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Abstract (300 w) 
Despite the success of automated pattern recognition methods in problems of human brain 

tumor diagnostic classification, limited attention has been paid to the issue of automated data 

quality assessment in the field of MRS for neuro-oncology. Beyond some early attempts to 

address this issue, the current standard in practice is MRS quality control through human 

(expert-based) assessment. One aspect of automatic quality control is the problem of detecting 

artefacts in MRS data. Artefacts, whose variety has already been reviewed in some detail and 

some of which may even escape human quality control, have a negative influence in pattern 

recognition methods attempting to assist tumor characterization. The automatic detection of 

MRS artefacts should be beneficial for radiology as it guarantees more reliable tumor 

characterizations, as well as the development of more robust pattern recognition-based tumor 

classifiers and more trustable MRS data processing and analysis pipelines. Feature extraction 

methods have previously been used to help distinguishing between good and bad quality spectra 

to apply subsequent supervised pattern recognition techniques. In this study, we apply feature 

extraction differently and use a variant of a method for blind source separation, namely Convex 

Non-Negative Matrix Factorization, to unveil MRS signal sources in a completely unsupervised 

way. We hypothesize that, while most sources will correspond to the different tumor patterns, 

some of them will reflect signal artefacts. The experimental work reported in this paper, 

analyzing a combined short and long echo time 1H-MRS database of more than 2000 spectra 

acquired at 1.5T and corresponding to different tumor types and other anomalous masses, 

provides a first proof of concept that points to the possible validity of this approach. 
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Introduction  
Scant attention has been paid to the issue of automated data quality assessment in the field of 

MRS for neuro-oncology (1) and, although recent studies have started addressing this issue, 

often using supervised pattern recognition (PR) approaches, the current standard in practice is 

quality control through human assessment (2). One reason for this may be the lack of the type 

of biocuration standards that begin to be common in other life sciences fields such as genomics 

and, to a lesser extent, proteomics (3). Further reasons include the fact that MRS data in this 

area are scarce and fragmented. Fragmentation is both geographical and institutional, as the 

effort of gathering multi-center and international data is hindered by different barriers. The 

clinical centers who are ultimately responsible for data acquisition have few obvious incentives 

to even partially transfer the control of their data to third parties, and such parties, who should 

be responsible for managing multi-center data, either do not exist or lack the ability to sustain 

such role in a long-term basis. Furthermore, efforts to gather and manage international 

databases often collide with local legal limitations for the transfer and sharing of this type of 

personal medical information. 

Having said this, it is also true that some research efforts have been made in order to address 

the problem of MRS automated quality control (AQC) and that this problem has been 

approached from different perspectives. Early concerns about issues of spectral quality in clinical 

MRS and the lack of standards for the definition of what makes a spectrum acceptable or not 

were, for instance, raised in (4). In this review, a list of possible artefacts, many of them difficult 

to detect even by expert visual inspection, was compiled; several quality assessment 

quantitative measures were put forward and a number of criteria for spectra rejection were 

formulated. The need for the definition of quality requirements and goals for 1H-MRS data, as 

well as for the implementation of measures to guarantee quality standards and the sustained 

management of data quality have recently been stressed in (2). 

Part of the spectra in the current paper were analyzed at a first level in (1), where the quality 

assessment concerned the immediate step after data acquisition by automatic determination of 

the signal-to-noise ratio (SNR) in a water-suppressed spectrum and of the line width of the water 

resonance (water band width, WBW) in the corresponding non-suppressed spectrum. Threshold 

criteria for the selection of spectra were then empirically determined and additional artefact 

detection was carried out by human visual inspection. 

In recent research (5), AQC was taken to a second level that uses previously validated databases 

(6-8) as a starting point. In that study, a range of different PR classifiers were trained to mimic 

human decision making about the quality of spectra from data transformed according to 

different feature extraction methods. To learn this task, the classifiers used original human 

quality ratings from both multi-center and local experts as training labels. Classifier performance 

was subsequently compared with variance in human judgment. This work was in turn inspired 

by a previous smaller-scale study (9) in which a least squares support vector machine was trained 

from features extracted by independent component analysis (ICA) to learn to distinguish 
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acceptable from unacceptable spectra. This AQC approach has been recently extended to clinical 
1H-MRSI information in (10), where a random forest (RF) classifier was trained on MRSI grids 

previously labeled as acceptable or non-acceptable by two expert spectroscopists and where, in 

order to account for potential intra-expert reliability effects, each of the spectra was labeled 

three times by each expert. A similar approach, also using RF as the classifier of choice, was 

earlier presented in (11). Note that all these approaches aim to replicate human decision in a 

data-based automated form, but do not attempt to assess quality dispensing with human prior 

assessment. 

An alternative approach to AQC attempted to distinguish potentially problematic spectra using 

an outlier analysis (12). A fully unsupervised manifold learning technique was used to model the 

data distribution and a shortlist of spectra that did not conform to it was obtained. This shortlist 

of quantitatively atypical cases was inspected by experts to distinguish between naturally 

atypical spectra and spectra with artefact related anomalies. The categorization of the artefacts 

in those singled-out cases was subsequently carried out individually and in detail by human 

experts. The purpose of our present study was to apply a totally unsupervised PR approach on 

the largest multicenter collection of single voxel (SV) spectra of brain tumors available to date, 

to identify artefactual MRS patterns in a way which is expert-interpretable. 

