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Abstract  

Peatlands are an important ecosystem for carbon storage, due to their semi-permanent 

water saturated condition which inhibits decomposition. Many peatlands in the UK have 

been degraded through human land use to the point where they are releasing carbon, and 

restoration is now a priority to protect these landscapes and the carbon held within them. 

Most methods of monitoring peatland restoration are small-scale and expensive. Remote 

sensing methods, however, are large-scale and often freely available to the end user.  

This project considers the potential benefits of using remote sensing to estimate peatland 

carbon uptake, and describes experiments which answer research questions in this area. 

Much of the work was done within the Forsinard Flows RSPB reserve, which has a 

chronosequence of blanket bog sites at different stages of restoration. 

A laboratory experiment on the effects of drought stress on the carbon flux and spectral 

reflectance of Sphagnum moss was first completed. This was followed by a field experiment 

to assess factors affecting peatland GPP and whether these could be detected by remote 

sensing data. The final part of this project involved the development of a Temperature and 

Greenness (TG) model using remote sensing to estimate GPP across blanket bog 

ecosystems.  

The project used both flux chamber and eddy covariance techniques to measure carbon 

uptake and compared the results to spectral reflectance at small-scale using a hand-held 

spectrometer, and large-scale using satellite data from MODIS.  

The results from these experiments suggest that spectral indices, and models using them, 

can give information about Sphagnum drought stress, seasonal change in peatland 

vegetation, and restoration progress, and are functional at scales from a few centimetres up 

to one kilometre. Next steps could include calibrating the developed model for a range of 

sites to broaden its applicability, and further work into monitoring water table depth using 

remote sensing.  
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1.Introduction 

1.1. Research context 

Peatlands are a valuable ecosystem both for their carbon storage potential, and for their 

diversity of rare flora and fauna. These areas make up only 3% of global surface area, but 

store approximately a third of the world’s soil carbon (Gorham, 1991;Limpens et al., 2008). 

Peatland areas are water saturated, creating conditions which limit aerobic decomposition 

and lead to the build up and storage of organic carbon (Chapman et al., 2009; Yu, 2012). 

This thesis focuses on blanket bogs, a type of acidic peatland supported by rainwater 

(Lindsay, 2010). Blanket bogs require wet and cool climates to thrive (Clark et al., 2010). 

They are a key ecosystem in the UK, covering large areas of land particularly in Scotland 

where they make up approximately 14% of land cover (Chapman et al., 2009).  

Unfortunately, many peatlands in Great Britain have been degraded through historical 

management decisions (Holden et al., 2007; Worrall et al., 2011). This has included 

drainage ditches being dug in an attempt to improve the land for grazing, planting for 

commercial forestry, and historical peat-cuttings (JNCC, 2011). This degradation of peatland 

ecosystems leads to a loss of function as a carbon sink and store, and increases the risk of 

peat oxidisation resulting in increased carbon dioxide emissions to the atmosphere (Holden 

et al., 2007; Silvola et al., 1996; Worrall et al., 2011). Nearly half of all blanket bog in the UK 

has experienced degradation, some of which is still severely damaged, but some of which is 

now undergoing restoration (JNCC, 2011). 

Policy makers are now recognising the value of peatlands as carbon stores, and peatland 

restoration is becoming accepted as a way of reducing national carbon emissions (European 

Commission, 2018; Hiraishi et al., 2014; IUCN, 2016). Restoration includes methods such as 

drainage ditch blocking to raise the water table, restructuring the peatland surface, and 

encouraging regrowth of natural vegetation communities (Andersen et al., 2017; Parry et al., 

2014). These measures aim to limit erosion and carbon loss, and ultimately restore as much 

of the peatland areas as possible to functioning carbon sinks (Minayeva et al., 2017; Soini et 

al., 2009; Strack and Zuback, 2013).  

Long-term, reliable monitoring is a crucial part of any restoration scheme. In order to 

determine the success of restoration progress, monitoring needs to be continued over 

several years or even decades to assess the full implications of the management scheme 

(Hancock et al., 2018; Soini et al., 2009; Strack and Zuback, 2013; Waddington et al., 2010). 

Any carbon flux monitoring methodology needs to reliably match measurements on the 

ground under different conditions, with strong intra- and inter-annual relationships. Where 

the aim of the restoration process is increased carbon storage, traditional monitoring 
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methods include flux chambers and eddy covariance towers. These methods, however, are 

small-scale, expensive, and require high time inputs for instrument maintenance, data 

collection and processing (Andersen et al., 2017; Hill et al., 2017; Humphreys et al., 2006; 

Marushchak et al., 2013). More recent methodologies have included using vegetation 

communities as a proxy for carbon fluxes (eg. Couwenberg et al., 2011), but this also 

requires a detailed knowledge of the vegetation coverage of a site, which can be 

heterogenous and hard to determine across peatland areas. Many peatland ecosystems are 

remote and difficult to access, as well as being sensitive to disturbance, and therefore 

detailed vegetation surveys are not always practical. Satellite data has the potential to 

provide low-cost, large-scale monitoring  which does not require frequent site visits 

(Chasmer et al., 2018).  

Remote sensing has previously been used to estimate water content, vegetation extent and 

photosynthesis over peatland landscapes with some success (Harris and Dash, 2011; Kross 

et al., 2013; Letendre et al., 2008; Schubert et al., 2010). There are several models which 

can be used to estimate photosynthesis from remote sensing data, but these were 

developed over ecosystems other than peatlands (Sims et al., 2008; Wu, 2012; Xiao et al., 

2004; Yuan et al., 2010). The best methods to use in estimating photosynthesis over 

peatland are still uncertain, therefore, and very little work has yet been done using remote 

sensing over peatlands undergoing restoration (Chasmer et al., 2018). This thesis presents 

laboratory and field-based studies which aim to reduce that uncertainty and fill the study 

gaps. 

1.2. Aims and objectives 

Aim: To use remote sensing data to estimate the photosynthesis of blanket bog vegetation 

under different conditions, and to upscale these techniques in order to assess peatland 

restoration progress and success.   

Objective 1: To analyse the current state of remote sensing for peatland carbon flux 

estimation, and to determine the gaps in our knowledge.  

Remote sensing is starting to be used to gather information about the carbon fluxes 

of peatland landscapes, but much of the work done is at single sites and there is as 

yet no consistently determined best methodology. There are also concerns raised in 

the literature around the challenges of using remote sensing models over peatlands, 

such as the mix of vegetation, small-scale heterogeneity, and water saturation. 

These were used to define research questions to determine the direction of this 

research project.  
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Objective 2: To assess how peatland vegetation carbon fluxes change under stress, and 

whether this change is detectable using remote sensing.  

For a model of photosynthesis to be viable as an alternative to traditional methods of 

measuring carbon flux, it must be shown to be reliable even under extreme 

conditions. One extreme we expect to occur more regularly under climatic change is 

hot, dry summers, and this was the case in 2018. Drought can make the carbon 

stores in peatland vulnerable to decomposition and loss to the atmosphere, as water 

saturation is needed for peat accumulation. Therefore, it is important to assess how 

well remote sensing derived data represents the observed changes to peatland 

carbon fluxes as a result of prolonged drought stress.   

Objective 3: To compare different spectral indices under a range of conditions and 

determine which give the most accurate information about peatland environments.  

Vegetation indices are a key component of photosynthesis models using remote 

sensing data, and can give information about plant health and carbon function. To 

determine the most accurate model of peatland photosynthesis, these indices need 

to be tested under a range of conditions, in the field and in the laboratory, in order to 

measure which has the best match to measured conditions and carbon function. Of 

particular interest is the difference between broad-band indices which can be 

calculated from freely available satellite data, compared to hyperspectral indices 

which require more spectrally sensitive sensors. 

Objective 4: To develop a model using remote sensing data that can give reliable and 

accurate estimates of peatland GPP.  

The work done to assess the usefulness of remote sensing techniques and 

especially vegetation indices under different conditions now needs to be combined 

into a model of peatland photosynthesis. Reviewing the literature gave suggestions 

as to what elements are required to create a reliable model of peatland 

photosynthesis, and suggests models which may give good results over peatland 

landscapes. 

Objective 5: To use the developed model to measure restoration progress at a landscape 

scale.  

Restoration of damaged peatland landscapes is an underdeveloped area of research 

in remote sensing, yet it could provide useful monitoring technology. The RSPB has 

invested in forestry removal and peatland restoration across much of the Forsinard 

Flows reserve, but information about the success of these measures is incomplete 
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and covers only some sites. Remote sensing has the potential to give a clearer 

picture of restoration progress and success for enhancing carbon uptake across the 

area of the reserve.  

Objective 6: To assess whether the developed model is accurate at both small and large 

scale, particularly taking into account the small-scale heterogeneity of many peatland 

landscapes.   

Upscaling is a key focus in ecology, as many field studies are completed at small-

scale, but the information needed by stakeholders and decision-makers is often 

ecosystem or landscape scale. Remote sensing can make measurements at both 

small and large scale, and so has the potential to be a link between scales, and a 

useful monitoring methodology over large areas.  

1.3. Field site 

The field site for the majority of this work is the Forsinard Flows RSPB reserve, in the Flow 

Country of Northern Scotland. This site includes some areas of near-natural blanket bog 

which have had no human management in recent history. Much of the reserve, however, 

was planted for commercial forestry by previous land owners, and these areas are now 

being felled and undergoing restoration. The reserve provides an ideal field site for this work 

as it has a chronosequence of sites undergoing restoration from those which were felled in 

1998 to the present, and also near-natural control sites (Hancock et al., 2018). For more 

information on the field sites see chapters 4, 5 and 6.  

1.4. Thesis structure  

This thesis is written as a ‘collection of papers’ as described by University of Reading 

graduate school guidelines, and each chapter (2 to 6) is written in the style of the journal by 

which it has been published, or to which it will be submitted. All chapters within this thesis 

were developed by me with the input of my four academic supervisors. Their contribution 

included advice on experimental design, literature search, help with data collection in the 

field, data analysis and presentation, and guidance on writing the manuscripts. Some 

chapters also include data from other co-authors, and these are detailed below. Jonathon 

Ritson is listed as a co-author on several of the chapters (Chapters 4,5,6) for completing the 

vegetation survey at the Forsinard Flows sites. The RSPB are represented by a co-author on 

chapters which use their field sites (Chapters 4,5,6); the RSPB representatives include Neil 

Cowie, Mark Hancock, and Daniela Klein.  

Chapter 2 is a review of the current literature in this topic, and is intended as a guide for 

peatland researchers to the current state of remote sensing for carbon flux estimation in this 
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field, and the potential it has for future work. It fulfils objective 1 by identifying the gaps in the 

literature, some of which this thesis aims to address. This chapter has been published as a 

paper in Science of the Total Environment (Lees et al., 2018). 

Chapter 3 is a laboratory study which answers objective 2 by subjecting Sphagnum moss to 

different levels of drought stress. Sphagnum moss is a peat-forming genus which is adapted 

to the water saturated environment of blanket bogs, and which loses carbon function during 

periods of drought stress (Harris, 2008; Laine et al., 2009). This chapter is under review in 

the Journal of Ecohydrology (Lees et al., in review).  

Chapter 4 combines field and laboratory data to achieve objective 3. Water indices are 

compared to water content measurements, and vegetation indices are compared to GPP. 

This chapter will be submitted as a paper to the IEEE Transactions on Geoscience and 

Remote Sensing (Lees et al., in prep). 

Chapter 5 fulfils objective 4 by developing a temperature and greenness model for peatland 

environments and adding an annual water component to create the annual Temperature, 

Greenness and Wetness (TGWa) model. Two sites at the Forsinard Flows reserve, and the 

Glencar blanket bog site in Ireland, were used to develop and calibrate this model. This 

chapter also accomplishes objective 5 by applying the TGWa to six sites undergoing 

restoration across the Forsinard Flows RSPB reserve. This chapter has been accepted as a 

paper by the Journal of Environmental Management (Lees et al., in press). This chapter was 

completed with several co-authors: Matteo Sottocornola and Ger Kiely provided the eddy 

covariance data from Glencar, whilst Graham Campbell, Matthew Saunders, Tim Hill, and 

Neil Cowie contributed the eddy covariance data from the Forsinard Flows RSPB reserve.  

Chapter 6 is an upscaling study which compares GPP results from flux chambers, eddy 

covariance towers, handheld spectrometry, and satellite. It answers objective 6 by analysing 

the factors affecting peatland GPP at small scales, and assessing whether the model will 

give reliable results at both small and large scale. The EC data for this study was processed 

by Myroslava Khomik and Tim Hill.  

Finally, the Discussion and Conclusions chapter draws together the key findings of the thesis 

and conceptualises the relationships between factors measured throughout. It also suggests 

future avenues of research which could be developed from this work.  
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2. Potential for using Remote Sensing to estimate carbon fluxes across Northern peatlands – 

A Review. 

Lees KJ, Quaife T, Artz RRE, Khomik M & Clark JM 

Abstract 

Peatlands store large amounts of terrestrial carbon and any changes to their carbon balance 

could cause large changes in the greenhouse gas (GHG) balance of the Earth’s 

atmosphere. There is still much uncertainty about how the GHG dynamics of peatlands are 

affected by climate and land use change. Current field-based methods of estimating annual 

carbon exchange between peatlands and the atmosphere include flux chambers and eddy 

covariance towers. However, remote sensing has several advantages over these traditional 

approaches in terms of cost, spatial coverage and accessibility to remote locations. In this 

paper, we outline the basic principles of using remote sensing to estimate ecosystem carbon 

fluxes and explain the range of satellite data available for such estimations, considering the 

indices and models developed to make use of the data. Past studies, which have used 

remote sensing data in comparison with ground-based calculations of carbon fluxes over 

Northern peatland landscapes, are discussed, as well as the challenges of working with 

remote sensing on peatlands.  Finally, we suggest areas in need of future work on this topic. 

We conclude that the application of remote sensing to models of carbon fluxes is a viable 

research method over Northern peatlands but further work is needed to develop more 

comprehensive carbon cycle models and to improve the long-term reliability of models, 

particularly on peatland sites undergoing restoration. 

2.1. Introduction  

Peatlands are a large store of terrestrial carbon and any change in their carbon balance 

could therefore cause large changes in the atmospheric greenhouse gases (GHGs) of the 

planet. The atmospheric store of carbon is estimated to be about 750 GtC, compared to an 

estimated 500 ± 100 Gt C stored in Northern peatlands (Yu, 2012).  Although peatlands are 

an important part of the terrestrial carbon cycle and store approximately a third of the world’s 

soil carbon (Gorham, 1991; Limpens et al., 2008), there is still much uncertainty about how 

these areas are affected by climate and land use change. There is also much variation 

between peatland types, with the greatest difference between acidic rain-fed bogs and more 

nutrient rich minerotrophic fens. Peat bogs in pristine condition are considered to be net 

carbon sinks (Yu, 2012), yet many areas of peatland have experienced degradation through 

human activity (such as draining, grazing and burning and conversion to plantation forestry), 

which decreases the net carbon uptake from the atmosphere (Fleischer et al., 2016). 

Peatland restoration is recognised as one of the ways to reach carbon emission reduction 



7 
 

targets under the Kyoto Protocol (Hiraishi et al., 2014), and it is therefore essential to 

develop ways of verifying and quantifying the effect of such restoration procedures. Field 

measurement techniques are limited by scale and cost, whereas Remote Sensing (RS) 

presents an opportunity to provide data to carbon flux models over large areas quickly and 

cheaply. 

 

Figure 2.1 – Simplified carbon cycle in peat bogs. The catotelm is deep peat which remains 

saturated, whilst the acrotelm is where the water table varies. Net Ecosystem Exchange 

(NEE) is the combination of Gross Primary Productivity (GPP) and all ecosystem Respiration 

(Reco). Reco is the combination of autotrophic respiration (Ra) and aerobic decomposition/ 

heterotrophic respiration (Rh). Net Primary Productivity (NPP) is the combination of GPP 

and Ra.  

Peatland ecosystems differ from other areas due to their high water table and very distinctive 

vegetation composition.  Fluctuations in the water table influence the amount and distribution 

of oxygen available in the soil profile, which in turn influences carbon emissions. The carbon 

cycle of peatland ecosystems is complex and includes many components (a conceptual 

diagram of key components of the cycle in peat bogs is shown in Figure 2.1). CO2 enters the 

peatland system though photosynthesis of the vegetation (Gross Primary Productivity or 

GPP), and leaves it through autotrophic (plant) respiration (Ra), and heterotrophic 

respiration (Rh) (microbial decomposition). The sum of Ra and Rh gives ecosystem 

respiration (Reco), whilst the difference between Reco and GPP equals Net Ecosystem 

Exchange (NEE).  
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Models using RS data focus on estimating GPP, Reco and also NPP – Net Primary 

Productivity, which is the difference between GPP and Ra. The various flux processes in the 

peatland carbon cycle are typically considered at timescales from hours to a few years, 

largely due to the short monitoring records currently available. Over the course of a 

peatland’s lifetime which often spans several millennia, however, natural (e.g. natural fires) 

and human (e.g. afforestation) disturbances should also be considered to capture the full 

breadth of a peatland’s carbon cycle, as should shifts in climatic conditions. Methane (CH4) 

is not considered in this review, as methane and carbon dioxide are often studied separately 

and require different methodologies. At this time, RS methods for estimating CH4 emissions 

are still in their infancy compared to those of CO2 estimates (see Tagesson et al., 2013). In 

peatland, carbon can also leave the system as dissolved organic/inorganic carbon 

(DOC/DIC) in streams and pipe outflow, or as particulate organic carbon (POC) due to 

surface erosion through wind and washout; these are not included in RS estimations of NEE. 

For more information about the peatland carbon cycle see Limpens et al. (2008). The current 

review focuses on biogenic CO2 fluxes, which are the largest and most variable component 

at annual timescales (Helfter et al., 2015). 

Field based studies show that several factors affect the spatial and temporal variance of 

carbon fluxes across peatlands, particularly water table depth (WTD) and temperature 

(Bubier et al., 2003; Dinsmore et al., 2009a; Lafleur et al., 2003; Lund et al., 2012; Strachan 

et al., 2016). Temperature and WTD help to determine plant species composition in the long 

term, while, in the shorter term, changes in these climatic variables affect plant 

photosynthesis and soil respiration (Bubier et al., 2003). Unusually dry or drained peatlands 

produce more CO2 but less CH4, whilst in wet peatlands this is reversed (Waddington and 

Price, 2000).  

Peatland NEE is also strongly linked to vegetation composition, as different plant species 

have differing responses to climatic variables, and provide differing quantities of available 

organic matter for microbial decomposition. Different vegetation species dominate on 

different peatland types, with the most commonly considered distinction being between bog 

and fen. Bogs are generally acidic and support Sphagnum moss cover, whilst fens are more 

variable and support a greater proportion of sedges. The composition of vegetation 

communities is also affected by the site’s microtopography, which often consists of areas of 

low waterlogged land (hollows), lawns, and higher, dryer areas (hummocks) (Lindsay et al., 

1985; Nilsson et al., 2008) (see Figure 2.2). This paper considers variations in peatland 

topography at the microscale (hummocks and hollows, 0.2 to 2 m), mesoscale (pools and 

intrusions of forest etc. 2 to 50 m), and macroscale (landscape level).  
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Figure 2.2  - Photos showing peatland microtopography at Forsinard Flows RSPB reserve, 

Scotland. Hummocks are raised features, hollows are depressed, and lawns are relatively 

flat surfaces. Each of these features is also characterised by a different vegetation 

complement. Top left: View as seen by the human eye. Top right: a 100 m2area as the 

satellite would see it (5 cm resolution aerial photography). Lower image: The 

microtopographical features across an area of 10 m by 8 m using 5 cm resolution aerial 

photography. 

Current field-based methods of estimating NEE on peatlands include flux chambers and 

eddy covariance (EC) towers (see Figure 2.3). Chamber studies measure NEE on a cm2 

scale, and so are useful for gaining information about microscale spatial heterogeneity of 

fluxes within peatland sites, such as contributions of different species and microtopographic 
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variations. However, due to logistical constraints, chamber measurements are often taken 

infrequently and over relatively brief timescales, so temporal variation is poorly explored 

(Marushchak et al., 2013). Furthermore, the small spatial scale does not allow for easy 

upscaling due to the difficulty of averaging or interpolating across such a varied landscape 

(Humphreys et al., 2006). EC towers estimate NEE over a larger area (m2 to km2), known as 

a footprint, from measurements of CO2 concentration and air turbulence. Flux tower 

measurements are recorded at high frequency and over relatively extended periods of time 

(i.e. able to record half-hourly averages of CO2 measurements taken at frequencies of 

around 10 Hz all year round), allowing good analysis of temporal variation over the site. 

However, EC towers have high equipment and maintenance costs, often suffer down-time 

due to equipment failure, and there are not many in place on peatland sites. The data from 

EC towers are also often noisy and prone to gaps. The spatial heterogeneity of peatlands 

means that a single flux tower cannot necessarily be assumed to be a good proxy for an 

entire landscape or region.  

 

 

Figure 2.3 – Spatial scales at which carbon flux estimation tools can operate. The shading 

indicates a rough guide to the footprint of a flux chamber and an EC tower, compared to the 
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footprint of a satellite such as MODIS (whole box). Aerial remote sensing is included here 

but not discussed in the text. Microscale is considered to be changes in topography and 

vegetation up to 2 m, whilst mesoscale concerns larger areas of variation, such as bog pools 

or small areas of forestry. (Aeroplane image from NERC, 2016; satellite image from NASA, 

2010). 

Remote sensing has several advantages over traditional field studies, in particular, cost, 

scale, and viewing of remote locations. While RS also includes measurements by 

aeroplanes, unmanned aerial vehicles and kites, here we focus exclusively on satellite 

remote sensing. Satellites such as Terra, Aqua and Landsat have been used in many 

studies of terrestrial carbon fluxes over various ecosystems (Prince and Goward, 1995; Sims 

et al., 2008; Wu, 2012; Xiao et al., 2004; Yuan et al., 2010). Many satellite datasets are 

freely available, have a regular resampling interval (between one and sixteen days for the 

most widely used satellites) and cover large areas of land (Crichton et al., 2015; Harris et al., 

2005). Some also have a relatively long time series archive (e.g. Landsat, dating from the 

1970s). Remote sensing also has the advantage of allowing researchers to be able to study 

an environment whilst minimising exposure to the risks of field work, and disruption to the 

environment in question, as well as maximising the usefulness of available resources 

(Malenovský et al., 2015). It has the potential to be particularly useful for peatland studies, 

which often cover large isolated areas and can be difficult to access for continuous field 

studies (Connolly et al., 2009). However, data from many satellites have a coarse spatial 

resolution which makes it difficult to accurately distinguish the small scale heterogeneity of 

peatlands (Crichton et al., 2015). Remote sensing in general is limited by the fact that it only 

measures energy incident at the sensor, the distribution of which (e.g. as a function of 

wavelength) then has to be used to infer the characteristics of interest. Such techniques 

cannot measure gas fluxes directly and rely on models to estimate properties such as GPP 

and NEE. The extreme remoteness of satellite data also means that the radiation is affected 

by absorption by gases in the atmosphere, and atmospheric scattering from aerosols and 

other molecules, which can reduce its accuracy (Vermote et al., 1997). Peat bog areas are 

particularly prone to heavy rainfall and therefore cloud cover due to their prevalence in, and 

indeed reliance upon, humid environments.  

Despite recent advances in the use of remote sensing to monitor carbon fluxes across 

ecosystems such as forests and cropland (e.g. Sims et al., 2008; Xiao et al., 2004; Yuan et 

al., 2010), less attention has been given to the application of RS in peatland areas even 

though they are a critical component of the carbon cycle (Yu, 2012). In this review paper we 

evaluate the current state of knowledge concerning the estimation of CO2 fluxes in peatland 

using remote sensing and identify priority areas in need of future research. This review 
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paper consists of five sections including this introduction. Section 2 reviews current 

methodologies, summarizing key satellites used and various methods of estimation of 

peatland carbon dynamics from RS data. Several of the most commonly used models and 

their strengths and weaknesses are discussed. Section 3 reflects on previous studies where 

remote sensing was used to estimate carbon and water dynamics over peatlands. The 

insights gained in this section generate an assessment of those model parameters likely to 

produce the best results in a peatland landscape, and offer an understanding of current 

research gaps. Section 4 considers the challenges which the researcher must be aware of 

when using remote sensing to study peatlands, and suggests ways in which these difficulties 

may be overcome. The final discussion section (Section 5) summarises the areas of 

research in this topic which are at the forefront of current study and are only just beginning to 

be explored, as well as the main areas in need of further work concerning the estimation of 

CO2 fluxes in peatlands using remote sensing.  

2.2. Methods of measuring carbon fluxes remotely 

2.2.1. Satellite sensors: what do they measure? 

 

Figure 2.4 – diagram of the relevant section of the electromagnetic spectrum. 

Some of the most commonly used remote sensing instruments are passive sensors 

detecting reflectance within the electromagnetic spectrum (see Figure 2.4). This includes 

visible and near-infrared (NIR), and also thermal infrared (TIR) and microwave sensing 

spectroscopy.  Visible and NIR sensors detect changes in the absorbance/reflectance ratio 

over landscapes. Where there is a large cover of green plants, for instance, green light will 

be reflected and red light absorbed, causing a peak in the green wavelengths detected by 

the sensor. Vegetation indices make use of this effect (see Section 2.2.2.2.). Similarly, TIR 

spectroscopy can be used to measure surface temperatures and also to infer soil water 

content by detecting thermal infrared radiation emitted by a surface (Harris et al., 2006).  
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Active remote sensing involves equipment which interacts with the landscape by emitting 

energy towards the surface and measuring how much is reflected back to the sensor. 

Microwave imaging can be used to detect land cover and vegetation structure, and also soil 

water content, through the amount of backscatter detected (Kasischke et al., 2009). Light 

Detection and Ranging (LiDAR) uses a laser to measure structural changes at the earth’s 

surface, and can therefore be useful in assessing the structure of vegetation. Synthetic 

Aperture Radar (SAR) can detect ground motion through very precise measurements of 

Earth surface height, allowing short term elevation changes due to subsidence or 

oxidisation, seasonal elevation changes due to the gas content of the peat (peat breathing), 

and other changes in surface texture and vegetation height to be observed (Cigna and 

Sowter, 2017).  

This review focuses mainly on the visible and NIR data, as these are the most useful for 

estimating carbon fluxes due to their association with plant photosynthesis. 

There are many satellites now in orbit which are specifically designed for Earth Observation 

(EO) uses. A selection showing the range of satellite data available to researchers for 

carbon flux estimation are detailed below and in Table 2.1. 

• Terra and Aqua are satellites run by NASA. Both carry an instrument known as 

MODIS (Moderate Resolution Imaging Spectroradiometer). They cover the majority 

of the Earth’s surface every 1-2 days, and can acquire data in 36 spectral bands 

(from 0.4 to 14.4 micrometres) with a spatial resolution of 250 m to 1 km (NASA, 

2016a). MODIS is particularly useful in that is has a processing system which creates 

several data products, including vegetation indices and an estimate of GPP (see 

Section 2.2.3.1) using models designed to convert measurements of energy into 

secondary derived parameters. For most other satellites this processing must be 

done by the user. 

• The Landsat program is a series of satellites (Landsat 7 and 8 are currently 

operating) run by the US Geological Survey (USGS). Each satellite covers the Earth 

every 16 days, collecting data in several bands within the visible/NIR and TIR 

wavelengths at a spatial resolution of 30 m for the visible/NIR and 100 m for the 

thermal bands (USGS, 2016). The first Landsat was launched in 1972. The 

availability of over forty years of data means that Landsat is especially useful for 

researchers studying change over time. However, the completeness of the data 

archive is limited, especially during the 1970s and 1980s. 

