent Unit 5 14.570
Deep Gated Recurrent Unit 6 13.574

The Proposed DTC Framework 6 12.244

Table IV shows that the inclusion of the weekly temporal
data segment provided the most improvement to the prediction
accuracy, with an RMSE of 13.575%, more than the daily
temporal data segment, which had an RMSE of 13.95%. This
will be due to the weekday and weekend split linked to the
working week, which traffic flow in most urbanised areas
exhibits.

Interestingly, Table IV also shows that the addition of
any temporal data segment, even long-term, improved the
prediction accuracy of the model. Therefore, long-term tem-
poral patterns, such as monthly and yearly patterns, embedded
within the data, have aided the prediction model. Furthermore,
including all temporal data segments improved the prediction
accuracy further, with an RMSE of 13.574%. This shows that
both short and long-term temporal patterns embedded within
the traffic flow data are important for the prediction of road
traffic flow and can improve prediction results.

To evaluate the effectiveness of the proposed dynamic
temporal context framework, we have used the sixth dataset,
as shown in Table II, and compared its prediction results with
a deep gated recurrent unit model. The results are shown in
Table IV.

The proposed framework was more successful than the deep
gated recurrent unit model at predicting road traffic flow using
the same existing real input data (dataset six from Table II),



with an RMSE of 12.244% and 13.574% respectively. This
not only demonstrates the importance of temporal context for
accurate road traffic flow prediction but also shows that the
temporal context must also be relevant. Using the proposed
dynamic temporal context layer has enabled the framework to
provide only relevant temporal data segments to the regression
model (deep gated recurrent unit model) dynamically in real-
time. This had lead to a 10.8% improvement in the prediction
accuracy.

V. CONCLUSION

Accurate prediction of road traffic flow is crucial for
intelligent transport system management. Previous research
into road traffic flow prediction has focused on short-term
patterns, such as hourly, daily, and weekly. Little research has
investigated the effect of different long-term patterns, such
as monthly and yearly on traffic flow prediction accuracy.
In this work, we have investigated different magnitudes of
temporal patterns (short and long-term) by using different
temporal data segments to assess how contextual temporal
data effects prediction accuracy. Also, we have proposed a
dynamic temporal contextual framework, which, unlike other
prediction models, can dynamically incorporate both short and
relevant long-term temporal patterns. This is achieved by using
different temporal data segments as input features and, through
online learning, the model can dynamically determine which
is relevant for regression to provide an accurate prediction in
real-time. The different temporal data segments and proposed
framework were evaluated using an existing real dataset and
compared against a comparable prediction model (a deep
gated recurrent unit model). The experimental results show
that the inclusion of any short or long-term temporal pattern
does improve prediction accuracy. Furthermore, the proposed
framework improved prediction accuracy by 10.8% when
compared to the deep gated recurrent unit model, with an
RMSE of 12.244% and 13.574% respectively.

For future research, the CNN structure of the DTC model
should be explored further to provide more contextual informa-
tion for the regression model to improve prediction accuracy
further. In this paper we have restricted the input data to
one geographical point, however, it would be interesting to
explore on a network level and analysis what, where, and
when temporal patterns are more relevant. This analysis could
help construct future prediction models and aid in long-term
planning of incidents such as roadworks and sporting events.
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