In this study, we use feature extraction in a different manner for the purpose of MRS AQC. The 

proposed approach is based on a method of the blind source separation family (to which ICA 

also belongs), namely Non-negative Matrix Factorization: NMF (13), and, more specifically, one 

of its variants known as Convex NMF: CNMF (14). NMF was originally developed (13) as a method 

for the estimation of the latent (unobservable) sources of image, but it can be used with any 

kind of signal assumed to consist on a combination of such sources. If applied to an MR 

spectrum, the goal is discovering the hidden signal sources whose weighted combination 

constitute it., be it tissue types or artefactual patterns. 

The rest of the paper is structured as follows: we first describe the dataset used in the 

experiments, which is the largest multicenter collection to date of SV brain tumor spectra at 

short and at long TE, obtained at 1.5T. Next, we report the experimental design, with a brief 

description of how the CNMF algorithm works, and how we designed the descriptive study and 

evaluated it. Then results for short time of echo (STE) and long time of echo (LTE) are shown 

separately and discussed. Finally, some conclusions are drawn, and possible future lines of 

research are outlined.  

Materials and methods 

Data acquisition and processing 

The data analyzed in this study are the same that were reported in detail in (5). In brief, these 

are SV spectra from human brain tumors, acquired in 1.5T scanners from three different 

manufacturers (GE, Siemens and Philips) and different scanner models during the period 1994-

2009. They were downloaded from the multi-center INTERPRET (6,8,15) and eTUMOUR (7) 

databases and processed with the INTERPRET data manipulation software (8,16) and 

parameters, with a further realignment correction as reported in (5). Note that this processing 
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included setting the region between [4.2, 5.1] ppm to zero values, and the final processed 

spectrum consisted of 512 frequency points. The total number of STE (20-32ms) spectra 

acquired with PRESS or STEAM, processed and available for further analysis was 1,180. The 

corresponding total number of LTE (135-144 ms) spectra acquired with PRESS was 977. For this 

study, the original quality ratings by expert spectroscopists were not used, although they were 

available with the data matrices from (5). Regarding the quality as assessed by the expert 

spectroscopists’ panels for STE, 982 spectra were deemed to be good and 198 bad quality 

spectra, whereas for LTE, 828 were deemed to be good and 149 bad (5) - see Table 1 for details. 

The available spectra correspond to the variety of pathologies gathered in the databases. The 

distribution of spectra by tumor type and echo time is shown on Table 1. Some of the artefacts 

known to be present in the spectra include (although are not limited to) low SNR and/or bad 

water suppression (5). For evaluation (see section further on), seven classes or superclasses 

(brain tumor groupings) were considered: low grade gliomas (including astrocytoma, 

oligodendroglioma and oligoastrocytoma of WHO grade II), aggressive tumors (which included 

glioblastoma and metastasis), meningioma, lymphoma, primitive neuroectodermal tumors 

(PNET), astrocytoma WHO grade III, abscess as well as normal brain, as in (8,16).  

 

Experimental design  

Sources or archetypical spectral patterns were extracted using CNMF (14). This method 

generalizes NMF by admitting negative values in the observed data. Note that some of the 

spectra in the database include inverted peaks with such negative values.  The optimal number 

of sources to be extracted is not known a priori (17). Although this would be a relevant problem 

in a more general experimental setting, it is not a relevant one in this study, as we are interested 

in the exploration of the existence of signal artefacts across a wide range of source number 

values. For this reason, a descriptive study extracting from 4 to 20 sources per TE was set up. 

Extractions start at 4 sources as the minimum necessary to maintain a correspondence between 

the sources (or groups of sources) and the main types of tissue, according to (17).  

CNMF works by factorizing the observed data matrix 𝑋 (of dimensions 𝐷 × 𝑁, where 𝐷 is the 

dimension of the data -512 points or spectral frequencies in our case- and 𝑁 is the number of 

samples: 1,180 spectra at STE plus 977 at LTE) into two matrices: 𝐹 (the matrix of extracted 

sources, of 𝐷 × 𝐾 dimensions, where 𝐾 is the number of sources -from 4 to 20 in the reported 

experiments-) and 𝐺 (the mixture or coding matrix, of dimensions 𝑁 × 𝐾, where the values in a 

column are the weights associated with a source or base vector for each spectrum). The product 

of these two matrices provides a good approximation to the original data matrix. It is important 

to note that the values in 𝐺 are all non-negative and, therefore, each spectrum can be seen as a 

weighted combination of sources acting as data centroids. Therefore, we are making the 

important assumption that an MR spectrum is the measurable manifestation of the weighted 

combination of non-directly measurable (hidden or latent) signal sources. Furthermore, 𝐹 is 

constrained to lie in the column space of the input data 𝑋, so that the CNMF formula can be 

written as in Eq. 1: 

𝑋± ≈ 𝐹𝐺+
𝑇 ,         Equation 1 
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where 𝐹 =  𝑋± 𝑊+. This leads to = 𝐺(𝐺𝑇𝐺)−1 ;  the ± subscript represents a mixed-sign data 

matrix and the + subscript indicates that the matrix is non-negative.  𝑊 (of dimensions 𝑁 × 𝐾) 

is an auxiliary adaptative weight matrix that fully determines 𝐺.  

