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Abstract  

Background: Maintaining body centre of mass (CoM) lowering velocity within 

manageable/safe limits during stair descent can be problematic for older individuals due to 

reduced ranges of motion at the involved joints (ankle and knee) and a reduced ability to 

generate adequate joint moments at the extremes in joint ranges of motion. These problems are 

likely to magnify in circumstances where the distance of lowering increases, or when 

misjudging the height of lowering.  

Research Question: How does a 50% increase in standard stair riser-height affect control of 

CoM velocity and acceleration of older people during stair descent? 

Methods: Fifteen older (75±3 years) and seventeen young (25±4 years) healthy adults 

descended a 4-step staircase, at two riser-heights: 170mm, 255mm. Changes in peak vertical 

CoM acceleration and velocity, and lower-limb joint kinetics (moments, work) during landing 

and lowering phases of stair descent were assessed using a mixed-design repeated measures 

analysis of variance.  

Results: Peak CoM accelerations and velocities during landing and lowering were lower in 

older compared to young adults and increased in both groups at 255mm riser-height. Duration 

of lowering also increased, particularly for older adults. Peak ankle moments during landing 

and lowering, which were lower in older compared to young adults, increased when descending 

from 255mm riser-height, whilst the peak knee moment reduced. Both groups produced 

increased landing-limb negative (eccentric) ankle joint work when descending from 255mm, 

but increases were greater for older adults (87.8%) compared to young (76.1%). 

Significance: Descending stairs became more challenging in both age groups as riser-height 

increased. Older adults adopted a strategy of reducing CoM velocity to lessen the eccentric 



landing demands. In both groups, but more so older adults, there was a greater reliance on using 

leading-limb eccentric plantarflexion at 255mm riser-height compared to 170mm, to 

arrest/control increased downward CoM velocity and acceleration during landing.  
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1. Introduction 

Previous research highlighting age-related differences in lower-limb kinematics and kinetics 

for when descending and ascending stairs provide key insights into why older adults find stair 

negotiation a particularly challenging locomotor task [1-11]. Such findings also help explain 

why the incidence of falling in older adults is higher for stair descent compared to ascent [12]. 

We previously found that during stair descent (standard stair riser-height, with same-limb lead 

on each stair), older adults displayed an alternative strategy to young adults by limiting the 

downward velocity and acceleration of their CoM during the lowering phase of descent [1]. In 

contrast, young adults descended quickly to the stair below but arrested their downward 

velocity sooner, post foot contact, via sustained lead-limb plantarflexion (eccentric) activity. 

The older participants’ alternative strategy was achieved by stiffening (prolonged muscle co-

activation at the knee and ankle) the supporting limb for a longer time period to reduce the rate 

at which it flexed when lowering the leading/contralateral limb and hence CoM to the next 

level. Maximal eccentric strength data, obtained by dynamometry, indicated that this stair 

descent strategy was a consequence of older participants having a diminished ability to generate 

sufficiently high ankle plantarflexor moments on the leading/landing limb during weight 

acceptance. Instances where older adults fail to adequately control the CoM downward velocity 

during lowering (by prolonged muscle co-activation at the knee and ankle of the supporting 

limb), and subsequently contact the stair below with a relatively high CoM downward velocity, 



may be a significant contributing factor to falls, as indicated from falls data on level ground 

[13-17]. Real-world scenarios when the velocity of lowering could increase include, when the 

height of lowering is greater than the recommended standard as in the case of non-standard 

private and public staircases [18], or when stepping off a bus or similarly high change in surface 

height. Previous research investigating stair negotiation (standard riser-heights) has shown that 

older individuals have a reduced ability to generate adequate moments at the extremes in joint 

ranges of motion [19,20,8,9]. Thus, lowering the CoM and the leading/contralateral limb from 

a greater than recommended standard height will position limbs even further towards their 

extremes of range of motion and be even more challenging for older adults.  