• Sentinel-2 is a mission run by the European Space Agency (ESA), consisting of two 

satellites: Sentinel-2A and Sentinel-2B. Each satellite carries a multispectral imager 
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with image resolution on certain sensors down to 10 m, and when both satellites are 

operational the return interval is every five days (ESA, 2016). This mission is a 

continuation of the SPOT and Landsat missions, and similar orbits should allow data 

from Sentinel-2 to be used as an addition to existing datasets (ESA, 2016). The finer 

resolution and frequent return interval of this mission should make the data it 

produces invaluable for a number of land-monitoring applications, including peatland 

carbon fluxes. Sentinel-1 (SAR) does not currently have a known application in 

modelling GHG exchange, although it is being used by some researchers to estimate 

peatland condition.  

•  Sentinel-3 also consists of two satellites; Sentinel-3A is already in orbit, and 

Sentinel-3B is scheduled to be launched in 2018. Sentinel-3 will collect spectral data 

over land (Ocean and Land Colour Instrument (OLCI)), and temperature data (Sea 

and Land Surface Temperature Radiometer (SLSTR)) every two days (ESA, 

2016). Although it has a faster revisit time than Sentinel-2, the spatial resolution is 

much coarser, being 300 m at best. 

• Hyperion was an imaging spectrometer on board EO-1 designed to be compatible 

with Landsat data (and flew in formation with Landsat 7), but had a much higher 

spectral resolution and could detect 220 bands (0.4 to 2.5 micrometres) at 30 m 

spatial resolution (USGS, 2011). This means the data are useful for calculating 

indices such as the Photochemical Reflectance Index (PRI) and red-edge (see 

Section 2.2.2.2), which require a high spectral resolution (Gitelson et al., 2012; Harris 

et al., 2014; Yu et al., 2014). Hyperion’s fine resolution also made it especially useful 

in heterogeneous environments (Christian et al., 2015). Unfortunately EO-1 has now 

been decommissioned and only ever captured data on request, but all data which 

were collected are now freely available.  

• Worldview is a series of 3 satellites owned by DigitalGlobe, which provide 

commercial earth observation data. The spatial resolution can be as high as 30 cm, 

with daily coverage and both multi- and super-spectral bands available (DigitalGlobe, 

2016).  

• GOSAT is a Japanese satellite which carries out column gas abundance 

measurements using the Thermal And Near-infrared Sensor for carbon 

Observation (TANSO) instrument (composed of the Fourier transform spectrometer 

(FTS) and the cloud and aerosol imager (CAI) (NIES, 2016). Column gas 

abundances are calculated by analysing the IR light reflected from the surface 

compared to the IR light emitted from the atmosphere, allowing the amounts of CO2, 

CH4, H2O and O2 to be estimated (NIES, 2016). Column gas abundance satellite 
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missions can be used to estimate CO2 fluxes by inverting atmospheric transport 

models. Unfortunately the outputs tend to be very coarse resolution (0.5 to 1.5 km), 

which makes them less useful for studies of specific land cover types. 

• Orbiting Carbon Observatory 2 (OCO-2) is also a column gas abundance mission 

run by NASA. It has a longer return interval than GOSAT (16 days), and a footprint of 

1.29 x 2.25 km. It carries three high resolution spectrometers, with two focused on 

CO2 channels, and one on O2 (NASA, 2016b). 

Planned future sensors include: FLEX (Fluorescence Explorer) which is specifically 

designed to detect energy at the vegetation fluorescence peaks (see Section 2.2.2.2.1. for 

the uses of fluorescence data) (ESA, 2015; Kraft et al., 2014); EnMAP, which will carry a 

hyperspectral sensor and is due to launch in 2018 (EnMAP, 2016); and HyspIRI which will 

focus on the infrared region (NASA, 2016c).  

One sensor which is no longer running, but which is mentioned in the following sections of 

this paper, and for which the data are still available, is the Medium Resolution Imaging 

Sensor (MERIS) (ESA, 2017).
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Table 2.1 – Comparison of satellite sensors used for carbon flux estimation which are mentioned in this review. For key to acronyms please see 

text and the table of acronyms given at the start of this manuscript 

Satellite (Instrument) Spectral resolution Spatial 

resolution 

Temporal 

resolution 

Operated by In operation since Other Notes 

Terra and Aqua 

(MODIS) 

0.4 to 14.4 µm  (36 

bands) 

250 m, 500 

m, 1 km 

1-2 days NASA Terra: Dec., 1999, 

Aqua: May, 2002 

 

Landsat 7  (ETM+) 0.45 to 12.50 µm   (8 

bands) 

30 m 16 days USGS/NASA Apr., 1999 Band 8 panchromatic and at 15 m 

spatial resolution 

Landsat 8  OLI and 

TIRS 

0.43 to 12.51 µm   (11 

bands) 

30 m  16 days NASA/USGS Feb., 2013 Band 8 at15 m resolution 

Sentinel-2 

(MSI) 

0.44 to 2.19  µm  (13 

bands )  

10m, 20m, 

60 m 

5 days  ESA Mar., 2017 Vis and IR bands at 10m spatial 

resolution; IR and NIR at 20 m. 

Sentinel-3A 

OCLI  

400 to 1020 nm (21 

bands) 

300 m to 1 

km 

1-4 days EUMETSAT Feb., 2016  

Sentinel-3A 

SLSTR 

550 to 12000 nm (9 

bands ) 

300 m to 1 

km 

2 days EUMETSAT Feb., 2016  

Hyperion 0.4 to 2.5  µm  (220 

bands ) 

30 m 16 days NASA Nov., 2000 to Jan., 

2017 

Only source of spaceborne 

hyperspectral imaging till 2005 

WorldView-1  400 to 900 nm 

(1band) 

0.5 m 2 days DigitalGlobe Sep., 2007 Commercial 

WorldView-2  0.4 to 1.4 µm  (8 

bands ) 

0.3 to 2 m 1 day DigitalGlobe Oct., 2009 Commercial 
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WorldView-3  400 to 2245 nm (28 

bands) 

0.3 to 3.7 m 1 day DigitalGlobe Aug., 2014 Commercial 

GOSAT  

(TANSO-FTS) 

0.758 to 14.3 µm (4 

bands )  

10.5 km 

diameter 

footprint 

3 days JAXA Jan., 2009 Only 2-5% of data usable, detects CH4, 

CO2 in air column 

GOSAT   (TANSO-

CAI) 

0.380 to 1.62 μm (4 

bands) 

0.5 to 1.5km 3days JAXA Jan., 2009 Only 2-5% of data usable, due to cloud 

cover. 

OCO-2 3 high resolution 

channels (0.76μm, 

1.61 μm, 2.06 μm) 

1.29 km × 

2.25 km  

16 days NASA Jul., 2014 Data impacted by cloud cover; detects 

CO2 in air column 

SUOMI-NPP 

(VIIRS) 

0.41 to 12.5 μm (22 

bands) 

357m, 750m 2 to 4 days NASA/NOAA/DoD Oct., 2011 To succeed MODIS 

SPOT 6 & 7  450 to 890nm (5 

bands) 

1.5 to 6m When 

commissioned  

Spot Image SPOT 6: Sept 2012, 

SPOT 7: June, 2014 

Commercial 

MERIS 0.39 to 1.04μm (15 

bands) 

260 x 300 m 

(land) 

3 days ESA March, 2002 to May, 

2012 

No longer in use 

FLEX 500 to 780nm 300m 1 month ESA Not yet launched  

EnMAP hyperspectral 30m unknown German 

Research Centre 

for Geosciences 

(GFZ) 

Not yet launched  

HyspIRI Infrared region unknown unknown NASA Not yet launched Study phase 
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2.2.2. Estimating GPP 

There are several techniques using RS data which have been developed to estimate carbon 

fluxes, and many of the most well-known are explained in this section. It is also important to 

mention the ground validation techniques which are commonly used to assess the accuracy 

of these models. The two ways of measuring carbon fluxes directly are flux chambers and 

EC towers (see Figure 2.3). Flux chambers are not often used as a validation method for 

models using satellite data due to their small coverage. EC towers are more commonly 

used, and rely on the principle that gas movement in the atmosphere is through turbulent 

motion. See Section 2.1 for discussion of the coverage of these two methods, and Section 

2.4 for discussion of some of the problems arising from their use as ground-validation 

methods.  

2.2.2.1. The LUE model 

The most widely used model for estimating GPP from remotely sensed data is currently the 

Light Use Efficiency (LUE) model developed by Monteith (1977) (Hilker et al., 2008). The 

equation for this model is: 

GPP = fPAR * PAR * ɛ 

Where PAR is the total photosynthetically active radiation incident on the vegetation, fPAR is 

the fraction of photosynthetically active radiation absorbed by vegetation, and ɛ is the 

conversion efficiency of absorbed energy which is then fixed as carbon within an ecosystem. 

The product of fPAR and PAR is sometimes given as APAR (Absorbed Photosynthetically 

Active Radiation). PAR is measured as the amount of light within the wavelengths that plants 

are able to absorb and use for photosynthesis (400 to 700 nm), and can be calculated using 

weather and climate data (Pfeifer et al., 2012). PAR is affected by cloud cover (Min, 2005), 

and when considering ground plant species such as mosses, also by the presence of a 

higher vegetation canopy (Chong et al., 2012). In many LUE models fPAR is modelled as a 

function of a vegetation index, and is often assumed to have a linear relationship with the 

NDVI (Normalised Differentiation Vegetation Index) (Huemmrich et al., 2010). fPAR is also 

related to Leaf Area Index (LAI) as this partially determines how much energy is absorbed by 

the canopy (Pfeifer et al., 2012; Yuan et al., 2007). An issue with the relationship between 

fPAR and LAI for Sphagnum is in defining an appropriate light extinction coefficient, which is 

often set to unrealistic values (Weston et al., 2015). ɛ is often calculated from a constant of 

ɛmax for a specific biome (e.g. grassland, forest, cropland) adjusted for limiting factors such 

as temperature and moisture availability (Garbulsky et al., 2011; Tan et al., 2012). It is also 

possible to calculate ɛ directly from the Photochemical Reflectance Index (PRI – see Section 

2.2.2.2). 
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LUE-based models are very useful because they require few species-dependent 

parameters, and can be fairly easily calculated from remotely sensed data (Anderson et al., 

2008). However, the calculation of ɛ in many models is considered to be overly simplistic. 

LUE varies with plant species, ecosystem types, and seasons, and so is unlikely to be 

accurately represented by a modified constant (Penuelas et al., 1995).  

2.2.2.2. Vegetation Indices 

Many EO implementations of the LUE model use a vegetation index (VI) to estimate fPAR, 

and in some cases to infer other ecosystem properties. VIs can be useful proxies for 

environmental variables such as water content of vegetation (see Section 2.3.3), for 

identifying land cover categories, and in some cases (such as PRI) as a proxy for ɛ in the 

LUE model. Below we review some key VIs useful in GPP estimation studies. 

 

Figure 2.5 – An example of a spectral reflectance graph of Sphagnum moss. The visible and 

NIR bands follow the wavelengths used by Landsat (blue 450-515 nm; green 525-600 nm; 

red 630-680 nm; NIR 845-885 nm). Vegetation fluorescence peaks (690 and 740 nm) and 

the water reflectance trough (950-970 nm, used by the WI) are added. The sample was 

taken from the Forsinard Flows RSPB reserve and the reflectance was taken in the 

laboratory using a Ger3700 spectrometer (unpublished data). It is worth noting that the 



20 
 

reflectance of Sphagnum is greatly impacted by water content, bleaching and increasing 

reflectance in all wavelengths as it dries. 

One of the oldest and most widely used VIs is the NDVI (Normalised Difference 

Vegetation Index), which is calculated from the difference in reflection between the red 

band and the near-infrared (NIR) band (see Figure 2.5).The equation is: 

NDVI = (NIR – red) / (NIR + red) 

As healthy green plants absorb light in the red band and reflect it in the NIR band, where 

there is an abundance of green vegetation the NDVI values will be high. However, the NDVI 

tends to saturate at high LAI values and is sensitive to the scattering effect of atmospheric 

aerosols (Walker et al., 2014). The saturation effect can cause a summer plateau in NDVI 

values in some ecosystems but may not be particularly noticeable in northern peatlands due 

to the low LAI values of these environments (see Section 2.3.2).  

The Enhanced Vegetation Index (EVI) is designed to overcome some of the limitations of 

NDVI. In particular, it includes reflectance in the blue light band to counteract  the effect of 

aerosols, as the light which interacts with these is mostly in the blue portion of the spectrum 

(Balzarolo et al., 2016) and has generally lower values to compensate for the saturation 

effect of the NDVI (Huete et al., 2002; Rahman et al., 2005). In general it is agreed that the 

EVI is a more structural measure, linked to LAI and vegetation canopy structure, as it is 

more sensitive to NIR (Rossini et al., 2012), whilst the NDVI correlates better with plant 

chlorophyll content by being more sensitive to the red bands (Huete et al., 2002; Walker et 

al., 2014). Verma et al. (2015) found that EVI alone, validated against the Fluxnet dataset 

which included several different ecosystems, gave as much information about seasonal GPP 

change as the more complex PAR-based models, and as the MOD17 model (see Section 

2.2.2.3). The MODIS product MOD13 contains both NDVI and EVI products. 

The Red Edge Position (REP) index monitors the position of the point of steepest slope 

between the red and NIR wavelengths in a spectral image (see Figure 2.5) (Baranoski and 

Rokne, 2005). As chlorophyll increases, more red light can be absorbed by the plant and so 

the red edge moves to increasingly longer wavelengths (Dash and Curran, 2004). Stresses 

such as low water availability reduce the chlorophyll content and so the red edge shifts to 

lower wavelengths (Harris et al., 2005). REP is best calculated with narrow-band sensors 

(e.g. Hyperion – see Section 2.2.1) which can more accurately determine the position of the 

red-edge (Yu et al., 2014), although Dash and Curran (2004) created a successful index 

known as the MTCI (MERIS Terrestrial Chlorophyll Index), which used this principle on 

MERIS data (Rossini et al., 2012).  



21 
 

The Photochemical Reflectance Index (PRI) is a more recent VI development, and 

measures LUE through a different mechanism than plant greenness. The NDVI and EVI are 

considered useful proxies for the fPAR because they indicate leaf area and chlorophyll 

amount.  The PRI is considered to be a proxy for ɛ because it measures light-use efficiency 

directly (Garbulsky et al., 2011; Peñuelas et al., 2011). PRI, and also fluorescence (see 

Section 2.2.2.2.1), are based on our understanding of the photoprotective mechanisms 

within plants. In some circumstances plants will absorb more light energy than can be used 

by chlorophyll to make glucose. When this is the case, light energy is either transferred to 

xanthophyll molecules inside the photosynthetic organelles and emitted as heat energy, or 

emitted as fluorescence (Gamon et al., 1992; Penuelas et al., 1995). The shift in reflectance 

associated with increased xanthophyll concentration can be detected at a wavelength of 

531nm by comparison with a reference wavelength. The reference wavelength is often given 

as 570nm, although there is some debate (Gamon et al., 1992; Grace et al., 2007; Van 

Gaalen et al., 2007) about what specific wavelength works best at leaf or canopy scale.  

PRI is better than alternative ways of estimating LUE from look-up tables based on 

vegetation type, as done in many satellite-based LUE models of GPP, because a single 

measurement already includes environmental constraints and can vary freely across 

different biomes without the use of categorisation (Peñuelas et al., 2011; Tan et al., 2012). 

However, PRI requires narrowband sensors with a spectral resolution of 3 to10 nm. One of 

the biggest issues with the PRI is that the ratio has not yet been standardised across 

studies, with different wavelengths being used at different sites and scales, which makes 

cross-comparison difficult (Garbulsky et al., 2011). PRI was originally developed at the leaf 

level (Gamon et al., 1992) and it is uncertain how well the same wavelengths can be 

transferred to canopy measurements where scattering affects the signature (Gamon et al., 

1992; Garbulsky et al., 2011; Penuelas et al., 1995).  

The high spectral resolution required to accurately calculate PRI means that broad band 

sensors such as those used on most satellites are not well suited to calculating this index. 

Hyperspectral sensors cover the spectrum close to continuously, and so have a band 

centred at 531 nm, whereas most broad-band sensors do not have such a band. MODIS is 

an exception, however, because Band 11 happens to be centred at around 531 nm (actually 

526-536 nm) (Drolet et al., 2005; Goerner et al., 2011). This band has only recently been 

made routinely available from the Terra satellite (previously it was only processed over the 

ocean), but it is expected that it will be used in many carbon flux studies over the next few 

years. There is no band at 570 nm, which means that alternative bands must be used as the 

reference wavelength. Bands 1 (620-670nm), 4 (545-565nm), 12 (546-556nm) and 13 (662-
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672nm) have been found to give reasonable results as reference bands (Drolet et al., 2005; 

Goerner et al., 2011).  

Finally, there are two key points to keep in mind when considering VIs as a proxy for GPP.  

First, most VIs measure plant greenness rather than actual photosynthesis.  Greenness 

often reaches its maximum before maximum photosynthesis and stressed leaves often 

reduce photosynthesis without changing colour (Gamon et al., 1992; Grace et al., 2007). 

Balzarolo et al. (2016) found that the MODIS VIs predict an earlier growing season start date 

than in-situ EC data suggests, over a range of different ecosystem types, as a result of this 

effect. Kross et al. (2013) found that this phenological disparity between carbon dynamics 

and biomass dynamics was evident in four peatland sites of different types, although they 

suggested that this may be overcome by using an index such as PRI which is more closely 

related to photosynthetic activity. Second, as well as the problems with the calculation of 

specific vegetation indices, all VIs are affected by disturbance from other factors such as 

topography, observance angle, soil background effects, moisture and atmospheric 

conditions (see Section 2.4 for more discussion of these issues) (Garbulsky et al., 2011; 

Peñuelas et al., 2011; Pfeifer et al., 2012; Walker et al., 2014). 

2.2.2.2.1. Fluorescence 

Solar Induced Fluorescence (SIF) is a photo-protective mechanism by which excess light not 

used during photosynthesis is emitted at longer wavelengths. Although fluorescence can 

provide useful information about plant stress, the relationship between photosynthetic 

carbon flux and fluorescence is not simple due to the interaction with the xanthophyll cycle 

(Harris, 2008). Once plant stress occurs, fluorescence decreases with photosynthesis as the 

xanthophyll mechanism (measured by PRI) is activated (Meroni et al., 2009). Fluorescence 

is, however, a good way of detecting photosynthesis changes over short timescales, and 

responds before chlorophyll abundance or LAI show any change (Meroni et al., 2009).   

The two fluorescence peaks in vegetation are at approximately 690 nm in the red bands and 

740 nm (see Figure 2.5) in the NIR (Meroni et al., 2009; Van Wittenberghe et al., 2015). 

However, measuring fluorescence requires sensors even finer than those used for PRI, with 

a resolution of <1 nm (Grace et al., 2007). The precise centre wavelength of the band used 

also varies slightly with resolution; Meroni et al. (2009) found that a spectral resolution of 

0.005 nm was optimal, and anything larger caused a degradation of the signal. As with PRI, 

fluorescence has been suggested to be more easily measured at leaf level to avoid the 

canopy scattering and re-absorbance effects (Penuelas et al., 1995; Van Wittenberghe et al., 

2015). Because of the technical challenges associated with measuring fluorescence, almost 

all previous studies have used ground-based or airborne sensors (Meroni et al., 2009). 
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However, Guanter et al. (2007) showed that space-based fluorescence detection was 

possible using MERIS. It has also been demonstrated from OCO and GOSAT, as the high 

spectral resolution used in these sensors is able to pick out the fluorescence signal 

(Frankenberg et al., 2014). The launch of the ESA FLEX mission will make fluorescence 

detection over large areas from space much more accessible.   

2.2.2.3. LUE model development 

Several models have been developed to estimate GPP, working from the basis of the LUE 

model and often incorporating vegetation indices as proxies for fPAR and/or ɛ. This section 

details some of the most well-known models which have been developed over the last two 

decades, and compares their model formulations and variables in Table 2.2.  

Early GPP models such as CASA (Potter et al., 1993) and 3-PG (Landsberg and Waring, 

1997) combined satellite data with field data such as meteorological inputs and 

soil/vegetation types. The first model to rely solely on remotely sensed data was the Global 

Production Efficiency model (GLO-PEM) (Prince and Goward, 1995). GLO-PEM uses 

data from the AVHRR (Advanced Very High Resolution Radiometer) to calculate a basic 

LUE model with a developed ɛ parameter. ɛmax is given a different value for C3 and C4 

plants, and modified by air temperature, Vapour Pressure Deficit (VPD) and soil moisture 

(Prince and Goward, 1995). VPD is calculated as the difference between the saturation point 

of air and the current water vapour in the air, and is linked to carbon fluxes through the 

relationship between photosynthesis and evapotranspiration (Shurpali et al., 1995). GLO-

PEM was an important step forward, but as the first fully RS-reliant model it should be 

considered as method development, and many further improvements have been made in 

later models. In particular, Tan et al. (2012) found that GLO-PEM’s generalisations of plant 

categories only poorly account for ecosystem variation. 

The terrestrial Vegetation Photosynthesis Model (VPM) is a modified LUE model which 

uses the Land Surface Water Index (LSWI) as a modifier of ɛ. The fPAR is calculated as a 

linear function of the Enhanced Vegetation Index (EVI), and attempts to solve problems 

created by non-photosynthetic vegetation registering as photosynthetically active in remote 

sensing data (Xiao et al., 2004). Dong et al. (2015) found that the VPM was the best model 

for explaining variance in cropland and prairie under drought conditions, and attributed this 

to the combination of EVI and a water content index. Dong et al. (2015) also pointed out, 

however, that the VPM requires more data inputs than simpler models and so cannot be 

used in places where there is no meteorological data. The VPM has been validated over a 

number of different ecosystems and has been shown to give good results using data from 

several satellite sensors, including both MODIS and Hyperion (Christian et al., 2015; Xiao et 
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al., 2004). The VPM was used over peatlands by Kross et al. (2016), as is discussed in more 

detail in Section 2.3.2. 

The EC-LUE (Eddy Covariance LUE model) is so named because it is a modified LUE 

model which was developed using the latent heat flux measured by EC towers in its 

calculation (Yuan et al., 2007). The model relies on air temperature and evaporative fraction 

(EF) to modify LUE. Interestingly, the model constrains GPP by either temperature or water 

deficiency, depending on which is most limiting (Yuan et al., 2007). In the original 2007 

model the EF was calculated using latent heat flux and the Bowen ratio (Yuan et al., 2007), 

but later versions of the model use net radiation from climate observation networks, modified 

by evapotranspiration parameters (Yuan et al., 2010). This means that the model can now 

be applied to large areas without tower data, and has also been shown to be more accurate 

than the 2007 EC-LUE model (Yuan et al., 2010). The EC-LUE model was validated against 

fifty-four sites with EC towers, but these sites only covered six major biomes, and did not 

specifically include peatland or wetland sites. Yuan et al. (2010) found that the model 

overestimated GPP at high latitude sites, and suggested that this may be caused by a high 

proportion of mosses which have a lower LUE than vascular plants. 

Temperature and greenness (TG) models are a general class of satellite based GPP 

models which use land surface temperature (LST) as a proxy for other environmental 

variables in the LUE equation. A recent example is that of Sims et al. (2008) which only 

includes LST and EVI, and is therefore easily calculated from MODIS products. Sims et al. 

(2008) found that the LST dataset from MODIS correlates well with both PAR and VPD, and 

can therefore be used as a remotely sensed proxy. Their results showed that the TG model 

performed better than MOD17 across a range of North American biomes, but noted that it 

performs significantly less well at sites where vegetation is sparse (Sims et al., 2008). Verma 

et al. (2015) found that the TG model performed as well as more complex models when 

compared to EC data from the Fluxnet dataset across several different biomes. However, 

Dong et al. (2015) point out that it does not include any water stress modifier and so 

estimates variance in drought years rather poorly.  

NASA uses MODIS data to produce an estimate of GPP. This product, which has been 

assigned a data code of MOD17, uses a modified version of the LUE algorithm to produce 

an 8-day total GPP at 1 km resolution across the globe (Running et al., 2015). The 

difference between the MOD17 product and other LUE models is that it uses modelled 

processes rather than vegetation indices to calculate fPAR. This MOD17 fPAR is taken from 

the MODIS LAI product (MOD15), which is generated by inversion of a physical model of 

light scattering in the plant canopy against observed MODIS reflectance data. Daily 
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meteorological data from the NASA Global Modelling and Assimilation Office (GMAO), 

including Vapour Pressure Deficit (VPD) and minimum temperature, are used to calculate 

PAR, and also to limit ɛmax (Running et al., 2015, 2004; Tan et al., 2012).  

Several studies have attempted to analyse the accuracy of the MOD17 product for different 

biomes and have concluded that there are inherent errors associated with the meteorology, 

radiometry and biophysical inputs. Heinsch et al. (2006) found that the largest source of 

error across fifteen sites in different biomes across North America was the VPD, which is 

calculated from NASA/GMAO data and used as a drought proxy to limit ɛ. In MOD17 VPD 

was found to often be underestimated, leading to a GPP overestimation compared to EC 

tower data (Heinsch et al., 2006). Another source of error in ecosystem studies is that the 

MOD17 ɛmax and the limits of VPD and temperature are estimated from the MODIS land 

cover classification product, MOD12Q (Tan et al., 2012). MOD12Q has a limited number of 

land cover classifications (see Table 2.3). This can cause errors in GPP estimation. It can be 

seen (Table 2.3) that there is no specific class for peatlands. This means that peatlands as a 

whole are classified as other land cover types. Such land-cover types almost certainly do not 

possess the high percentage of organic matter and waterlogged conditions so characteristic 

of peatland ecosystems. Kross et al. (2013) found that northern peatlands were often 

misclassified as evergreen needleleaf forest, mixed forest, or closed shrubland. Finally, Tan 

et al. (2012) point out that the MOD17 product does not include any estimate of surface 

moisture, which may particularly limit its usefulness when used on peatland sites. Some 

peatland species rely on high surface moisture for their water inputs, and including this factor 

in models can help to assess desiccation effects on photosynthesis (see Section 2.3.3). 
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Table 2.2 – Simplified description of well-known RS GPP models, and their major strengths and weaknesses for use over peatlands. 

Model Equation Source of 

fPAR 

Source of other variables Strengths and weaknesses Reference 

MOD17 GPP = fPAR x PAR x Emax x f(Tmin) x 

f(VPD) 

from LAI 

(MOD15)  

VPD (Vapour Pressure Defecit - 

determined from land cover MOD12) 

Strength: No site optimisation 

needed 

Weakness: No peatland 

classification 

Running and 

Zhao, 2015 

   
Tmin (minimum temperature from 

GMAO) 

 
 

GLO-PEM GPP = fPAR x PAR x Ta x VPD x soil 

moisture 

NDVI Ta (air temperature from NDVI and 

LST relationship) 

Strength: First fully RS-based model 

Weakness: Broad plant category 

generalisations 

Prince and 

Goward, 

1995 

   
soil moisture (from NDVI and LST 

relationship) 

 
 

   
VPD (vapour pressure deficit from 

thermal infra-red)  

 
 

VPM GPP = fPAR x PAR x Emax x Ts x Ws x 

Ps 

EVI Ts (air temperature scalar from 

ground data) 
 

Strength: Validated under drought 

conditions 

Weakness: Requires meteorological 

data 

Xiao et al., 

2004 

   
Ws (water scalar from LSWI)  

 

   
Ps (leaf phenology scalar based on 

deciduous/evergreen and LSWI 

relationship)  
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EC-LUE GPP = fPAR x PAR x Emax x min(Ts, Ws) NDVI Ts (air temperature scalar from 

ground data)  

Strength: Validated across a wide 

range of ecosystems 

Weakness: May overestimate GPP 

at moss-dominated sites 

Yuan et al., 

2007; 2010 

   
Ws (water scalar, from evaporative 

fraction) 

 
 

TG GPP = EVIs x LSTs x m - LSTs (land surface temperature 

scalar) 

Strength: Only requires two inputs 

Weakness: No water stress 

component 

Sims et al., 

2008 

   
EVIs (enhanced vegetation index 

scalar) 

 
 

   
m (unit scalar)  

 

1 
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Table 2.3 –  MOD17 land cover types, from Running and Zhao (2015) p11. Note there is no 

peatland/wetland category. 