Matrix 𝐺 is also called the mixing matrix, as it holds the coefficients (or coding coefficients, CC) 

to recompose a specific data sample. The CC value of each column in the mixing matrix therefore 

provides us with an estimation of the degree of contribution of each of the sources to each 

reconstructed spectrum. Each spectrum 𝑖 (of 𝑁) is represented as the linear combination of the 

𝑘𝑡ℎ source (out of 𝐾) and the CC 𝐺𝑖, as described by Eq. 2: 

 𝑋𝑖 = 𝐹1𝐺𝑖1 + ⋯ +  𝐹𝑘𝐺𝑖𝑘 +  ⋯ + 𝐹𝐾𝐺𝑖𝐾    Equation 2 

NMF methods unavoidably converge to local minima. As a result, the NMF bases will be different 

for different initializations. In this study, we use the k-means++ algorithm (18) for initialization. 

CNMF is based on iterative update algorithms, just like the original NMF, in which the factors 

are updated alternately until convergence (19). The algorithm works as follows: 

Step 1: Initialize G and 𝑊. This is achieved here with the k-means++ algorithm, as in (18), aiming 

to ensure that the algorithm starts from values close to the actual data centroids. 

Step 2: Update G, leaving 𝑊 fixed, using the rule in Eq. 3: 

𝐺𝑖𝑘 ← 𝐺𝑖𝑘√
[(𝑋𝑇𝑋)+𝑊]𝑖𝑘+[𝐺𝑊𝑇(𝑋𝑇𝑋)−𝑊]𝑖𝑘

[(𝑋𝑇𝑋)−𝑊]𝑖𝑘+[𝐺𝑊𝑇(𝑋𝑇𝑋)+𝑊]𝑖𝑘
    Equation 3 

Where (∙)+ is the positive part of the matrix, where all negative values become zeros; and (∙)− is 
the negative part of the matrix, where all positive values become zeros. 

Step 3: 𝑊 is updated, leaving G fixed using the rule in Eq. 4: 

𝑊𝑖𝑘 ← 𝑊𝑖𝑘√
[(𝑋𝑇𝑋)+𝐺]𝑖𝑘+[(𝑋𝑇𝑋)−𝑊𝐺𝑇𝐺]𝑖𝑘

[(𝑋𝑇𝑋)−𝐺]𝑖𝑘+[(𝑋𝑇𝑋)+𝑊𝐺𝑇𝐺]𝑖𝑘
   Equation 4 

Ten repetitions were carried out for each of the 17 source extractions (from 4 sources to 20) at 

both TEs, since the extracted sources may vary because of the k-means++ initialization. This 

number of repetitions was considered to be enough to calculate the mean and standard 

deviation (STD) of the sources extracted.  

In order to calculate the mean and STD of the sources, we first grouped them by similarity. For 

this, the Pearson correlation coefficients between each source and all the sources at each 

repetition were calculated, and those with the highest coefficient values at each repetition were 

grouped together. The first extraction was chosen as starting point. The obtained sources were 

graphically represented to allow a first intuitive visual verification of their characteristics. As 

mentioned in the introduction, we hypothesize that some of the sources would be identified as 

artefacts, while others will describe prototypical tumor patterns or normal tissue, as the 

databases from which the spectra are obtained comprise spectra of both good and poor quality. 
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CNMF was implemented in Python language (20) and run either via Google Cloud Platform, or 

at the computer cluster at the Institut de Biotecnologia i Biomedicina (IBB) in Barcelona, Spain.  

Evaluation 

The obtained sources were first qualitatively explored by two members of the team who are 

expert spectroscopists (CA and MJS) and then quantitatively assessed according to different 

calculated measures with the purpose of finding an automated way to distinguish artefact 

sources. The quantitative measures include: 

 Pearson product-moment correlation coefficients (matrix 𝑅 in Eq. 5) between the means 

of each of the matrices created with the sources obtained over 10 repetitions 

(matrix 𝑌) and the means of the different tumor classes, abscesses and normal tissue 

from the INTERPRET validated database (matrix 𝑍) (6).  

𝑅𝑖𝑗 =
𝐶𝑖𝑗

√𝐶𝑖𝑖∗𝐶𝑗𝑗
 ,        Equation 5 

where 𝑐𝑖𝑖, 𝑐𝑗𝑗 , 𝑐𝑖𝑗  are elements of the covariance matrix 𝐶 of (Y, 𝑍). The values of 𝑅 

belong to the closed interval [−1,1]. This measure evaluates whether the extracted 

sources correlate with known prototypical spectra of different pathologies, or with 

healthy tissue. 

 Euclidean distances between the means of each of the matrices created with the 

sources obtained over 10 repetitions (𝑌) and the mean spectra of different tumor 

classes in the INTERPRET validated database (𝑍), calculated as ‖𝑌 − 𝑍‖2, evaluate the 

similarity between the extracted sources and the different prototypical spectra of 

different pathologies, or healthy tissue.  