To further advance the understanding of age differences in stair descent locomotion, the present 

study investigated how CoM control during step-over-step stair descent was affected by 

increasing standard stair riser-height by 50%. Previous research has reported peak absolute 

joint moments across the stance phase during step-over-step stair descent [8,21,5] but there are 

two distinct phases in CoM control during stair descent: a landing phase and a lowering phase 

[1]. The landing phase involves rapid loading of the leading-limb to bear weight. Once the 

leading-limb has accepted bodyweight, lowering occurs in order to lower the contralateral limb 

and CoM to the subsequent (lower) stair. The aim of this study was to determine if increasing 

riser-height had a differential effect on older compared to younger adults in terms of the CoM 

vertical velocity and acceleration profiles and the associated joint moments and joint work 

produced at the lower-limb joints during both the landing and lowering phases of stair descent. 

It was hypothesised (1) that peak CoM vertical velocities and accelerations, and peak hip, knee 

and ankle joint moment and work during both the landing and lowering phases, would all 

increase in both age groups when stair riser-height was increased but (2) that such increases 

would not be as marked for older compared to young adults due to their limited maximal 

muscular capacities. 



 

2. Methods  

Data presented in this study was collected as part of a large cross-sectional study that 

investigated the differences between young and older adults during stair ascent and descent. 

Previous reports based on aspects of this data are currently available in the literature 

[1,22,2,8,9]. This is the first study on the differences in CoM control and contribution of 

specific lower limb joints between young and older adults when descending stairs with 

increased versus standard stair riser-heights, using a step-over-step strategy, and focusing on 

two distinct phases of stance (landing and lowering). 

2.1 Participants  

Seventeen young adults (7 females; mean ± 1SD age: 25 ± 4 years, height: 1.76 ± 0.09 m, mass: 

72.9 ± 11.7 kg) and fifteen older adults (10 females; mean ± 1SD age: 75 ± 3 years, height: 

1.62 ± 0.07 m, mass: 69.3 ± 11.1 kg) participated, each providing written informed consent. 

Exclusion criteria included neuromuscular disorders, musculoskeletal injury/condition (e.g. 

osteoarthritis) that could affect movement, centrally acting medication that may affect balance, 

and uncorrected visual problems (none of the participants wore bifocals). We asked participants 

if they had previously experienced pain in general during stair negotiation, or on the day of 

testing, and all participants stated that they had not. Only individuals whose medical 

practitioner approved their participation took part. The study received institutional ethical 

approval and complied with the tenets of the Declaration of Helsinki.  

2.2 Stair descent protocol 

Participants completed two separate testing sessions ~1-2 weeks apart. Each consisted of 

completing up to 5 stair descent trials of a 4-step staircase set at one of two stair riser-height 



conditions (a standard stair riser-height; 170 mm, and a 50% increase in stair riser-height; 255 

mm), with condition order counterbalanced across participants. The standard stair riser-height 

was typical of those encountered in domestic/public environments [23]. The riser-height of 

255mm was selected to increase substantially the task demands. Although the 255mm value 

exceeds the maximum value of 220mm permitted in national building regulations [18], riser-

heights can be much higher in real world settings, e.g. private and public stairs and steps not 

conforming to regulatory guidelines, or when stepping off from public transport [24], thus 

generating increased musculoskeletal demands. We believed the increased height would be a 

height that older adults would be able to cope with yet be large enough to confer a realistic/real-

world challenge that might occasionally be encountered in their daily lives. Tread depth (280 

mm) and width (900 mm) were constant for all stair riser-heights. Trials were completed at 

customary self-selected speeds using ‘step-over-step’ gait. Participants led with the right limb 

over the first stair edge for every trial, and the left limb was first over the second stair edge, 

and so on. The stairs were descended without use of the handrails and a trial finished after 

participants landed on the ground, taking one step forward before then coming to a stationary 

standing position with feet side-by-side.  

Force platforms (270 x 500 mm; type Z17068, Kistler instruments, Winterthur, Switzerland), 

embedded in each stair and the floor at the base of the staircase (400 x 600 mm; Kistler type 

9253A, Kistler instruments, Winterthur, Switzerland;), captured kinetic data at 1080 Hz. 

Whole-body kinematic data were captured at 120 Hz using a 10-camera motion capture system 

(Vicon system, Oxford Metrics, UK). Reflective markers were positioned according to Vicon’s 

‘plug-in-gait’ full-body marker set (Oxford Metrics Ltd) [25]. Using plug-in-gait software data 

were filtered using the Woltering spline smoothing routine with ‘MSE’ set to 25, and the 

resulting C3D files uploaded (at 120Hz) to Visual 3D (C-Motion, Germantown, MD, USA) for 



further analysis. In Visual3D a whole-body CoM was calculated as the weighted average 

positions of the head, thorax, pelvis, thighs, shanks and feet [26]. 