 
Class 
value 

Class description 

0 Water 

1 Evergreen Needleleaf Forest 

2 Evergreen Broadleaf Forest 

3 Deciduous Needleleaf Forest 

4 Deciduous Broadleaf Forest 

5 Mixed Forest 

6 Closed Shrubland 

7 Open Shrubland 

8 Woody Savanna 

9 Savanna 

10 Grassland 

12 Cropland 

13 Urban or Built-Up 

16 Barren or Sparsely Vegetated   

254 Unclassified 

255 Missing Data 

 

2.2.3. Estimating ecosystem respiration  

To obtain a full picture of ecosystem carbon exchange (i.e. to estimate NEE), we need both 

an estimate of GPP and an estimate of ecosystem respiration (Reco).  Ecosystem respiration 

is a combination of two sources of respiration: autotrophic respiration (Ra) from the plants 

themselves, and heterotrophic respiration (Rh) from microbiota within the soil (Figure 2.1). 

Ra consists of maintenance respiration and growth respiration, whilst Rh consists of 

rhizomicrobial respiration, and microbial decomposition of plant residues and other soil 

organic matter (SOM) (Gao et al., 2015). There are far fewer successful models of 

ecosystem respiration (Reco) compared to GPP because it is much harder to account for the 

variation found between ecosystems, particularly using RS (Jägermeyr et al., 2014; Olofsson 

et al., 2008).  

Many models produce an estimate of NPP, which is the difference between GPP and Ra. In 

LUE-based models maintenance and growth respiration can be accounted for as part of the 

ɛ parameter (Running et al., 2004) but there are fewer models which seek to estimate 

respiration directly, and particularly soil (heterotrophic) respiration. Despite this, several 

studies have suggested that the relationships between Reco and GPP (Vourlitis et al., 2003) 

and Reco and temperature (Olofsson et al., 2008; Rahman et al., 2005) are strong enough to 

estimate Reco from RS data. Some models use a Q10 function, which gives a change in 
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sensitivity of respiration to temperature with every ten degrees (Reichstein et al., 2003) 

Some studies and models which include soil respiration are discussed below, and listed in 

Table 2.4. 

Reichstein et al. (2003) found that soil water and temperature were good predictors for soil 

respiration. They also found that adding LAI as a proxy for productivity to the model 

improved the result. Their study was based on closed-chamber data from forest and 

shrubland sites across Europe and North America, but it was suggested that the variables 

could easily be estimated from RS data. This was proved to be the case by Anderson et al. 

(2008) who used a model which calculated soil moisture from microwave sensing, soil 

temperature from thermal imaging, and LAI from a vegetation index. Their model results 

showed good agreement with tower flux data over pasture land in Oklahoma (Anderson et 

al., 2008). Model development over such a small area, however, is unlikely to create a model 

which is reliable over other ecosystems or climates, and more validation work is needed.  

Turner et al. (2006) created a model which estimates both Ra and Rh. The Ra portion of the 

model calculates maintenance respiration using a base rate and a Q10 function, while the 

growth respiration equation is based on the fraction of carbon available for growth (given as 

0.33) used in respiration. Rh is calculated using a base rate modified by in-situ 

measurements of soil temperature, soil moisture and stand age. Both maintenance 

respiration and heterotrophic respiration are scaled by fPAR as a proxy for live biomass 

(Turner et al., 2006). Turner et al.’s (2006) model shows potential for a fully remote sensing 

based model, but also relies on data from a process-based model and in-situ data. 

Wu et al. (2014) used NDVI and LST from MODIS to calculate soil respiration, along with 

two further parameters determined from site LAI. They found that night-time LST is more 

useful as it is a less noisy signal than daytime LST. Their model explained 78% of variance 

in eight years of flux data from a Canadian forest, but was limited by the lack of a soil water 

variable.  

Jägermeyr et al. (2014) designed the RECO model to estimate global respiration. They 

assigned the world’s ecosystems to one of three climate zones, each zone then being 

divided into further sub-categories of forested and non-forested biomes. Different model 

parameters were then created for each category. The model equation has two components: 

Rref which is the reference respiration (calculated from yearly means of EVI and LST), and 

Rstd which is the seasonal variation in the ratio of Rref  to Reco (calculated using night-time 

LST, EVI and the difference between day and night LST as a soil water proxy). The model 

results were compared with several different sites across the Fluxnet network to give an R2 

value of 0.62. The limited classification of biomes in the model, however, means that 
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parameterisation may not take into account the wide variety of ecosystems that were not 

specified. This may be acceptable for a global model, but could cause large errors if applied 

to a specific ecosystem without additional parameterisation.  

Gao et al. (2015) created the model ReRSM, which separates Reco into GPP derived 

components (growth and rhizomicrobial respiration) and ecosystem organic matter (EOM) 

derived components (maintenance respiration, respiration from decomposition of plant 

residue and other SOM). The GPP component is calculated using EVI and LSWI (Land 

Surface Water Index). The EOM contribution to total respiration is calculated using the 

Lloyd-Taylor model which is another exponential function which relates temperature and 

respiration (Lloyd and Taylor, 1994) calculated from MODIS LST (Gao et al., 2015). They 

found that this model could explain 90% of the variation in respiration from EC data over five 

different ecosystem types in Northern China and the Tibetan plateau, with a root mean 

squared error (RMSE) of 0.05. These numbers suggest an excellent model performance, but 

cannot necessarily be transferred well to other ecosystem types, and may particularly be 

less accurate in areas affected by drought as there is no soil water component affecting the 

EOM derived respiration (Gao et al., 2015). 

These GPP and Reco models were all developed on ecosystems other than peatland, and 

future application of these models to peatland areas will require an assessment of the effect 

of parameters such as temperature and soil moisture on respiration in different peatland 

types (see Hilker et al. (2008) and Tan et al. (2012) for reviews of GPP models over other 

ecosystems). 
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Table 2.4 –  Respiration models and their major strengths and weaknesses for use over peatlands. 

Model Equation Variables Strengths and weaknesses Reference 

Anderson 

et al, 2008 

Rh=(0.135+0.054 x LAI)θ10exp[0.069(TS,10−25.0)] LAI (from vegetation index) 

 

Strength: Fully RS based 

Weakness: Only developed over pasture 

land 

Anderson et al., 

2008 

  θ10 (the 0 to 10cm average volumetric 

water content, derived from microwave 

data) 

  

  TS,10 (the 10-cm soil temperature, 

derived from thermal band imagery) 

  

Turner et 

al., 2006 

Rm = Rm_b* Q10^((Tair - 20)/10) * (1/ - k)(log(l - 

FPAR) 

R m_b (base rate of maintenance 

respiration, from model) 

Strength: Calculates Rh and Ra 

separately 

Weakness: Relies on in-situ data 

Turner et al., 

2006 

  Q10 (change in rate for a 10°C 

increase in temperature, 2.0 used by 

Turner et al., 2006) 

  

  Tair (daily (24 hr) mean air 

temperature from database) 

  

  k (radiation extinction coefficient, 0.5 

used) 

  

 Rg = (GPP - Rm) * Rg_frac, Rg_frac (fraction of carbon available 

for growth that is used for growth 

respiration (0.33, Waring and Running, 

1998)) 

  



32 
 

 Rh = Rh_base * SsT * SSW * SSA * FPAR Rh_base (base rate of heterotrophic 

respiration, from model)  

 

  

  SST (scalar for soil temperature from 

database) 

 

  

  SSWh (scalar for soil water content 

from database) 

 

  

  SSA (stand age factor from Landsat 

data) 

 

  

Wu et al., 

2014 

Rh=a(NDVI×LSTn)+b LSTn (night time LST) 

 

Strength: Simple to use 

Weakness: No soil water parameter 

Wu et al., 2014 

  a=slope (related to annual LAI max) 

 

  

  b=intercept (related to annual LAI 

average ) 

  

RECO Reref = p1 + p2 x EVImean + p3 x LSTmean EVImean (mean annual springtime 

EVI) 

 

Strength: Good results across the 

Fluxnet network 

Weakness: Limited biome classification 

Jägermeyr et 

al., 2014 

  LSTmean (mean annual daytime LST)   



33 
 

 Restd = (p4/(p5 + p6 – ((LSTn – 10)/10)) +p7 x EVI + 

p8 

LSTn (night-time LST) 

 

  

  EVI (8-day EVI/EVImean)   

ReRSM Re = a x GPP + Rref x e^(E0 x ((1/61.02) – (1/T + 

46.02))) 

Rref (derived from REOM) 

 

Strength: Excellent model performance 

over Tibet and Northern China 

Weakness: Only validated over limited 

ecosystems  

Gao et al., 2015 

  T (average of daytime and night-time 

LST) 
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2.3. Previous studies on peatlands  

Remote sensing studies of peatland carbon fluxes can be placed into two broad categories: 

classification studies, which divide the landscape into types with similar conditions, and 

carbon flux estimation studies using models such as those explored in Section 2.2 (Whiting, 

1994).  

2.3.1. Classification studies 

Classification studies can be used both to identify peatland as a distinct land use (in 

comparison with areas of forest or agricultural land for example) and also to identify 

vegetation communities and topographic features within a peatland environment. These 

classification studies can then be used to define key parameters (e.g. ɛmax) in order to 

adjust a general model to specific conditions. 

Peatlands are often classified in RS studies on the basis of vegetation types. Different plant 

species dominate under different conditions, and can affect the carbon fluxes of the 

peatland. A higher proportion of vascular plants to mosses increases both photosynthesis 

and autotrophic respiration and is also likely to be associated with an increase in 

heterotrophic respiration because a larger amount of available substrate is present 

(Dinsmore et al., 2009a; Limpens et al., 2008; Walker et al., 2016). It is important to note that 

different vegetation compositions on peatland differ not only in their overall NEE, but also in 

the response of their carbon fluxes to environmental change (Bubier et al., 2003). Bubier et 

al. (2003), for example, showed that sedge-dominated communities within a bog 

experienced a greater decrease in photosynthesis under drought conditions than 

communities dominated by ericaceous shrubs in the same ecosystem. It is therefore 

important to have an understanding of vegetation communities and differential responses 

when creating a carbon flux model. Some carbon flux estimations can be achieved simply by 

applying knowledge of differential responses to land cover and climatic data, as can be seen 

at a large scale in MOD17. 

Several studies have considered the heterogeneity of peatland vegetation at different scales, 

and have developed ways of classifying areas of differing vegetation composition based on 

spectral reflectance and structural data – these are not specifically discussed here but can 

be found in papers such as Anderson et al. (2010) Bubier et al. (1997) Crichton et al. (2015) 

Forbrich et al. (2011) Frolking et al. (1998), Parry et al. (2015) and Thomas et al. (2003). 

2.3.2. Carbon flux estimation studies  

Relating remote sensing directly to peatland carbon fluxes is an area of research which is 

growing rapidly, although as yet there are still only a few published studies from this 
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increased research activity and therefore any conclusions must necessarily be of a tentative 

nature. Some studies have used the MOD17 GPP product compared with data from flux 

towers, but have found that this product has poor accuracy over peatland environments 

(Kross et al., 2013; Schubert et al., 2010). Kross et al. (2013) found that the MOD17 product 

underestimated Eddy Covariance GPP at three of their four sites across Canada and Finland 

(one bog and two fen). They suggest this is due to the unsuitability of the ɛmax downscaling 

algorithm in peatland ecosystems. Connolly et al. (2009), however, showed that the MODIS 

fPAR product had a good relationship with fPAR derived from field-based LAI 

measurements. This suggests that although the MOD17 product may provide a good 

structural analysis and estimate of potential photosynthesis, it is held back by the algorithms 

for establishing LUE, which are not calibrated well within peatland environments. Kross et al. 

(2013) suggest that the VPD modifier of LUE in the MOD17 product may be particularly 

unnecessary over peatlands, as it appears to have had little effect during their study period, 

and does not have much of a relationship to soil moisture (Harris and Dash, 2011). 

Other studies have used vegetation index models as an estimate for field flux data (see 

Table 2.5). Harris and Dash (2011) compared MTCI, which uses the red-edge principle, to 

GPP observations at a raised bog and a moderately rich treed fen and found that there was 

a good relationship in the active growing seasons of 2004 and 2005 for both sites. 

Unfortunately, they did not compare this to the performance of other vegetation indices, 

although the MTCI principle is similar to the NDVI. Kross et al. (2013) considered MODIS 

NDVI at one raised bog site and three different fen sites, and found that the relationship 

between NDVI and GPP observations was good at capturing interannual variation at 

individual sites, and that moreover the same regression coefficient (for NDVI and GPP 

observations) could be used at several sites with similar characteristics. This suggests that 

NDVI would be a useful vegetation index in developing a peatland RS model which could be 

used without site-specific calibration. Harris and Dash (2011) give the R2 value for a 1:1 

relationship between MTCI and GPP values as 0.71 (0.46-0.87), whilst Kross et al. (2013) 

give the R2 value for NDVI and GPP as 0.43 (0.39-0.71). These are not directly comparable, 

however, as the studies were over different sites and time spans, and because the MTCI 

uses MERIS data whilst Kross et al. (2013) used MODIS NDVI. 

Whiting (1994) give a positive correlation value between NDVI (measured in the field using a 

handheld spectroradiometer) and NEE of 0.43 (using chamber data) over a combination of 

bog and fen sites, but observed unexpectedly high NDVI values at a site which had a large 

proportion of brown-green Sphagnum species present, and suggest that the differing 

combinations of moss and vascular plants may complicate the NDVI:NEE relationship. Levy 

and Gray (2015) studied a peat bog site in Northern Scotland and found only a low 
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correlation coefficient of 0.23 between EC GPP and MODIS NDVI. These studies suggest 

that NDVI can give us some information about peatland carbon flux, but more factors are 

needed to create an accurate model on a large scale. 

Schubert et al. (2010) compared MODIS NDVI and EVI as predictors of GPP across a raised 

bog and a minerotrophic fen in Sweden and found that EVI gave better results (R2 values of 

0.37 and 0.45 compared to 0.26 and 0.36). In particular, they noted that the NDVI curve 

levelled off in summer, indicating saturation. (Letendre et al., 2008) completed a study using 

a handheld spectroradiometer which found that the R2 value for NDVI and NEE at their 

Sphagnum-dominated open raised bog site in Canada was as low as 0.12, but that 

combining NDVI with PRI gave a better result (R2 of 0.26). Letendre et al. (2008) discovered 

that the Chlorophyll Index (CI, based on red-edge position) gave the best correlation with 

NEE, with an R2 of 0.37. Van Gaalen et al.'s (2007) and Harris' (2008) laboratory studies 

found that PRI was a good indicator of short term (minutes to hours) changes in 

photosynthetic efficiency within individual Sphagnum species, but required a priori 

knowledge of the species present. This means it may provide good results under laboratory 

conditions, but may not translate well to larger scale field studies with the intermixture of 

Sphagnum species present in field conditions. Sphagnum patches of a single species rarely 

exceed 20 cm2, and it is common to find species entirely intermingled to the extent that even 

a fine resolution spectrometer would pick up reflectance signals from more than one species.  

Kross et al. (2016) considered the variation of the LUE parameter ɛ over different peatland 

types in Canada and Finland (same sites as Kross et al., 2013). They found that monthly 

variations in ɛ correlated with variations in air temperature and MODIS NDVI, and that 

annual variations correlated with wetness as measured using LSWI. They also applied the 

VPM to their study sites, and found good agreement between ɛ calculated using MODIS 

data to drive the VPM, and ɛ calculated using ground-measured data. Unfortunately they did 

not publish the carbon flux estimates from the VPM. 
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Table 2.5 – Simple vegetation indices using NIR and red bands (NDVI and MTCI) compared to ground measurements of carbon flux. This table 

highlights the difficulty of comparing across studies due to different methods of carbon flux and spectral measurement. 

Study Site type Comparison R2 CO2 data Spectral data 

Whiting, 1994  Coastal fen, interior fen and 

bog 

NEE:NDVI 0.18 Chamber Field spectroradiometer 

Letendre et al., 

2008 

Open raised bog NEE:NDVI 0.12 Chamber Field spectroradiometer 

Schubert et al., 

2010 

Raised temperate 

ombrotrophic bog 

GPP:NDVI 0.26 Eddy Covariance MODIS 250 m 

Schubert et al., 

2010 

Boreal oligotrophic 

minerotrophic fen 

GPP:NDVI 0.36 Eddy Covariance MODIS 250 m 

Harris & Dash, 

2011 

Raised bog GPP:MTCI 0.74 Eddy Covariance MERIS 1 km 

Harris & Dash, 

2011 

Moderately rich treed fen GPP:MTCI 0.77 Eddy Covariance MERIS 1 km  

Kross et al., 2013 Raised ombrotrophic bog GPP:NDVI 0.71 Eddy Covariance MODIS 250 m 

Kross et al., 2013 Moderately rich treed fen GPP:NDVI 0.66 Eddy Covariance MODIS 250 m 

Kross et al., 2013 Open minerotrophic 

moderately rich fen 

GPP:NDVI 0.64 Eddy Covariance MODIS 250 m 

Kross et al., 2013 Mesotrophic sub-arctic poor 

fen 

GPP:NDVI 0.39 Eddy Covariance MODIS 250 m 

Levy and Gray, 

2015 

Blanket bog GPP:NDVI 0.09 Eddy Covariance MODIS 250 m 
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2.3.3. Temperature and water content 

The two variables most widely considered to affect peatland GPP are soil moisture/Water 

Table Depth (WTD) and temperature (Harris and Dash, 2011). However, there are issues 

with including these in RS-driven models as there is debate over whether RS indices can 

adequately represent these variables, and therefore to what extent including them improves 

a model (Connolly et al., 2009; Harris and Dash, 2011; Schubert et al., 2010).  

Harris and Dash (2011) found that adding LST to their MTCI-based model did not greatly 

improve results. They suggest that this may be due to the poor performance of LST as a 

proxy for more stable soil temperatures, but allow that it may be a useful VPD proxy, and 

therefore more valuable under drought conditions. In contrast, Schubert et al. (2010) found 

that adding LST to their EVI-based model did improve results, and also gave a good 

correlation with Reco. Harris and Dash (2011) based their work on a raised bog and a 

moderately rich treed fen in Canada, whereas Schubert et al. (2010) were working on a 

raised ombrotrophic bog and an oligotrophic minerotrophic fen in Sweden – both used EC 

data as a ground validation method.  

Soil water content is likely to be a particularly important model variable in peatland 

environments as these ecosystems rely on exceptionally high water tables to function. In a 

natural bog the catotelm will remain saturated all year round, whilst the acrotelm experiences 

fluctuations (see Figure 2.1). Even a small drop in the water table can impact productivity, 

because Sphagnum moss is particularly sensitive to moisture availability. It is also important 

to note that damaged peatlands and those undergoing restoration may experience much 

greater fluctuations than natural bog.  

Zhang et al. (2015) make the point that the effect of water content on LUE is complex, and 

different indices may provide additional information within one model. Several studies 

(Bryant and Baird, 2003; Harris et al., 2006; Harris et al., 2005; Van Gaalen et al., 2007; 

Vogelmann and Moss, 1993) have shown that the spectral reflectance of several Sphagnum 

species changes as the mosses respond to different moisture conditions – in particular, 

reflectance increases as the Sphagnum dries and becomes paler. Sphagnum has very 

pronounced water absorption features at 990 and 1200 nm (Harris et al., 2005; 2006). The 

subject of measuring peatland water content from remote sensing data could provide 

enough material for an entire paper in itself, so a brief summary is all that is given here (see 

Harris and Bryant, 2009, for more information). 

Water indices, as with vegetation indices, can be calculated using visible and infra-red data 

from satellites. The Water Index (WI) studies the changes in the reflectance trough at 950-

970 nm (see Figure 2.5), which is caused by the light absorbance of water in plants, 
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compared to a reference wavelength at 900nm (Penuelas et al., 1997). The Land Surface 

Water Index (LSWI), also known as the Normalised Difference Water Index (NDWI) uses the 

principle that the SWIR band at 1.24 μm measures both water content and other plant 

factors, whereas the NIR band at 0.86 μm only responds to factors other than water content 

– the difference is therefore an index of vegetation water content (Gao, 1996). The floating 

Water Band Index (fWBI) considers the minima between 930 and 980 nm to be the water 

absorption band. This minimum is compared to the reference wavelength at around 900 nm 

(Harris, 2008; Strachan et al., 2002). 

Mcmorrow et al. (2004) and Meingast et al. (2014) used specific bands (1400 and 1940 nm; 

970, 1200, 1450, 1950 and 2250 nm) to indicate water content and estimate WTD. Meingast 

et al. (2014) found that the bands in the NIR range gave the best results over vegetated 

peat. This corroborates Harris et al.’s (2005) work which found that water indices using the 

NIR range gave the best results in their laboratory work on Sphagnum drought stress. 

Letendre et al. (2008) found that both the LSWI and the WI had strong correlations with 

volumetric water content in peat (Pearson’s coefficients of 0.77 and 0.75 respectively). They 

also found that using a ratio of NDVI/WI improved the relationship between the vegetation 

index alone and NEE values at their study site in Canada (Letendre et al., 2008). Harris 

(2008) found that the fWBI correlated very well with the pooled data for photosynthetic 

efficiency from five different Sphagnum species under drought stress (correlation coefficients 

of 0.58-0.90). Overall, studies show that water indices using the visible and NIR wavelengths 

are adequate proxies for water content in the vegetation and acrotelm of bog environments, 

although passive RS is unlikely to give much information about water contents deeper in the 

soil. There is no consensus as yet on which is the best, and it may be the case that different 

indices are better suited to different peatland landscapes and vegetation communities.  

2.4. Challenges of working with RS on peatlands 

Remote sensing of peatland vegetation can be a challenge when there are both vascular 

plants and mosses present at a site, due to the different heights of the species. It can be 

difficult to accurately measure LAI when there is vertical heterogeneity in the vegetation 

(Garrigues et al., 2008), and if there is a thick vascular canopy the presence and spectral 

signal of Sphagnum can sometimes be missed altogether (Parry et al., 2015). This height 

differentiation can also cause a difference in the PAR received by different plants (Chong et 

al., 2012). Huemmrich et al. (2010) suggest that at some sites it is necessary to treat 

peatlands as a two-level environment, with a moss understory and a vascular canopy, and to 

include this distinction in remote sensing models. 
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The response of Sphagnum mosses to environmental conditions is spectrally very different 

to that of vascular plants. Reflectance in the SWIR regions of the spectrum is lower than for 

vascular plants due to the higher water content of Sphagnum (Bryant and Baird, 2003; 

Bubier et al., 1997). Calculating NDVI over peatlands has shown unusually high values 

compared to vascular plant communities, and this can affect GPP estimates in peatlands 

where Sphagnum is prevalent (Letendre et al., 2008; Whiting, 1994). Different plant types 

also have differing spectral responses to drought (Bryant and Baird, 2003; Lund et al., 2009; 

Urbanova et al., 2013). Yuan et al. (2014) adjusted the EC-LUE model over boreal forests to 

take into account the presence of mosses and their effect on GPP estimations. They found 

that a model with separate ɛmax values for vascular plants and mosses, and an estimation 

of proportional contribution to the satellite signal from each, gave a more accurate result 

(Yuan et al., 2014). Letendre et al. (2008) suggest that the Sphagnum challenge may be at 

least partly overcome by including a water index in any given model. 

The prevalence of different vegetation species is strongly related to the type of peatland 

being studied. There is some evidence that the difference between types of peatland is great 

enough to affect the relationship with spectral data (see Section 2.3.2), but as yet there are 

not enough studies available to quantify this difference. Correctly identifying peatland type 

and relating this to spectral data is important for generating accurate estimates of carbon 

flux.  

Many peatlands are water-saturated for a large proportion of the year, which can cause 

problems for remote sensing. High water content may cause an increase in light scattering, 

or a change in absorption features, which will affect the satellite signal. Also, many of the 

models discussed (e.g. MOD17, GLO-PEM, EC-LUE, VPM, Anderson et al., 2008, Turner et 

al., 2006) in this paper assume that a lack of water is a limiting factor on GPP and Reco. 

However, healthy peatland environments almost always have a very high water table so the 

water factors in many of these models developed in other ecosystems may need to be re-

evaluated for peatlands. Another aspect these models do not consider is that complete 

saturation is a limiting factor on soil respiration in peatland environments. 

Peatland environments are often very cloudy, which can limit the data available from remote 

sensing. This is an issue with all remote sensing in the visible and infrared wavelengths, but 

is a particular problem in some ecosystems such as high latitude wetlands. One of the ways 

to deal with this issue is to use data from a satellite which has a frequent pass interval (e.g. 

MODIS, Sentinel-3), as there is then a higher chance of collecting a reasonable amount of 

useful data which can be gap-filled sensibly. The trade-off here is in terms of spatial 

resolution. Other options include using active sensors which can penetrate cloud cover, or 
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utilising aerial imaging which can be obtained by flying below the cloud layer – though 

shadows and low light may then become major factors. One issue associated with cloud 

cover is that the GPP estimated from RS data may be overestimated if only clear day 

estimates are used. The range of LUE values is generally much smaller on clear days than 

on cloudy days – and peatlands occur most widely in areas of high cloud cover (Drolet et al., 

2005).  

The microtopography of peatlands (see Figure 2.2) can also affect carbon fluxes (Bubier et 

al., 2003; Forbrich et al., 2011),  but is difficult to detect directly with RS, particularly when 

spatial resolution is coarse (Crichton et al., 2015). Waddington and Roulet (1996) found that 

the scale from which extrapolation is attempted can affect whether the overall estimate is a 

sink or a source – variation in fluxes is greatest at the microtopography level, although there 

are also carbon flux variations at the mesoscale due to features such as pools and sections 

of different land cover. Pools in particular are an important component of the carbon cycle on 

peatlands, and ignoring their presence may lead to an inaccurate estimate of NEE (Lindsay, 

2010; Turner et al., 2016; Waddington and Roulet, 1996). 

There are several ways to solve the heterogeneity issue; the first is to use very fine 

resolution imagery which can detect different vegetation communities, and use this data to 

analyse the proportion of land which is hummocks and hollows in order to estimate 

variations in carbon flux within the cells of coarser resolution data (Forbrich et al., 2011). The 

second is to assume that although peatland is heterogeneous at a small scale, peatland 

sites are fairly homogenous at a larger scale (this is known as a repeat mosaic). In other 

words, the assumption is that the grid square size covered by satellites such as MODIS will 

be a reasonably representative sample of the entire peatland area. A third option is to 

downscale data from a coarse resolution satellite. There are several methods for 

downscaling (e.g. Hill et al., 2011; Stoy and Quaife, 2015), one of which is the model 

STARFM (Spatial and Temporal Adaptive Reflectance Fusion Model) which combines 

Landsat data (which has fine spatial resolution but a long pass interval, with data from 

MODIS (which has a coarse spatial scale but short pass interval), to create a product with 

fine resolution and a short repeat interval (Feng Gao et al., 2006; Walker et al., 2014).  

