
 

Wang, B, Fielding, AJ and Dryfe, RAW

 Electron Paramagnetic Resonance as a Structural Tool to Study Graphene 
Oxide: Potential-Dependence of the EPR Response

http://researchonline.ljmu.ac.uk/id/eprint/11242/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. 
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Wang, B, Fielding, AJ and Dryfe, RAW (2019) Electron Paramagnetic 
Resonance as a Structural Tool to Study Graphene Oxide: Potential-
Dependence of the EPR Response. Journal of Physical Chemistry C. ISSN 
1932-7447 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


 1 

Electron Paramagnetic Resonance as a Structural 

Tool to study Graphene Oxide: Potential-

dependence of the EPR response  

Bin Wang,† Alistair J. Fielding‡* and Robert A.W. Dryfe†* 

†School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United 

Kingdom 

‡School of Pharmacy and Biomolecular Science, Liverpool John Moores University, James 

Parsons Building, Byrom Street, Liverpool, L3 3AF, United Kingdom 

 

 

AUTHOR INFORMATION 

Corresponding Author 

*Email: a.j.fielding@ljmu.ac.uk (A.J.F.) 

*Email: robert.dryfe@manchester.ac.uk (R.A.W.D.) 

 

 

mailto:a.j.fielding@ljmu.ac.uk
mailto:robert.dryfe@manchester.ac.uk


 2 

ABSTRACT    

Electron paramagnetic resonance (EPR) spectroscopy is reported as a tool to probe the behavior 

of graphene oxide (GO). The potential-dependent response of GO is reported for the first time, and 

correlated with the observed electrochemical response. The EPR signal, de-convoluted into two 

constituent parts, was used along with lineshape simulation and the temperature dependence to 

probe the electrochemical processes. The EPR signal is found to be well described by two 

components: the narrower one is associated with unpaired electrons on localised functional groups, 

and shows a reversible increase as the GO is biased to positive potentials. The Curie behaviour of 

this component suggests that it increases because of the formation of stable radical species, such 

as semiquinones, derived from quinones and other carbonyl functional groups found on GO. A 

stronger dependence of the narrow component with potential, and an elevated g value over 2.0034, 

is found in alkaline conditions compared to neutral electrolytes, reflecting the greater stability of 

seminquinone-like species at higher pH. By contrast, the second, broader component of the EPR 

signal was found to be potential independent. The EPR approach described here offers a solution 

phase alternative, which can be employed under electrochemical control, to techniques such as X-

ray photoelectron spectroscopy and Raman spectroscopy, as a means to probe the structure of GO 

and related materials.  
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INTRODUCTION  

  There has been much interest in the application of 2D materials, derived from the prototypical 

material graphene, in electrochemical energy storage.1-5 Although microscopic (electron 

microscopy, atomic force microscopy) and spectroscopic (X-ray photoelectron spectroscopy, 

Raman spectroscopy) methods are widely used to probe the structure of the materials, and 

consequently relate the structure to the observed electrochemical response, only the Raman 

approach is readily compatible with in situ solution phase studies. For the use of GO in 

supercapacitors, for example, it is important to be able to relate structure to function as GO can 

store charge via classical “double-layer” mechanisms and via pseudo-capacitive routes, involving 

the oxidation/reduction of oxygen-containing functional groups. The key challenge with 

supercapacitors is to optimize structure to improve energy density, by improving their capacitance 

(such as nanostructuring and/or enhancing their pseudo-capacitive component), or maximizing 

their usable voltage range (by using ionic liquid electrolytes or hybrid supercapacitors).2,5-9 

Functionalization with oxygen groups is a promising method to enhance supercapacitors because 

these functional groups provide external pseudo-capacitance and improve the wetting properties 

of the electrode in aqueous solution.5, 8, 10-23 For example, functionalized graphene prepared by a 

low-temperature thermal treatment has a gravimetric capacitance of up to 450 F g−1.8 In addition, 

the pseudo-capacitance, imparted to graphene by representative oxygen-containing groups, has 

been shown to be pH dependent13, 16, 20: 