 The CC of the mixing matrix (𝐺) of the means of each of the matrices created with the 

sources obtained over 10 repetitions (𝑌). These can be understood as estimates of the 

concentration/abundance of the constituent signals or sources in the conformation of 

each spectrum. These will help us to determine how well the sources obtained through 

convex NMF represent the artefacts.  

Results  
Here, we report some of the experts’ interpretations of the extracted sources. For the sake of 

brevity, only part of the complete set of results is reported, with some detailed results moved 

to the supplementary materials. 
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Figure 1 shows the mean and standard deviation (STD) of sources extracted for 𝐾 = 4 (minimum 

number of sources) at STE. Sources S1 and S4 show patterns that resemble those of high-grade 

glial tumors, characterized by the predominance of mobile lipids (0.9, 1.3 ppm). Source S3 is 

similar to low grade glial tumor spectra, in which there is an increase in the Choline peak, a 

decrease in Creatine and N-acetyl aspartate, and an increase in the Myo-inositol/Glycine peak, 

with respect to normal brain parenchyma pattern. Source S2, instead, can be considered as an 

artefact due to poor water suppression, which can be observed in the residual water signal 

around the offset area (4.2-5.1ppm). 
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Figure 2 widens the scope and shows the extractions from 𝐾 = 4 to 𝐾 = 8 (by rows) at STE. 

Sources in column 2 show the poor water suppression artefact, whereas in column 6 poor water 

suppression and negative intensities/bad water phasing can be observed. This should be 

considered as an artefactual source, given that spectra at STE are not supposed to have negative 

values. Column 8 shows a source that is compatible with a combination of artefacts: poor water 

suppression and spurious echoes (4). 

Figure 3 shows the extraction for the maximum of twenty sources. Table 2 displays the 

consensus expert spectroscopists’ evaluation. It can be observed that sources S1, S4, S7, S9, S14 

and S15 are compatible with high-grade tumors, which is related to the presence of mobile lipid 

peaks at 0.9 and 1.28 ppm. Amongst these, S9 shows an uncommon high methyl resonance at 

ca. 0.9 ppm, compatible with the spectral pattern of some oligodendrogliomas (21,22).  S11, S17 

and S18, even if still interpretable, contain artefactual patterns mainly due to insufficient water 

suppression- in particular for S2, S5, S10, S12, S13, S16 and S20 show clear artefactual patterns, 

and S18 is borderline regarding this aspect. It appears that the problem in most them is bad 

water suppression (S2, S5, S10, S12, S16, S20), sometimes only in the downfield side of the 
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suppressed water signal, rarely used for classifier development. It can also be seen that more 

than one artefact coexists in some instances, for example low SNR (S2, S13) and spurious echoes 

(S2, S13). The remaining sources have characteristics that match the type of patterns of known 

tumors, as in S3 or S18, which are compatible with meningioma; S6, with low grade glioma; S8, 

with PNET or astrocytoma grade III, and S19, with normal brain. Importantly, all these sources 

consistently appear and also show little variability throughout all extractions (𝐾 = 4, … ,20).  

With  

 

Figure 4, we now move to similar experiments for LTE data sources. It includes the results for the 𝐾 = 4 extraction, 
where S1, S2 and S3 display good quality patterns, while S4 clearly corresponds to a bad water suppression artefact. 
S1 and S2, though, also show a small contribution from incomplete water suppression. 

Figure 5 displays extractions from four to eight sources. It can be observed again that some of the sources appear 
consistently in the different extractions and are the less variable, and that the variability in the solutions increases 
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when more sources are extracted. 

 

Figure 6 shows the extraction for 𝐾 = 20 at LTE, where it can also be appreciated that only S3, 

S12 and S13 show low variation, while the rest of sources show different degrees of variability. 

Such variability can be assessed in detail from  

 

Figure 7, which shows, for STE and LTE, the standard deviation of the different sources in the 

form of box-plots. These plots provide evidence that the 4-source extraction is the less variable 

whereas the solutions obtained with the 20-source extraction are rather unstable, although 

there is a gradient, best seen for the STE sources, between low variability (S19, S11, S13) to large 
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variability (S12, S17, S5, S20). Additionally, the standard deviation of the 20-source extraction 

solutions at STE is clearly lower than at LTE.  

Supplementary Figures 1 to 22 provide the details of the standard deviation for all the 

extractions at the different TEs, where it can be noted that either 4 or 5 sources at STE and 4 at 

LTE are optimal in terms of source stability. In general, extractions at STE are more stable than 

at LTE. 
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Figure 8 and 

Figure 9, for STE and LTE respectively, show the correlations and Euclidean distances between 

the sources obtained at 𝐾 = 20 and the different mean spectra from the INTERPRET database, 

as well as the CCs. Tables 2 and 3 summarize the results of the different criteria for 𝐾 = 20 from, 

in turn, data acquired at STE and LTE. As it can be observed, most artefactual sources do not 

correlate (Pearson < 0.50) with at least one of the compared types; there is a high Euclidean 

distance between the sources and the compared types and there are no samples with CCs higher 

than 0.75. The experts also considered that the above-mentioned patterns were artefactual or 

contained artefacts, in particular for STE. 