Validation of remote sensing carbon flux models is usually performed using data from EC 

towers, but there can be issues with scale and geolocation (see Figure 2.3). Both EC 

footprints and satellite pixel sizes can vary. EC footprints change size and shape with wind 

direction and speed, whilst satellites typically collect data from a slightly different area on 

each pass, and require geo-correction (Harris and Dash, 2011; Schubert et al., 2010). 

Clearly, the larger the area covered by the EC footprint, the more chance there is of being 
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able to match it to a satellite pixel (see Figure 2.3). The assumption that peatlands are fairly 

homogenous at large scales and that one satellite point or EC footprint is representative of 

the whole landscape is necessary for this validation to be meaningful. More work is needed 

to determine whether or not this assumption can be considered reasonable.  

Every method of calculating carbon flux is subject to its own errors, including RS, EC and 

chamber techniques. For optical sensors in satellites, corrections for atmospheric effects 

must be made before the data are used. The translation of raw RS data into products and 

models also introduces error. Data from EC towers, in the form which is often used for 

validation of RS models, are the result of a series of processing steps which include 

calculating the flux from the raw turbulence and gas concentration data; averaging the flux 

over time periods; removing periods of very low turbulence; gap-filling; and partitioning into 

GPP and Reco (typically using a temperature dependant model of Reco fitted to night time 

data when GPP is zero). This means that eddy covariance data are not a truly accurate 

measure of carbon flux, yet they are often treated as though they are a direct measurement. 

Chamber fluxes are usually considered to be on too small a scale to be a useful validation 

method for remotely sensed flux estimates, and there are concerns that collar insertion 

methodology may cause inaccurate results (Heinemeyer et al., 2011). In particular, the short 

timescale and small area of chamber measurements means that extrapolating to a whole 

satellite pixel over several months is likely to give results so inaccurate as to be 

meaningless.  

One advantage of satellites with long time series, such as Landsat and MODIS, is that 

between instrument errors are avoided. Infra-Red Gas Analysers (IRGAs) used in chamber 

studies and Eddy Covariance towers have advanced greatly in precision over the last 

decade, meaning that comparison between early and modern chamber or EC studies is 

difficult. Satellites with long time series do not have this problem because the instrument is 

the same. Satellites also avoid the operator error which can occur between researchers 

using different protocols for their chamber or EC studies. The frequency of measurements 

can increase precision in satellite data compared to chamber studies, particularly for 

satellites with a frequent return interval. 

Future studies intending to use RS data should consider the resolution and coverage of 

available RS data when designing their ground-validation methodology. In particular, 

footprint size and coverage in relation to EC towers, and sampling locations and frequency in 

relation to chamber studies, should be decided with regard to the RS data. One potential 

solution to the different coverage of chamber, EC and RS data is to scale fluxes using 

proportional cover (Forbrich et al., 2011; Marushchak et al., 2013). This can be done in 
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terms of microtopography by considering the proportion of the measured area comprising of 

hummocks, hollows and lawns (see Figure 2.2) or in terms of variation in vegetation species. 

Issues to consider when attempting proportional cover corrections include the time and 

access needed to identify features or vegetation over the entire area of the EC footprint or 

satellite pixel. Enough measurements should be taken to allow a reliable average for each 

identified feature type or vegetation species. The proportional cover can be determined by 

surveying the entire footprint area, possibly using aerial photography. It is also important to 

have ground validation data for all seasons, as different vegetation species can have a 

proportionally very different contribution to fluxes at different times of the year. 

2.5. Potential future work  

The previous section (Section 2.4) has highlighted a number of challenging issues which 

must be addressed when RS methods are applied to peatland environments. More work is 

clearly needed in overcoming these challenges, particularly in separating the signal of 

vascular plants from mosses, and in considering the problems of heterogeneous 

microtopography and peatland types (see Section 2.4). This section, however, discusses 

some of the largest gaps this review has identified in the literature which need to be 

addressed in future in order to improve remotely sensed estimates of carbon fluxes over 

peatlands. 

The area of remote sensing carbon flux estimation over all ecosystems is dynamic and wide 

ranging, with many different models and methodologies being developed. The problem with 

many of these studies, however, is that they are too narrow for comparison. They consider 

one particular site in one particular ecosystem, and develop a remote sensing model which 

gives good results compared to the flux measuring method on the ground (most often EC). 

Even studies which look at multiple sites and attempt to create a global model often focus on 

a narrow range of only four or five ecosystem types. Peatlands and their huge variety of 

types are almost never included as a separate category in remote sensing models of carbon 

flux, and as such are certain to be over or under-estimated. More cohesive studies are 

therefore needed, which not only look at peatland carbon fluxes across sites and countries, 

but also which link peatland flux models to those developed in other ecosystems. 

Roulet et al. (2007) point out that the peatland carbon cycle is complex and includes many 

components, some of which are under-studied. Peatland studies using remote sensing have 

so far focused almost entirely on estimating GPP, and there is a need for more work on the 

potential of remote sensing for estimating respiration fluxes. One major challenge when 

using current models of Reco over peatland environments is that they are designed for use on 

well-drained soils, and so do not include the concept that water saturation may decrease soil 
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respiration. In carbon peatland studies using field measurements, NEE calculations 

dominate. There are few studies that combine NEE with CH4 and DOC, and there is very 

little work combining these using remote sensing (Sturtevant and Oechel, 2013; Watts et al., 

2014). 

Considering the range of GPP models discussed in Section 2.2.2.3, it is evident that LUE-

based models are still the dominant method for using RS to assess the carbon uptake of 

ecosystems. Most studies agree that the MOD17 product is a poor estimate for peatland 

GPP, most likely because the LUE modifiers are based on a look-up table with no specific 

peatland category. NDVI and EVI are both widely used as proxies for fPAR, and studies over 

peatland have given good results using one or the other of these indices. More work is 

needed, however, to determine which is the most effective proxy, particularly when 

combined with other model factors. Narrow-band indices such as PRI should also be 

considered in future studies, particularly with the operation of new narrow-band satellite 

sensors such as EnMAP. 

In both peatland and other ecosystem studies, temperature and water stress have been 

shown to be useful modifiers of LUE and to improve the model results. There is still much 

debate about the best indices to use, however, particularly for water stress which is an 

essential consideration in peatlands, given their semi-permanent saturation. Future studies 

should seek to determine which water indices are best able to capture the entire range of 

water contents experienced within peatland landscapes. 

An interesting avenue of future work would be to consider combining visible and NIR data 

with RS data from other sources such as InSAR. The combination of texture, elevation and 

colour changes has the potential to inform a future generation of peatland models.  

There is a need for more long-term studies on peatland in order to inform the temporal 

variability that should be expected of model outputs, and the inputs that are most influential 

in longer-term peatland carbon flux variations (Helfter et al., 2015; Marushchak et al., 2013; 

Strachan et al., 2016). Some satellites (e.g. Landsat) have long data archives, which could 

be extremely useful in historical studies of peatland carbon flux, but only if the models used 

are validated under appropriate conditions. Carbon fluxes are known to vary greatly between 

years at the same site, and it is possible for a peatland to be a carbon source one year and a 

sink the next (Lafleur et al., 2003; Roulet et al., 2007; Silvola et al., 1996; Yu, 2012). For 

example, Roulet et al. (2007) monitored a bog in Canada for six years, with the lowest 

annual NEE (greatest sink) during the period of -112 gCO2/m2 and the highest (smallest 

sink) of -2 gCO2/m2. Many field studies only report on one growing season and exclude 

winter fluxes altogether, therefore potentially underestimating annual Reco (Roulet et al., 
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2007; Sturtevant and Oechel, 2013). It is also important to repeat studies across several 

different types of peatland, as it cannot be assumed that areas with different characteristics 

will respond in a similar manner to environmental changes (Kross et al., 2016; Lund et al., 

2009). Remote sensing has the potential to easily estimate carbon fluxes over large areas 

and long periods of time and could therefore fill a gap in the literature of long-term carbon 

flux studies over peatlands - but it is important to have reliable models first, and to continue 

to validate models appropriately. 

As restoration of peatland offers the potential to increase carbon sequestration (Beetz et al., 

2013; Silvola et al., 1996; Urbanova et al., 2013), it is important to increase understanding of 

how rewetting affects peatland carbon fluxes in the long term (Bussel et al., 2010). Modelling 

driven by remote sensing data could be a useful approach for large-scale monitoring of 

peatland restoration schemes, but more work is needed on whether RS data can adequately 

detect changes in peatland carbon fluxes that are due to restoration processes. We are 

currently unaware of any published studies utilising remotely sensed data to examine the 

effects of restoration on carbon fluxes from peatlands. Restoration is generally accepted to 

improve carbon uptake in comparison to drained and degraded sites, even if the resulting 

carbon balance is still net emitting or near neutral (Beetz et al., 2013). However, several 

studies have shown that rewetting is more effective on some peatland sites than others, and 

there may be some areas which can be improved but never fully restored to a near-natural 

condition (Basiliko et al., 2007; Clark et al., 2010; Worrall et al., 2011). It is therefore 

important to have more long term (5 years plus) studies on restoration of different peatland 

types, in an attempt to characterise what makes a peatland more or less likely to be 

producing reduced carbon emissions through restoration, and to analyse which restoration 

methods are the most successful (Bain et al., 2011). Many restoration programmes on 

Northern peatlands are still in their early stages, and it will be important to continue 

monitoring on longer timescales of several decades. This is an area of future work into which 

RS could be usefully integrated. 

2.6. Conclusions  

This critical review provides clear evidence for the potential of using RS methods in Northern 

peat bog carbon flux estimations as well as in other peatlands around the world.  The review 

also highlights a number of cautionary issues which must be accommodated when using RS 

methods in a peatland habitat, and it identifies a number of challenges which have yet to be 

adequately tackled. 

Some researchers have already applied GPP models to peatland ecosystems, and some 

have focused on the effectiveness of specific aspects, such as the correlation of vegetation 
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indices with peatland dynamics. The studies considered in this review suggest that the best 

RS GPP model for peatlands is likely to include either NDVI or EVI, and to have both 

temperature and water modifiers of LUE. There are many ways of measuring water stress 

using RS data, and the studies in this review suggest that visible and NIR wavelengths 

produce potentially usable estimates of peatland water through indices such as the LSWI, 

WI and fWBI. The best model is therefore likely to be based on visible and NIR wavelengths 

which are readily available from several satellite sensors already in operation, although 

spatial resolution will be improved by newer satellites with finer sensor capabilities. 

Respiration is a harder problem to solve in RS models of peatland carbon fluxes. Different 

studies have modelled respiration in very different ways, and there is as yet no commonly 

used model structure as there is with the LUE model for GPP. The studies considered in this 

review suggest that respiration (both Ra and Rh) is sensitive to temperature and to 

productivity/biomass. In addition, soil respiration is concluded to be sensitive to soil water 

content. Water is especially important in peatlands, which may have the opposite response 

to most ecosystems – increasing soil respiration with lower than normal water levels. 

Many of the problems encountered when applying RS models of carbon fluxes to peatlands 

are the same as for any other ecosystem: satellite issues such as atmospheric scattering 

and geocorrection and ground validation issues with the estimation of fluxes from methods 

such as EC. However, other concerns are unique to peatland environments, such as the 

spectral and height differences between vascular and non-vascular vegetation types, and 

the microscale heterogeneity of many peatlands. More work is therefore needed into the 

upscaling of fluxes from a repeat mosaic environment, and into the potential of having a 

model which splits its parameterisation between vascular and non-vascular vegetation. 

This review suggests that there is a need for multi-disciplinary studies across several 

peatland sites over several years using RS. Remote sensing models, particularly those for 

GPP, are now attaining levels of confidence where they could be considered plausible 

additions to the suite of methods used to measure carbon exchange in peat bog sites.  Of 

particular interest would be studies that explore the potential use of RS in the construction of 

total carbon budgets, including GPP, Reco, CH4 and DOC.  There is, however, so far little 

published information in the peer-reviewed literature from sites which have been subject to 

restoration management.  This dearth of information is surprising, given the high profile now 

afforded peatland ecosystems within decision-making circles around the world and the scale 

of resources devoted to such restoration in order to stem carbon losses and restore long-

term carbon storage. 
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3. Changes in carbon flux and spectral reflectance of Sphagnum mosses as a result of 

simulated drought 

Lees KJ, Clark JM, Quaife T, Khomik M & Artz RRE 

Abstract 

1. Different rainfall simulations were applied to two species of Sphagnum from blanket bog to 

assess the impact of drought on carbon function. After eighty days all samples were 

rewetted to assess recovery. The rainfall simulations included inputs analogous to actual 

precipitation at the field site, potential future changes in rainfall, and extended total drought.  

2. During the experiment Gross Primary Productivity (GPP) and respiration were measured. 

Photosynthesis decreased after approximately 30 days of continuous drought (ie. days 

without rain). This is somewhat comparable to the drought seen at the sampling site 

(Northern Scotland) in the summer of 1995, where only 1 mm of rain fell over 21 days.  

3. Spectral reflectance was measured to assess Sphagnum bleaching. The spectral 

absorption feature of Sphagnum associated with red light (around 650 nm) was affected by 

drought, and did not recover after rewetting during the experimental period.  

4. No significant difference was found between the two Sphagnum species studied with 

respect to their photosynthesis or respiration, but there was a significant difference in 

optimum water content and spectral reflectance between the two.  

5. Synthesis: The results from this study suggest that Sphagnum carbon function is resilient 

to quite long drought periods, but once damage has occurred recovery is likely to be difficult. 

The spectral reflectance of Sphagnum can give useful information in assessing whether 

significant desiccation damage has occurred.  

3.1.Introduction  

Sphagnum moss is an important peat-forming genus, and is instrumental in the 

sequestration of carbon in Northern ombrotrophic peatlands. The function of peatlands as a 

carbon sink is of interest to policy makers, as peatland restoration can now be claimed as a 

carbon abatement in national accounting under the Kyoto Protocol (Hiraishi et al., 2014). 

Drought has been shown in previous studies to affect Sphagnum function (Bragazza, 2008; 

Clymo, 1973; Harris, 2008; Strack & Price, 2009; Van Gaalen, Flanagan, & Peddle, 2007), 

and this could become important as climate change increases the frequency of occurrence 

of hotter, dryer summers (Jenkins et al., 2010; Hoegh-Guldberg, Jacob, & Taylor, 2018). It is 

uncertain, however, how long and how extreme drought needs to be before it affects 
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Sphagnum function (Bragazza, 2008). It is also unclear whether, and to what extent, 

Sphagnum can recover its functionality after desiccation. Some studies suggest that 

desiccated Sphagnum can recover its carbon function after a period of rewetting (McNeil & 

Waddington, 2003; Robroek et al., 2009), whilst others suggest that extreme desiccation 

may be irreversible (Bragazza, 2008; Schipperges & Rydin, 1998).  

Frequent small precipitation events can relieve the effects of drought on carbon function by 

rewetting the moss capitula (Nijp et al., 2014; Robroek et al., 2009). There is also some 

evidence that frequency of rainfall events is more important than overall water input due to 

the inability of Sphagnum to draw water up from a deep water table (Adkinson & Humphreys, 

2011; Nijp et al., 2014; Robroek et al., 2009; Strack & Price, 2009). Raindays are considered 

particularly important, and the temporal distribution of precipitation has been shown to be 

more important than total amounts in terms of maintaining carbon function (Backeus, 1988; 

Lindsay et al., 1988).  

Spectral reflectance can provide information about Sphagnum health, including carbon 

functioning under water limitation (Harris, 2008; Letendre et al., 2008; Van Gaalen et al., 

2007). Certain areas of the reflectance spectrum of Sphagnum moss indicate water content, 

chlorophyll, and plant health. This could be a useful way to detect the impact of drought on 

Sphagnum’s carbon functioning when direct measurements are unavailable. It is particularly 

important to develop understanding of the spectral reflectance of Sphagnum, as this is a key 

genus considered an indicator for healthy blanket bog. It has also been found to have a 

different spectral response compared to other peatland vegetation (Whiting, 1994).  

The Normalised Vegetation Index (NDVI) which we consider in this study is a widely used 

spectral index which can be easily calculated from satellite or UAV (Unmanned Aerial 

Vehicle) data. Validation of this in the laboratory will be particularly useful for researchers 

using remote sensing over peatlands at large scales (Lees et al., 2018). 

In this study five experimental water input regimes were set up in the laboratory to test the 

relative impacts of different rainfall amounts and frequencies on Sphagnum carbon dioxide 

gas exchange. Different Sphagnum species may react differently to low water contents, with 

hummock-growing species being more tolerant to drought conditions than species which 

grow closer to the water table (Harris, 2008; Robroek et al., 2009; Strack and Price, 2009). 

Two Sphagnum species, S. capillifolium and S. papillosum, are compared to assess whether 

different Sphagnum species have differing responses to drought stress. In this work we are 

particularly seeking to address how drought stress affects the carbon function 

(photosynthesis and respiration) of Sphagnum samples, and whether this functioning 

recovers after a rewetting event. Finally, we also consider the changes in spectral 
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reflectance in Sphagnum during drought stress, as this may be a useful way to assess 

Sphagnum health using remote sensing.  

This study aims to contribute to research by combining measurements of several variables in 

a single experiment. Previous studies have considered the optimum water content (eg. 

Adkinson and Humphreys, 2011; Titus et al., 1983), drought recovery (eg. Nijp et al., 2014; 

Robroek et al., 2009; Schipperges and Rydin, 1998), or spectral reflectance (eg. Harris, 

2008; Van Gaalen et al., 2007) of Sphagnum mosses, and this research aims to bring all 

these together to study their interactions in detail. We hypothesise that (1) S. papillosum will 

be more sensitive to drought than S. capillifolium, with a higher optimum water content and 

less resilience to water reduction as it prefers slightly wetter microhabitats (Robroek et al., 

2009). (2) water content reduction will lead to a decrease in photosynthesis and respiration, 

but that this may be ameliorated by more frequent water input, and that the carbon function 

will recover after rewetting; and (3) that changes in spectral reflectance will correlate well 

with changes in Sphagnum carbon function during the experiment.  

3.2.Method 

3.2.1.Sphagnum species 

 

Figure 3.1- Clockwise from top left: S. papillosum in the field at sampling time, S. papillosum 

texture, S. papillosum samples in the lab, S. capillifolium samples in the lab, S. capillifolium 

texture, S. capillifolium in the field at sampling time. 

Our study sites were located at the Royal Society for the Protection of Birds (RSPB) 

Forsinard Flows reserve in Northern Scotland (58.3552, -3.9993 to 58.4458, -3.6972 

WGS84). Parts of the reserve were undergoing restoration from forest to bog and were at 
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different stages of restoration. The samples collected for our lab study were collected from 

three areas of the reserve, known as Talaheel (58.4116, -3.7992 WGS84), Catanach 

(58.4020, -3.7130 WGS84), and Raphan (58.4109 -3.7318). 

 S. capillifolium and S. papillosum were selected as two contrasting Sphagnum species (see 

Figure 3.1). S. capillifolium is red to green and grows in tightly packed clusters with a ‘pom-

pom’ appearance due to its hemi-spherical capitulum (Laine et al., 2009). S. papillosum is 

green to yellow-brown and grows in carpets and low hummocks often interspersed with other 

species. S. capillifolium is a hummock-forming species, whilst S. papillosum prefers slightly 

wetter conditions and is often found in lawns and occasionally in ditches (Hayward and 

Clymo, 1983, 1982). S. capillifolium is found throughout the Forsinard Flows reserve, whilst 

S. papillosum is more common on undisturbed sites. Both species are present at peatland 

sites across the UK (NBN Atlas Partnership, 2017), and other boreal Sphagnum-dominated 

peatlands (Gunnarsson, 2005).  

3.2.2.Experimental set-up 

Samples of Sphagnum moss (6 cm deep and 10 cm diameter, n=20 of each species) were 

collected by cutting around and below white plastic tubing of these dimensions. The samples 

were kept moist in a coolbox whilst being transported between the field sites and the 

laboratory. When the samples first arrived in the laboratory they were inundated with 

deionised water and the excess drained off to bring them to saturation. Once in the lab the 

samples were placed in 1 litre, straight-sided, clear polycarbonate jars and stored in a 

growth cabinet (Panasonic MLR-352H-PE) on a 12-hour day and night cycle.  

The average climate of the Forsinard Flows reserve was used to set growth cabinet 

conditions. Climate averages were estimated from records of four surrounding weather 

stations from 1981-2010: Wick John O Groats Airport, Kinbrace, Altnaharra SAWS, and 

Strathy East (Met Office, 2018). Conditions from April to September were considered (see 

Figure 3.2). The average daily maximum temperature for the four sites over those 6 months 

ranged from 10.4 to 17.1 degrees C, and the average daily minimum ranged from 2.7 to 9.8 

degrees C. The average relative humidity was approximately 80% (Met Office, 2018). During 

the day the growth cabinet was kept at maximum light levels (20,000 lx) 15˚C, and 70% 

relative humidity (slightly lower than the average at the site to aid drying of samples). At 

night the cabinet was dark, at 5˚C, and the humidity was unregulated.  
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Figure 3.2– Climate in the Forsinard area, taken from 1981-2010 averages of the four 

nearest weather stations: Wick, John O Groats Airport, Kinbrace, Altnaharra SAWS, and 

Strathy East. Top line (red) gives daily maximum temperatures, lower line (blue) gives daily 

minimums. Bars give monthly rainfall.  

The samples were left in the growth cabinet and watered regularly with de-ionised water (40 

ml, equating to 5 mm, every 2 days to maintain saturation) for a week prior to beginning the 

experiment to allow them to acclimatise. During the experiment, the samples were moved 

around within the cabinet in order to minimise edge effects. Within the cabinet there were 

three shelves; all samples within each group (A to E, see Section 3.2.3.1.) were kept 

together on the same shelf, but the groups were moved to different shelves every 

measurement day, and the samples within each group were moved around randomly in 

relation to each other every watering day.  

3.2.3.Experimental procedure 

3.2.3.1.Rainfall simulations  

 The conditions in the growth cabinet were kept the same as described above. Five different 

rainfall simulations were designed to represent a range of rainfall conditions at the site, 

including a control set with steady-state water content corresponding to field conditions. Four 

replicates of each species were exposed to each regime.  

The average rainfall (April-September, 1981-2010) was 66 mm per month, with 13 raindays 

per month (Met Office, 2018). 13 raindays a month is approximately the same as watering 

three times per week, and this was set as the steady-state watering schedule. 66 mm 

divided by 13 raindays gives an approximate input of 5 mm per rainday. However, when this 
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was trialled during the acclimatisation period it caused an increase in water levels rather 

than a steady-state (shown by an increase in weight), and so the input was halved to 

approximately 2.5 mm (20 ml) per sample per rainday. This lower steady-state input was 

needed to account for missing water fluxes that would be observed in the field, including 

vertical and lateral drainage into the peat, vascular plant competition, and run-off. Under 

experimental simulations, all water input into the samples in the laboratory was kept within 

the jars and could only be used by the Sphagnum. Deionised water was used for rainfall 

simulations to maintain consistency with previous studies (Clark et al., 2012, 2006) 

administered by drips using a laboratory wash bottle.  

Rainfall simulation treatment followed a factorial design. There were five treatment groups, 

each comprising four samples of each Sphagnum species. The precipitation treatments used 

were: two different precipitation amounts, two different frequencies. In addition, we included 

continuous drought (see Table 3.1). Group A was designated as the control group, as the 

samples were given 20 ml of water three times per week, the amount required to maintain 

steady-state water content. These treatment regimes were maintained until drought effects 

were observed in the carbon flux and spectral reflectance results (see Section 3.2.3.2.). This 

process took twelve weeks. 

Table 3.1 – The five rainfall simulations treatment groups A to E, with precipitation frequency 

and amount over the 12 week experiment shown. Each group included four samples of S. 

capillifolium and four of S. papillosum.  

Group Precipitation 
amount (ml per 
fortnight) 

Precipitation 
frequency (per 
fortnight) 

A (control) 120 6  

B 120 3   

C 60 3   

D 60 6   

E (total drought) 0 N/A 

 

After the first three weeks (a time period of total drought which we would expect to show 

visible change in the field, Bragazza, 2008) little effect was observed in carbon flux. 

Therefore, to increase the intensity of the experimental simulation, the humidity in the growth 

cabinet was reduced to 55% (the minimum the cabinet was able to regulate), in order to dry 

the samples as much as possible.  This is lower than would be found under normal 

conditions at the field sites (approx. 80%), but was used to encourage faster drying of the 

samples. In field conditions there would be higher evapotranspiration due to wind, even at 
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higher humidities, so this drop in experimental humidity compensated for the lack of air 

movement.  

After the rainfall simulations had been run for 12 weeks total, all the samples were flooded to 

within 2 cm of the top of the clear plastic jars to simulate total rewetting. Complete inundation 

was used to simulate rewetting following a period of drought or limited rainfall. The 

Sphagnum samples in their plastic collars floated at the surface of the water, meaning that 

although they were inundated they still had contact with the air. They were kept in the 

cabinet (70% humidity) for one month whilst inundated, in order to assess recovery following 

full rewetting. Rochefort, Campeau and Bugnon (2002) found that a month of inundation will 

not harm Sphagnum, and may even encourage growth. After one month all excess water 

was drained, and the carbon flux measurements were repeated three times over a week to 

compare dynamics with drought and pre-drought conditions.  

3.2.3.2. Measurements 

Three times per fortnight (after watering of sets A-D) the net carbon fluxes of all the samples 

(groups A-E) were measured. The flux measurements were taken using a LICOR-8100 

infrared gas analyser (LICOR Inc., Lincoln, Nebraska, USA), connected to a custom-built 

clear plastic chamber. Each sample was brought out of the growth cabinet and placed under 

a high pressure sodium growth lamp (Philips Belgium 9M SON-T-AGROO 400) in a 

laboratory in order to keep light levels as constant as possible (at 55,500 lm) The clear 

chamber was placed over the sample using a foam seal in between the sample container 

and chamber, and a measurement taken of the net carbon flux for 90 seconds. A blackout 

cloth cover was then placed over the chamber, and another measurement taken to get the 

respiration flux. Gross Primary Productivity (GPP) was calculated as the difference between 

the light and dark chamber measurement values. The time the samples spent out of the 

growth cabinet was minimised as much as possible in order to reduce the effects of variable 

air temperature and relative humidity (the longest any sample spent outside the cabinet was 

ten minutes maximum). The order in which samples were measured was randomised to 

minimise background effects. 

To reduce the effect of varying background light levels (due to working in a laboratory with 

access to natural light) a PAR sensor was added to the experimental set-up four weeks in to 

the experiment, and calculations were applied to remove the effect of background light levels 

on GPP. This adaptation was made after viewing preliminary data. Measurements taken in 

the first four weeks were corrected based on time of measurement. Given that the 

measurements were taken at regular intervals over the course of the mornings, time was 

used as a proxy from PAR in the correction calculations for the data from the first four 
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weeks. Variations in background light levels due to cloud cover are not accounted for in the 

first four weeks of results (See Appendix A for fuller explanation). 

Samples were weighed three times a week before and after watering throughout the 

experiment. At the end of the experiment samples were dried in a laboratory oven at 70˚C 

for 72 hours and the dry weights collected in order to retrospectively calculate moisture 

contents. All water contents are given in g fresh weight/g dry weight (g/g). 

