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Short summary: 1 

Wildlife tourism can increase stress in a variety of species and affect welfare and behaviour. 2 

We assessed whether wildlife tourism affected African elephants’ physiological stress levels 3 

and found that greater tourist numbers were positively correlated with stress. Reserve 4 

managers should provide potential alleviation measures for elephants during periods of high 5 

tourist pressure, for example, by ensuring refuge areas are available. 6 
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Abstract  21 

Context: Wildlife tourism has been shown to increase stress in a variety of species and can 22 

negatively affect individuals’ survival, reproduction, welfare, and behaviour. In African 23 

elephants Loxodonta africana increased physiological stress has been linked to use of 24 

refugia, rapid movement through corridors, and heightened aggression towards humans. 25 

However, we are unaware of any studies assessing the impact of tourist pressure (tourist 26 

numbers) on physiological stress in elephants.  27 

Aims: We used faecal glucocorticoid metabolite (fGCM) concentrations to investigate 28 

whether tourist numbers in Madikwe Game Reserve, South Africa, were related to changes 29 

in physiological stress in elephants. 30 

Methods: We repeatedly collected dung samples (n=43) from 13 individually identified 31 

elephants over 15 months. Using a Generalised Linear Mixed Model and a Kenward-Roger 32 

approximation, we assessed the impact of monthly tourist numbers, season, age, and sex on 33 

elephant fGCM concentrations.  34 

Key results: High tourist numbers were significantly related to elevated fGCM 35 

concentrations. Overall, fGCM concentrations increased by 112% (from 0.26 to 0.55 µg/g dry 36 

weight) in the months with highest tourist pressure, compared to months with lowest tourist 37 

pressure.  38 

Conclusions: Managers of fenced reserves should consider providing potential alleviation 39 

measures for elephants during high tourist pressure, for example, by ensuring refuge areas 40 

are available. This may be of even higher importance if elephant populations have had 41 

traumatic experiences with humans in the past, such as poaching or translocation. Such 42 

management action will improve elephant welfare and increase tourist safety.  43 
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Implications: Whilst tourism can generate substantial revenue to support conservation 44 

action, careful monitoring of its impact on wildlife is required to manage potential negative 45 

effects. 46 

Keywords: conservation, faeces, stress endocrinology, physiology, wildlife management, 47 

welfare, African elephant 48 

49 
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Introduction 50 

Wildlife conservationists can use stress-related hormone measurements to assess welfare, 51 

translocation success, and the ability to cope with injury, disease, and environmental 52 

challenges (Millspaugh & Washburn 2004; Teixeira et al. 2007; Ganswindt et al. 2010a). 53 

Perceiving stress is a normal process and may even be adaptive in the short term. However, 54 

prolonged or chronic stress, and the inability to cope with it, can lead to changes in an 55 

individual’s behaviour and cognition, which might detrimentally affect reproduction, 56 

welfare, and survival (Sapolsky 2002; McEwen & Wingfield 2003; Bhattacharjee et al. 2015).  57 

What an individual perceives as a stressor, depends on past experiences, personality traits 58 

and the amount of control an individual perceives to have in a given situation (Koolhaas et 59 

al. 1999; Bradshaw et al. 2005; Nelson & Kriegsfeld 2017). When a perceived stressor 60 

disrupts homeostasis, an organism’s stable physiological state, the neuroendocrine systems 61 

and/or behavioural responses are activated to cope with the stressor and re-establish 62 

homeostasis (McEwen & Wingfield 2003; Palme 2019). The neuroendocrine response 63 

involves activation of what is called the hypothalamic-pituitary-adrenal axis, resulting in 64 

increased secretion of hormones referred to as glucocorticoids (GCs; Nelson & Kriegsfeld 65 

2017). Increased glucocorticoid concentrations over longer periods of time are related to 66 

suppression of reproductive hormones and the immune system, as well as muscle loss and 67 

reduced growth (Nelson & Kriegsfeld 2017). If a stressor becomes chronic, individuals may 68 

therefore become more susceptible to predation, starvation, disease, and decreased 69 

reproduction, as well as experiencing lasting changes of behaviour (Reynolds & Braithwaite 70 

2001; McEwen & Wingfield 2003; Teixeira et al. 2007). Therefore, changes in GC 71 

concentrations are often measured as a physiological response to stress (Möstl & Palme 72 