Figures in the Supplementary materials show the equivalent results for 𝐾 = 9, …, 19, at STE and 

LTE. 

Discussion 
In this study, we extracted characteristic spectral patterns in a wholly unsupervised way, i.e. 

disregarding instrumental quality or tumor type labels. The mathematical approach chosen was 

CNMF, on the assumption that the observed spectra are the result of a combination of 

unobserved signal sources.  

An alternative approach could have been to apply a technique such as ICA. ICA restricts the 

sources to be statistically independent from each other (i.e. the occurrence of one does not 
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affect the probability of occurrence of the other), leading to MRS sources that poorly resemble 

the tissue types involved (23). For this reason, even when ICA has been extensively used to 

remove artefacts from electroencephalographic recordings (24), we did not consider it our first 

choice for extracting the kind of artefacts that can be found in MRS data. The non-negativity 

constraints of NMF, instead, lead to a parts-based representation because they allow only 

additive, not subtractive, combinations. This parts-based representation is key to explain the 

success of this BSS method in MRS data. ICA learns holistic (i.e. the whole rather than the sum 

of its parts) instead of parts-based representations. Amongst NMF variants, we chose to use 

CNMF as 1) it applies to both nonnegative and mixed-sign data matrices (key for long time of 

echo –LTE- MRS data),), 2) it has proven to represent better the underlying signals in the data 

(25,26) as the sources must lay in the convex hull of the data, and 3) CNMF is bound to generate 

sparse mixing matrices (with many elements taking values close to zero), which is a very useful 

property that can be exploited in future work in the artefact removal process. The use of NMF 

and CNMF for the analysis of MRS has already been reported in the field of neuro-oncology (25-

28).  These methods have mostly been used to detect sources that might be related to specific 

tissue types in and around the tumor, accounting for the spatial co‐existence of tissue types.  

Here, the use of CNMF had quite different goals. We hypothesized that, should some of the 

analyzed MRS data be contaminated by errors in the form of artefacts of different type, some 

of the sources extracted by CNMF should mostly reflect such artefacts, while the rest of sources 

would mainly reflect true tissue information. If this hypothesis holds, it follows that the MRS 

data could be adequately reconstructed from only those sources containing true signal, by 

removing the artefactual sources from the reconstruction.  

As the number of underlying sources in the dataset is not known a priori, we performed a 

descriptive study extracting from four to twenty different sources from the available spectra. 

Note that the criteria to choose the most appropriate number of sources may be based on 

strictly quantitative measures, on the radiological interpretability of the extracted sources, or 

on a trade-off between both approaches. This was not the objective of the current study and, 

therefore, such number remains to be determined. To address this problem, for example, 

Laruelo (29) used vertex component analysis (30), Vilamala et al. used a Bayesian NMF variant 

(31), and, in (32), the authors proposed an approach to automatically discard irrelevant sources 

during the iterative process of matrices decomposition. However, in terms of source extraction 

stability and according to the reported results, choices of 𝐾 = 4 − 5 for STE and 𝐾 = 4 for LTE 

seem optimal to represent major tissue and artefact classes.  

The experiments were carried out on the largest multicenter SV MRS brain tumor patient 

database available to date. The results reported in the previous section clearly indicate that 

some of the sources appear consistently across extractions, no matter the number of sources 

extracted, and that they correspond to well-defined sources (in the sense that they clearly 

correspond to either tumor types or to artefacts). The artefactual patterns are mostly different 

shapes of bad water suppression, as well as low SNR. The bad water suppression artefact is the 

most conspicuous and appears even in the extraction of only four sources. A recent work by 

Kyathanahally et al. (33) used a convolutional neural network (CNN, a variant of deep learning 
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model) to detect the ghosting artefact (4), which is very difficult to classify with conventional 

methods. It is difficult to ascertain whether CNMF is as good as deep learning in detecting this 

kind of artefact. The spectra we used in this work were already defined on the frequency 

domain, so a detailed analysis of the cause of each artefact was out of the scope of our study. 

Also, the dataset we used contains a wide variety of artefacts, sometimes more than one in each 

spectrum (e.g. bad water suppression and ghosting artefact), in contrast to (33), where the 

authors used simulated and in vivo volunteers’ spectra in which, purposely, the only artefact 

was the ghosting one. It remains to be tested whether a deep learning approach would also be 

as good as CNMF to chase other kinds of artefacts, but at any rate these two approaches seem 

to be complementary. Recent work by Gurbani et al. (34), using CNN, seems to suggest so, as 

their algorithm was able to pick artefactual patterns of different origins with remarkable 

efficiency (AUC of 0.95 in the test set). Their dataset was composed of 8,894 spectra from only 

nine patients. 

One of the hypotheses in our study was that some of the sources extracted by CNMF should 

mostly reflect known artefacts, while the rest of sources would mainly reflect true tissue 

information. The results reported in figures 1 to 6 support this hypothesis to a large extent, as 

artefactual sources were easily identified and characterized by spectroscopy experts. 