The spectral reflectance was measured using a Ger3700 spectrometer (Geophysical and 

Environmental Research corp., 1999) mounted in a dark room with a single constant light 

source (1000 W high-intensity halogen lamp at an angle of 45° and a distance of 0.5 m). 

Each sample was placed under the spectrometer and a measurement taken; the sample 

was then rotated and another measurement taken, and rotated again for a third 

measurement. The average of these three spectra was taken to compensate for potential 

structural effects. A spectralon reference panel was used to take reference spectra between 

samples. The sample and reference panel were viewed at nadir (90°). 

The red absorption feature in the reflectance spectra was found to be a good indicator of 

drought stress (see Section 3.3.2.), and the Normalised Difference Vegetation Index (NDVI) 

was used to measure this effect across the experiment. The NDVI is one of the most widely 

used vegetation indices, and has previously been shown to give agreement with changes in 

Sphagnum photosynthesis (Harris, 2008; Lees et al., 2018). The NDVI is calculated as: 

NDVI = (RNIR – Rred )/ (RNIR + Rred ) 

The red and NIR bands were calculated by averaging the reflectance values for 630-680 nm 

and 845-885 nm respectively. 

3.2.3.3. Statistical analysis  

All statistical analysis was done using RStudio (R Core Team, 2017). In order to create a 

robust statistical analysis of this experiment, the first three measurement days (day 1 to 10) 

were averaged into a result category ‘start’, the last three days of the water input regimes 

(day 71 to 80) were averaged into ‘end’, and the three measurements after rewetting (day 

113 to 120) were averaged into ‘rewetted’. The effect of Group and Species on each of the 

four measured variables (Water content, GPP, R, and NDVI) was analysed for each of the 

three time period results.  

In each case the Fligner-Killeen test for equal variance was performed, as this test is robust 

when using non-normally distributed data. A two-way ANOVA was performed for Species 
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and Group effects in order to assess interactions. The normality of the ANOVA residuals was 

assessed visually and using the Shapiro-Wilks test.  

Two Kruskal-Wallis tests, one with Species as the independent variable and one with Group, 

were used. Post-hoc testing using Dunn’s test was done with the PMCMRplus package 

(Pohlert, 2018). Kruskal-Wallis is a non-parametric equivalent to a one-way ANOVA, and as 

such should account for the non-normal distribution and unequal variances which were 

found to be a feature of some of the data.  

In order to consider the relationships between measured variables without including 

autocorrelation from repeated measures we subtracted all results for each sample from the 

first measurement made of that sample. To determine the optimum water content for 

Sphagnum carbon function a quadratic model was fitted to the data and solved for the 

vertex. Linear models were fitted to analyse the relationship between water content and 

GPP, and between GPP and NDVI.  

3.3.Results 

3.3.1. Carbon function and water content 

Overall patterns in the experiment were as follows. We found that water, GPP and 

respiration decreased across the water input regimes period for the water-limited groups C, 

D and E (see Table 3.2, Figures 3.3 & 3.4). After rewetting the water content of all groups 

recovered, but the GPP of drought group E did not recover (Table 3.2 and Figure 3.3). The 

results show that there was no significant species effect at any point during the experiment 

on water content, GPP, or respiration (Table 3.2).  

Table 3.2 – Results from the statistical tests, Kruskal-Wallis results shown as highly sig. if 

p<0.05, moderately sig. if <0.1. N=4 for each species in each group. The measured 

variables are water in g/g, GPP and Respiration in umol/m2/s. 

Measured 
variable 

Fligner-
Killeen 

Two-way ANOVA  Kruskal-Wallis test 
with Dunn’s test 

Water – Start Equal No sig diff  

Water – End Equal Residuals non-normal 
Group effect 
No species effect 
No interaction effect 

A to E highly sig 
B to C,D,E highly sig 
 

Water – Rewetted Equal No sig diff  

GPP-Start Non-equal No sig diff  

GPP – End Equal Residuals normal 
Group effect 
No species effect 
No interaction effect 

D to E highly sig 
E to A, C moderately 
sig 
 

GPP – Rewetted Equal Residuals normal E to A,B,C,D highly sig 
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Group effect 
No species effect 
No interaction effect 

R – Start Equal Residuals normal 
Group effect 
Moderately sig species 
effect 
No interaction effect 

A to E highly sig 
C to E highly sig 

R – End Equal Residuals normal 
Group effect 
No species effect 
No interaction effect 

B to C highly sig 
E to A, C, D highly sig 
A to B hoderately sig 

R - Rewetted Equal Residuals normal 
Group effect 
No species effect 
No interaction effect 

B to C,E highly sig 
D to E highly sig 

 

Water content of the Sphagnum ranged from 12.8 to 38.4 g/g in all samples pre-treatment, 

and from 1.2 to 3.3 g/g in the total drought group E at the end of the treatment period. Figure 

3.3 shows the changes in water content for the five groups. The water content was relatively 

constant for A and B, as expected because of the rainfall input, although the average water 

contents for group B (averaging 29.2 g/g) appeared higher than group A (averaging 22.4 

g/g) across the whole experiment. C, D, and E showed decreases by the end of the watering 

regimes period, with the decrease greatest in group E (drought group). Rewetting increased 

the water content of all groups (by up to approx. 44 g/g). 
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Figure 3.3 – Clockwise from top left: Water content (g fresh weight/g dry weight); PAR 

corrected GPP; Respiration; Ratio of GPP/Respiration. Each graph shows the five groups at 

the start of the period, end of the watering regimes, and after rewetting. Error bars show the 

standard deviation of the group.  

GPP ranged from 0.39 to 2.10 umol/m2/s in all samples pre-treatment, and from 0.39 to 1.07 

umol/m2/s in group E at the end of the treatment period. Figure 3.3 shows the changes in 

GPP for each of the five treatment groups. The GPP of all samples decreased over the 

watering regimes period. The decrease of the control samples (group A) is a statistically 

significant (p<0.05), although very small (a slope of -0.0039), trend across the 80-day period. 

This decrease may be due to a lack of nutrients, as de-ionised water was all that they 

received and blanket bogs receive their nutrient inputs from precipitation.  

At the end of the water input regimes period the GPP of group E (0.70 umol/m2/s) was highly 

significantly different to the GPP of group D (1.12 umol/m2/s, p<0.05), and moderately 

significantly different to the GPP of groups A and C (1.06, 1.07 umol/m2/s, p<0.1). After 

rewetting the GPP of group E was significantly different to all other groups (0.26 umol/m2/s, 

compared to 0.88 to 1.00 umol/m2/s, p<0.05, see Table 3.2 and Figure 3.3).  

Respiration varied from 0 to 1.44 umol/m2/s in all samples pre-treatment, and from 0 to 0.45 

umol/m2/s in group E at the end of the treatment period. Figure 3.3 shows the respiration 

results for the five groups. Respiration for groups A-D stayed constant, whilst E showed a 
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slight decrease towards the end of the 80 day experimental period, and then after rewetting 

a sharp increase. At the end of the water input period group E (0.25 umol/m2/s) was 

significantly different to groups A, C and D (0.80, 0.85, 0.75 umol/m2/s, p<0.05).  

The ratio of GPP:R was similar throughout the first 80 days, with Group A ranging from 0.40 

to 2.84 and averaging 1.56 (see Figure 3.3). Group B shows slightly higher ratios generally 

due to slightly lower respiration values. Group E shows a large range in ratios at the end of 

the water input period, partly due to the small values of both GPP and R, and a decrease 

after rewetting due to the higher respiration values.  

 

Figure 3.4 – The mean of each group change in GPP across the 80 days experimental 

period.  Both species are included in the group means as there were no significant species 

differences in GPP. Grey area shows the standard deviation for groups A to D.  
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Figure 3.5 – Change in water content plotted against change in GPP for the 80 days of 

watering regimes. Empty symbols show S. capilifollium, filled show S. papillosum. Quadratic 

functions are fitted to each species, both significant at the p<0.05 level, solid shows S. 

capillifolium, dotted shows S. papillosum.  

Figure 3.4 shows the change in GPP in each group across the water input period. It can be 

seen that the mean of group E GPP is below the means of all other groups from day 29 

onwards (with the exception of day 47 when the mean is similar to group B). Due to the large 

range relative to absolute values in GPP for all groups across the period, Group E is not 

consistently significantly different from the other groups, but the days when the difference is 

significant are more frequent in the second half of the period.  

Figure 3.5 shows that the relationship between water content and GPP corresponds to a 

quadratic model. The optimum of S. capillifolium is -7.6 g/g change, whilst for S. papillosum 

it is 3.1 g/g change. By taking all values less than 1 g/g different to the starting water 

content, we can calculate the starting water content for GPP for S. capillifolium as 23.4 g/g 

(16.5 to 29.5), and for S. papillosum as 24.4 g/g (12.6 to 38.4). Therefore, the optimum water 
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content for S. capillifolium is 15.8 g/g (8.9 to 21.9 g/g) and for S. papillosum it is 27.5 g/g 

(15.7 to 41.5 g/g).  

Figure 3.6 shows the significant linear relationship (R2 = 0.13, p<0.05) between respiration 

and GPP in our Sphagnum moss samples across the water input period.   

 

Figure 3.6 – Change in respiration plotted against change in GPP throughout the 80 days 

watering regimes. The linear model shows a significant relationship (p<0.05) between GPP 

and R for all samples, with the equation y= 0.22x - 0.015 and adjusted R2 value of 0.13. 

Empty symbols represent S. capillifolium, filled S. papillosum.  

3.3.2. Spectral reflectance 

The drying effect on Sphagnum reflectance was visible to the naked eye. Both species 

showed bleaching as the experiment progressed (see Figure 3.7), due to an increase in 

reflectance in all optical wavelengths (see Figure 3.8), although the effect was more 

pronounced in S. capillifolium.  
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Figure 3.7 – photos showing S. capillifolium of groups A to E (left to right) at the end of the 

80 day drying period. The photos illustrate the bleaching effect of reduced water content.  

 

Figure 3.8 – A: change in spectral reflectance in an S. capillifolium sample from total drought 

group E from the beginning of the 80 day experimental period (wet) to the end (dry), and 

also after rewetting (rewetted). The increase in reflectance at all wavelengths in the dry 

sample is clearly obvious. Also note the lack of a red absorption feature (at approx. 650nm) 

and the water absorption trough (at approx. 1000nm) in the dry spectrum. The red 

absorption feature is still absent in the rewetted spectrum. B: spectra of an S. capillifolium 
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sample from control group A, showing very little change. C and D show spectra of S. 

papillosum from groups E and A respectively.  

Spectral data from the two Sphagnum species were significantly different throughout the 

experiment (p<0.05), as shown in Figure 3.9 and Table 3.3, with S. capillifolium having 

higher NDVI results than S. papillosum. Water-limited groups C, D and E all showed a 

decrease in NDVI across the water input period (Figure 3.10), but only group E (0.32) 

showed a significant difference to control group A (0.64) at the end of the period (Table 3.3, 

p<0.05). After rewetting the NDVI of these three groups recovered slightly, but the NDVI of 

group E (0.41) was still significantly different to all other groups (p<0.05).  

 

Figure 3.9 - S. capillifolium had higher NDVI values than S. papillosum throughout the 

experiment.  

 

Figure 3.10 – NDVI values for each of the five groups at start and end of watering regimes, 

and after rewetting.  

Start    End             Rewetted 
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Figure 3.11 considers the relationship between change in GPP and change in NDVI, and 

shows that the relationship is significant for group E in both species, and for groups C and D 

in S. capillifolium only. We also tested the relationship between GPP and NDVI for each 

species at the start and end of the water input regimes to test whether the NDVI can detect 

differences in photosynthetic capacity between samples, but none of the relationships were 

significant at the p<0.05 level.  

Table 3.3 – Results from the statistical tests, Kruskal-Wallis results shown if p<0.05. 

Measured 
variable 

Fligner-
Killeen 

ANOVA  Kruskal-Wallis test 
with Dunn’s test 

NDVI – Start Equal Residuals non-normal 
No group effect 
Species effect 
No interaction effect 

Cap to Pap 

NDVI – End Equal Residuals normal 
Group effect 
Species effect 
No interaction effect 

Cap to Pap 
E to A, B, C  

NDVI – Rewetted Equal Residuals normal 
Group effect 
Species effect 
No interaction effect 

Cap to Pap 
E to A, B, C, D 

 

  

Figure 3.11 – Change in NDVI plotted against change in GPP throughout the 80 days 

experimental regimes. Unfilled symbols show S. capillifolium, filled show S. papillosum. 

Groups A and B show no trend in either species (actually group B in S. papillosum does give 

a significant linear model, but the slope is so small that it is almost non-existent), groups C 

and D show a trend in S. capillifolium but not S. papillosum, group E shows a trend in both. 

The groups which show no trend are plotted in the left-hand graph, whilst those with a 

significant trend are shown in the right-hand graph.  

No trend groups     Significant trend groups 
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3.4.Discussion 

The NDVI paralleled differences in GPP, and also showed a species effect. GPP and NDVI 

of group E did not recover after rewetting. The greatest effect of water stress on Sphagnum 

spp. studied here was in colour changes that could be seen by eye in terms of bleaching and 

quantified using spectral data and indices. Spectral data shows that the red absorption zone 

(630-680 nm) detected drought stress effects in Sphagnum moss. At the end of the watering 

regime period the NDVI could detect a difference between group E and the control group A. 

This suggests that NDVI is a useful tool for monitoring Sphagnum drought stress. Bubier, 

Rock and Crill (1997) recognised that their samples which had been dried and rehydrated 

had shallower chlorophyll absorption features (at 660 nm) than fresh samples, but did not 

consider the significance of this in terms of plant function indexes. Van Gaalen, Flanagan 

and Peddle's (2007) laboratory study, however, did not show significant changes in the red 

absorption feature when their samples were dried to approx. 5 g/g, suggesting either that 

water content needs to be below this to show change in this region of the spectrum, or that 

their experiments were on too short a timescale (hours rather than weeks) to cause 

measurable damage to Sphagnum chlorophyll function. 

In terms of the relationship between optical measures of Sphagnum health by NDVI and its 

photosynthetic performance measured by GPP, the range of change in GPP associated with 

little change in NDVI (see Figure 3.10) in groups A and B for both species suggests that 

NDVI was only sensitive to change in GPP due to drought stress in this experiment and not 

due to other causes. As the other factors influencing GPP were kept as constant as possible 

in this experiment, it is likely that the large range in GPP in groups A and B is primarily due 

to natural fluctuation in photosynthesis. Harris (2008) completed a laboratory study 

comparing photosynthetic efficiency (measured using chlorophyll fluorescence, ФPSII) of 

water limited Sphagnum mosses to spectral indexes. In agreement with the current work, 

Harris’ (2008) study found that the NDVI gave a strong positive correlation with the 

photosynthetic efficiency of all samples pooled (0.68 correlation). This study found a 

correlation of 0.58 between NDVI and GPP for all samples in drought group E.  

Our results suggest that a period of at least 29 days is required to affect Sphagnum carbon 

function (photosynthesis and respiration). This result might, however, be different in field 

conditions as there are several factors which we did not replicate in the lab, for example 

wind increasing evapotranspiration, peat presence affecting water availability and drainage, 

and the composition of rainwater. In August 1995 there was a period of 21 days when only 1 

mm of rainfall fell at Altnaharra meteorological station, suggesting that this length of drought 

is possible but very rare (Met Office, 2012). However, the UKCP09 report (Jenkins et al., 
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2010) suggests a 50% chance of 20% lower summer rainfall in their higher emissions 

scenario for the Forsinard Flows area by 2080. This increases the possibility of a long 

drought period occurring in the future, which could have a negative impact on Sphagnum 

function, and ultimately the presence of blanket bog in this area (Clark et al., 2010).   

Table 3.4 – Previous studies determining optimum water content for carbon function in 

different Sphagnum species.  

Study Species Optimum water 
content 

Notes 

Current study S. capillifolium 
S. papillosum 

15.8 g/g (8.9-21.9) 
27.5 g/g (15.7-
41.5) 

Sphagnum cores, lab 

Robroek et al., 2009 S. rubellum 
S. 
magellanicum 
S. cuspidatum 

Approx. 20 g/g 
Approx. 28 
Approx. 30 

Intact Sphagnum cores, 
lab 

Van Gaalen et al., 2007 S. teres 8-9 g/g Thin samples from 
moss lawn, lab 

Adkinson and 
Humphreys, 2011 

Mixed 
hummock 
species 

5-13 g/g Capitula water content, 
mat flux, field 

Schipperges and 
Rydin, 1998 

S. fuscum 
S. papillosum 
S. 
magellanicum 
S. balticum 
S. cuspidatum 

370-1300 % dry 
wt. 
620-2550 % 
700-1550 %  
600-1500 % 
400-1450 % 

Capitula, lab 

McNeil and 
Waddington, 2003 

S. capillifolium 11.3-26.7 g/g Moss cushion, lab 

Titus, Wagner, & 
Stephens, 1983 

S. fallax 
S. nemoreum 

Approx. 6-11 g/g 
Approx 9 g/g  

Capitula, lab 

 

Our study found that the water effect on GPP corresponded to a quadratic curve, with 

different parameters for the two species tested. Optimum water content for S. capilifollium 

and S. papillosum was found to be 15.8 g/g and 27.5 g/g respectively. Optimum water 

contents for photosynthesis reported in the literature vary (see Table 3.4); Adkinson and 

Humphreys (2011) suggested an optimum water content of 5-13 g/g at their Canadian peat 

bog site in hummock species, whilst Schipperges and Rydin (1998) suggested an optimum 

range of water contents 400-2500 % of dry weight within the capitula (approx. equal to 6-27 

g/g using values from our study for comparison), and McNeil and Waddington (2003) gave 

an optimum of 11.3 to 26.7 g/g in the moss cushion. Robroek et al. (2009) noted the point at 

which water content causes a decrease in GPP to be between approx. 15-25 g/g, whilst Van 

Gaalen et al. (2007) found that GPP decreased above 9 and below 8 g/g dry weight using 

shallow Sphagnum teres mats. Adkinson and Humphreys (2011) found that GPP decreased 
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below capitula water content of 5 g/g in a field experiment at their Canadian peat bog site. 

The optimum water contents found in the current study are within the range given by 

previous studies, and show a lower optimum water content for S. capillifolium, the hummock-

forming species. Studies considering larger Sphagnum samples generally seem to give 

higher optimum water contents than those studying individual capitula, likely due to pockets 

of water held within the Sphagnum cushion.  

We did not find that water input frequency had an effect on carbon function. Group B (full 

water, half days) showed higher than average water contents and lower than average GPP 

and respiration at points throughout the experiment. It may be the case that, as 

measurements were taken within 12 hours of all samples being watered, the samples in 

group B were often above optimum water content on measurement days. However, as there 

are almost no significant differences in measured variables between groups C and D we 

cannot say that the different rainfall frequencies tested in this experiment have a lasting 

impact. 

The decrease and increase in respiration of extreme drought group E suggests two different 

effects. Firstly, the significant decrease during the watering regimes period of the experiment 

concurs with the GPP results suggesting a loss of plant function during this period. The 

literature agrees that Sphagnum respiration also decreases under drought, but apparently at 

a slower pace than GPP (Schipperges and Rydin, 1998; Adkinson and Humphreys, 2011). 

The ratio of GPP:R in the current work is similar at the start and end of the period (although 

the range is greater at the end due to generally smaller values and large variation in both 

GPP and respiration), suggesting that the change in respiration is strongly linked to the 

change in GPP.  

Secondly, we suggest that the sudden increase in group E respiration after rewetting may be 

due to the presence of slime mould and other microorganisms which were decomposing the 

dead Sphagnum matter; slime mould was observed on several of the samples in group E 

after rewetting. An increase in these microorganisms could cause an increase in respiration 

such as was measured (Schipperges and Rydin, 1998; Robroek et al., 2009). Adkinson and 

Humphreys (2011) found the compensation point (GPP=R, NEE=0) to be 5 g/g, whilst 

Schipperges and Rydin (1998) found it to be 100-225% (approx. equal to 3.4-3.8 g/g). In 

contrast, we found that respiration in group E decreased at roughly the same rate as GPP 

and the ratio GPP:R remained similar (see Figure 3.3), which means that compensation 

point was only reached after rewetting when there was a spike in R and very low GPP.  

Several previous studies have assessed the effects of rewetting desiccated Sphagnum (see 

Table 3.5). In this study we rewetted the desiccated Sphagnum for 30 days, but there was 
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little sign of recovery in the GPP of group E. Group E NDVI values were also significantly 

different to all other groups, despite the values of C and D recovering to the level of A and B. 

Schipperges and Rydin (1998) found that totally desiccated Sphagnum did not recover after 

rewetting, although their study did not allow much time (12 hours) for rewetting and recovery. 

In contrast, Robroek et al. (2009) found that their Sphagnum samples were assimilating 

carbon after 16 days of high water table following 23 days of drought treatment, but not to 

the extent of pre-drought treatment assimilation. The lowest water content reached in their 

experiment was approximately 6 g/g, however, compared to this study which reached an 

average of 2.2 g/g in group E by the end of the 80 days drying. McNeil and Waddington 

(2003) found that in Sphagnum which had been dried to 6% Volumetric Moisture Content 

(VMC) (approximately the same as our samples reached) photosynthesis recovered after 20 

days of saturation. Nijp et al. (2014) found that S. fuscum (hummock species) recovered 

after 11 days rewetting following 17 days drought, but hollow-preferring species did not 

recover to pre-desiccation levels after rewetting. Van Gaalen et al. (2007) found that 

Sphagnum respiration increased after rewetting but GPP remained lower than initial values, 

in agreement with this work. Wagner & Titus (1984) found that S. fallax was more tolerant of 

drought periods than S. nemoreum, despite preferring wetter microhabitats. Both species 

showed slow and limited recovery after more than five days of total drought.  

Table 3.5 – Previous studies measuring whether Sphagnum GPP recovered after 

desiccation and rewetting.  

Study Species Minimum water 
content 

Rewetting 
period 

Recovery of 
GPP? 

Current study S. capillifolium 
S. papillosum 

80 days drought, 
2.2 g/g 

30 days No 

Schipperges and 
Rydin, 1998 
(Experiment 3) 

S. fuscum 
S. papillosum 
S. magellanicum 
S. balticum 
S. cuspidatum 

Capitula below 
100 %, 12 days 

12 hrs No 

Robroek et al., 
2009 

S. cuspidatum 
S. magellanicum 
S. rubellum 

23 days drought, 
water table 10 
cm below 
Sphagnum 
surface (6 g/g) 

16 days Yes, but not 
to pre-
drought 
levels 

McNeil and 
Waddington, 
2003 

S. capillifolium 6% VMC, 7 days 20 days Yes 

Nijp et al., 2014 S. fuscum 17 days drought 11 days Yes 

Nijp et al., 2014 Hollow species 17 days drought 11 days Not to pre-
desiccation 
levels 

Van Gaalen et 
al., 2007 

S. teres 2-3 hrs, approx. 
5 g/g 

10 mins No 
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Wagner & Titus, 
1984 

S. fallax 
S. nemoreum 

5 days, 1.2 g/g 30 hours Not to pre-
desiccation 
levels 

 

Figure 3.10 shows that although the NDVI values did increase somewhat after rewetting, it 

was not enough to restore them to pre-experimental levels. This agrees with the GPP of 

Group E showing little recovery after rewetting. The loss of the red light absorption feature in 

group E samples, both before and after rewetting, indicates a significant loss of plant 

function. It is likely that a breakdown of plant cells during extreme desiccation leads to a 

decrease in carbon function which is either entirely irreversible, or certainly slow to recover. 

Future studies should consider monitoring desiccated Sphagnum for longer time periods 

after rewetting to monitor if recovery occurs, and how long it takes. 

In this study, although a majority of the Sphagnum cushion depth was kept in the samples, 

the removal of the upper parts of the plant from the basal stem held in the peat may have 

affected desiccation progress and recovery. Water table movements within the peat can 

have an effect on Sphagnum desiccation (Ketcheson & Price, 2014; Moore & Waddington, 

2015; Weber  et al., 2017), and it is possible that Sphagnum left in situ would have greater 

resilience. Removal of part of the moss cushion could also have increased desiccation from 

the edges by removing contact with surrounding moss (Robroek et al., 2007). Future work 

on intact Sphagnum in a peatland environment would be very useful in furthering this 

research.  

The lack of difference in GPP, respiration or water content between the two species, S. 

capillifolium and S. papillosum, was somewhat surprising. The different environments of the 

two species would suggest that S. papillosum, a lawn-preferring species, would be less 

tolerant to drought than S. capillifolium, a hummock-forming species. This difference 

between hummock and hollow species was suggested by Harris (2008) and Strack and 

Price (2009), although as both these studies only used one sample of each species it may 

be that this was a sample-specific difference rather than a species-specific response. Titus 

et al. (1983) found the opposite effect between two Sphagnum species which preferred 

different microhabitats; they showed that S. fallax, although growing closer to the water table 

than S. nemoreum, actually functions better at low water contents. S. nemoreum was shown 

to have a higher water-holding capacity and more effective capillary transport (Titus and 

Wagner, 1984). 

It may be the case that the habitats of the two species used in this study, S. capillifolium and 

S. papillosum, are too similar to show differential responses to moisture content, although 

the difference in optimum water contents was clear. Robroek et al. (2009) found a species-
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specific difference in carbon assimilation response to water table in a large study using S. 

magellanicum (S. medium), S. cuspidatum and S. rubellum. Schipperges and Rydin (1998) 

tested the response of individual Sphagnum capitula of various species to desiccation, and 

found that those species with a compact growing structure survived drought better than 

those with a loose growing structure. S. capillifolium would be in the former category and S. 

papillosum in the latter, but this had no effect in our experiment. There was however, a 

significant difference between species NDVI values, possibly due to the naturally red 

colouring of S. capillifolium. This difference suggests that the usefulness of the NDVI as a 

tool for monitoring peatland vegetation drought stress may be limited by knowledge of the 

species present. Under natural conditions Sphagnum is often found growing in communities 

of different species, and also mixed with vascular vegetation. Future work should therefore 

consider how variation in plant presence can affect the NDVI signal and its changes under 

drought conditions.  

We found that there was no difference in water content or carbon function between species, 

and that water input frequency did not have a clear impact on carbon function. Water input 

amount did have a clear effect, and drought group E was significantly different to control 

group A in all measured factors at the end of the 80 days. Nijp et al. (2014) and Robroek et 

al. (2009) found that rainfall frequency affected carbon fluxes during dry conditions (defined 

as water table more than 15cm below surface, and 10 cm below surface, respectively), but 

not during wet conditions (defined as optimum for each species, and 1 cm below surface, 

respectively), and it may be the case that the conditions which groups A to D were subjected 

to were never extreme enough for precipitation frequency to have an impact. Future work in 

this area should measure carbon fluxes both before and after experimental watering, and 

also explore small water input impacts on Sphagnum which has been subjected to prolonged 

drought. 