2002; Sapolsky 2002; Touma & Palme 2005) and used as a welfare indicator.  73 



5 
 

GCs can be measured using faecal glucocorticoid metabolite (fGCM) concentrations excreted 74 

in dung. This approach is advantageous as it does not require restraint or capture of animals 75 

and thus does not interfere with an animal’s natural behaviour (Sheriff et al. 2011). FGCM 76 

monitoring therefore allows us to noninvasively assess animal welfare, effects of 77 

environmental conditions, as well as human induced disturbance (Millspaugh & Washburn 78 

2004; Millspaugh et al. 2007; Palme 2012; Scheun et al. 2015). One potential stressor that 79 

has been studied across various wildlife species is tourism, which can take several forms, 80 

such as watching, feeding, petting, or animals being transported (Orams 2002; Millspaugh et 81 

al. 2007; Sarmah et al. 2017). Tourism has been linked to elevated fGCMs in a range of 82 

species, e.g. gray wolf Canis lupus, and red deer Cervus elaphus (Creel et al. 2002), African 83 

elephant Loxodonta africana (Millspaugh et al. 2007), western capercaillie Tetrao urogallus 84 

(Thiel et al. 2008), black howler monkey Alouatta pigra (Behie, Pavelka & Chapman 2010), 85 

wildcat Felis silvestris (Piñeiro et al. 2013), Tatra chamois Rupicapra rupicapra tatrica 86 

(Zwijacz-Kozica et al. 2013), western lowland gorilla Gorilla gorilla gorilla (Shutt et al. 2014), 87 

and mountain hare Lepus timidus (Rehnus, Wehrle & Palme 2014).  88 

Funding from wildlife tourism, or tourists visiting protected areas, can aid in the protection 89 

of habitat, biodiversity, and ecological processes (Reynolds & Braithwaite 2001), and has 90 

become increasingly common over the past few years (Orams 2002). However, assessing 91 

how wildlife tourism impacts the behaviour, physiological stress, and welfare of the wildlife 92 

being viewed is difficult and studies doing so are relatively scarce. African elephants, 93 

Loxodonta africana, are one of the most popular species viewed by tourists across Africa 94 

(Lindsey et al. 2007), and are threatened with a drastic decline in numbers due to habitat 95 

loss and poaching (Chase et al. 2016).  96 
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To carry out wildlife tourism in a sustainable and welfare focused manner, it is important to 97 

understand whether overall tourist pressure, in form of number of tourists within an 98 

elephant’s habitat, increases elephant GC concentrations. Further, as elevated GC 99 

concentrations in elephants from reintroduced populations have been linked to human 100 

fatalities (Slotow et al. 2008; Jachowski et al. 2012), it is important that managers monitor 101 

stress levels in their elephant population to increase tourist safety. Even so, we know of only 102 

three studies assessing the effects of wildlife tourism on elephants. A recent study has found 103 

that wildlife tourist presence was related to increased alert, fear, stress and aggressive 104 

behaviours in Asian elephants Elephas maximus (Ranaweerage, Ranjeewa & Sugimoto 2015). 105 

In working African elephants, fGCM concentrations were slightly higher on days with human 106 

interaction compared to days without interaction (Millspaugh et al. 2007). Further, high 107 

tourist pressure, in form of total number of tourists in the reserve each month, was related 108 

to increased conspecific-directed aggressive behaviours in the population of African 109 

elephants in Madikwe Game Reserve, South Africa (Szott, Pretorius & Koyama 2019).  110 

Concentrations of fGCMs provide estimates of circulating steroid levels for an estimated two 111 

to three days prior to when the sample was collected; this roughly corresponds with the gut 112 

passage time of an elephant (Ganswindt et al. 2003; Laws et al. 2007). Further, fGCM 113 

concentrations in African elephant dung have been shown to be stable for up to twenty 114 

hours before collection (Webber et al. 2018). Yet, elephant fGCMs must be interpreted with 115 

care, as elephants secrete GCs in response to many factors. For example, an elephant’s GC 116 

secretion may shift according to ecological changes, increasing during low availability of key 117 

nutrients, during the dry season, and following large fires within their habitat (Foley, 118 

Papageorge & Wasser 2001; Viljoen et al. 2008; Woolley et al. 2008). Social and 119 

environmental stressors may increase elephant fGCM concentrations, such as following 120 
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trophy hunting of conspecifics (Burke et al. 2008), during injury (Ganswindt et al. 2010a), 121 

living outside of protected areas (Hunninck et al. 2017), living in areas of high poaching risk, 122 

being in herds with weak social bonds or lacking older matriarchs (Gobush, Mutayoba & 123 