                                (1) 
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                                           (2) 

                                     (3) 

Quinone groups are generally supposed to cause pseudo-capacitive enhancement in acidic 

conditions, whereas carboxyl groups are thought to produce the faradaic reactions under alkaline 

condition, due to the relative ease of oxidation of the carboxylate group at high pH [Eqns. 1-3].11, 

16, 21, 23 Understanding of the charge storage mechanism of oxygen-functionalized graphene at the 

microscopic level is still lacking, despite the computational approaches to the problem reported in 

a number of papers.24-27  

GO is a particularly complex material, both in terms of chemical structure and its re-assembly 

to form a laminate type material, a form which has been widely used as an electrode for studies of 

supercapacitance.28-30 Electron paramagnetic resonance (EPR) spectroscopy has been used 

previously to study GO, although we are unaware of any previous in situ electrochemical EPR 

work.31-42 Recent work by Augustynika-Jablokow et al. has shown the existence of slowly relaxing 

paramagnetic centers in GO attributed to isolated unfunctionalized carbons in highly 

functionalized regions.31, 32 Our previous paper described the magnetic properties of GO, without 

metal impurities associated with its formation, and its pH dependent behavior. This work identified 

two types of spin on GO: localized sigma “dangling bond” spins associated with defects with a 

narrow linewidth. By “defect” we mean any functional group or atom that can act as a local “trap” 

for unpaired electrons. A broader signal is associated with delocalised π electrons from the 

remaining aromatic domains.33  The EPR signal of GO was found to be pH-dependent, i.e. the 
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greatest EPR signal was detected when exposed to aqueous KOH solutions, which was explained 

in terms of a further oxidative fragmentation of the carbonaceous framework.    

In this contribution, in situ electrochemical EPR spectroscopy is used to study the potential-

dependent response of GO in Na2SO4 and KOH (1 M) aqueous electrolytes based on a three 

electrode capillary cell after a stabilization process due to radical quenching in aqueous  solutions 

(Figure S1). Additionally, temperature-dependent EPR spectroscopy was used to study the 

relationship between the unpaired spins and structure. We are only aware of one previous study of 

the potential-dependent EPR response of graphene-based materials, which focusses on graphene 

(as opposed to GO) prepared by chemical vapor deposition and used a polymer gel electrolyte to 

reveal a correlation between the spin susceptibility of the material and in-plane conductivity.43 No 

specific analysis of the electrochemical response was made in this work on CVD graphene. 

Additionally, the nature of the spins generated by redox reactions in the alkaline electrolyte employ 

herein can be tested through the changes in the g value of the EPR spectroscopic signal. 

Quantitative analysis in different electrolytes shows a correlation between the increased 

capacitance seen in the alkaline electrolyte, and the spectroscopic signal which we ascribe to the 

enhanced pseudo-capacitive behavior of the oxygenated functional groups. Further simulations 

allowed the distribution of the mobile electrons as a function of potential to be investigated, which 

is also beneficial for understanding the pseudo-capacitive process on graphene-based materials. 

Methods 

Graphene oxide: GO was prepared by a modified Hummer’s method, as reported elsewhere.44 

To remove impurities, such as residual manganese ions and oxidative debris, a simple base wash 

was used, following previous reports.33, 42, 45 The base reflux also reduces oxygen functionalities 

(mainly hydroxyls) by the dehydration reaction, and further acidification was used to re-protonate 
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the COO- groups.42 In particular, GO (1.2 mg/mL) was refluxed in aqueous 0.1 M NaOH (Sigma-

Aldrich) for 1 h at 100 ◦C, and then the treated GO was separated by filtration. The obtained product 

was dispersed in 0.1 M HCl (Fisher Chemical) followed by reflux for 1 h at 100 ◦C. The final 

product was washed by filtration. The flake size of the GO is in the range of 1-5 μm2:33 the above 

washing procedure is followed to eliminate small molecule organic and Mn residues initially 

present in the sample, which otherwise greatly affect the observed EPR response.33, 42 