3.5. Conclusions 

We conclude that Sphagnum capillifolium and Sphagnum papillosum from blanket bogs are 

resilient to long (approx. 30 days) drought periods, but once prolonged drought affects 

carbon function significantly, recovery is difficult. The effect of long drought periods can be 

seen in the red zone of the reflectance spectra of Sphagnum, meaning that the NDVI has the 

potential to provide useful information about Sphagnum carbon function. The GPP and NDVI 

of severely desiccated Sphagnum did not recover with rewetting, indicating that such 

spectral indices are not only useful for detecting contemporary water limitation damage, but 

also the longer term effects of such periods even after water tables have risen. The success 

of the NDVI in matching the GPP results from group E is encouraging for researchers who 
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use spectral indices to gain information about peat bogs from remote sensing. The NDVI is 

widely used as a method of estimating plant health from remote sensing (Lees et al., 2018), 

and our work with Sphagnum proves that this index can be a useful tool in peat bog 

ecosystems, particularly in hot and dry seasons when drought damage is predicted. Future 

work should consider how successful the NDVI is in matching changes in carbon fluxes in 

mixed Sphagnum patches, and other peatland vegetation species. We envisage that this 

index will be most informative when used alongside measures of species composition and 

environmental parameters such as temperature.  
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4. Broad-band indices perform as well as hyperspectral indices in estimating peatland 

vegetation photosynthesis and water content 

Lees KJ, Artz RRE, Khomik M, Clark JM, Ritson J, Hancock MH, Cowie NR, & Quaife T 

Abstract 

Peatlands provide important ecosystem services including carbon storage and 

sequestration, and biodiversity conservation. It is therefore important to monitor peatland 

condition, for which remote sensing shows much potential. Moisture content is a crucial 

factor in peatland condition, and carbon storage within these ecosystems relies on 

maintaining a high water table. Most remote sensing products are developed in unsaturated 

environments and it is unclear how well they can perform in peatland ecosystems. This study 

combines results from both laboratory and field experiments to assess the relationship 

between spectral indices and the moisture content and photosynthesis of peatland (blanket 

bog) vegetation. The aim was to consider how well the selected indices perform under a 

range of conditions, and whether more costly hyperspectral indices offer an improvement 

over broad-band indices which can be calculated from freely available satellite data. Two 

Sphagnum moss species with different niches were subjected to 80 days of drought in a 

laboratory experiment in order to judge how well spectral indices can measure changes in 

moisture content in this critical wetland plant genus, and also how well spectral indices 

compare to the resulting changes in photosynthesis. A field study was conducted across 

three sites in Northern Scotland, UK, and considered changes across the main growing 

season March-September. Our results showed that both water indices had similar 

relationships with moisture content in the laboratory, although the correlation was less 

conclusive in the field. All vegetation indices tested were shown to have some relationship 

with Gross Primary Productivity (GPP), but the three best performing vegetation indices 

were the EVI, NDVI and CIm. Overall our results show that broad-band indices such as 

those calculated from freely available MODIS, VIIRS, Sentinel-2, and Landsat satellite data, 

show little disadvantage compared to hyperspectral indices for estimating photosynthesis or 

water content of blanket bog peatland vegetation.  

4.1.Introduction 

Peatlands are an important ecosystem for the sequestration and storage of carbon, and also 

for supporting biological diversity (Minayeva et al., 2017). Peatlands around the world store 

approximately a third of the world’s soil carbon (Gorham, 1991; Turunen et al., 2002), as 

within the waterlogged environment of peat substrates decomposition is limited and so 

organic matter is retained. Many peatlands have, however, been subject to deleterious 

management schemes, including drainage, commercial harvesting, overgrazing, planting for 
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commercial forestry, and burning (Bonn et al., 2016; JNCC, 2011). These processes can 

lower the water table and increase bare peat surfaces, leaving them vulnerable to drought 

and its subsequent effects on photosynthesis of peatland vegetation, and consequently 

carbon sequestration.  

Policy makers are now beginning to see peatland carbon storage as a useful part of efforts 

to mitigate climate change, and peatland restoration is being encouraged (Irving and Zhou, 

2013). It is therefore important to develop cost-effective methods of assessing peatland 

condition and carbon sequestration. Spectral information from peatland vegetation can be 

used for remotely estimating the condition and carbon fluxes of peatlands (Lees et al., 2018).  

Certain spectral indices, including those used in this study, have been shown to correlate 

with both moisture content and carbon fluxes of peatland vegetation (Harris, 2008; Harris et 

al., 2006; Harris et al., 2005; Letendre et al., 2008; Meingast et al., 2014; Van Gaalen et al., 

2007). Vegetation indices can be used to estimate plant health and photosynthesis, whilst 

water indices are useful proxies for moisture. These indices can be used alone to detect 

changes in either GPP or water content, or in combination for more complex analysis of 

peatland condition.  

Hyperspectral data can be used to calculate vegetation indices which precisely align with 

specific plant functions, such as the Photochemical Reflectance Index (PRI) which 

corresponds to the xanthophyll photochemical protective mechanism. These newer indices 

require data which is more expensive and harder to obtain than the data needed by older 

indices such as the Normalised Difference Vegetation Index (NDVI). This study tests the 

accuracy and reliability of both hyperspectral and broad-band indices as proxies for water 

content and photosynthesis under a range of field and laboratory conditions.  

Sphagnum moss is a key genus in peatland formation, and its presence is an indication of 

good blanket bog condition (Bonnet et al., 2009). Peat-forming plants such as Sphagnum 

are well adapted to the wet environment of blanket bogs, and grow less well when water 

tables are low (Harris, 2008; Strack and Price, 2009; Van Gaalen et al., 2007). Many 

Sphagnum species have an optimum water content of approximately twenty times their dry 

weight, and have been shown to decrease photosynthesis as moisture content is reduced 

(Lees et al., in review; McNeil and Waddington, 2003; Robroek et al., 2009). As Sphagnum 

dries beyond a certain threshold it experiences bleaching, which affects the spectral 

reflectance and can be detected by vegetation indices (Bortoluzzi et al., 2006; Bragazza, 

2008; Lees et al., in review.) 

Here we used both laboratory and field experiments to compare spectral indices and 

peatland vegetation under a range of conditions. The laboratory experiments compared two 
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different species of Sphagnum moss (S. capillifolium and S. papillosum) and subjected them 

to drought, in order to measure the effect of water limitation on both carbon fluxes and 

spectral reflectance. The field experiment included carbon flux and spectral reflectance 

measurements over three different peatland areas within the Forsinard Flows reserve 

(northern Scotland) in different conditions (one near-natural site and two at different stages 

of restoration), and measurements were taken across the main growing season. These field 

measurements included a range of typical peatland vegetation, including mosses, sedges 

and dwarf shrubs (see Section 2.3).  

The aim was to assess the usefulness of a mixture of indices which can be calculated from 

the bands of freely available satellite data, in this study referred to as broad-band indices, 

and mono-spectral indices which are calculated using costly data from hyperspectral 

instruments. We chose two indices that estimate moisture content and five that estimate 

plant function for this study. The first water index was the hyperspectral floating Water Band 

Index (fWBI) which considers the water absorption feature between 930 and 980nm. The 

second, broad-band, water index used was the Normalised Difference Water Index (NDWI) 

which uses the difference between NIR (near infrared) and SWIR (short-wave infrared) to 

assess water content. The broad-band plant function indices were the Normalised Difference 

Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI). These both focus on the 

difference between the red and NIR zones of the reflectance spectrum, and the EVI also 

includes the blue band to correct for atmospheric aerosols. The hyperspectral plant function 

indices included the Photochemical Reflectance Index (PRI) which is sensitive to the 

xanthophyll photoprotective mechanism; the Structure Insensitive Pigment Index (SIPI) 

which considers the chlorophyll/carotenoid ratio; and the modified Chlorophyll Index (CIm) 

which focuses on the red-edge (see Tables 4.1 and 4.2).  

All the vegetation indices selected for this study have been shown to correlate with peatland 

vegetation Gross Primary Productivity (GPP), some during drought studies in the laboratory, 

and some in the field (Harris, 2008; Letendre et al., 2008; Van Gaalen et al., 2007). Our work 

here aims to make a thorough examination of the selected indices to determine which give 

the best results in peatland environments. To do this we include both a laboratory study of 

replicate samples of Sphagnum moss cushions which were subjected to a long (80 days) 

period of drought, and a field study carried out over three different sites during the growing 

season.  Our objectives were to determine (1) whether the selected indices correlate with 

water content and GPP, (2) which indices show the clearest and most consistent 

relationships across a range of peatland species and conditions, and (3) whether the 

hyperspectral indices perform better than the broad-band indices.  



75 
 

Table 4.1 –The averaged bands used in this study for broad-band indices compared to the 

bands of commonly used satellites MODIS, Landsat, VIIRS and Sentinel-2. 

Band Wavelengths 
averaged in 
this study 

MODIS Landsat 8 VIIRS Sentinel-2A 
(central 
wavelength/band 
width) 

Blue 450 to 515 nm  Band 3 
(459 to 479 
nm) 

Band 2 
(450 to 512 
nm) 

M3 (478 to 
498 nm) 

Band 2 (447.6 to 
545.6 nm) 

Red 630 to 680 nm Band 1 
(620 to 670 
nm) 

Band 4 
(636 to 673 
nm) 

M6 (662 to 
682 nm) 

Band 4 (645.5 to 
683.5) 

NIR 841 to 876 nm 
(NDWI)/845 to 
885 nm (NDVI 
& EVI) 

Band 2 
(841 to 876 
nm) 

Band 5 
(851 to 879 
nm) 

I2 (846 to 
885 nm) 

Band 8A (848.3 to 
881.3)  

SWIR 1628 to 1652 
nm  

Band 6 
(1628 to 
1652 nm)  

Band 6 
(1566 to 
1651 nm) 

I3 (1580 to 
1640 nm) 

Band 11 (1542.2 
to 1685.2) 

 

Table 4.2 – The water indices and vegetation indices used in this study, their equations and 

relevant references (for the development of the equations in the form used in this study). In 

the equations given in this section ‘R’ subscripted by a number is a single wavelength in a 

mono-spectral index. ‘R’ subscripted by a band name (Table 4.1) indicates a band. Colour 

band equivalents are given in Table 4.1 and shown in Figure 4.2.  

Index Equation Relevant 
references 

Broad-band 
or 
hyperspectral 

Floating Water 
Band Index (fWBI) 

fWBI = R920 / min ( R930 – 980 )  
 

Strachan et al., 
2002; Harris, 
2008 

Hyperspectral 

Normalised Water 
Difference Index 
(NDWI)  

NDWI = ( RNIR - RSWIR )/( RNIR + 
RSWIR ) 

(Gao, 1996) Broad-band 

Normalised 
Difference 
Vegetation Index 
(NDVI) 

NDVI = ( RNIR – Rred )/ ( RNIR + 
Rred ) 
 

Rouse et al., 
1974 

Broad-band 

Enhanced 
Vegetation Index 
(EVI) 

EVI = 2.5 x (( RNIR – Rred )/( 
RNIR + 6 x Rred + 7.5 x Rblue + 
1))  
 

Didan et al., 2015 Broad-band 

Photochemical 
Reflectance Index 
(PRI) 

PRI = ( R531 - R570 )/ ( R531 + 
R570) 
 

Gamon et al. 
1992; Penuelas 
et al., 1995; Van 
Gaalen et al., 
2007 

Hyperspectral 
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Structurally 
Insensitive Pigment 
Index (SIPI) 

SIPI = ( R800 – R445 )/( R800 – 
R680 ) 
 

Penuelas et al., 
1995; Harris, 
2008 

Hyperspectral 

Modified 
Chlorophyll Index 

CIm = ( R750  - R705 )/( R750 + 
R705 – 2 x R445 ) 

Sims and Gamon, 
2002 

Hyperspectral 

 

4.2.Method 

4.2.1. Field site 

The field site for this study was the Forsinard Flows RSPB reserve 

(https://www.rspb.org.uk/reserves-and-events/reserves-a-z/forsinard-flows/) in North 

Scotland (approx. 58.3552, -3.9993 to 58.4458, -3.6972 WGS84, see Figure 4.1). This site is 

part of the 4,000 km2 Flow Country blanket bog; Europe’s largest blanket bog (Lindsay et al., 

1988), of which approximately 1,300 km2 is protected under EU Habitats and Birds 

Directives. The area includes extensive blanket bogs with only minor human impacts 

(Littlewood et al., 2010) and lightly grazed by deer. These areas are referred to here as 

‘near-natural’. Other areas of the Flow Country were planted with non-native conifers for 

commercial forestry, and in many areas, including in Forsinard Flows, the trees have been 

felled and the sites are now undergoing restoration. In many of the restoration sites the 

landscape still shows distinctive furrows and ridges from the drainage ditches created for 

forestry. More information about the specific areas of the site used in this study is given in 

Section 2.3.  

 

Figure 4.1 -  Map of the northern Scottish mainland showing peatland areas in dark brown 

(British Geological Survey, 2007), the Forsinard Flows RSPB reserve in orange (European 

        Deep peat 

         Other 

         Field sites 

         Forsinard Flows 

         Altnaharra 

https://www.rspb.org.uk/reserves-and-events/reserves-a-z/forsinard-flows/
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Environment Agency, 2017), the three field sites as red circles, and the meteorological 

station at Altnaharra as a blue square. The peatland dominated landscapes in this area are 

referred to as the ‘Flow Country’.   

The nearest meteorological station with daily data available was Altnaharra, approximately 

35 km south-west of the Forsinard Flows reserve (see Figure 4.1). This has been used for 

weather data in Section 3.2.1.  

4.2.2. Laboratory experiment 

This experiment was designed to assess whether the relationship between the selected 

vegetation indices and GPP, and between the selected water indices and water content, 

remains constant under extreme water limitation conditions in key peat-forming Sphagnum 

species.  

Two Sphagnum species, S. capillifolium and S. papillosum, were selected. Both species are 

commonly found at our study sites but prefer different microhabitats. S. capillifolium is 

hummock-forming, red to green in appearance, with hemi-spherical capitula (Laine et al., 

2009). S. papillosum is green to yellow-brown, prefers wetter conditions and grows in 

carpets (Laine et al., 2009). S. capillifolium is also more tolerant to disturbance than S. 

papillosum, and is one of the first species to re-colonise areas of peatland undergoing 

restoration (RSPB, unpublished data).  

Samples of each species were collected from the Forsinard Flows RSPB reserve in PVC 

tubing 6 cm deep and 10 cm diameter during September 2016. The samples were kept 

moist and transported from the field to the laboratory in a coolbox over a period of 3 days. 

Once in the laboratory the samples were placed in 1 litre, straight-sided, clear polycarbonate 

jars and maintained in a growth cabinet (Panasonic MLR-352H-PE) on a 12-hour day and 

12-hour night cycle (similar to conditions in the field during the collection period in 

September). During the day the growth cabinet was kept at maximum light levels (20,000 lx), 

15˚C, and 70% relative humidity (slightly lower than the average at the site to aid drying of 

samples). At night the cabinet was dark, at 5˚C, and the humidity was unregulated.  

When the samples first arrived in the laboratory they were inundated with deionised water 

(for consistency with previous studies eg. Clark et al., 2012, 2006) and the excess drained 

off manually to bring them to saturation. After a week-long acclimatisation period, during 

which the samples were regularly watered (also with deionised water) to maintain saturation, 

four samples of each species were subjected to total drought for 80 days. This length of 

drought would be very unlikely in the field but was used to analyse complete desiccation. 

Three times per fortnight (every 4-5 days) the CO2 fluxes of all the samples were measured. 
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The flux measurements were taken using a LICOR-8100 (LICOR Inc., Lincoln, Nebraska, 

USA) and a clear polycarbonate custom-built chamber (13 cm tall, 11 cm diameter). Each 

sample was brought out of the growth cabinet and placed under a high-pressure sodium 

growth lamp (Philips Belgium 9M SON-T-AGROO 400) in a laboratory in order to keep light 

levels as constant as possible. The clear chamber was placed over the sample using a foam 

seal and a 90 second measurement taken of Net Ecosystem Exchange (NEE). A blackout 

cloth cover was then placed over the chamber, and the measurement taken again to gather 

net respiration data (Rtot). The Gross Primary Productivity (GPP) was calculated as the 

difference between the light and dark chamber results. Four weeks into the study, we 

observed that variation in ambient lighting affected our results. Therefore, from that point 

onwards we measured photosynthetically active radiation (PAR) during each experiment. 

This allowed us to correct later results. Earlier results were corrected by estimating PAR 

from measurement time (see Appendix A). 

Samples were weighed three times a week before and after watering throughout the 

experiment. At the end of the experiment the samples were dried in a laboratory oven at 

70˚C for 72 hours, and the dry weights measured to retrospectively calculate moisture 

content. This method assumes there was no significant growth in the Sphagnum samples 

during the experimental period. All moisture contents are given in grams fresh weight/grams 

dry weight (g/g). 

Spectral reflectance was measured using a Ger3700 spectrometer (Geophysical and 

Environmental Research Corp., 1999) mounted in a dark room with a single constant light 

source (1000 W high-intensity halogen lamp at an angle of 45° and a distance of 0.5 m). 

Each sample was placed under the spectrometer and a measurement taken of the central 

area of the sample (approximately 4 cm diameter); the sample was then rotated by 

approximately 120˚ for a second measurement and rotated again for a third measurement. 

The average of these three spectra was taken to compensate for potential structural effects. 

Reference spectra, using a spectralon panel, were taken between samples and used to 

convert the measured radiances to reflectances (Salisbury, 1998).  

4.2.3. Field experiment  

This experiment was designed to assess how the selected vegetation indices and GPP vary 

spatially and temporally across the growing season of a typical peatland with a mix of 

vegetation species. This experiment also considers the use of the selected water indices to 

estimate moisture content in the field, and whether these indices are aligned with Water 

Table Depth (WTD) and soil moisture measurements. 
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This study used three sites within the Forsinard Flows RSPB reserve. Two of these were ex-

forestry sites on deep peat, being restored towards blanket bog (Hancock et al., 2018):  

Lonielist, which was felled in 2003-04, and Talaheel, which was felled in 1998 and was 

subject to further hydrological management in 2015/16 whereby plough furrows were 

dammed. The third site was at Cross Lochs (Levy and Gray, 2015); this area of intact bog 

was considered to be a near-natural control. All three sites had an Eddy Covariance (EC) 

tower installed. At each of the sites eight plots were located along two perpendicular 

transects. The transects were arranged within the footprint of the EC towers according to the 

size of the tower footprint and the dominant wind directions (Hambley, 2016). At Lonielist the 

main transect was 80 m and the secondary transect was 60 m, with all plots 20 m apart. At 

Talaheel the transects were 100 m and 75 m with the plots 25 m apart, and at Cross Lochs 

the transects were 120 m and 90 m with plots 30 m apart.  

At each plot two PVC collars (24 cm in diameter) were located one on higher ground (ridges 

in the restored sites, hummocks at Cross Lochs) and one on lower ground (in the furrows at 

the restored sites, lawns at Cross Lochs). The vegetation within the collars included various 

species of typical blanket bog vegetation, including the Sphagnum mosses used in the 

laboratory experiment, but also other mosses, sedges Cyperaceae, and dwarf shrubs 

Ericaceae (see Appendix B for tables of vegetation species, and example photos). The 

percentage cover of each species within the collars was estimated and used to assess which 

collars were Sphagnum-dominated (over 50% cover). The Lonielist site set-up included 

manually monitored dipwells used to record WTD (Rydin and Jeglum, 2013) paired with 

each of the collars. Measurements, including CO2 fluxes, spectral reflectance, and 

environmental conditions, were taken once a month during the 2017 growing season March 

to September.  

CO2 flux measurements were taken using a LICOR-8100 (LICOR Inc., Lincoln, Nebraska, 

USA) and clear Perspex custom-built chambers (24 cm diameter, 30 cm height). Small 

battery-operated fans were installed within the chambers to circulate the air. Light (NEE) and 

dark (Rtot) measurements were taken as consecutive measurements, sealing to the 

chamber with rubber mastic (Terostat). Each measurement was taken for five minutes, with 

a 20 second pre-measurement period for stabilisation.  

Spectral measurements in the field were taken using a handheld SVC HR-1024 

spectroradiometer mounted on a monopod and held approximately 1m from the surface. 

Three measurements were taken of the vegetation within each collar, rotated between each 

measurement by approx. 90˚ whilst avoiding shadow creation, to minimise structural effects. 
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A spectralon reference panel was used before each measurement to correct for changing 

light conditions.  

Photosynthetically Active Radiation (PAR) was measured using a sensor planted in the peat 

outside the chamber and connected to the Licor-8100. Soil moisture was measured using a 

moisture probe (ThetaKit moisture meter, 6 cm, Dynamax) and the dipwells at Lonielist were 

manually monitored. Soil temperature was measured at 5 cm and 15 cm from the moss 

surface (lollipop thermometer, Fisherbrand, accurate to ±1˚C) and surface temperature 

inside the chamber at the start and end of each measurement.  

4.2.4. Indices 

The indices used in this study were all calculated using reflectance values averaged over a 

range of wavelengths which can be compared to those used by different satellites (see Table 

4.1 and Figure 4.2).  

 

Figure 4.2 – Spectral reflectance graph of a healthy sample of S. papillosum, showing the 

ranges and wavelengths used by the indices in this study.  
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4.2.4.1. Water indices 

The water indices used in this study are shown in Table 4.2. The fWBI was calculated 

following Strachan et al. (2002) on the rationale that the water absorption feature is not static 

but shifts between 930 and 980nm. This is compared to a reference wavelength at 920nm as 

used by Harris (2008). The NDWI was calculated using the NIR and SWIR ranges. The 

SWIR is affected by both the vegetation chlorophyll and the water content, whilst the NIR is 

not affected by water content.  

4.2.4.2. Plant function indices 

The vegetation indices used in this study are shown in Table 4.2. The NDVI is a broad-band 

index which focuses on the difference between the red light absorbed by healthy vegetation 

and the NIR reflected. The equation for EVI follows the calculation of the MOD13 product 

(Didan et al., 2015), and is less sensitive to atmospheric aerosols and saturation over dense 

canopies than the NDVI (Huete et al., 2002). 

The PRI calculation follows Gamon et al. (1992) and Penuelas et al. (1995).The PRI works 

on the principle that 531 nm is the wavelength at which the xanthophyll photoprotective 

mechanism can be detected, and is therefore a direct measure of light use efficiency in 

plants (Gamon et al., 1992). 570 nm was used as the reference wavelength following Van 

Gaalen et al. (2007).  

The SIPI developed by Penuelas et al. (1995) considers the chlorophyll/carotenoid ratio, 

which Harris (2008) found to increase as photosynthesis decreases.  

The CIm makes use of the red-edge principle, which considers the movement of the 

boundary between the red absorption zone and the NIR reflectance region. Adding R445 to 

the equation is a measure of surface reflectance not affected by chlorophyll or carotenoids, 

to compensate for generally high leaf reflectance (Sims and Gamon, 2002).  

4.2.5. Statistical analysis 

4.2.5.1. Laboratory analysis 

In order to create composite models and to perform comparative statistics, the laboratory 

data for all samples were binned into twelve groups of equal size using the water content for 

water indices analysis and the GPP for vegetation indices analysis (using R package 

ggplot2, Wickham, 2016). For the water indices analysis the two species were binned 

separately, as the relationship to the water indices was found to be species dependent in a 

mixed effects model. A value of 1 was subtracted from the fWBI values to create an index 

with a starting value of 0, and for NDWI a value of 0.1 was subtracted for the same reason. 
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The relationship between both water indices and water content (binned data for each 

species) was fitted to a linear model and an alternative Gompertz function model, and 

Akaike information criterion (AIC) was used to compare the fit of the two models. Gompertz 

functions are similar to logistic growth functions, but do not have the assumption of centrality 

and symmetry in the point of inflection (Vieira and Hoffmann, 1977).  

To assess the relationships between each vegetation index and GPP in the laboratory study, 

both linear and polynomial regression models of 2nd order were first assessed using the data 

averaged within 12 GPP bins of equal count. AIC was used to assess the relative quality of 

each model. For all five vegetation indices tested, a linear model was found to be better than 

a polynomial model. A linear mixed model including species and sample was therefore fitted 

to the data for each index. The Breusch-Pagan test for heteroscedasticity (package lmtest, 

Zeileis and Hothorn, 2002) was applied to the models, and if heteroscedasticity was present 

a Box-Cox transformation (package EnvStats, Millard, 2013) was applied to the index data 

series.  

4.2.5.2. Field analysis 

In order to consider the relationship with soil moisture deficit (SMD), rainfall amounts, 

sunshine hours, temperatures, relative humidities and wind speeds were downloaded for the 

Altnaharra meteorological station (Met Office, 2012). Reference evapotranspiration was 

calculated using the Penman-Monteith equation following Zotarelli et al. (2010), and gaps 

were filled by averaging the evapotranspiration of the two days on either side of the gap. Soil 

moisture deficit was calculated using the previous day’s SMD, rainfall data, and the 

reference evapotranspiration. Field capacity was assumed to be -10 mm, and if SMD was 

ever less than -10 mm and rainfall was also less than 10 mm during the following 24 hour 

period, then a drainage term equalling half the excessive water was introduced.  

A fitted logarithmic model (calculated using all field data combined) was used to correct for 

the effects of PAR on GPP in the field: 

GPPcorrected = GPP - 0.9 ×ln(PAR) +2.51  

Heinemeyer et al. (2013) found that the relationship between PAR outside and inside a 

similar Perspex chamber was linear, with a 34% decrease due to the chamber. We have 

assumed that a linear relationship between internal and external PAR is true in this study, 

and so the logarithmic correction applied to the GPP is the same in both cases. 

For the field measurements of GPP, a linear model incorporating GPP and month as 

independent variables, and assessing the interaction between them, was used.  
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All statistical work was done in R (R Core Team, 2017).  

4.3.Results 

4.3.1. Laboratory results 

4.3.1.1. Moisture content 

 

Figure 4.3 – The change in average water content and NDWI of all 8 microcosms over the 

80 day experimental drought period, with standard deviation of values shown as coloured 

areas. The two datasets are offset by half a day in this plot (actually taken within 10 hours of 

each other) so both are visible.  

The changes in water content and the NDWI across the experimental period are shown in 

Figure 4.3. The water content decreased steadily across the experimental period until about 

day 40, when the decrease slowed. Meanwhile the NDWI had the most rapid period of 

decrease between approximately day 20 and day 40. The relationships between Sphagnum 

moisture content and the two water indices (fWBI and NDWI) therefore showed a non-linear 

increase for both species (Figure 4.4). For both indices, the relationship with moisture 

content for the S. capillifolium samples fitted well to Gompertz functions, with little variation 

of the indices at high and low moisture contents and a rapid change between (see Figure 

4.4A and 4.4C). S. papillosum, however, did not conform as consistently to this pattern for 

both indices. The NDWI and fWBI of S. papillosum samples continued to increase, albeit at a 

slower rate, whereas the fitted Gompertz functions predict an upper limit. In general, the 

relationship between indices and moisture content showed more scatter for S. papillosum. 
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Figure 4.4 –A: Relationship between water content and fWBI for S. capillifolium samples. B: 

Relationship between water content and fWBI for S. papillosum. C: Relationship between 

water content and NDWI for S. capillifolium samples. D: Relationship between water content 

and NDWI for S. papillosum samples. Gompertz functions fitted using the binned water 

content data for each species are shown as lines to illustrate the relationships.  

4.3.1.2. GPP  

The linear mixed model for the NDVI relationship with GPP was highly significant (p<0.001, 

R2 = 0.38) and showed no significant effects or interactions of species or sample (see Figure 

4.5A). The same was true for the EVI (p<0.001, R2 = 0.44, see Figure 4.5B).  

The model for the CIm showed heteroscedasticity, and so a Box-Cox transformation was 

applied to the dataset. The model using transformed data was highly significant (p<0.001, 

R2=0.43, see Figure 4.5C) and showed no significant effects or interactions apart from an 

effect of sample ‘CapE3’ (p<0.05). The SIPI model also required transformation, and the 

resulting model was also highly significant (p<0.001, R2 = 0.32, see Figure 4.5D) with no 

effects or interactions other than an effect of ‘CapE3’ (p<0.05).  