2.3 Data analysis 

Analysis determined, for the second and third stairs, whole-body kinematics (CoM velocity 

and acceleration profiles) and ankle, knee and hip joint kinetics (sagittal plane joint moments 

and rotational power) for the landing and then lowering phase on each stair. Joint kinetics 

determined any age and riser-height differences in motor control strategies. Joint moments 

were determined using standard inverse dynamics and joint powers were calculated as the 

product of the joint moment and joint velocity. The joint moment and joint power profiles for 

the ankle, knee and hip were summed to yield the ‘support moment’ (positive for extension, 

negative for flexion) and ‘combined joints power’ (positive for power generation, negative for 

power absorption), respectively [5,27]. Moment and power data were normalized to 

participant’s body weight and to 100% of stance phase. The second and third stairs were chosen 

for analysis as it represented ‘steady-state’ stair descent [3,4]. Descent was divided into the 

following phases:  

Landing phase: from the instant the foot contacted the stair below [touch-down;  

vertical ground reaction force ascended above a 20 N threshold], up to the instant when 

CoM downwards velocity reduced to zero following touch-down (the instant when the 

CoM ceased accelerating upwards) [1]. The landing phase therefore encapsulates 

weight acceptance and forward continuance as described by McFadyen and Winter [3].  

Lowering phase: From the end of the landing phase to contralateral-limb touch-down.  

The following dependent variables were determined for each limb in turn for the second (left 

limb) and third (right limb) stairs respectively: 



Duration of the landing and lowering phases. Peak sagittal joint moment at the hip, knee 

and ankle during landing and lowering. Joint work done at the hip, knee and ankle 

during landing and lowering: determined as the landing and lowering phase integrals of 

joint power at each joint respectively. Peak upwards CoM acceleration during landing 

(peakAcc-Land) (i.e. peak positive acceleration of the CoM in the downward direction) 

[1]. Peak downwards CoM velocity (peakVel) and acceleration (peakAcc) during 

lowering (i.e. peak negative velocity and acceleration of the CoM in the downward 

direction, respectively) [1]. Peak downwards (negative) velocity of the foot during 

lowering (peakFootVel) [1].  

2.4 Statistical analysis 

Mixed-design repeated measures analysis of variance (ANOVA, Statsoft; Statistica, Tulsa,  

USA) with age (young, old) as a between factor, and stair riser-height (170 mm, 255 mm) and 

limb (making contact with stair two, making contact with stair three) as repeated factors were 

used to determine main and interaction effects for each of the parameters. Post-hoc analyses 

were performed using Tukey’s HSD, and level of significance was set at p=0.05.  

 

3. Results 

Group ensemble mean hip, knee and ankle joint moment profiles and joint power profiles are 

shown in Figures 1 and 2 respectively, and group ensemble average CoM downwards 

acceleration profiles are presented in Figure 3. In both age groups, ankle and knee moment 

magnitudes were comparable for lowering and landing phases at the standard riser-height, but 

with an increase in riser-height ankle moment magnitudes increased whereas knee moment 

magnitudes decreased (Figure 1). Across both riser-heights and groups, ankle joint negative 

power was predominant during the landing phase, and knee joint negative power was 



predominant during the lowering phase; with the magnitude of negative ankle joint power 

increasing as riser-height increased (Figure 2). The greatest amount of negative joint work done 

in both groups was at the ankle during landing for the increased height condition (Table 1 and 

Table 2). For both age groups, hip moment and power contribution was minimal across each 

phase irrespective of riser-height. This finding was expected based on previous similar findings 

[3,5,7,10], and thus we make no further reference to the insignificant contribution of hip joint 

kinetics.  