 Working electrode: The GO film was prepared by a simple filtration process, described below, 

and used as the working electrode in the three electrode, in situ experiments. The GO suspension 

(re-dispersed in water by sonication for 2 h at 37 kHz and 350 W effective power, Fisherbrand 

FB11205 Ultrasonic Cleaner) was filtered onto a PTFE membrane (25 mm diameter hydrophilic 

PTFE membrane filter with a 0.1 μm pore size and maximum thickness of 140 μm, Merck 

Millipore Company). After drying at 80 ◦C, the polymer-supported GO film was twined with Pt 

wire (99.99% purity, Advent Research Materials Ltd., UK) to bind the film and to function as the 

current collector for the GO working electrode (WE), in line with our previous report.46 The 

surface area of the resultant WE is around 5 mm2. 

The resistance (Rs) of the GO based membrane was measured by the four-probe meter (Jandel 

Engineering, Linslade, UK) with the nanovoltmeter (2182A) and current source (6220, Keithley 

Instruments, Cleveland, OH, USA). The conductivity (σ) was calculated based on the membrane 

thickness (l) and the resistance: σ=1/(l* Rs). 

 The in situ electrochemical EPR cell was based on a three-electrode system as previously used 

(Figure 1),46 where CE and RE denote the counter and reference electrodes, respectively. All 

potentials are reported with respect to the RE: the Ag|AgCl RE was prepared by oxidation of partly 
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exposed Ag wire (99.99% purity, Advent Research Materials Ltd., UK) and Pt mesh (99.99% 

purity, Advent Research Materials Ltd., UK) was used as the CE. Epoxy was used to seal the 

connecting joint between the exposed Ag wire contact and the Pt wire used to bind the GO WE. 

This helps to avoid internal short circuit. The diameter of the quartz capillary is 1 mm.  

The potential waveform was applied with a potentiostat (EmStat3+ Blue, PalmSens, the 

Netherlands). The EPR spectra were recorded using a continuous-wave (CW) Bruker EMXmicro 

spectrometer at room temperature. In all cases, the microwave frequency was approximately 9.8 

GHz, and the modulation amplitude was 2 G. Triplicate samples were made for in the in situ EPR 

experiment, with the reported spectra being the average of 20 scans. The spin density of purified 

GO was found to be 3.5(3)  1019 spins g-1 (Figure S2). The quality factor (Q factor) was measured 

by the Ruby and found to be constant over the potential range used.46 Temperature dependent 

experiments (from 4 K to 200 K), to study the origin of the EPR signal as a function of applied 

potential, were achieved by freezing the electrodes rapidly (within 5 secs) in liquid nitrogen after 

applying the relevant potential for 5 mins. Temperature calibration was carried out using a 

temperature sensor (Cernox®, Lake Shore Cryotronics, Inc.) inserted into the sample position. 

Further details of electron microscopy (used for GO characterization) and EPR signal 

characterization are provided in the Supporting Information.  
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Figure 1. Schematic diagram of the in situ EPR cell with a three electrode system in the capillary. 

a) Supporting Pt wire (diameter 0.5 mm); b) WE, GO membrane coated onto Pt wire, with the 

length of ~ 2 cm; c) intertwined Pt wire (diameter 0.05 mm); d) Sealant epoxy, prevent the short-

circuit, not in the EPR detecting area; e) RE, insulated Ag wire (diameter 0.2 mm, coated with 

PTFE) with one end oxidized; f) Insulated Ag wire (diameter 0.2 mm, coated with PTFE) to line 

the WE and the potentiastant; g) CE, Pt mesh; h) Quartz capillary (diameter 1 mm); i) Aqueous 

electrolytes, e.g. Na2SO4/KOH; j) Sealant epoxy; k) In situ cell introduced into the EPR cavity. 