 

C      S. capillifolium   D         S. papillosum 

A     S. capillifolium   B        S. papillosum 
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Figure 4.5 – Relationships between GPP and vegetation indices for the eight laboratory 

samples. The graphs showing SIPI (D) and CIm (E) use the transformed data. Black lines 

show the models fitted to averaged binned data. The graph showing PRI (C) includes the 

linear model for S. capillifolium, and the polynomial for S. papillosum. Black symbols are for 

S. papillosum, white symbols for S. capillifolium. Numbers in the legends refer to the 

individual microcosms.  

 A           B 

 C           D 

E 



86 
 

The PRI model also showed heteroscedasticity, and this was not improved by applying a 

Box-Cox transformation. The model showed a significant species effect, so we decided to fit 

the two Sphagnum species separately. A linear model was found to be the best option for 

the binned data of S. capillifolium alone. The linear mixed model, including GPP and sample, 

for S. capillifolium was highly significant (p<0.001, R2 = 0.50), and did not show 

heteroscedasticity. It did show a significant effect for sample ‘CapE4’, and also a significant 

interaction of ‘CapE4’ with GPP. S. papillosum, however, did not conform well to a linear 

model. The binned data showed a significant (p<0.05) polynomial relationship (see Figure 

4.5E).  

4.3.2. Field results  

4.3.2.1. Moisture content 

Figure 4.6 shows the seasonal changes in SMD over the growing season compared to the 

measurements of moisture content and WTD. The SMD values were negative throughout 

most of the growing season, indicating high water levels. Likewise, the soil moisture results 

were mostly close to the maximum for saturation and did not show much variation. The 

results were somewhat difficult to interpret due to the low temporal frequency of 

measurements and generally wet conditions, but the linear relationships between soil 

moisture and SMD at Talaheel and Cross Lochs were significant at the 90% level (p-values 

of 0.066 and 0.063). WTD at Lonielist had a highly significant linear relationship with SMD 

(R2 = 0.18, p-value = 0.0001).  

Neither the soil moisture nor the WTD had a clear relationship with either of the two water 

indices. Figure 4.6 compares the NDWI and fWBI to the SMD. Again, the results of the 

measured variables had large ranges and therefore it was difficult to interpret relationships 

with SMD, but some agreement can be seen. There was a significant linear relationship 

between SMD and the NDWI at Lonielist (R2 = 0.26, p-value = 0), and at Talaheel (R2 = 

0.057, p-value = 0.017). There was also a significant linear relationship between SMD and 

the fWBI at Lonielist (0.17, 0.00045).  
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Figure 4.6 – SMD data from Altnaharra compared to average Water Table Depth (WTD) at 

Lonielist (top left) and soil moisture measured in the field (bottom left), compared to average 

NDWI (top right) and fWBI (bottom right) (n=9 to 16).  

4.3.2.2. GPP  

The mixed effects linear regression model for NDVI showed a significant relationship with 

GPP, and also a significant interaction between GPP and month in every month. This 

indicates that the slope of the relationship between GPP and NDVI varies across the 

seasons (see Figure 4.7). The adjusted R2 of the model was 0.49 (p<0.001). The same 

model interactions were true of the EVI (R2 0.54, p<0.001), and the SIPI (R2 0.48, p<0.001).  

The CIm regression model showed a strongly significant relationship with GPP, but fewer 

significant interactions with months. This suggests that the slope of the relationship between 

GPP and CIm is less affected by seasonality (month) than it is for the NDVI or EVI. The 

adjusted R2 of this model was 0.60 (p<0.001).  

The regression model for PRI is significant (p<0.01), but shows no significant effects or 

interactions, and has a very small R2 value of 0.068.  
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When each month was considered individually, the NDVI showed significant relationships 

with GPP for every month apart from April and June (see Figure 4.7); these two months had 

poor weather conditions which prevented full dataset collection. The linear model for March 

had a much steeper slope than the other months (0.073 compared to a range of 0.020 to 

0.022). This pattern was also true of the EVI, CIm and SIPI.  

 

Figure 4.7 – Relationships between GPP and NDVI for each month in the field. Lines show 

the significant (p<0.05) linear models for each month in different colours.  

4.3.3 Field and laboratory comparison 

The range of values seen in the field for the two water indices was towards the lower end of 

the range seen in the lab (monthly averages of 0.062 to 0.25 compared to measurement day 

averages of 0.12 to 0.81 for the NDWI). The field collars which were Sphagnum-dominated 

(Sphagnum coverage of over 50%), however, had higher average NDWI values than the 

non-Sphagnum-dominated collars in every month.  

Figure 4.8 shows the relationship of NDVI with both laboratory and field values. The slope of 

the laboratory results was much steeper than that obtained for the field results, and the slope 

of the field results for March was closer to the laboratory results than the July relationship. 

The slope of the collars which were Sphagnum dominated was also closer to the slope of 
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laboratory results than the model for all field collars. Similar variations in slope between 

laboratory results, field results, months, and Sphagnum, were seen in EVI, CIm, and SIPI.  

 

Figure 4.8 – Comparison of lab results with March and July field results. The black circles 

and line show the laboratory data binned by GPP. The filled symbols and solid lines show 

only the field collars with a proportion of Sphagnum over 50%, the unfilled symbols and 

dashed lines show all the field collars.  

4.4.Discussion  

4.4.1. Moisture content 

The results from these experiments showed that both water indices tested, the fWBI and 

NDWI, had positive correlations with moisture content in the laboratory study on single 

Sphagnum species, and a link with SMD in the field on mixed, Sphagnum-rich peatland 

vegetation. This agrees with previous studies (Harris, 2008; Letendre et al., 2008; Van 

Gaalen et al., 2007) that have also found good correlations between moisture content and 

water indices in Sphagnum species (S. teres; S. rubellum, S. fuscum, S. magellanicum, and 

S. fallax;  S. pulchrum, S. tenellum, S. capillifolium, S. subnitens, and S. papillosum). 

Letendre et al. (2008) calculated a Pearson’s correlation coefficient of 0.77 for water content 

and the NDWI of four replicates of three different Sphagnum species, and higher correlations 

for each species considered separately. Within their study only S. fuscum showed a pattern 

similar to the Gompertz function (they did not use S. capillifolium or S. papillosum).  
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Van Gaalen et al. (2007) found strong linear relationships between water content and the 

Water Band Index (a precursor of the fWBI) for three samples of different Sphagnum 

species. Their water content results were in the range of 5 to 20 g/g, however, and it was 

mainly beyond this range that our results showed saturation of the water index signals; a 

wider range of water contents might have shown a non-linear pattern.   

In agreement with the current work, Letendre et al. (2008) and Harris et al. (2005) found that 

relationships between water indices (NDWI, Water Index (WI), Relative Depth Index (RDI), 

and two different formulations of fWBI, Moisture Stress Index (MSI), respectively) and water 

content were species specific. In this study we found that S. papillosum showed less clear 

saturation of the water indices signals at higher water contents, possibly because it prefers 

wetter microhabitats compared to S. capillifolium.  

Although statistical testing of the field data did not show any significant relationships 

between soil moisture or WTD and either of the two indices, it appears that soil moisture, 

WTD and the water indices may all be linked to SMD. Harris et al. (2006) did find significant 

relationships between the fWBI and the moisture content in the top 6 cm (measured using a 

ThetaProbe), and between the fWBI and water table depth, at their study site at Cors 

Fochno, Wales. The relationship was particularly clear in their data from September 2002, 

when rainfall was less than half the average precipitation for the month. This indicates that 

the relationship between soil moisture and water indices may be stronger when a larger 

range of water contents is included, and our study period was continuously wet as indicated 

by the SMD values that were negative for almost the entire growing season except a short 

period in May. It is in this dryer May period that a decrease in water table depth and soil 

moisture, and also in both water indices, was observed. Future studies assessing the 

performance of these indices during drought periods in the field would be useful.  

There does appear to be a connection between SMD and the two water indices in the field, 

and between SMD, soil moisture, and WTD. This suggests that the relationships between 

WTD, SMD, and the wavelengths used in water indices are not straightforward and require 

further investigation. Future work in this area should consider measuring water indices in the 

field at higher temporal frequencies to aid comparison with SMD, WTD, and precipitation 

data, and thereby improve our understanding of these relationships. WTD and moisture 

content are key indicators of peatland health, and developing our understanding of the 

connection between water indices and these variables in the field is key to furthering the use 

of such indices in peatland monitoring.  

It is interesting that the field values from the two water indices were mainly in the lower part 

of the range seen in the laboratory study. This would suggest that the collars measured in 
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the field were drier than the saturated Sphagnum samples, which is probably indicative of 

the wider mix of vegetation that was present in the collars (i.e. not just Sphagnum). This is 

supported by the Sphagnum-dominated collars having higher NDWI values than the other 

collars. The optimum plant tissue water content for Sphagnum mosses is around twenty 

times their dry weight, but much less for other plants such as shrubs and sedges also 

present at our field sites (Arroyo-Mora et al., 2018; Hancock et al., 2018).  

In the field data, the NDWI appears to have a closer relationship with SMD than the fWBI. 

Meingast et al. (2014), in contrast, found that the fWBI performed better than the NDWI in 

the field, although they used a hyperspectral formulation of NDWI rather than the broad-

band formulation used in the current study. In the laboratory study, both Sphagnum species 

could be fitted with Gompertz functions, although the fit was better for S. capillifolium. We 

can therefore suggest that the NDWI is at least as useful as the fWBI in both the field and 

the laboratory experiments completed for this study.  

4.4.2. GPP 

The three best performing indices, the NDVI, EVI and Clm, are all based on the difference 

between the red and the NIR reflectance. The PRI has no connection to the red absorption 

band, and the SIPI only makes slight use of the wavelengths in this region.  

The poor performance of the PRI contrasts with Van Gaalen et al.’s (2007) work, which 

indicated a good relationship between PRI and photosynthesis. However, their experiments 

were over much shorter timescales (minutes rather than weeks or months); PRI may 

therefore be effective in providing information about short-term changes in Sphagnum 

carbon flux, but not as useful in longer-term studies such as those involving satellite data. 

Harris (2008) agrees with the current work in finding that PRI has a poor correlation with 

photosynthetic efficiency pooled amongst different Sphagnum species. Harris (2008) 

suggested that this might be due to species-specific differences, which is supported by our 

findings that PRI has a more linear relationship with GPP changes in S. capillifolium than in 

S. papillosum. Interestingly, Van Gaalen et al. (2007) and Harris (2008) found most 

relationships between photosynthesis and PRI to be positive, whereas all significant 

relationships in this study were negative. This may be due to the time period over which 

measurements were taken; it is possible that the xanthophyll mechanism is also limited by 

prolonged drought. Another cause might be changes in the physical structure of the 

Sphagnum affecting light scattering and so disrupting the clarity of the wavelengths 

measured to calculate the PRI. Sims et al. (2006) found that the PRI relationship with light 

use efficiency changed dramatically at their Californian heathland study site during a severe 

drought year in comparison with wetter years. Cole et al. (2014) found that the PRI is very 
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sensitive to the differences between bryophytes, shrubs and graminoids, particularly in the 

summer months. This may explain why the field experiment showed little agreement 

between GPP and PRI on collars containing mixed vegetation, and therefore limits the 

usefulness of this index for estimating photosynthesis in the field.  

Harris (2008) showed results from a laboratory study comparing photosynthetic efficiency 

(measured using chlorophyll fluorescence, ФPSII) of water limited Sphagnum mosses to 

spectral indices. In agreement with the current work, Harris’ (2008) study found that the 

NDVI gave a strong positive correlation with the photosynthesis of all samples (0.68 

Pearson’s correlation). However, Harris (2008) found that SIPI gave a better correlation with 

pooled photosynthetic efficiency data from all samples (-0.76). In our study, the SIPI gave 

significant results in both the field and the laboratory, but the agreement with GPP was not 

as strong as the NDVI, EVI or Clm.  

Letendre et al. (2008) also completed a field study comparing chamber carbon fluxes with 

spectral data from a handheld spectroradiometer but found that NDVI explained only 15% of 

the variation in GPP, whilst CIm explained 57%. Our study showed similar results for CIm, 

with GPP explaining 60% of the variance in CIm in the field (and 43% in the lab), but we 

showed much stronger relationships for NDVI than Letendre et al. (2008), with GPP 

explaining 49% of the variance in NDVI in the field (and 38% in the lab).  

The two indices which make use of the difference between the red and NIR zones (NDVI 

and EVI), and the CIm that uses the red-edge, show good results for both the lab and field 

experiments, although the field relationship appeared to vary by time of year. The slope of 

the relationship between these three indices and GPP in the lab work was closest to the 

steeper slope seen in March in the field data, compared to the shallower slopes later in the 

season. The slope of the relationship for Sphagnum-dominated collars was also steeper 

than that of all collars combined, indicating that Sphagnum has a steeper slope of 

relationship between GPP and the red:NIR relationship than other (vascular) bog plants. As 

Sphagnum is a more dominant component of GPP in the field earlier in the year, before 

vascular plants have greened up/sprouted up, this would explain the steeper slope in March. 

This agrees with Whiting's, (1994) findings that Sphagnum may give unusually high NDVI 

values compared to other blanket bog vegetation, due to its higher NIR reflectance. There is 

therefore potential for these indices to be used to give an indication of the proportional 

presence of Sphagnum in certain areas. The difference in slopes at different times of the 

year could be compensated for in a model that uses NDVI or EVI by adding a seasonal 

component, or a temperature component, as seen in Lees et al. (in press). This method 

would allow a linear relationship between GPP and the vegetation index to be assumed, but 
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would reduce the unrealistically high values of GPP estimated in the colder months over 

peatland areas where Sphagnum is present  

4.5. Conclusions 

Both the water indices considered in this work had significant relationships with the moisture 

contents measured in the laboratory. There was a possible link with SMD in the field, but the 

temporal spread of the available data made the evidence inconclusive. Further studies into 

the correlation between SMD and water indices at peatland sites would be beneficial.  

All vegetation indices tested in this study gave significant relationships with GPP in the 

laboratory and the field, although the PRI was clearly the least successful. The indices which 

focused on the difference between the red and NIR zones (NDVI and EVI), and the CIm 

which uses the red-edge, gave the best agreement with GPP in both the field and the 

laboratory. The slope of the laboratory indices, using only Sphagnum, were steeper than 

those from the field which include a variety of vegetation.  

Overall, this study suggests that broad-band indices such as the NDWI, NDVI and EVI give 

good agreement with vegetation moisture content and GPP from the Forsinard Flows 

reserve. Therefore, we conclude that broad-band indices derived from freely available 

satellite data offer much potential to estimate moisture content and vegetation productivity of 

peatlands. This approach could be developed, with further testing, to allow cheap, widescale 

monitoring of peatland condition for biodiversity and climate regulation. 
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5. Remote Sensing data suggests peat bogs undergoing restoration regain full 

photosynthesis capacity after five to ten years. 

Lees KJ, Quaife T, Artz RRE, Khomik M, Sottocornola M, Kiely G, Hambley G, Hill T, 

Saunders M, Cowie NR , Ritson J & Clark JM  

Abstract 

Peatlands are an important part of the Earth’s carbon cycle, comprising approximately one 

third of the global terrestrial carbon store. However, peatlands are sensitive to climatic 

change, atmospheric deposition, and human management, resulting in the degradation of 

many peatland ecosystems which causes them to act as a net carbon source. Restoration 

work is being undertaken at many sites around the world, but monitoring the success of 

these schemes can be difficult and costly using traditional field-based methods. A 

landscape-scale alternative is to use satellite data in order to assess the condition of 

peatlands and to estimate gaseous carbon fluxes. In this study we used Moderate 

Resolution Imaging Spectroradiometer (MODIS) products from 2004 to present, to model 

Gross Primary Productivity (GPP) over peatland sites at various stages of restoration, in 

order to develop a cost-effective way to monitor the impact of restoration progress on carbon 

fluxes. We found that the MOD17A2H GPP product overestimates GPP modelled from data 

collected by eddy covariance towers situated at two ex-forestry sites undergoing restoration 

towards blanket bog at the Forsinard Flows RSPB reserve, Scotland, UK (one full year of 

data), and a near-natural bog site in Glencar, Ireland (ten-year data series). We calibrated a 

Temperature and Greenness (TG) model for the Forsinard sites and found it to be more 

accurate than the MODIS GPP product at local scale. We also found that inclusion of a 

wetness factor using the Normalised Difference Water Index (NDWI) improved inter-annual 

accuracy of the model. This TGWa (annual Temperature, Greenness and Wetness) model 

was then applied to six control sites comprising near-natural bog across the reserve, and to 

six sites on which restoration began between 1998 and 2006. GPP from 2005-2016 was 

estimated for each site using the model. The resulting modelled trends are positive at all six 

restored sites, indicating a clear increase in GPP with time since restoration at sites in the 

Forsinard Flows reserve. The results suggest that the GPP of peatland sites at Forsinard 

Flows reserve undergoing restoration increases by approximately 5.5 g C/m2/yr every year 

since restoration began, and that they reach the carbon assimilation potential of near-natural 

bog sites between 5 to 10 years after restoration was begun.  

5.1. Introduction 

Peatlands are one of the most effective terrestrial ecosystems for the long-term 

sequestration of carbon (C), and as such are a key natural resource in combatting climate 
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change (Parish et al., 2008). Due to the unique vegetation composition and semi-

permanently water-saturated state of pristine and near-natural peatlands, photosynthetic 

carbon uptake exceeds decomposition losses, and so a small fraction of the carbon taken up 

through photosynthesis is not lost to the atmosphere, but becomes a new layer of peat which 

can remain in the ecosystem for thousands of years (Yu, 2012; Rydin and Jeglum, 2013). 

Many peatlands in the British Isles, however, have experienced large scale degradation 

through land management schemes such as drainage, peat cutting, and commercial 

afforestation or agriculture (Holden et al., 2007). This means that landscapes which were 

once net carbon sinks are now emitting carbon into the atmosphere and water courses 

(Silvola et al., 1996; Worrall et al., 2011; Fleischer et al., 2016).  

Restoration is being explored as a method to reduce carbon losses (in addition to recreation 

of lost peatland habitat), and ultimately encourage a return to net carbon uptake from once 

degraded peatlands (Minayeva et al., 2017). Recent studies have shown promising results, 

where rewetting has reduced carbon emissions from previously drained bog sites, restored 

vegetation communities, and improved resilience in the face of climatic change (Soini et al., 

2009; Strack and Zuback, 2013; Urbanova et al., 2013; Beetz et al., 2013; Hancock et al., 

2018; Smith et al., 2014). Because the water-saturated state of peatlands is very important 

to their function as a carbon store, raising the water table (known as rewetting) is a vital part 

of restoration (Andersen et al., 2017; Bonn et al., 2016; Minayeva et al., 2017; Parish et al., 

2008; Parry et al., 2014). Methods to encourage rewetting include drain-blocking, tree or 

scrub felling, and in some cases surface landscaping of erosion gullies and re-seeding of 

bare peat (Parry et al., 2014). Peatland restoration is now being promoted by governments 

as a means of reaching carbon emission targets set in international agreements, and is 

included in the land use management section of the 2030 EU climate and energy framework  

(European Commission, 2018; IUCN, 2016). One of the indicators of successful peatland 

restoration is the re-establishment of peat-forming vegetation and subsequently an increase 

in photosynthesis and carbon uptake (known as Gross Primary Productivity, GPP).  

Monitoring the effect of restoration on carbon fluxes over time is necessary for meaningful 

interpretation of the effectiveness of peatland restoration for delivering carbon emissions 

abatement, but such monitoring is often difficult and expensive (Andersen et al., 2017). 

Ground-based methods of measuring carbon include flux chambers and eddy-covariance 

(EC) towers, both of which require expensive equipment and regular monitoring, and only 

cover limited areas of land (Humphreys et al., 2006; Marushchak et al., 2013). Modelled 

carbon uptake using satellite data may be a useful means to upscale ground based 

methods, as satellite-based observations can provide regular data over large areas, and are 

often freely available (Chasmer et al., 2018; Lees et al., 2018). Eddy covariance data is often 
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sparsely available, giving estimates of carbon flux which are not replicated across the 

ecosystem and can only be assumed to represent the immediate area surrounding the tower 

(the footprint) (Hill et al., 2017). This is particularly challenging in peatlands, where fluxes are 

small and variable (Hambley et al., 2019). Satellite data could help to fill these gaps and 

increase the coverage of carbon flux estimates. 

Models utilising satellite data have been used to estimate carbon fluxes over many 

ecosystems (eg. Desai et al., 2011; Quaife et al., 2008; Sims et al., 2008; Wu, 2012; Xiao et 

al., 2004; Yuan et al., 2010), but there has only been limited work done on peatland 

landscapes globally (Connolly et al., 2009; Gatis et al., 2017; Harris and Dash, 2011; Kross 

et al., 2013; Lees et al., 2018; Letendre et al., 2008; Schubert et al., 2010), and especially 

few studies that we are aware of on restored peatlands (Chasmer et al., 2018). Models 

known as Temperature and Greenness (TG) models have shown successes in matching 

GPP across a range of ecosystems (Lees et al., 2018), but have not previously been 

considered in peatland landscapes. These models use a vegetation index as a measure of 

greenness, and surface temperature as a modifier on light use efficiency.  

This study uses data from the NASA Moderate Resolution Imaging Sensor (MODIS), as it 

has long archives of freely available data (1999 to present) which allows monitoring across 

peatlands undergoing restoration over many years. The satellites carrying MODIS also have 

a frequent return interval (imaging the same area every 1 to 2 days), and the system for 

processing the data and deriving data products is well established (Heinsch et al., 2006; 

Huete et al., 2002). MODIS provides data at coarse resolution (250 m to 1 km), which allows 

landscape scale (or similar to EC scale) monitoring across large areas of ecosystems such 

as blanket bog (peatland sustained by rainfall, Lindsay, 2010). The current work builds on  

the TG model developed by Sims et al.(2008), which combines the MODIS MOD13Q1 250 

m vegetation indices product and the MOD11A2 1 km Land Surface Temperature (LST) 

product. This model was developed in a range of North American ecosystems including 

evergreen and deciduous forest, grassland and shrubland, but has not to our knowledge 

been tested on wetland or peatland sites. Considering the importance of water-saturation of 

peatlands in relation to the carbon flux, research is needed to evaluate whether a wetness 

factor needs to be included in the TG model for peatlands.  

The objective of this work was to (a) evaluate the success of the TG model in estimating 

peat bog carbon uptake and whether an additional wetness factor is needed, and (b) to 

apply this model and an augmented version to evaluate changes in photosynthesis following 

restoration. Work is based on EC data collected at two sites undergoing restoration in the 

Forsinard Flows RSPB nature reserve in Scotland and the near-natural site at Glencar, 
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Ireland to enable assessment of the TG model’s suitability at peatland sites of different 

condition, and across inter-annual time series.  

5.2. Methods 

5.2.1. Field sites 

5.2.1.1. Forsinard Flows 

The Forsinard Flows RSPB reserve, Northern Scotland (approx. 58.3585, -4.0409 to 

58.4327, -3.6264, WGS84, see Figure 5.1), is the site of one of the largest scale peatland 

restoration programmes in the UK (Gaffney et al., 2018; Hambley, 2016; Hambley et al., 

2019; Hancock et al., 2018; Hermans, 2018). Significant areas of what is the current reserve 

were planted with commercial forestry in the 1980s, and are now being felled and restored to 

rehabilitate the peatland ecosystem and associated hydrological, ecological and biochemical 

functions. The reserve comprises areas of near-natural bog which form part of the much 

larger Flow Country EU Natura site, protected under EU nature conservation law (Levy and 

Gray, 2015), areas of plantation forestry which will soon be felled, sites that were drained but 

never planted (and where drains were subsequently blocked), and finally forestry areas 

which have been felled and are undergoing restoration. The earliest fellings at the reserve 

were completed in the late 1990s (Hancock et al., 2018), and successive sites have been 

felled and/or had drains blocked in the years since, providing a useful chronosequence of 

restoration sites spanning 3,000 ha within the 21,000 ha reserve. The chronosequence 

makes this a unique and valuable location for studying the progress and success of 

restoration methods whilst minimising inter-annual variability due to meteorological factors. 

The landscape was ploughed prior to planting creating distinct microtopographic features of 

plough throw and ridge with a small section of the ‘original’ surface still visible. The trees 

were planted in rows on the ridges created by the plough throw. Felling/restoration practices 

until the mid-2000s involved leaving most of the trees at the site and placing them in the 

furrows in an attempt to return nutrients to the soil, and to reduce drainage (‘fell to waste’, 

see Figure 5.1). Further restoration measures have been implemented since then, including 

(additional) brash mulching and furrow blocking, in order to speed up regeneration of the 

peatland vegetation and hydrological recovery.  
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Figure 5.1 – Locations of the Forsinard Flows RSPB Reserve, Scotland, and the Glencar 

Bog site, Ireland. The Lonielist site image shows felled trees laid in former planting furrows 

(which acted as drainage ditches). The Talaheel site has had peat dams built in the former 

planting furrows, and the landscaping and vegetation growth have started to obscure the 

ridge and furrow topography. 

This study uses data from eddy covariance towers at two sites in the Forsinard Flows 

Reserve which are undergoing restoration, Talaheel and Lonielist.  

The Talaheel site is located on an area which was originally planted in 1985 and then felled 

to waste in 1998 (see Hambley et al., 2019.; Hancock et al., 2018, for further details of this 

site). The area immediately around the tower has been subject to additional management by 

furrow blocking in 2015/16. The tower is located at 58.4146, -3.8006 (WGS84), elevation 

196 m.  

A vegetation survey was completed in June 2017 on sixteen collars, each of 24 cm diameter, 

laid out in a cross pattern within the footprint of the tower (also see Hancock et al., 2018, for 

more detailed vegetation information at this site). The dominant species at Talaheel are 

Pleurozium schreberi (red-stemmed feather moss, 23.6%), Eriophorum angustifolium 

(common cotton grass, 17.9%), Sphagnum capillifolium (16.7%), and Cladonia portentosa 

(reindeer lichen, 17.6%). There is also significant presence (1 to 5%) of Calluna vulgaris 

(common heather), Erica tetralix (cross-leaved heath), Trichophorum germanicum (deer 

Lonielist     Talaheel 
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grass), Molinia caerulea (purple moor grass), Polytrichum commune (haircap moss), and 

Dicranum scoparium.  

The Lonielist site was planted 1985-1990 and felled to waste in 2003/04, with no further 

management within the timelines of this study (-end of 2017). The tower is located at 

58.3910, -3.7651 (WGS84), elevation 180 m. A vegetation survey in June 2017 (completed 

in the same manner as described at Talaheel, above) showed that the dominant species at 

Lonielist are Polytrichum commune (haircap moss, 21.6%), Sphagnum capillifolium (19.9%), 

Cladonia portentosa (reindeer lichen, 12.8%), Pleurozium schreberi (red-stemmed feather 

moss, 12.3%) and Eriophorum angustifolium (common cotton grass, 10.9%). There are also 

significant amounts (1 to 10%) of Calluna vulgaris (common heather), Molinia caerulea 

(purple moor grass), Narthecium ossifragum (Bog asphodel), and Aulacominum palustre.  

Both sites within the Forsinard Flows RSPB nature reserve are subject to grazing by red 

deer (Cervus elephantus). Talaheel is fenced as part of a larger enclosure including some 

forestry, although some deer are present inside the fence, whilst Lonielist is entirely open to 

grazing.  

The Altnaharra meteorological station approximately 35 km south-west of the Forsinard 

Flows reserve has been used to characterise the meteorology of the site. At the Altnaharra 

station the annual rainfall average is 1196 mm over 196 days, and the average high/low 

temperature ranges from 17.8/9.7˚C in July to 6.1/-1.3˚C in December (Met Office, 2018). 