Wasser 2008), and increased intra-group competition (Foley et al. 2001). Reintroduced or 124 

translocated herds have also been found to have increased fGCM concentrations for six to 125 

ten years following the intervention (Jachowski, Slotow & Millspaugh 2012) and, at a 126 

population level, an even longer-term stress response for over ten years has been suggested 127 

(Jachowski, Slotow & Millspaugh 2013a).    128 

Here, we investigated the effect of monthly tourist numbers on fGCM concentrations in a 129 

large population of elephants in Madikwe Game Reserve, South Africa (henceforth 130 

Madikwe). We hypothesised that high tourist pressure would cause greater stress in 131 

elephants and therefore predicted that fGCM concentrations would be elevated during 132 

times of high tourist pressure. We further included season as a potential covariate, as it has 133 

been shown that fGCM concentrations are elevated during the dry season (Viljoen et al. 134 

2008; Jachowski et al. 2012). However, because water is artificially pumped at Madikwe and 135 

available throughout the year, we expected season to have a minimal effect. No hunting of 136 

elephants took place in Madikwe, or other potential impacting sporadic events such as large 137 

fires, and no elephants with visible injuries were sampled. Madikwe has strict driving 138 

regulations in place, with a maximum of three game drive vehicles at an elephant sighting at 139 

a time, and private vehicles are restricted to main roads. Given these restrictions, we 140 

expected tourism to have a minimal effect on elephant fGCM concentrations. 141 

Materials and methods 142 

Study area 143 
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Madikwe is a fenced reserve, managed by a state/private/communal partnership and is 680 144 

km² in size (Fig. 1). A total of 228 elephants were introduced to Madikwe between 1992 and 145 

1999 from various traumatic backgrounds (Bradshaw et al. 2005). First, 25 orphaned 146 

elephants between 8 - 12 years of age were introduced following culling operations in 147 

Kruger National Park (Davis & Brett 2003). This was followed by 194 individuals in entire 148 

herds from Zimbabwe, aged between a few months to over 50 years, from an area 149 

experiencing extreme drought and heavy poaching (Davis & Brett 2003; P.Nel pers.comm.). 150 

Today, this founding population has grown to 1348 ± 128 elephants (July 2017, North West 151 

Parks Board, P. Nel pers.comm.), representing one of the highest population densities (1.9 152 

elephants per km²) in South Africa.  153 

Wildlife viewing in Madikwe is carried out from game drive vehicles, which are large, open 154 

vehicles driven by qualified field guides, seating up to ten people. Game drives are mainly 155 

carried out in the morning (sunrise-11am) or afternoon (3.30pm-sunset). No more than 156 

three vehicles were permitted at a given sighting at a time and guests were briefed on 157 

appropriate behaviour, such as no shouting or eating, which guides enforced (see Szott et al. 158 

2019 for further details). A higher number of tourists in Madikwe directly relates to higher 159 

numbers of game drive vehicles on the roads. The current Code of Conduct in Madikwe does 160 

not stipulate a minimum distance between elephants and game drive vehicles. There is no 161 

limitation to the total number of game drive vehicles conducting game drives within 162 

Madikwe. Offroading in Madikwe occurred when viewing certain animals such as leopard 163 

Panthera pardus, lion Panthera leo, buffalo Syncerus caffer, or cheetah Acinonyx jubatus. As 164 

offroading did not occur to view elephants, this meant that elephants could encounter 165 

vehicles off-road. Madikwe is accessible for tourists throughout and contains no restricted 166 

areas.  167 
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Each of the 33 lodges at Madikwe has their own waterhole, providing water all year round 168 

(Fig. 1). The reserve is also bordered by the Marico River on the eastern side and contains 169 

large artificial dams that pump water throughout the year. According to Mucina and 170 

Rutherford (2006), Madikwe contains three main vegetation types: Dwaalboom thornveld 171 

contains ultramafic clay plains with a nearly continuous herbaceous layer dominated by 172 

grass species, deciduous microphyllous trees and shrubs and a few broadleaf species. 173 