 

Results and Discussion 

The oxygen atoms of GO are thought to be distributed amongst various functional groups such 

as hydroxyl, carbonyl and carboxyl.33 The electrochemical performance of the GO membrane 

(thickness of 3 μm, Figure S3) in different pH electrolytes was recorded using the three-electrode 

configuration: the resultant cyclic voltammograms (CVs) are shown in Figure 2. The voltammetric 

responses of GO are pH dependent: the capacitance in 1 M KOH (54 F g−1 at a scan rate of 50 mV 

s−1) is higher than that in 1 M Na2SO4 solution (44 F g−1). The oxygen-containing functionalities 

responsible for the faradic reaction are observed more clearly in the CV under alkaline conditions. 

This increase in capacitance can be attributed to the redox reactions of the carboxyl groups in KOH 

electrolyte. The capacitance of our GO sample is higher than some reported values for GO (e.g. ~ 

27 F g−1 in 1 M Na2SO4
28), while it is somewhat lower than other literature, which have generally 

modified the GO materials (e.g. 135 F g−1 in 5.5 M KOH30; reduced graphene oxide with a 
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capacitance to 220 F g−1 in 4 M KOH13). The lower capacitance in our sample could be related to 

its low conductivity (3.6 S m−1) and also the limited space within the narrow bore in situ EPR cell 

meaning the GO sample thickness is lower than frequently used in previous reports. Although 

there have been numerous reported mechanistic explanations of the pH dependence of the 

capacitance, here we employ in situ EPR spectroscopy to probe GO in different electrolytes.  

 

Figure 2. The electrochemical performance of the GO electrode in different electrolytes at a scan 

rate of 50 mV s-1. 

 

Initially, the GO material was tested at room temperature for slow relaxing spin centers, using 

in-phase and out-of-phase EPR signals, as described by Augustynika-Jablokow et al.31-32 However, 

no significant out-of-phase signal was observed (Figure S4) suggesting that faster relaxing centers 

exist in our material. This apparent discrepancy is very likely caused through differences in 

preparation and washing procedures. The GO structure is known to be very sensitive to “sample 

history”.31-37, 42  

 The in situ electrochemical continuous-wave (CW) 9 GHz EPR study of the GO electrode was 

carried out by applying a constant potential to the electrode and monitoring the EPR signal. The 
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cell was cycled 20 times (by cyclic voltammetry at 50 mV s−1, over potential limits from −0.8 V 

to 0 V in each electrolyte) to obtain a stable response before the in situ EPR experiment. The 

spectroscopic response obtained from GO during potentiostatic charging and discharging in 1 M 

Na2SO4 is summarized in Figure 3. The EPR signal of the GO electrode was found to increase as 

the applied potential was swept positive (shown in Figure 3a), and returned to the original when 

the cell was discharged from 0 V to −0.8 V reversibly, as shown in Figure 3b. 

 

Figure 3. In situ EPR response of GO in 1 M Na2SO4 over the potential range −0.8 V to 0 V. (a) 

EPR spectra during charging from −0.8 V to 0 V; (b) EPR spectra during discharging from 0 V to 

−0.8 V. 
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The EPR lineshapes are assumed to be described by Lorentzian functions due to the 

homogeneous distribution of radical species.47 The EPR spectra in neutral electrolyte can be fitted 

with two components (Figure 4a, b and Figure S5): a narrow Lorentzian curve with linewidth 

around 2.5 G; an asymmetric broad Lorentzian curve (asymmetry ratio, A/B ~1.5, Figure S6) with 

linewidth of 12 G, that is characteristic of conducting samples with mobile electrons. The EPR 

component with the narrow linewidth indicates a localized state with long spin relaxation times, 

suggesting defect related spins likely to be oxygen centered radical species from the redox reaction 

of the oxygenated functional groups.33, 46 The double integration value (the absolute area value) of 

the EPR signal, which is related to the spin density of the active material, increases by ~20 % over 

the positive potential sweep (Figure 4c). Although the narrow resonance shows a reversible 