Furthermore, these sources repeatedly and consistently appeared with small variants in every 

extraction from 4 to 20 sources. Most importantly, the quantitative measures support the 

experts’ proposals. The results for data acquired at STE reported in Figure 8 provide us with a 

detailed picture. Out of the 20 extracted sources, S2, 5, 10, 12 and 16, identified as artefactual, 

have very low correlations and corresponding high Euclidean distances with all types included 

in the databases (tumors, abscesses and normal tissue). They also show low CC values, which is 

consistent with the fact that they only weight strongly on a limited number of spectra. On the 

other hand, non-artefactual sources show overall high correlations and low Euclidean distances. 

Moreover, some sources correlate highly with specific profiles. For instance, S1, 7, 9, 14 and 15 

highly correlate with both abscesses and aggressive tumors, while S19 correlates highly with 

normal tissue. Note that the CC values offer some further interesting insight: those sources with 

the highest number of values over the 0.75 threshold are precisely the less variable and best-

defined ones, corresponding quite neatly to database types. A similar analysis could be 

presented for the data acquired at LTE, but we omit it here for the sake of brevity. 

When only a few sources are extracted, they are more likely to be combinations of more basic 

sources and these combinations tend to break into more basic components as the number of 

sources increase. Related to this, we found that the instability of the sources globally increased 

as the number of extracted sources increased. This is no surprise, as the uncertainty of the 

results is bound to increase for more sources when the number of spectra remains the same. 

Note though that this variability is by no means homogeneous over the extracted sources, with 

some of them showing very low variability. What is more, some sources show high variability in 

some frequency ranges and low variability in others. This is visually clear from figures 1 to 6, but 

also quantitatively from the boxplots of Figure 7. Artefactual sources have, in general, more 

variability. The likely reason for that is that these sources are present in a limited number of 
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spectra and have limited leverage on the rest. A few of the non-artefactual sources also show 

high variability, which might be a sign of their low impact in the overall signal.   

In the past, most efforts towards quality control of MRS data have been based on supervised 

approaches that are known to have some limitations. Each spectrum had always been treated 

as either being of good quality or bad quality. Then a bad quality spectrum would be so, 

irrespective of the cause (the artefact) and the magnitude of the problem: as an extreme 

example, a slightly badly phased spectrum could end up in the same category as an extremely 

noisy spectrum, or one with bad water suppression and a very important problem with the 

phasing as well as with small peaks in the frequency region of interest, all artefacts at the same 

time. Therefore, one limitation to this approach is the evident fact that labelling depends on 

experts, and different experts may have different thresholds for accepting a spectrum based on 

its quality. This was extensively recorded in the same source database where the current dataset 

has been taken from (6-8), but never systematically studied. Nevertheless, the fact has always 

been duly acknowledged in all previous studies (for example in (5), to cite just one recent study).  

Another related limitation to supervised approaches is the mere existence of a diversity of 

artefacts, ranging from low SNR to bad water suppression, ghosting, bad or imperfect phasing. 

Kyathanahally et al. demonstrate this fact graphically in Figure 1 of their publication (5), where 

it can be seen that the means and standard deviations of good quality spectra and bad quality 

spectra clearly overlap, leaving approaches such as those based on linear discriminant analysis 

unsuitable for the task, a fact known since early work (1), where a quadratic discriminant 

classifier was employed instead.  

Supervised approaches, in the end, require a simplified labeling setting to which an unsupervised 

approach such as CNMF is not restricted to. For this reason, sophisticated classifiers such as 

those from the deep learning family (34) are only suitable for such simplified setting, in which 

they can achieve very competitive results. A word of caution must be given though, as deep 

learning methods are only meant to provide a neat advantage in data rich settings, which are 

uncommon in the MRS(I) domain. An example of that are the excellent results recently obtained 

by alternative classifiers in a similar setting  (5) without resorting to deep model architectures, 

but to a boosting and data sampling method (RUSBoost (35)) specifically suited to class-

imbalanced data sets.  

An unexpected finding of our study has been that, when there is a sufficiently high number of 

sources, we begin to observe patterns that are partly usable and partly unusable (for example 

see Figure 3, STE, source 18, region downfield from water). In fact, for 20 sources extracted at 

STE, there appears to be a total coincidence when the experts consider a source as artefactual 

and, 1) its Pearson’s correlation with at least one of the compared classes is higher than 0.50, 2) 

the Euclidean distance between this source and all the means of the different classes is lower 

than 100 and, 3) none of the spectra in the database has a CC higher than 0.75. However, results 

for LTE are not as clear-cut, mainly because there are some examples of these “partially 

artefactual sources”.   
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Altogether, evaluating the sources with three different quantitative measures appears to be a 

valuable approach, as in clear-cut artefacts all measures would agree, while in partially valid 

spectra there might be disagreement between these measures, should a threshold for decision 

be established. Gurbani et al. (34) used an approach named GRAD-cam (36), and they were able 

to identify that the most artefactual regions (approximately [0, 1.6] and [3.7, 4.5] ppm) were 

those out of the main interesting metabolite regions. Despite their spectra having a narrower 

spectral range than ours ([0, 4.5] ppm vs [-2.7, 7.1]), their results point to their CNN being able 

to at least recognize bad water suppression and bad homogeneity, although exclusion of spectra 

with a metabolite linewidth greater than 18 Hz had been performed before the experiment.   