Madikwe dolomite bushfeld contains a continuous herbaceous layer dominated by grass 174 

species and a woody layer dominated by deciduous trees. The Dwaarsberg-Swartruggens 175 

mountain bushveld has various combinations of tree and shrub layers as well as dense grass 176 

layers (Mucina & Rutherford 2006). Elephants have access to the whole reserve and can be 177 

encountered across all the previously mentioned vegetation types. 178 

**Figure 1 here** 179 

Data and sample collection 180 

The principal investigator collected the faecal samples between April 2016 and June 2017 181 

throughout Madikwe, spending similar amounts of time in the different areas of the reserve 182 

searching for individuals that could be observed defaecating (Fig. 1). As no previous 183 

information on Madikwe’s elephant population was available, the number of sampled 184 

elephants was limited to individuals we were able to identify reliably, so we could collect 185 

repeated faecal samples from each. We identified elephants based on distinguishing 186 

characteristics such as holes and notches in their ears, wrinkles across the face and 187 

orientation of tusk growth (elephantvoices.org 2018), resulting in 12 known individuals of 188 

four different cow-calf groups as well as from one solitary adult male. The cow-calf 189 

individuals included five adult females, three juvenile males, three juvenile females, and one 190 
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male calf. Sampling for this study was restricted to elephants encountered near roads, which 191 

led to a relatively low rate of sightings of known elephants and consequently a low number 192 

of faecal samples collected. A total of 43 faecal samples were collected (mean ± SD per 193 

individual = 3.31 ± 1.9, Table 1), with a mean ± SD of 3 ± 3 samples per month. 194 

Samples were collected with sterile gloves following previously published protocols 195 

(Ganswindt et al. 2010a,b). We stored approximately 50 g of faecal matter in a sterile vial in 196 

a cooler box on ice and transferred it to a freezer at -18 °C no longer than four hours after 197 

collection. For each sample we recorded the sex, age class (calf (0 - 3 years), juvenile (4 - 12 198 

years), or adult (13 years or older), Moss 1996; elephantvoices.org 2018), and ID of the 199 

defaecating individual, the time, and the longitude and latitude on a Lenovo TAB 2 A8-50F 200 

tablet. The average time between observing an elephant defaecating and sample collection 201 

was 16 min (±12mins).  202 

We defined wet and dry season based on average monthly rainfall measured at four stations 203 

in Madikwe by the South African Weather Service. Average total rainfall in Madikwe during 204 

the study period was 189.69 mm. We classed wet season as the period in which 95% of 205 

precipitation for the study year fell (Loarie, van Aarde & Pimm 2009). During the dry season 206 

(May 2016 - September 2016 and March 2017 - June 2017) mean (± SD) monthly rainfall was 207 

6.79 ± 7.79 mm, and during the wet season (October 2016 - February 2017) mean monthly 208 

rainfall was 118.89 ± 63.51 mm.  209 

South African North West Parks Board provided the total number of tourists visiting 210 

Madikwe each month. Tourist number was assessed as the number of guests counted at the 211 

gate to the reserve and the total number of tourists per month, within each season, is shown 212 

in Figure 2. 213 
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**Figure 2 here** 214 

Steroid extraction and faecal glucocorticoid metabolite analysis 215 

Steroid extraction and analysis was carried out at the Endocrine Research Laboratory, 216 

University of Pretoria, South Africa, and followed previously published protocols (Fieß, 217 

Heistermann & Hodges 1999; Ganswindt et al. 2003; Ganswindt et al. 2010b). In short, faecal 218 

matter was lyophilized and pulverized before being sieved through a mesh to remove any 219 

undigested faecal matter. Between 0.050 – 0.055 g of the remaining powder was extracted 220 

with 3 ml 80% ethanol in water. The suspension was vortexed for 15 minutes and then 221 

centrifuged for 10 minutes at 1500 g and the supernatant then transferred to a 222 

microcentrifuge tube. An 11-oxoaetiocholanolone enzyme immunoassay (EIA; detecting 223 

fGCMs with a 5β-3α-ol-11-one structure (Möstl et al. 2002)) was used to measure 224 

immunoreactive fGCMs in diluted extracts (1:10 or 1:50 in aqueous buffer). This EIA has 225 

been validated and repeatedly used to monitor adrenocortical activity in elephants 226 