increase in spin density, the broad resonance does not change (while the relative ratio changes 

from 30% to 25% from −0.8 V to 0 V due to the increase of the narrow component). The g value 

of the narrow curve was found to be 2.0031, suggesting these spins are carbon-based although 

located on carbon atoms with proximity to oxygen atoms, which is consistent with our 

interpretation of the electrochemical data. The potential independent broad component has a lower 

g value of 2.002 and the g value did not show a regular change with potential. The broad curve has 

been related to conductive -carriers propagating in the extended aromatic graphite-like 

structure.33, 35, 40, 42, 48-50 The linewidth of both components remained constant over the potential 

range studied. 
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Figure 4. EPR lineshape simulation of GO under potentials in 1 M Na2SO4 during (a) charging and 

(b) discharging; (c) summary of the double integration value of simulated components over 

charging/discharging 

 

Additionally, an in situ EPR experiment of the GO electrode was carried out in a 1 M KOH 

solution to investigate the enhanced capacitance observed in basic electrolyte (see Figure 2). A 

similar change to that seen in neutral electrolyte was found, as shown in Figure 5a,b: the EPR 
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signal of GO in KOH increased with potential and then returned when the potential was decreased 

from 0 V to −0.8 V.  

 

Figure 5. In situ EPR experiment of GO in 1 M KOH over the potential range −0.8 V to 0 V. (a) 

EPR spectra during charging from −0.8 V to 0 V; (b) EPR spectra during discharging from 0 V to 

−0.8 V. 

 

In this case, however, only a single Lorentzian signal with a linewidth of 2.5 G was required to 

give an acceptable fit to experiment (see Figure 6a, b): the disappearance of the broad component 

suggests a more defective structure when the GO was exposed to aqueous KOH.31 A summary of 

the spin density change with potential is shown in Figure 6c, with the relative percentage increasing 

by 27% from −0.8 V to 0 V. The narrow curve has a higher g value, of 2.0034, and presents a 

stronger potential dependence compared to the neutral electrolyte case (as shown in Figure 7). The 
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higher g value means more oxygen-centered radical species are generated, which is consistent with 

the known redox chemistry of common oxygen-containing functional groups (specifically, the 

favored oxidation of hydroquinone or phenolate groups to semiquinone or phenoxy species, 

respectively) at high pH.51 The linewidth was also constant over the potential range. 

 

Figure 6. EPR lineshape simulation of GO under potentials in 1 M 1 M KOH during (a) charging 

and (b) discharging; (c) summary of the double integration value of over charging/discharging. 
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Figure 7. Comparison of the potential dependent g value of the narrow component of the GO 

electrode in 1 M Na2SO4 and KOH electrolytes. 

 

To study the origin of the spins during charging/discharging, the temperature dependence of the 

EPR signal from GO at 0 V was studied and is shown in Figure 8. The spin susceptibility, 

calculated from double integration (the absolute value) of the first derivative EPR signal, is fitted 

by the sum of the Curie-Weiss law and the Pauli law: 

𝜒𝐸𝑃𝑅 = 𝜒𝑃 + 𝜒𝐶−𝑊 = 𝜒𝑃 + 𝐶 (𝛵 − 𝑇0)⁄                                                  (4)  

Here χEPR, χP and χC-W stand for the potential-dependent spin susceptibility of the GO electrode, 

the Pauli susceptibility and the Curie susceptibility, respectively; C is the Curie constant and T0 is 

the Curie-Weiss temperature. The Curie-Weiss behavior suggests the narrow signal comes from 

localized spins including the oxygen-centered radicals formed at defects during the reduction 

process. The negative Curie-Weiss temperature (T0, −2.4 K in Na2SO4 and −5.4 K in KOH) 

suggests anti-ferromagnetic behavior, which may be related to the localized states on different 

sublattices.52, 53 
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Figure 8. Temperature-dependent EPR behaviour of the GO film at 0 V in different electrolytes: 

(a) 1 M Na2SO4 and (b) 1 M KOH. The temperature was varied from 4.2 K to 200 K. The solid 

line represents the fitting results of the sum of Curie-Weiss and the Pauli Law (Equation 4). 