FIGURES ONE  

FIGURE TWO  

At the increased stair riser-height, both groups exhibited a significant increase in peak moment 

and work done at the ankle joint and an accompanying significant reduction in peak moment 

and work done at the knee joint; indicating much greater reliance on the ankle joint. When 

subtracting the ensemble knee moment profile from the ensemble ankle moment profile, the 

resulting moment difference profile (Figure 4) was predominantly positive, which indicates 

that the magnitude of the ankle moment was greater than the knee moment and particularly so 

during the lowering phase. Greater peak CoM downward accelerations and velocities (Figure 

3), and greater peak foot velocity (Table 1 and Table 2) were also evident as riser-height 

increased. Older adults produced lower peak CoM downward accelerations and velocities and 

a reduction in peak moment at the ankle, coupled with a reduction in peak work done at the 

ankle and an increase in phase duration during the lowering phase, at both riser-heights.  

3.1 Relationship between joint moment and CoM vertical acceleration: 

Plotting the support moment and CoM downward acceleration profiles against each other 

(Figure 3) shows that a temporal relationship exists between the fluctuations in the two profiles 



for both age groups. The relationship highlights that when the support moment reduces in 

magnitude the COM accelerates downwards and when the moment increases in magnitude the 

COM downwards acceleration is slowed and/or begins to accelerate upwards. Figure 3 also 

illustrates that differences in movement control strategy exist between the young and older 

adults during the landing and lowering phases of descent. Young adults produced a greater 

support moment than older adults at both stair riser-heights following periods where there was 

an increase in CoM accelerations.  

FIGURES THREE  

FIGURE FOUR 

3.2 Group differences and riser-height general effects: 

Tables 1 and 2 present group mean kinematic and kinetic parameters for the landing and 

lowering phase. These tables highlight the differences in these parameters between age groups 

and changes because of increasing riser-height. As we were mainly interested in the effects of 

riser-height across the two age groups, the results described here do not refer to significant limb 

differences between stair two and stair three, or significant interactions between limb and age 

or riser-height. Limb effects are reported in Tables 1 and 2 for information purposes only.  

3.2.1 Landing Phase:  

Landing duration and Peak CoM upwards acceleration during landing (peakAcc-Land) were 

significantly affected by riser-height (P < 0.001), but unaffected by age (p = 0.186 and p = 

0.108, respectively) and there was no interaction between terms. In both groups landing phase 

was longer at the standard compared to increased riser-height, and peak upwards acceleration 

was greater at the increased compared to standard riser-height.     



Peak moment and negative (eccentric) work done by the ankle during landing were 

significantly affected by age (p < 0.001 and p = 0.045, respectively) and riser-height (p < 

0.001), but there was no interaction between terms. At both riser-heights peak ankle moment 

and ankle negative work were greater in young compared to older adults. In both groups, peak 

ankle moment and ankle negative work were increased at the increased compared to standard 

riser-height, but the increases were slightly greater for the older adults (68.4% and 87.8%, 

respectively; increased versus standard riser-height) compared to young adults (64.5% and 

76.1%, respectively; increased versus standard riser-height). Peak knee moment and negative 

work done by the knee during landing were significantly affected by riser-height (p = 0.001 

and p = 0.033, respectively), but unaffected by age (p ≥ 0.128), and there was no interaction 

between terms. In both groups, peak knee moment and negative knee work were reduced at the 

increased compared to the standard riser-height.  

3.2.2 Lowering Phase 

Duration of lowering, peak CoM downwards velocity (peakVel), acceleration (peakAcc), and 

lead-foot peak downwards velocity (peakFootVel) were significantly affected by age (p ≤ 

0.010) and riser-height (p < 0.001). There was a significant age by riser-height interaction for 

duration of lowering (p = 0.009); older adults took longer to lower themselves at both riser-

heights, but the increase in duration was significantly greater at the increased riser-height. 

Young adults produced greater peak downward velocities, accelerations and lead-foot peak 

downwards velocities compared to older adults. Both groups exhibited greater peak downward 

velocities, accelerations and lead-foot peak downwards velocities at the increased compared to 

standard riser-height.   