(Ganswindt et al. 2003; 2005; 2010a). Sensitivity of the assay at 90% binding was 1.2 ng/g 227 

dry faecal mass. Repeated measurements of high- and low-value controls determined intra-228 

assay variance of 3.3% and 5.6% (15 and 16 plates used for high- and low-quality control 229 

respectively) and inter-assay variance (13 plates used) of 9.5% and 12.3%.   230 

Data analysis 231 

We analysed data in R v.3.4.1 (R Core Team 2000) and assessed factors to rule out 232 

collinearity using variance of inflation factor (VIF) analysis (Fox & Monette 1992) in the car 233 

package (Fox & Weisberg 2011), using a cut-off value of 2. Tourist number was scaled and 234 

centred and all VIF values were below 2. We analysed the samples with a Generalized Linear 235 

Mixed Effects Model with a gamma error structure and log link because data resembled a 236 
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normal distribution with a log10 transformation. Using the ‘glmer’ command (lme4 package) 237 

we ran the following model:  238 

𝑔𝑙𝑚𝑒𝑟 (𝑓𝑜𝑟𝑚𝑢𝑙𝑎 =  𝑓𝐺𝐶𝑀𝑠 ~ 𝑇𝑜𝑢𝑟𝑖𝑠𝑡 +  𝑆𝑒𝑎𝑠𝑜𝑛 +  (1|𝐼𝐷), 𝑑𝑎𝑡𝑎 =  𝑑𝑎𝑡𝑎, 𝑓𝑎𝑚𝑖𝑙𝑦 239 

=  𝐺𝑎𝑚𝑚𝑎 (𝑙𝑖𝑛𝑘 =  “𝑙𝑜𝑔”)) 240 

To control for the relatively small sample size of our study, we used a Kenward-Roger 241 

approximation (Kenward & Roger 1997; Luke 2017) with the afex package (Singmann et al. 242 

2018) to obtain p-values for our fixed effects. Significance was assigned at p<0.05. Due to the 243 

low sample sizes, we excluded the hour in which the sample was collected, sex and age from 244 

this analysis. However, a model including time of sample collection, sex and age did not find 245 

significant effects of these factors (see supplementary Table S1).  246 

Although our sample size (n=43) was slightly lower than previously recommended for a 247 

Kenward-Roger approximation, it was close to n=45, which has been suggested to provide 248 

robust results (Arnau et al. 2013). Further, Arnau and colleagues (2013) showed that small to 249 

moderately skewed data (indicated by values of 0.8 and 1.6 respectively) is best assessed 250 

with a Kenward-Roger approximation. An approximate ratio of 1:2 in kurtosis between the 251 

largest and smallest group (in our case wet and dry season respectively) indicates a 252 

robustness of 60% or higher for the Kenward-Roger approximation (Arnau et al. 2013). In our 253 

case, wet season skewness of tourist pressure was 1.09 whilst dry season skewness was -254 

0.02, and wet season kurtosis of tourist pressure was 3.73 whilst dry season kurtosis was 255 

1.69.  256 

We plotted graphs using the packages effects (Fox 2003) and ggplot2 (Wickham 2016) using 257 

the unscaled data for ease of interpretation.  258 

Results  259 
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Overall fGCM concentrations ranged from 0.05 to 1.02 µg/g dry weight (DW) with an overall 260 

mean (± SD) of 0.39 (± 0.22) µg/g DW (Table 1).  261 

**Table 1 here**  262 

Tourist numbers ranged from 2156 to 3762 tourists per month, an increase of 74.5% from 263 

lowest to highest tourist numbers and with an average (± SD) of 2831 (± 563) throughout the 264 

study period (Fig. 2). During the dry season, tourist numbers ranged from 2156 to 3762 265 

tourists per month, and during the wet season they ranged from 2741 to 3614 tourists per 266 

month (Fig. 2). 267 

High monthly tourist numbers in Madikwe had a significant effect on fGCM concentrations in 268 

our individually identified elephants (Table 2, Fig. 3a, b). Season did not have an impact on 269 

fGCM concentrations. Removing the adult male and calf from the data set or nesting ID in 270 

social group did not change these results. Removing six individuals (n=14 samples) that did 271 

not have samples in both high and low tourist numbers (above and below the mean tourist 272 

number) did not change the effect of tourist numbers on fGCM concentrations either. 273 

**Table 2 here** 274 

**Figure 3 here** 275 

Discussion 276 

Our aim was to investigate the physiological stress response of African elephants to tourist 277 

pressure, using fGCM concentrations of elephants and the number of visitors per month in 278 