 

The in situ EPR experiment was carried out to reveal the change of unpaired electron density on 

GO during its charge and discharge in aqueous solution. GO, according to the Leif-Klinowski 

model, contains oxygenated functional groups with hydroxyl groups decorating the basal plane, 

and carboxylate and quinone groups on its edge.54 The comparison of the CV response of GO 

(Figure 2) reveals redox peaks in both electrolytes, which have been attributed to the reactions 1-

3 (see Introduction, written as reductions):13 Hydroquinone-type groups are oxidized to quinones 

in proton-rich conditions (Equation (1)), but can be oxidized to the semiquinone intermediate 

under alkaline conditions (Equation (2)). The redox reaction of carboxylate groups (Equation (3)) 

in alkaline electrolyte also contributes to the pseudo-capacitive behavior. Electron transfer 

between isolated quinone units in the extended structure of the GO is possible because the material 

possesses some conductivity (vide supra) meaning that electrons can be transferred within the 

solid, at least over limited regions. The same argument can also be applied to the suggested 

reversible oxidation/reduction of the carboxylate species (Equation 3), assumed to form at high 

pH. Such a radical would be expected to be highly unstable as part of a small molecule, but would 
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be stabilized somewhat as part of a more extended pi-system as found in GO.55 Less distinct redox 

reactions are found in neutral electrolyte than in KOH electrolyte, leading to lower capacitance, in 

agreement with previous reports, presumably because the above reactions are less favored – or are 

less reversible – at lower pH.13, 20  

The complexity of the structure causes the different origin of the spins: localized spins related 

to functional groups after oxidation (e.g. semiquinone radicals); the delocalized mobile electrons 

on the aromatic graphitic-like domains. The broad component of GO in Na2SO4 electrolyte was 

found to be potential independent and the narrow signal shows the major variation in both 

electrolytes during the in situ EPR measurement. Oxidation of the surface-bound oxygen 

functional groups on the GO as the potential of the latter is swept positive causes the increase of 

the density of localized spins, reflected in the increased narrow EPR signal with increasing 

potential seen in Figures 3 and 5.46 The EPR signal intensity decreases when the potential is swept 

to negative values, reflecting the resultant depletion of unpaired electron density. The potential 

dependent narrow component in neutral electrolyte therefore suggests a pseudo-capacitive origin 

from functionalities such as quinone and carboxylate groups. The variation of the double 

integration value of the narrow resonance in 1 M KOH (ca. 7, Figure 6c) is much higher than in 

the neutral electrolyte (ca. 3, Figure 4c), and the g value in 1 M KOH is greater (Figure 7). The 

higher potential-sensitivity of the narrow resonance in 1 M KOH (Figure 6c) should reflect the 

greater propensity to form semiquinone radicals (Equation 2). The in situ EPR results directly 

correlate with the enhanced pseudocapacitive process seen in alkaline electrolyte, thus explaining 

the enhanced capacitance of oxygen-rich carbon materials in alkaline conditions. 
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To conclude, in situ electrochemical EPR spectroscopy has been used to study the capacitive 

behavior of GO to explore the electron transfer process. The simulation of the spectral lineshape 

of GO as a function of potential determined that two types of spins exist, each associated with 

different structures. The narrow signal, which increases during the charging process and reversibly 

returns when discharged, is related to the generation of more stable semiquinone radicals from the 

oxidation of hydroquinone at higher pH. The broad component, arising from mobile electrons in 

extended sp2 graphitic-like structure, shows potential independent behavior in both electrolytes. 

Comparison between a neutral electrolyte (Na2SO4) and an alkaline electrolyte (KOH) indicated 

that the increased capacitance in the KOH environment contributes to the pseudo-capacitive 

behavior of the oxygen functional groups.  
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