The fact that NMF methods “pick” artefacts, as well as metabolically-interesting patterns, has 

been known since the first application of this technique to MRS data of humans (figure 9 in (37)), 

and has recently been corroborated (figure 7.7 in (29)). However, this fact is usually overlooked, 

other than for the need of getting rid of the artefacts. One simple strategy used by Sajda et al. 

(37) was to remove artefactual sources (recognized by the expert spectroscopists) from 

subsequent analyses by a masking procedure. Another useful approach when artefact detection 

is not the objective is to discard bad quality spectra before performing further data analyses, for 

instance using well-established threshold criteria as in (17,19,27,38,39), and/or by using 

integrated peak areas of selected metabolite intensities (40,41).  

As for our results, artefacts are conspicuous, indefectibly appearing when asking even for the 

lowest number of sources (𝐾 = 4). In this sense, unsupervised CNMF is shown to be a powerful 

tool for this kind of imbalanced datasets (a high number of good quality spectra and a low 

number of bad quality spectra), for which the adoption of an oversampling schema for the bad 

quality spectra class (5,34) is advisable for supervised approaches to perform optimally. 

Another question that can be raised in view of the results presented in this study and others 

addressing similar issues is: are some PR approaches best suited to detect one particular type of 

artefact than others? This question merits further in-depth research. 
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Figures 

 
Figure 1. Mean and STD (+/-) of sources (S) extracted for K=4 (K being number of sources) from spectra acquired at 
STE (N=1,180). S1, S2, S3 and S4 stand for source number 1, 2, 3 and 4, respectively. The x-axis of the graph is 
represented in parts per million (ppm), while the y-axis represents the intensities in arbitrary units (a.u.). The mean 
is represented by a blue line and the variability described as STD (+/-) is displayed in gray shade, enclosed by a black 
line. In this source extraction, variability is extremely low, which explains why only a single black line seems to 
represent the source. The sources closely resemble characteristic spectra of different types, and could even be taken 
by a mean spectrum if no more information was given. As the original spectra had been processed with the INTERPRET 
pipeline {Tate, 2006 #15942}, which includes a residual water suppression from points between 4.2 to 5.1 ppm set to 
zero prior to unit length normalisation, sources also display this characteristic of the processing pipeline. The zeroing 
of the 4.2-5.1 ppm interval was incorporated into the INTERPRET pipeline because if there were any remnants of 
water signal, the intensity of the rest of the spectrum would be affected when performing the unit length 
normalization. 
The first and third sources (S1 and S3) have a typical pattern of necrosis with high lipids at 0.9, 1.28 and 2 ppm, with 
S4 additionally showing choline-containing compounds at 3.21 ppm and lipids at 5.3 ppm, and a different 
methyl/methylene (0.9ppm/1.28ppm) ratio than for S1. S2 shows a typical pattern of bad water suppression, that the 
zeroing between 4.2 and 5.1 could only partially eliminate, therefore the appearance of these two “tails”, from the 
incompletely suppressed water signal, appearing between 3.9 and 4.2 approximately and between 5.1 and 7.1 ppm. 
No other metabolite signals can be identified in this S2. The third source (S3), shows the typical pattern for an 
infiltrative, low-grade glial tumour, in particular the high choline-containing compounds / creatine ratio 
(3.21ppm/3.03ppm) is indicative of high proliferation, whereas the decrease in the intensity of the N-acetyl-
containing compounds at 2.01 ppm (it should be about twice the height of the creatine peak in a normal brain) is 
indicative of a decreased amount/functionality of neurones.  
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Figure 2. Mean and STD (+/-) of sources extracted at STE, for K=4 to K=8, from spectra acquired at STE (N=1,180). Each 
row corresponds to a different source extraction, starting with K=4 at the top. Columns were organized according to 
the similarity of the sources. Columns 1, 2, 3 and 4 correspond to sources that have similar characteristics to the ones 
for K=4. Other features as in figure 1 legend. 

 

Figure 3. Mean and STD (+/-) of sources extracted for K=20 from data acquired at STE (N=1,180). Again, the mean is 
represented by a blue line, while variability described as STD (+/-) is shaded in gray, bounded by black lines.  
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Figure 4. Mean and STD (+/-) of sources extracted for K=4 from data acquired at LTE (N=977). Representation as in 
previous figures. 

 

Figure 5. Mean and STD (+/-) of sources extracted from data acquired at LTE (N=977). Each row corresponds to a 
different source extraction from K=4 to K=8. Columns were again organized depending on the similarity of the sources. 
Other features as in figure 1 legend. 
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Figure 6.  Mean and STD (+/-) of sources extracted for K=20 from data acquired at LTE (N=977). Representation as in 
previous figures. 