Madikwe Game Reserve. We found that increasing tourist pressure was related to increasing 279 

fGCM concentrations. Our results indicate that wildife tourism is a stressor and are 280 

consistent with previous behavioural studies linking elevated fGCM concentrations to 281 
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heightened aggression towards humans (Slotow et al. 2008; Jachowski et al. 2012), use of 282 

refugia (Jachowski et al. 2013b, c) and human interactions (Millspaugh et al. 2007). Our 283 

study thus contributes to a growing body of evidence that tourist pressure impacts 284 

physiological stress in elephants and adds to literature about the effects of wildlife tourism 285 

on stress in a range of species (Thiel et al. 2008; Behie et al. 2010; Piñeiro et al. 2013; 286 

Zwijacz-Kozica et al. 2013; Shutt et al. 2014; Rehnus et al. 2014). Such research highlights the 287 

need to monitor the potential for chronic stress in wildlife populations exposed to tourism.  288 

Madikwe’s strict regulations of only three vehicles in any sighting could have potentially 289 

limited the effect of tourist activity on fGCM concentrations in elephants and we had 290 

expected only subtle effects of tourism on stress. Further, elephants could have habituated 291 

to tourist presence throughout the years, in which case we would not see an effect of tourist 292 

pressure on fGCM concentrations. However, we found that fGCM concentrations increased 293 

from the lowest estimate of 0.26 µg/g DW when tourist pressure was low, to 0.55 µg/g DW 294 

during times of high tourist pressure, an increase of 112% (Fig. 3a). It is unknown which 295 

stimuli related to tourism may have caused an increase in elephant’s GC concentrations, but 296 

possibilities include increased air traffic, vehicle noise, or vehicle encounter rate. 297 

This study further presents the first published record of physiological stress levels of the 298 

Madikwe elephant population. The mean (±SD) fGCM concentration from samples collected 299 

for this study was 0.39 (± 0.22) µg/g DW, and values related to tourist pressure ranged from 300 

0.26-0.55 µg/g DW (Fig. 3). No data of female African elephant’s fGCM concentrations have 301 

been published with which a comparison of absolute values would be possible. This is due 302 

to, for example, differences between studies in methodologies such as sampling protocol, 303 

steroid extractions, and steroid assays used (Palme 2019). However, previous studies from 304 

Kruger National Park, South Africa, using the same collection procedure, as well as steroid 305 
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extraction and assay protocols, provide an estimated fGCM concentration range of 0.29 and 306 

0.30 µg/g DW for two adult male elephants (Ganswindt et al. 2010a) and a median of 307 

approximately 0.30 µg/g DW for six adult bulls (Ganswindt et al. 2010b), which are similar to 308 

those from Madikwe. The two adult bulls from Kruger National Park were also observed to 309 

exhibit an increase of 169% and 23% in fGCM concentrations respectively during a stressful 310 

period of injury (Ganswindt et al. 2010b). The values of 23% and 169% related to injury in 311 

those Kruger bulls fall above and below the increase of 112% related to tourism presented in 312 

this study, indicating that an increase in stress related to tourism is comparable to an 313 

increase in stress related to injury.    314 

Fences have been shown to force elephants to revisit foraging patches more frequently, 315 

restrict elephant movement and increase frequency of interactions with unrelated family 316 

herds (Munshi-South et al. 2008; Loarie et al. 2009), adding to perceived stress of elephants. 317 

Nevertheless, the average fGCM concentrations of Madikwe’s elephants was similar to 318 

baseline levels of Kruger bulls (Ganswindt et al. 2010b). This may suggest that the Madikwe 319 

population is, in terms of physiological stress, relatively unaffected by its high density at this 320 

stage.  321 

Chronic stress has been linked to elephants becoming hyperaggressive and aggressive 322 

towards humans (Bradshaw et al. 2005; Slotow et al. 2008; Jachowski et al. 2012). Given the 323 

traumatic background of the originally translocated elephants in Madikwe, those individuals 324 

may be more prone to perceive humans as a negative stressor. So called “problem animals“ 325 

are usually shot after attacking humans, with several such cases occuring before 2000 in 326 

Madikwe (Slotow et al. 2008). We did not observe elephants to be extremely aggressive 327 

towards tourists, unless game drive vehicles approached individuals at a very close distance 328 