Peak ankle moment was significantly affected by age (p = 0.016) and riser-height (p < 0.001), 

but there was no interaction between terms. Peak ankle moment was greater in young compared 



to older adults, and in both groups was greater at the increased compared to the standard riser-

height. Peak knee moment (p < 0.001), negative work done by the ankle (p = 0.031) and 

positive work done by the ankle (p = 0.027) were significantly affected by riser-height, but 

unaffected by age group (p ≥ 0.154), and there was no interaction between terms. In both age 

groups, peak knee moment was reduced at the increased compared to the standard stair riser-

height. Ankle negative and positive work done was greater at the increased compared to 

standard riser-height. The negative work done by the knee was unaffected by age (p = 0.879) 

and riser-height (p = 0.235). 

TABLE ONE  

TABLE TWO 

4.0 Discussion  

The aim of this study was to determine whether increasing riser-height had a differential effect 

on older compared to younger adults, in terms of the CoM vertical velocity and acceleration 

profiles and the associated moments and work produced at the lower-limb joints during both 

the landing and lowering phases of stair descent.  The hypothesis (1) that peak CoM vertical 

velocities and accelerations, and peak hip, knee and ankle joint moment and work during both 

the landing and lowering phases, would all be greater in both age groups when stair riser-height 

increased, was only partially accepted due to minimal change at the hip and a decrease in knee 

joint moment and work. The hypothesis (2) that such increases would not be as marked for 

older compared to young adults, was also only partially accepted due to minimal differences 

between groups at the knee and hip joints. Our findings demonstrate that the velocity of 

lowering increases in both age groups when the height of lowering is greater than the 

recommended standard, as evidenced by increases in CoM accelerations and velocities, and 

increased ankle moments, during landing and lowering when descending from 255mm riser-



height. This indicates that stair descent became more challenging when riser height was 

increased. 

4.1 Landing Phase 

At the increased riser-height during landing, both groups demonstrated an increased magnitude 

of ankle plantarflexion moment, a parameter known to play an important role in arresting 

downward momentum via controlling eccentric plantarflexion [1]. Young adults produced 

greater ankle plantarflexion moments than older adults. This may explain why there was a trend 

towards young adults exhibiting greater peak CoM upwards acceleration (i.e. positive 

acceleration of the CoM in the downward direction) during landing at both riser-heights; 

whereby the higher leading-limb plantarflexion ankle moment would create greater eccentric 

ankle resistance during the initial landing period (when the leading limb is in a plantarflexed 

position [7,8]) which would arrest downward momentum more abruptly (hence the greater 

upward acceleration). Along with an increase in plantarflexion moment at the increased riser-

height there was also an increase in negative work done at the ankle in both groups. The 

negative ankle work highlights eccentric action at the ankle during initial landing. Older adults 

produced significantly less negative work at the ankle joint than young adults at both riser-

heights. This reflects the lower eccentric maximum strength capabilities previously reported 

[1] and is likely linked to a more cautious lowering phase; that is, they deliberately reduced 

lowering speed to avoid the landing limb having to generate the increased plantarflexion 

moment (and negative work).  

Landing-limb peak knee extensor moments were reduced during landing at the increased riser-

height in comparison to the standard riser-height, and were of similar magnitude across groups. 

As a consequence, only a small amount of negative work done (power absorption) was evident 

at the knee. In contrast, landing-limb peak ankle moment generation at the increased riser-



height was approximately twice that generated at the knee joint (Figure 4). This highlights a 

greater reliance on the leading-limb ankle plantarflexors (eccentric action) rather than the knee 

extensors, during the initial period of weight acceptance when transferring body weight from 

the supporting to the landing-limb. Prior to landing at the increased riser-height both the lead-

limb ankle and knee will likely have been near-maximally extended to increase the overall leg 

length and ensure landing happened as soon as possible. Given the minimum work 

subsequently done at the knee during landing, this suggests the knee had minimal eccentrically 

controlled flexion. In contrast, the higher negative work done at the ankle indicates there was 

greater reliance on the ankle at the increased riser-height to control landing. By landing on the 

toes, eccentric dorsiflexion could then occur to lower the foot and hence CoM to the lower 

level and thus arrest downwards velocity. This underlines the key role of the ankle joint when 

coping with increased task demands, as reported previously [8].  