 

 

Figure 7. Boxplots of the STD values for the ten algorithm run repetitions and for each of the sources in two different 
extractions (K = 4 and K = 20) from data acquired at STE and LTE; (The box extends from the lower to upper quartile 
values of the STD, with a line at the median. The whiskers extend from the box to show the range of the data. (Outlier 
points are those past the end of the whiskers). STD was calculated from the matrix in which there are ten rows 
(corresponding to the ten extractions) and 512 points (corresponding to the number of points of each source). 
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Figure 8. a) Correlation between sources extracted for K=20 (from data acquired at STE) and mean spectra from the 
types included in the INTERPRET validated database (6), where the x-axis corresponds to the source number and the 
y-axis to the values of the correlations. b) Euclidean distance between each source for the K=20 extraction (from data 
acquired at STE) and mean spectra from the types included in the INTERPRET validated database (6), where the x-axis 
again corresponds to the source number, while the y-axis corresponds to Euclidean distances. c)  CC of the mixing 
matrix for K = 20, where the x-axis corresponds to the source number and the y-axis corresponds to the number of 
samples. 
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Figure 9. Correlations, Euclidean distances and CC for data acquired at LTE, represented as in Figure 8. 
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 STE LTE 

Type GOOD  POOR  BAD  Total GOOD  POOR  BAD  Total 

Abscess 9 0 2 11 8 1 2 11 

Astrocytoma WHO grade III 7 0 0 7 7 0 0 7 

Lymphoma 16 2 1 19 15 0 3 18 

PNET 11 0 0 11 8 0 0 8 

Glioblastoma 
Aggressive 

189 5 18 212 215 9 34 258 

Metastasis 87 1 7 95 78 4 10 92 

Meningioma 100 4 23 127 87 5 13 105 

Astrocytoma  
Low grade 
glial (WHO 
grade II) 

68 2 7 77 60 7 4 73 

Oligodendroglioma  27 0 2 29 39 2 2 43 

Oligoastrocytoma  12 0 3 15 22 1 1 24 

Pilocytic astrocytoma 27 1 9 37 37 1 9 47 

Other Pathologies 100 19 10 129 156 25 3 184 

Not available 304 23 55 382 77 1 12 88 

Total 982 49 149 1180 828 38 111 977 

Table 1. Number of spectra, acquired at STE and LTE, available per tumor type and quality label. The GOOD, POOR 
and BAD labels are taken from the data matrix from study (5), in which the the intermediate label of “poor quality” 
was assigned to the rejected spectra that had been seen by three experts and had been accepted by one of them.  
Not available corresponds to cases lacking definitive/consensus diagnosis in the database. 
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Source 
number 

Consensus expert 
spectroscopists’ 
evaluation 

Pearson correlation > 
0.50 at least with one of 
the compared classes 

Euclidean distance with 
all the compared 
classes, at least > 100 

Number of 
samples with 
CC > 0.75 

1 Good quality Yes No Several 

2 Artefactual pattern No Yes None 

3 Good quality Yes No Several 

4 Good quality Yes No Several 

5 Artefactual pattern No Yes None 

6 Good quality Yes No Several 

7 Good quality Yes No Several 

8 Good quality Yes No Several 

9 Good quality Yes No Several 

10 Artefactual pattern No Yes None 

11 Good quality Yes No Several 

12 Artefactual pattern No Yes None 

13 Artefactual pattern Yes No Several 

14 Good quality Yes No Several 

15 Good quality Yes No None 

16 Artefactual pattern No Yes None 

17 
Partly artefactual 
pattern 

Yes No None 

18 
Partly artefactual 
pattern 

Yes No Several 

19 Good quality Yes No Several 

20 Artefactual pattern No Yes None 

Table 2. Summary of the evaluations for the 20-source extraction, at STE. 
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Source 
number 

Consensus expert spectroscopists’ 
evaluation 

Pearson 
correlation > 
0.40 at least 
with one of 
the compared 
classes 

Euclidean 
distance with all 
the compared 
classes, at least > 
100 

Number of 
samples 
with CC > 
0.75 

1 Good quality Yes No None 

2 Artefactual pattern No Yes None 

3 Good quality Yes No Several 

4 Artefactual pattern No Yes None 

5 
Artefactual pattern but source too variable 
to be sure 

Yes No  Several 

6 
Good quality but source too variable to be 
sure 

Yes No Several 

7 Partly artefactual pattern 
No (close for 
low grade 
glial) 

No  Several 

8 Artefactual pattern No Yes Several 

9 Artefactual pattern Yes No Several 

10 Artefactual pattern No No None 

11 Artefactual pattern No No None 

12 Good quality Yes No Several 

13 Good quality Yes No Several 

14 
Artefactual pattern, but source too variable 
to be sure 

Yes No Several 

15 Artefactual pattern No Yes None 

16 
Partly artefactual pattern but source too 
variable to be sure 

Yes No Several 

17 Partly artefactual pattern No Yes None 

18 
Partly artefactual pattern but source too 
variable to be sure 

Yes No Several 

19 Good quality Yes No Several 

20 Artefactual pattern No Yes None 

Table 3. Summary of the evaluations for the 20-source extraction, at LTE. For some sources, the evaluation is 
uncertain (source too variable), because there is so much variability that one of the 10 solutions may be the actual 
reverse of the evaluation.   