(<10 meters; I.Szott & Y.Pretorius pers.obs.). However, we have recently shown that high 329 
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tourist pressure in our study population was linked to increased conspecific-directed 330 

aggressive behaviours in elephants (Szott et al. 2019). Increases in aggression in elephants 331 

are a concern for human safety and elephant welfare. As we did not observe increases in 332 

behaviours indicating stress, such as elephants touching their own faces with their trunks or 333 

curling their trunks (Poole 1995; elephantvoices.org), in our study population (Szott et al. 334 

2019), it may be possible that the increased conspecific-directed aggression observed 335 

presents a coping mechanism (Nelson & Kriegsfeld 2017) related to the increase in fGCM 336 

concentrations during high tourist pressure.  337 

As expected from the year-round supply of artificially pumped water at Madikwe, we found 338 

that fGCM concentrations did not increase during the dry season (cf. Foley et al. 2001; 339 

Viljoen et al. 2008). Due to our small sample size, we did not include sex or age in our final 340 

model, but when included, neither factor was significant. Previous studies did not find an 341 

effect of age class or sex on fGCM concentrations (Viljoen et al. 2008; Pinter-Wollman et al. 342 

2009), although Ahlering et al. (2013) did report female elephants had significantly lower 343 

fGCM concentrations compared to males. Nevertheless, we cannot draw a meaningful 344 

conclusion on those factors given our small sample size.  345 

Reproductive state in the form of pregnancy or parturition can affect fGCM concentrations 346 

in animals (Palme 2019). Unfortunately, we were not able to collect information on those 347 

variables in our sampled adult females but at least three of the adult females had suckling 348 

calves and were lactating throughout the study period, thus the increase in fGCM 349 

concentrations was unlikely due to a shift from non-lactation to lactation. In addition, the 350 

effect of tourist pressure followed the same trend in all elephants regardless of sex or age 351 

(Fig. 3b), suggesting that reproductive state did not affect how females were influenced by 352 

increasing tourist pressure.  353 
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With regard to management implications in Madikwe, the authors encourage the 354 

establishment of a refuge area for elephants, as well as other wildlife. Available refuge areas 355 

and corridors with limited human disturbance are vital for elephants in altered physiological 356 

states (Jachowski et al. 2013b, c). Further, access to such an area could add to elephants‘ 357 

sense of control, which can reduce perceived stress (Nelson & Kriegsfeld 2017). Therefore, 358 

such refuge areas not only allow elephants to avoid contact with humans, but can also 359 

ensure human safety during when elephants have increased fGCM concentrations. A 360 

sufficiently large designated area should be established in which no guided walks are carried 361 

out, where offroading of vehicles is strictly forbidden and vehicles are restricted to roads. 362 

Due to the southern area of Madikwe having fewer roads in place already, this may present 363 

the best opportunity to establish such a refuge area. A strictly enforced refuge area would 364 

likely not only be of benefit for elephants, but also for other animals found in Madikwe 365 

during times of high tourist pressure and allow Madikwe to advertise that is prioritises 366 

animal welfare.  367 

Our study had a relatively small sample size and so results should be interpreted with 368 

caution. However, we used a repeated measures study design, included ID of each animal to 369 

control for individual variation, and applied a Kenward-Roger correction to adjust the p-370 

values. The effect of tourist pressure on fGCM concentrations reported here therefore 371 

appears to be robust, especially given that we were able to find such a distinct effect with a 372 

limited number of samples. However, further research is needed in order to identify which 373 

stimuli are perceived stressors to elephants in order to inform management of fenced 374 

reserves, especially during times of high tourist pressure, and to assess whether perceived 375 

stress in elephants is chronic. More research is also required in other fenced reserves, such 376 

as Madikwe, as well as in unfenced areas. 377 
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This study adds to a growing body of literature investigating the impacts of wildlife tourism 378 

on wildlife. Increased tourist pressure led to higher fGCM concentrations in Madikwe 379 

elephants. A refuge area, in which tourist access is restricted, would likely add to elephants’ 380 

sense of control and may aid in reducing stress related to high tourist pressure. This will 381 

increase animal welfare standards as well as human safety during such times.  382 
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562 

Figure 1. 563 

Map of Madikwe Game Reserve, South Africa, as of 2014. Game drives take place throughout the 564 

whole reserve. Dark grey areas are private concessions, used for game drives only by their respective 565 

lodge, grey areas are private concessions used for game drives by any lodge with prior permission 566 

but usually restricted to three vehicles within the area at any time. Light grey areas are open plains in 567 

which off-roading is prohibited. Lines are roads, triangles are lodges, circles are waterholes (year 568 

round or during wet season). Crosses and squares are locations at which dung samples of African 569 

elephants Loxodonta africana were collected during the dry season (squares) and wet season 570 