4.2 Lowering Phase 

Older adults took significantly longer, at both riser-heights compared to young adults, to lower 

themselves to the stair tread below and the increase in duration was greater for the increased 

compared to standard riser-height. This finding, coupled with significantly reduced CoM 

downwards velocities/accelerations, suggests older adults were more hesitant/cautious than 

young participants. Previous research reported that older adults adopted an alternative strategy 

during stair descent by stiffening the supporting limb (co-activation of the key musculature at 

the ankle and knee) for longer than young adults, thus slowing the rate of CoM lowering as 

weight was transferred from the supporting limb to the landing limb [28]. In the present study, 

peak ankle moments during lowering were increased for both groups at the higher riser-height 

whilst peak knee moments were reduced, indicating a much greater reliance on the ankle joint 

(Figure 4). This finding is supported by a previous report that highlighted the ankle as an 

important joint in controlling stair descent, with both young and older adults producing ankle 



joint moments at a level close to the limits of their joint capacity (75%), and much less 

involvement at the knee joint [8]. In the present study, the greater reliance on the ankle indicates 

that the older adults, like the young, were capable of modulating the joint moments required at 

the ankle and knee to cope with the increased demands of the task. However, older adults chose 

to be more cautious than younger adults in their lowering approach at the increased riser-height, 

producing lower peak CoM downward accelerations and velocities and a reduction in the ankle 

joint contribution. Here we further underline the importance of the ankle joint muscle groups 

in both age groups when adapting to the increased demands of a higher riser-height. This further 

confirms why current practice, regarding falls interventions in older adults focused on reducing 

falls risk, should include resistance training programmes focused on the ankle joint and 

particularly the ankle plantarflexor muscles. Recent findings also advocate the use of a side-

step strategy to avoid increased loading of the ankle plantarflexors during stair descent [2].  

It is not possible to say, based on the current data, whether a fall is more likely to occur in the 

landing or lowering phase during periods of excessive eccentric demand on the ankle joint. 

This is because the data from the current study show the contribution of the ankle joint during 

both phases of stair descent is important for maintaining the CoM within manageable limits. 

The supporting limb experiences high ankle joint moments over a large range of dorsiflexion 

and is responsible for lowering the body mass to the stair below. The landing limb requires 

high ankle joint moments with the ankle in a plantarflexed positon and is responsible for 

attenuating the impact of landing. Therefore, both phases are important and intimately linked 

to one another during step-over-step stair descent.  

Many of the variables analysed were affected by limb-by-height interactions (Table 1), which 

indicates that participants, irrespective of age, exhibited different stepping behaviours on each 

stair. This is possibly because participants could have been affected by the biomechanical 

demands of transitioning at the top of the staircase (level-to-descent) during landing and 



lowering on/over stair two. Equally, when landing and lowering on/over stair three participants 

may have started to prepare for the transition at the bottom of the staircase (descent-to-level). 

For this reason, our analysis cannot be considered ‘steady-state stair descent’, and thus this is 

a limitation when interpreting the results. Ideally, a staircase with a larger number of stairs (e.g. 

7-step staircase) would allow for participants to achieve continuous descent gait cycles to 

separate the transitions at the top and bottom of the stairs more clearly [29]. 

 

5.0 Conclusion 

Descending stairs became more challenging in both age groups as riser-height increased as 

evidenced by the increase in CoM accelerations and velocities, and increased ankle moments, 

during landing and lowering when descending from 255mm riser-height. Older adults adopted 

a stair descent strategy, particularly so at the higher stair riser-height, whereby they ensured 

downward CoM velocity was maintained within manageable/safe limits as evidenced by their 

lower CoM velocity, longer duration of lowering and percentage increase in negative ankle 

work, compared to young adults. The reduced moment and power peaks in older adults during 

both the lowering and landing phases, particular at the ankle, suggests older participants were 

not capable of developing similarly high moments to the young. This reduced capacity likely 

explains why the older participants also limited their CoM lowering velocity. The results 

presented here support the approach of training interventions focussing on the ankle 

plantarflexors for older adults to cope with the physical demands of stair negotiation, 

particularly for when negotiating higher riser-heights. 
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Figure 1. Group ensemble average joint moments (normalised to body mass) for the ankle, 

knee, hip and the support moment (hip-knee-ankle) during the landing and lowering phases for 

young and older adults at the standard height (a and b, respectively) and increased height (c 

and d, respectively). NB; Positive values correspond to internal plantarflexor, knee extensor 

and hip extensor moments. Thin vertical black lines represent touch-down (TD) and foot-off 

(FO). Thick grey lines represent the end of the landing phase and start of the lowering phase. 

Horizontal grey dashed arrows represent landing and lowering phase durations. 
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Figure 2. Group ensemble average joint powers (normalised to body mass) for the hip, knee, 

and ankle and for entire limb (hip-knee-ankle) during the landing and lowering phases for 

young and older adults at the standard height (a and b, respectively) and increased height (c 

and d, respectively). NB; the areas under the positive and negative portions of the curves 

represent the positive and negative work done at each joint. Thin vertical black lines represent 

touch-down (TD) and foot-off (FO). Thick grey lines represent the end of the landing phase 

and start of the lowering phase. Horizontal grey dashed arrows represent landing and lowering 

phase durations. 



 

Figure 3. Group ensemble average centre of mass downwards acceleration and support moment 

profile during the landing and lowering phases for young and older adults at the standard (a) 

and increased stair riser-height (b). NB; Thin vertical black lines represent touch-down (TD) 

and foot-off (FO). Thick grey lines represent the end of the landing phase and start of the 

lowering phase. Horizontal grey dashed arrows represent landing and lowering phase durations.  
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Figure 4. Group ensemble average difference between the ankle and knee joint moment 

contribution for young and older adults at the standard (a) and increased (b) stair riser-height 

during the landing and lowering phases. NB; A positive value indicates that the magnitude of 

the ankle moment was greater than the knee moment produced. Thin vertical black lines 

represent touch-down (TD) and foot-off (FO). Thick grey lines represent the end of the landing 
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phase and start of the lowering phase. Horizontal grey dashed arrows represent landing and 

lowering phase durations. 

 

 



 
Table 1. Landing phase group mean (± SD) differences for young (Yng) and older (Old) adults when descending stairs two and three of a four step-staircase at riser-heights 

of 170 mm and 255 mm.  

Landing  
Age 

group 

Height 170 mm Height 255 mm 
ANOVA (p value) 

Stair 2 Stair 3 Stair 2 Stair 3 

Phase duration (s) 
Yng 0.28 ± 0.03 0.27 ± 0.02 0.25 ± 0.03 0.25 ± 0.04 Age (= 0.186) 

Height (< 0.001) 

Limb (= 0.087) 
Old 0.30 ± 0.04 0.28 ± 0.05 0.27 ± 0.03 0.26 ± 0.03 

CoM peakAcc-land (m/s2) 
Yng 2.99 ± 1.07 3.09 ± 1.02 4.62 ± 1.68 5.18 ± 1.71 Age (= 0.108) 

Height (= 0.000) 

Limb (= 0.003) Old 2.42 ± 1.05 2.83 ± 0.93 3.85 ± 1.25 4.31 ± 0.96 

Ankle Moment (Nm/kg) 
Yng 1.75 ± 0.50 1.81 ± 0.37 2.75 ± 0.66 3.11 ± 0.76 

Age (= 0.001) 

Height (= 0.000) 

Limb (= 0.001) 

Height* Limb (= 0.003) 
Old 1.26 ± 0.41 1.33 ± 0.59 2.00 ± 0.56 2.36 ± 0.49 

Knee moment (Nm/kg) 
Yng 1.07 ± 0.38 0.98 ± 0.39 0.93 ± 0.34 0.68 ± 0.32 

Age (= 0.886) 

Height (= 0.001) 

Limb (= 0.153) 

Height* Limb (= 0.041) 
Old 1.00 ± 0.36 1.05 ± 0.54 0.87 ± 0.49 0.81 ± 0.51 

Ankle neg work done (J/kg) 

Yng -0.53 ± 0.16 -0.68 ± 0.17 -0.85 ± 0.37 -1.28 ± 0.44 Age (= 0.045) 

Height (= 0.000) 

Limb (= 0.000) 

Height*Limb (< 0.001) 
Old -0.42 ± 0.16 -0.52 ± 0.25 -0.68 ± 0.17 -1.09 ± 0.29 

Knee neg work done (J/kg) 
Yng -0.10 ± 0.06 -0.10 ± 0.07 -0.10 ± 0.06 -0.07 ± 0.08 Age (= 0.128) 

Height (= 0.033) 

Limb (= 0.338) Old -0.14 ± 0.08 -0.15 ± 0.11 -0.12 ± 0.10 -0.11 ± 0.09 
 

Note. Boldface type indicates a statistically significant effect.  