(crosses). Where several dung samples were collected at the same location, the number of samples 571 

(n) is given. Map courtesy of P.Hattingh (2014).  572 
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573 

Figure 2. 574 

Total number of tourists per month in Madikwe Game Reserve, South Africa, between May 575 

2016 and June 2017. Dry season (circles) lasted from May 2016 to September 2016 and from 576 

March 2017 to June 2017. Wet season (triangles) lasted from October 2016 to February 577 

2017.   578 
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Table 1. Faecal glucocorticoid metabolite (fGCM) concentrations of 13 individually identified 579 

African elephants Loxodonta africana, in Madikwe Game Reserve, South Africa. 580 

Concentrations are in µg/g dry weight. ID number of individuals, their age class and sex are 581 

presented (with overall mean ± SD fGCM concentrations) and a breakdown of number (n) of 582 

samples collected during the dry and wet season. 583 

Sex Age class ID fGCM concentration 
µg/g dry weight 

during dry season 

fGCM concentration 
µg/g dry weight 

during wet season 

N samples per 
individual 

Female  
0.38 ± 0.2 

Adult  
0.40 ± 0.21  

1 0.46 
0.58  

- 2 

2 0.56  0.91  2 
3 0.2 

0.22 
0.64 
0.23 

0.17 
0.34 

0.4 
0.19 

8 

4 0.47 
0.6  

0.16 
0.59 

4 

5 0.16 
0.42 
0.24 

- 3 

Juvenile 
0.35 ± 0.23 

6 0.37 0.39 
0.31 
0.19 
0.55 

5 

7 - 0.26 
0.6 

2 

8 - 0.09 
0.38 

2 

Male  
0.48 ± 0.28 

Adult  
0.10 ± 0.06 

9 0.14 0. 05 2 

Juvenile 
0.48 ± 0.26 

1 0.53 0.57 
1.02  

3 

11 0.27 
0.53 
0.12 
0.74 

0.26 
0.24  

6 

12 0.55  0.49 2 
Calf  
0.21 ± 0.12 

13 -  0.29 
0.12 

2 

N samples 
per season 

  20 23 43 

584 



28 
 

Table 2. GLMM results of the fixed effects on faecal glucocorticoid metabolites of African 585 

elephants Loxodonta africana in Madikwe Game Reserve, assessed with a Kenward-Roger 586 

approximation.  587 

aSE=Standard error, bdf=Degrees of Freedom, significant effects in bold 588 

Fixed effect (reference level) Level Estimate ± SEa dfb F p-value 

Intercept  0.400 ± 0.05    

Tourist  0.090 ± 0.04 36.93 6.08 0.02 

Season (Dry) Wet 0.057 ± 0.03 34.09 2.74 0.11 

589 
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590 

Figure 3. 591 

Effect of total tourist numbers per month (p=0.02), as assessed by a Generalised Linear 592 

Mixed Effects Model, on faecal glucocorticoid metabolite concentration (µg/g dry weight) of 593 

African elephants Loxodonta africana in Madikwe Game Reserve, South Africa. 3a presents 594 

the overall effect of tourist pressure on elephants, whilst 3b presents the effect of tourist 595 

pressure on females (F) and males (M). Grey areas represent 95% confidence intervals.   596 
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 Supplementary Table S1. GLMM results of the fixed effects on faecal glucocorticoid 597 

metabolites of African elephants Loxodonta africana in Madikwe Game Reserve, assessed 598 

with a Kenward-Roger approximation.  599 

aSE=Standard error, bdf=Degrees of Freedom, significant effects in bold 600 

Fixed effect (reference level) Level Estimate ± SEa dfb F p-value 

Intercept  0.340 ± 0.05    

Tourist  0.092 ± 0.04 32.22 6.23 0.02 

Season (Dry) Wet 0.043 ± 0.03 29.63 1.48 0.23 

Sex (Female) Male -0.001 ± 0.07 9.22 0.00 0.99 

Age (Adult) Calf 

Juvenile 

0.082 ± 0.11 

-0.161 ± 0.16 

10.15 0.50 0.62 

Hour  -0.033 ± 0.03 30.29 1.14 0.29 

 601 