Table 2. Lowering phase group mean (± SD) differences for young (Yng) and older (Old) adults when descending stair two and three of a four step-staircase at riser-heights 

of 170 mm and 255 mm. 

Lowering  
Age 

group 

Height 170 mm Height 255 mm 
ANOVA 

Stair 2 Stair 3 Stair 2 Stair 3 

Phase duration (s) 
Yng 0.43 ± 0.04 0.43 ± 0.04 0.57 ± 0.08 0.52 ± 0.07 

Age (= 0.000) 

Height (= 0.000) 

Limb (= 0.024) 

Age*Height (= 0.009) Old 0.53 ± 0.10 0.50 ± 0.05 0.72 ± 0.12 0.68 ± 0.10 

CoM peakVel (m/s) 
Yng -0.55 ± 0.09 -0.56 ± 0.08 -0.71 ± 0.13 -0.76 ± 0.13 

Age (= 0.008) 

Height (< 0.001) 

Limb (< 0.001) 

Height*Limb (= 0.002) Old -0.46 ± 0.09 -0.50 ± 0.08 -0.59 ± 0.10 -0.67 ± 0.09 

 CoM peakAcc (m/s2) 
Yng -2.38 ± 0.68 -2.46 ± 0.78 -2.80 ± 0.77 -3.01 ± 0.79 

Age (= 0.005) 

Height (< 0.001) 

Limb (= 0.011) 

Height*Limb (0.033) Old -1.80 ± 0.74 -1.80 ± 0.81 -2.08 ± 0.57 -2.41 ± 0.53 

peakFootVel (m/s) 
Yng -1.35 ± 0.14 -1.31 ± 0.18 -1.57 ± 0.20 -1.63 ± 0.19 

Age (= 0.010) 

Height (< 0.001) 

Limb (= 0.167) 

Age*Height*Limb (= 0.024) Old -1.17 ± 0.20 -1.24 ± 0.14 -1.42 ± 0.24 -1.45 ± 0.15 

Ankle Moment (Nm/kg) 
Yng 1.60 ± 0.34 1.61 ± 0.35 2.15 ± 0.56 2.15 ± 0.50 Age (= 0.016) 

Height (< 0.001) 

Limb (= 0.203) Old 1.29 ± 0.25 1.44 ± 0.29 1.73 ± 0.40 1.74 ± 0.38 

Knee moment (Nm/kg) 
Yng 1.37 ±0.44 1.27 ±0.25 1.15 ±0.33 1.07 ±0.34 Age (= 0.154) 

Height (< 0.001) 

Limb (= 0.734) Old 1.21 ±0.23 1.21 ±0.34 0.92 ±0.30 1.02 ±0.32 

Ankle Neg work done (J/kg) 

Yng -0.26 ± 0.11 -0.31 ± 0.16 -0.32 ± 0.22 -0.35 ± 0.20 
Age (= 0.788) 

Height (= 0.031) 

Limb (= 0.076) 
Old -0.25 ± 0.10 -0.30 ± 0.11 -0.31 ± 0.16 -0.33 ± 0.14 



Ankle Pos work done (J/kg) 

Yng 0.22 ± 0.05 0.23 ± 0.03 0.24 ± 0.09 0.33 ± 0.11 
Age (= 0.351) 

Height (= 0.027) 

Limb (< 0.001) 

Age*Limb (< 0.001) 

Age*Height*Limb (= 0.043) 
Old 0.17 ± 0.05 0.36 ± 0.20 0.22 ± 0.09 0.35 ± 0.10 

Knee Neg work done (J/kg) 

Yng -0.84 ± 0.25 -0.74 ± 0.14 -0.78 ± 0.30 -0.74 ± 0.21 
Age (= 0.879) 

Height (= 0.235) 

Limb (= 0.634) Old -0.79 ± 0.15 -0.80 ± 0.23 -0.70 ± 0.28 -0.77 ± 0.24 

 

 Note. Boldface type indicates a statistically significant effect.  

 