5.2.1.2. Glencar 

Glencar is an area of Atlantic blanket bog in South-West Ireland (see Figure 5.1), where an 

EC tower recorded carbon dioxide fluxes for a ten year period (2002-2012), one of the 

longest EC records on peatland (Koehler et al., 2011; Mcveigh et al., 2014). As the climate, 

proximity to the coast, and peatland type of this blanket bog area are similar to the 

conditions found at the Forsinard Flows Reserve, it is considered a comparable site. At the 

Valentia meteorological station approximately 30 km west of Glencar the annual rainfall 

average is 1430 mm over 239 rain days (Sottocornola and Kiely, 2010a). The average 

monthly temperature at Valentia ranges from 14.8˚C in August to 6.6˚C in February 

(Sottocornola and Kiely, 2010a). 

This site has been included in the model development phase of this study as it provides a 

long time series to test the inter-annual accuracy of the TG model. Glencar has been 

subjected to peat cutting in the past, but only outside the EC footprint area. 25% of the 

surface near the Glencar EC tower is Sphagnum covered, and the most abundant vascular 

species are Molinia caerulea, Calluna vulgaris, Erica tetralix and Narthecium ossifragum 
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(Sottocornola et al., 2009). The EC tower is located at 51.9166, -9.9166 (WGS84), site 

elevation 150 m.  

5.2.2. Ground-based GPP measurements: Eddy Covariance 

Net ecosystem CO2 exchange (NEE) at Lonielist was measured using a LICOR 7200 

enclosed CO2/H20 (water) gas analyser (LI-COR Biosciences Inc. Lincoln, NE, USA), and a 

Gill HS-50 3-D sonic anemometer (Gill Instruments, Lymington, UK). The data period at 

Lonielist is from June 2014 to June 2015. 

At Talaheel, NEE was measured using the LICOR 7500A open path CO2/H20 gas analyser 

(LI-COR Biosciences Inc. Lincoln, NE, USA) with a custom enclosure added to the analyser 

to create an enclosed system (Clement et al., 2009), and a CSAT sonic anemometer 

(Campbell Scientific, Logan, USA). The data period at Talaheel is from March 2014 to April 

2015.  

At Lonielist NEE was then partitioned into GPP and ecosystem respiration (Reco) using the 

EddyPro® (Version 5) (2014 Lincoln, NE. LI-COR Inc.; Infrastructure for Measurements of 

the European Carbon Cycle consortium). At Talaheel EdiRe software (University of 

Edinburgh, Edinburgh, UK) was used due to the combination of monitoring systems. Post-

processing and gap-filling at Lonielist and Talaheel are explained in Hambley et al. (2019), 

and the nocturnal partitioning approach was used. The vast majority (90%) of the footprint of 

the Lonielist and Talaheel towers has been shown to originate from an area within 350m and 

380m of the towers respectively (Hambley, 2016). 

The tower at Glencar has a LICOR LI-7500 and a sonic anemometer (81000, R.M. Young 

Company, Minnesota, USA for the first 5 years; then a CSAT3; Campbell Scientific, Utah, 

USA; (Sottocornola and Kiely, 2010b, 2010a). Sottocornola and Kiely (2010a) calculated that 

the tower has a typical fetch of 300 m during the day and 750 m at night. The data period at 

Glencar is from September 2002 to October 2012. Post-processing and gap-filling at Glencar 

is explained in Mcveigh et al. (2014). Partitioning into GPP and respiration was done using a 

respiration model based on the relationship to temperature of night-time fluxes (McVeigh et 

al., 2014).  

For comparison with the MOD17A2H product and the TG model, EC GPP data from all sites 

in umol/m2/s was averaged over 8-day periods, then converted to g C/m2/hr and multiplied 

up to give g C/m2/day.  
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5.2.3. Applying the model to the restoration sequence 

 

Figure 5.2 – MODIS NDVI images (250 m) of the Forsinard Flows reserve in 2003 (top) and 

2013 (bottom). Grey outlines indicate areas which were felled in the period 2003-2013, whilst 

the white outline indicates the Talaheel area which was felled in 1998. The drop in NDVI 

after felling is easily visible (very high NDVI areas are largely standing forestry). The black 

NDVI 

2003 

2013 
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boxes are equivalent to 1 km MODIS pixels and show the selected sites A to F, and the 

control sites Ac to Fc.  

In order to assess the photosynthetic recovery of the peat bog after felling and restoration, 

six restored sites were selected across the Forsinard Flows reserve (see Figure 5.2). The 

selection criteria required that there was an area of at least 1 km (the size and shape of 

MOD11A2 pixels) of purely restored peatland, with no large areas of near-natural bog or 

remaining forestry included. The sites selected were labelled A-F (see Table 5.1). The six 

sites selected for this project were felled and collector drains blocked, in initial efforts to 

restore peatland habitat, in different years from 1998 to 2006, and most have since 

undergone further restoration procedures. GPP was estimated using remote sensing data for 

each of these sites for the years 2005 (for those sites where felling had been completed by 

that time) to 2016. 

Table 5.1 – selected restored sites, the coordinates each site is centred on (one MODIS 

pixel used at each site), and the period in which felling took place. Years since felling are 

given including the first full year after felling was completed, up to and including 2016.  

Site 

label 

Coordinates (WGS84) and 

elevation (m) 

Felling year(s) Years since 

felling (to 2016) 

A 58.415, -3.8057, 180 1998 18 

B 58.4093, -3.7211, 178 2003-04 12 

C 58.3843, -3.7703, 175 2003-05 13 

D 58.3918, -3.9586, 163 2004-06 10 

E 58.3841, -3.9581, 193 2004-06 10 

F 58.3914, -3.7208, 178 2006-07 9 

 

Control pixels were selected from the same longitude as the restored sites (as there is a 

possibility of an east-west gradient in wetness (Perry and Hollis, 2005) and GPP) and a 

maximum difference in elevation of 50 m, containing only near-natural peatland. These are 

given the same codes as the restored sites, but with a small c to indicate control (Ac, Bc, Cc, 

Dc, Ec, Fc, see Figure 5.2). The control sites Ac, Bc and Fc are unfenced, unlike their 

corresponding treatment sites. This may mean that they are subject to some additional 

grazing from red deer, although some deer are also present within the fenced areas 

(Hancock et al., 2018). The model was applied to each control site for the same years as the 

sites undergoing restoration.  
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The annual result from each restored site was subtracted from the corresponding control site 

result for the same year. This was designed to control for factors other than management 

affecting GPP, such as weather conditions and atmospheric deposition.   

5.3. Model development 

 

Figure 5.3 - Flow chart showing the process of developing the TGWa model. 

5.3.1. Satellite based GPP modelled data: MOD17A2H 

The MOD17A2H 500 m GPP product is ready calculated and easily available (Running et 

al., 2015); it is therefore considered in this study as a standard measure for estimating global 

GPP (see Figure 5.3). We expect the TG model to be an improvement on estimating 

photosynthesis at peatland sites over MOD17A2H, in part because of its local calibration. 

Our research tests the MOD17A2H GPP product by comparing it to EC GPP.   

MOD17A2H GPP is calculated using the Light Use Efficiency (LUE) approach developed by 

Monteith, (1977), which is given as: 

GPP = ɛ × PAR × fPAR (1) 

Where ɛ is the LUE term, which gives the conversion efficiency of absorbed energy to fixed 

carbon in kg C/MJ, PAR is photosynthetically active radiation in W/m2, and fPAR is the 

fraction of photosynthetically active radiation absorbed by vegetation. In MOD17A2H ɛ is 

calculated from a value of ɛmax, specified for each ecosystem type identified in the MODIS 

land classification product MOD12Q1, and limited by Vapour Pressure Deficit (VPD, in 

Pascals) and minimum temperature (˚C), both of which are taken from NASA Global 

Meteorological Assimilation Office (GMAO) data (Heinsch et al., 2006; Running and Zhao, 
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2015). PAR data is also taken from NASA/GMAO, and fPAR is obtained from the MODIS 

Leaf Area Index (LAI) product, MOD15 (Running and Zhao, 2015). MOD12Q1 land cover 

classifications do not include a peatland class, so peatland areas are classified by the 

algorithm as other land use types. MOD17A2H products are given as 8-day totals of GPP at 

500 m resolution.  

5.3.2. MODIS data processing  

MOD17A2H for the same time periods as the Talaheel, Lonielist and Glencar EC data was 

downloaded using the AppEEARS service (https://lpdaacsvc.cr.usgs.gov/appeears/). The 

250 m MOD13Q1 vegetation indices product (Didan, 2015) and the 1 km MOD11A2 LST 

product (Wan et al., 2015) were downloaded using the MODIS ORNL web service through 

Matlab code (see Appendix C) (Santhana Vannan et al., 2009). All MODIS products used 

were version 6.  

Cloud filtering was applied to all MODIS products to remove images extensively affected by 

cloud cover, whilst letting though data which was affected by clouds but still useable. Each of 

the MODIS products contains information about the quality of the data in each pixel, and this 

was used to select which 8-day or 16-day pixels were useable. For the MOD17A2H product, 

the quality control data was used to remove pixels with significant cloud cover. MOD13Q1 

pixel reliability index was used to remove snow/ice or cloud affected values. MOD11A2 

quality control data was used to remove periods when data was not produced due to cloud 

effects or other issues. MOD09A1 surface reflectance state data was used to remove any 

pixels affected by significant cloud. Gap-filling was then performed across each year using 

the techniques described by Wang et al. (2012).  

5.3.3. Adapting the Sims et al. (2008) TG model to estimate GPP over peatlands 

Previous studies have shown that TG models give good results for GPP (when compared 

with measures of ground-based carbon flux estimation such as EC) across a range of 

ecosystems (Moore et al., 2013; Sims et al., 2008; Verma et al., 2015). Such models 

combine a measure of greenness, calculated from a vegetation index, with a measure of 

temperature. In this study we build on the TG model developed by Sims et al. (2008) which 

uses MODIS data products to give an estimate of average daily GPP in time steps matching 

the 16-day MODIS product period.  

The TG model used by Sims et al. (2008) can be written as (Moore et al., 2013):  

GPP = EVIs × LSTs × m (2) 

EVIs = EVI – 0.1  (3) 

https://lpdaacsvc.cr.usgs.gov/appeears/
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 LSTs = min[(LST-minLST)/(optLST-minLST), (maxLST-LST)/(maxLST-optLST)]  (4) 

Where EVIs is the scaled Enhanced Vegetation Index and LSTs is the scaled Land Surface 

Temperature (see Sims et al., 2008). minLST, optLST and maxLST (given in ˚C) are the 

minimum, optimum and maximum Land Surface Temperature for GPP calculated for an 

ecosystem from past data. ‘m’ is a site-optimisation parameter used to fit the model outputs 

more closely to the units of flux measurement.   

Two vegetation indexes which are often used in remote sensing GPP models, and which are 

available from MODIS product MOD13Q1, are the Normalised Difference Vegetation Index 

(NDVI) and the EVI. The NDVI is calculated from the difference between reflectance in red 

wavelengths of light, which plants absorb strongly, and the near-infrared (NIR), which plants 

reflect much more strongly than the red. The EVI uses the same principle but has generally 

lower values to compensate for the saturation effect sometimes seen in the NDVI at high LAI 

values, and includes reflectance at blue wavelengths to minimise the impact of scattering by 

atmospheric aerosols (Huete et al., 2002; Lees et al., 2018)  

MOD13Q1 250 m datasets for NDVI and EVI, and MOD11A2 1 km daytime and night-time 

Land Surface Temperature (LST) were downloaded and tested in the TG model. 

Temperature values from MODIS are given in averages for 8-day periods, whilst vegetation 

indexes are given in 16-day periods. We found that NDVI gave a better relationship than EVI 

with the GPP data from both sites, and EVI was therefore replaced with NDVI in the model.  

As the values given by Sims et al. (2008) and Moore et al. (2013) are likely not applicable to 

peat bogs, we used the data from Talaheel and Lonielist to calculate the minimum, 

maximum and optimum LST for GPP (see Figure 5.3). Maximum LST is the temperature 

above which photosynthesis can no longer occur. As our data did not include extreme heat 

events, we were unable to calculate the exact value of maxLST, and so we have used 40˚C. 

The optimum LST is the temperature at which the ecosystem reaches maximum 

photosynthesis. We have used 25˚C for optLST, as this is the highest temperature and 

greatest GPP reached at both sites during the period of available EC data (the true optimum 

may be higher but the data is not available). Minimum LST is the temperature below which 

photosynthesis no longer occurs. minLST was calculated using the linear regression models 

for both sets of data, giving Lonielist minLST as -3.22˚C and Talaheel as -1.26˚C (-2.5˚C 

was therefore used for the work described in Section 5.2.4). 
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Figure 5.4 –The response of GPP (from EC data) to LST (from MOD11A2) for the Lonielist 

and Talaheel sites. The black line shows the minimum (-2.5˚C) and optimum (25˚C) following 

the explanation of the LST scaling algorithm given in Sims et al. (2008).  

The original Sims et al. (2008) model gives the calculation for the ‘m’ parameter using the 

annual night-time LST (LSTan) with a linear model based on Plant Functional Types (PFT), 

but only includes deciduous and coniferous forests and not blanket peatlands. Hence, we 

consider the LSTan with a linear model optimised to Glencar, and also using a single 

optimised ‘m’ parameter. Glencar was used for this part of the study rather than the 

Forisnard sites as it has a multi-year data series. The GRG Nonlinear Solver in Microsoft 

Office Excel 2013 was used to optimise the ‘m’ parameter in all cases (this was done 

separately for the two Forsinard sites and the Glencar site). The results showed an R2 value 

of 0.63 for the model using an ‘m’ parameter calculated from LSTan, compared to a value of 

0.68 for the model with a single optimised ‘m’ parameter. It was therefore decided to use a 

single optimised ‘m’ parameter for this study.  

The optimum ‘m’ value was found to be 5.875 at both Lonielist and Talaheel (m = 5.875 was 

therefore used for the work in Section 5.2.4, see Figure 5.3). The response of GPP to ‘m’ is 

linear, so a 10% change in m causes a corresponding 10% change in the GPP value. 

The MOD17A2H product and the results from the fitted TG model are compared against the 

Lonielist and Talaheel EC data in Figure 5.4. It is clear from the graphs in Figure 5.4 that 

MOD17A2H overestimates GPP, whereas the TG model results have a much better fit with 

the EC data at both sites. The TG model RMSE (root mean squared error) is 0.50 g 
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C/m2/day for Lonielist and 0.54 g C/m2/day for Talaheel, compared to the MOD17A2 RMSE 

values of 1.33 g C/m2/day and 1.10 g C/m2/day respectively.   

 

Figure 5.5 – Graphs showing Lonielist (top left) and Talaheel (bottom left) EC GPP plotted 

against the MOD17A2H product and the results of the TG model optimised to the EC data. 

Also graphs showing the TG model results plotted directly against the EC data for Lonielist 

(top right) and Talaheel (bottom right), with a 1:1 line plotted.  

5.3.4. Inter-annual accuracy of the model and a water component 

Using the Glencar data, ‘m’ was calibrated to the data from 2011 only, in order to test the 

inter-annual reliability of the parameter with only one year of data, using the Microsoft Office 

Excel 2013 GRG Nonlinear Solver, with the resulting optimum ‘m’ parameter being 3.75. The 

model with this value for ‘m’ was then applied to the whole data series from 2002-2012. The 

total annual GPP for each year was calculated using the summed data from the EC tower 

and the model estimates.  
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Figure 5.6 – Glencar EC data plotted with MOD17A2H product, and the TG model results 

with m optimised to the 2011 EC data.  

Table 5.2 – The annual EC GPP totals from Glencar compared to the results from the TG 

model and the MOD17A2H product. All given in g C/m2/yr.  

 
EC TG MOD17A2H 

2003 316.0 341.3 808.6 

2004 321.8 286.5 714.6 

2005 326.2 324.4 741.5 

2006 279.6 333.8 734.3 

2007 287.9 347.6 793.4 

2008 295.8 271.6 693.6 

2009 301.7 295.9 873.7 

2010 273.7 291.5 793.4 

2011 288.1 275.4 729.5 

Average 299.0 307.6 764.7 

 

The average annual GPP value for Glencar across the ten year period (given by the TG 

model with m optimised to 2011) is 308 g C/m2/yr, very close to the average annual GPP 

from the EC data of 299 g C/m2/yr (see Table 5.2).  The MOD17A2H average by contrast is 

765 g C/m2/yr, more than double the EC value. The MOD17A2H results greatly overestimate 

EC GPP in every year of the dataset. Overall there was a very good match between the EC 

GPP and the TG model GPP across the ten year Glencar data series (see Figure 5.5 and 

Table 5.2). 

However, the TG model does not perform as well on inter-annual accuracy as it does on 

intra-annual accuracy. The average difference between the model annual GPP (parameter 

m optimised to the 2011 data only) and the EC annual GPP ranges between 1.85 g C/m2/yr 
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(in 2005) and 59.69 g C/m2/yr (in 2006), with an average difference of 26.30 g C/m2/yr (an 

8.8% error). There is very little correlation between the annual GPP values from the EC data 

and the TG model (0.10, Pearson’s correlation). 

As this study aims to use the model to assess long term trends, the current model 

comprising only LST and NDVI does not have a good enough annual correlation with EC 

data to give reliable results. It was considered that the wetness of the site may have an 

effect on inter-annual GPP variation, following Kross et al. (2016) who suggest that wetness 

has more effect on inter-annual variation in peatland ecosystems, compared to NDVI and air 

temperature which are more important for monthly variation.  

In order to test whether wetness might be the missing factor in inter-annual variation, the 

Normalised Difference Water Index (NDWI) was considered as a proxy for site wetness 

(Lees et al., 2018; Letendre et al., 2008). The NDWI is calculated from the MOD09A1 500 m 

band 2 (NIR) and band 6 (Short-Wave Infra-Red, SWIR) (Vermote, 2015) using the formula 

(Gao, 1996): 

NDWI = (NIR - SWIR) / (NIR + SWIR) (5) 

A small negative Pearson’s correlation (-0.25) between annual EC GPP and average annual 

NDWI was found at Glencar. However, when NDWI is split seasonally the correlations 

become more complex. The NDWI values were summed in three-month groups, beginning 

with January, named NDWIJFM, NDWIAMJ, NDWIJAS, and NDWIOND. Using this method there is 

a negative Pearson’s correlation between the previous autumn/winter NDWI and annual 

GPP (-0.64 with previous NDWIOND, -0.48 with NDWIJFM at start of year). Spring and summer 

NDWI show positive correlations with annual EC GPP (0.51 NDWIAMJ and 0.44 NDWIJAS). 

This may suggest that higher water levels in the colder months of autumn, winter and early 

spring can impede plant photosynthesis, whereas high water levels in the growing season 

can encourage it.  

In order to apply this knowledge to the TG model, several formulations were tested against 

the EC data from Glencar. Due to the parameterisation of the model and the annual nature 

of the NDWI parameters being tested, it was decided to fit the summed annual TG model 

results (TGa) to the summed annual EC data from Glencar, rather than daily values. The 

TGa model already includes NDVI and LST data, and the tested model formulations simply 

add seasonal NDWI as a factor into the annual model.  

The equations were tested using leave-one-out cross validation to fit optimising ‘a’ and ‘b’ 

parameters, and the model with the lowest average difference to EC data and highest 

correlation was selected.  
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The final annual model had an adjusted R-squared value of 0.5 (p-value 0.02), and average 

annual difference to the EC data of 12.4 g C/m2/yr. This can be compared to the TGa model 

with no NDWI factor (but still optimised with ‘a’ and ‘b’ parameters) which had an adjusted r-

squared value of -0.13 (p-value 0.8) and an average annual difference of 19.1 g C/m2/yr. 

The final model includes both summer and winter NDWI, and the equation is given as: 

TGWa = TGa × (1-NDWIOND) × NDWIJAS × a + b  (6) 

Where ‘a’ is 2.34 and ‘b’ is 212.86. This is referred to as the annual Temperature, 

Greenness & Wetness (TGWa) model hereafter (see Figure 5.3). Figure 5.6 gives a visual 

illustration of the improvement on annual fit given by the TGWa model compared to the initial 

TG model. 

  

Figure 5.7 – The annual EC GPP values from Glencar, plotted against the summed annual 

results from the TG model and the TGWa model.  

The model applied to the six selected restored sites (and control sites) is therefore the 

TGWa model, which includes the sum of values from the TG model comprising NDVI, LST, 

and the ‘m’ parameter optimised to Lonielist and Talaheel, and the summer and winter 

NDWI, and the ‘a’ and ‘b’ parameters optimised to the multi-year dataset from Glencar.  

5.4. Restoration results 

The trend in the restored sites (after using the control sites to minimise effects from factors 

other than management) shows an increase in GPP as restoration progresses, from an 

average of 270 g C/m2/yr one year after felling to 337 g C/m2/yr eight years after felling. 

Figure 5.7 shows the change in the annual GPP of each of the restored sites over a ten year 

period (2005-2015), plotted to demonstrate the change against years after felling was 

completed. The control sites’ annual GPP was used as the zero mark.  
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Figure 5.8 – Difference in TGWa model estimates of annual GPP compared to control sites 

in the years after felling for the six restored sites A to F at Forsinard Flows Reserve. Details 

of felling dates for each site can be found in Table 5.1. The grey line shows the zero point, 

ie. the control site GPP.  

Table 5.3 shows the equations for the linear regression models of the sites’ relationships 

between time and modelled annual photosynthesis over the 1 to 18 years period. The p-

values suggest that sites C, D and E have trends significant at the 95% level. The general 

linear model for all sites is significant at the 99% level, and crosses the zero line at 7.2 

years. Note that the GPP of the oldest sites, site A in particular, appears to increase above 

the zero line, suggesting that it has a higher GPP than the control sites.  

The slope of the linear models gives the estimated year-to-year increase in photosynthesis 

at each site (Table 5.3), suggesting that the average increase is approximately 5.5 g C/m2/yr 

(or 7.3 g C/m2/yr for the average slope of C to E) every year after felling (within the time 

frame of this work, which mainly covers the earlier years post restoration).  

Table 5.3 – linear models for each of the six selected restored sites. Sites C to E have trends 

significant at the 95% level. The final column shows the result when the equations are 

solved for a ‘y’ value of zero, i.e. the number of years before the site reaches the 

photosynthesis level of its paired control site. The ‘All’ row represents a general linear model 

which was fitted with site as a factor. Interactions were tested but were excluded from the 
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final model (all interactions were non-significant with the exception of site D which had a 

barely significant interaction with years p=0.045).  

Site Slope Intercept  p-value Adjusted 
R-squared 

Years  

A 3.77 -18.15 0.11 0.15 4.8 

B 3.58 -2.82 0.2 0.07 0.8 

C 5.23 -30.97 0.0076* 0.52 5.9 

D 11.21 -102.38 0.018* 0.46 9.1 

E 5.44 -34.26 0.049* 0.33 6.3 

F 6.5 -63.92 0.069 0.31 9.8 

All 5.46 -39.25 <0.001* 0.56 7.2 

 

5.5. Discussion 

5.5.1. Model accuracy 

It is clear that the MOD17A2H product poorly estimates EC GPP at the peatland sites (see 

Section 5.3). MOD17A2H overestimates peatland GPP at all sites considered in this study, 

but especially at Glencar where the MOD17A2H average annual GPP is more than double 

the average determined from the EC tower. Kross et al. (2013) also found that the MODIS 

GPP product had poor agreement with EC data over their peatland sites in Canada and 

Finland, although their results showed underestimation. This poor relationship between the 

MOD17A2H product and the EC data may be due to the misclassification of land cover type 

by the MODIS products (Heinsch et al., 2006). MOD12Q1, the land cover product, is used to 

prescribe ɛmax (maximum light use efficiency) in the MOD17A2H equation (Running and 

Zhao, 2015), and a misclassification could cause either a higher or lower emax value than 

the actual, and therefore give an over- or under-estimation (Tan et al., 2012). Kross et al. 

(2013) found that MODIS misclassified their peatland sites as evergreen needle forest for 

two sites, mixed forest for a third, and closed shrubland for the fourth. They would therefore 

expect an overestimation, but in fact their results showed an underestimation, and they 

suggest that the MODIS downscaling algorithm is inappropriate for peatlands (Kross et al., 

2013). All three sites used as ground validation in this study (Lonielist, Talaheel and 

Glencar) were classified as closed shrubland in most years by MODIS, although in some 

years they were classified as open shrubland or mixed forest. The much larger error in the 

MOD17A2H results for Glencar is therefore unlikely to be caused by the limited land cover 

classification product, as the two Forsinard Flows reserve sites have the same classification 

but much smaller errors. Gatis et al. (2017) also found that the MODIS GPP product 

underestimated chamber flux data at their study site in Exmoor, England, and suggested that 

this may be due to the assumptions the MODIS GPP algorithm makes about water 
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availability effects, which are not necessarily applicable to peatlands. A larger study into the 

differences between MOD17A2H and EC or chamber data over peatland sites would be 

beneficial in identifying which part of the MODIS algorithm is problematic in peatland 

landscapes.  

The TG and TGWa models give results which have a much better agreement with the EC 

data, perhaps partially because they do not rely on any land cover classification system or 

prior assumptions of any values. The TG model’s use of a locally calibrated ‘m’ parameter 

also explains why the results are closer to the EC data than the MOD17A2H product. Future 

work is needed to assess the variation in local calibration within such models across a 

variety of Northern peat bog sites, and test whether calibrating globally would still provide 

better results than the MOD17A2H product. 

It is surprising that model designs using the NDVI performed better than those using the EVI. 

It may be the case that the generally low LAI of blanket bog, consisting only of a low canopy 

of bryophytes and some vascular plants, may mean that the saturation limitation effects of 

the EVI are unnecessary. Schubert et al. (2010) found that NDVI did saturate over peatlands 

and that EVI gave a better correlation with EC data from their sites in Sweden. However, the 

vegetation of their sites included dwarf pines (Pinus sylvestris) and a high proportion of 

dwarf shrubs and sedges, which may give a higher LAI in comparison to the sites used in 

this study (Schubert et al., 2010). It may also be the case, as some authors have suggested 

(Huete et al., 2002; Rossini et al., 2012) that the EVI is more sensitive to near-infrared (NIR) 

and is therefore a more structural measure, whereas the NDVI is more a measure of plant 

greenness and chlorophyll as it is more sensitive to the red bands. Also, it is worth noting 

that the restored sites at Forsinard have a large amount of dead plant (felling brash/logging 

slash) matter, due to the fell to waste restoration method used at these earlier restoration 

sites, which has a strong NIR signal and may therefore distort the EVI results. Chasmer et 

al. (2018) also found a good relationship between NDVI and GPP over restored peatland 

sites in Canada, but they did not test EVI.  

Adding the NDWI to the model on an annual basis greatly improves the inter-annual fit of the 

model with the Glencar EC data. Letendre et al. (2008) found that combining a water index 

with the NDVI gave a better agreement with flux chamber NEE values at their study site than 

the NDVI alone. Although Letendre et al. (2008) used a different formulation of water index 

focusing on the absorption trough at 950-970 nm, their work agrees with this study’s findings 

that adding a measure of wetness can improve estimates of carbon uptake over peatlands.  

The common understanding is that a high NDWI, indicating plenty of moisture in the 

vegetation, will correlate with a high GPP (Nijp et al., 2014; Schipperges and Rydin, 1998; 
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Sottocornola and Kiely, 2010b; Strack and Price, 2009). This is the case with the summer 

NDWI in this study, during July to September, when peatland vegetation is likely to be limited 

by water availability and by a lack of nutrients which are mostly gained from rainfall. In 

contrast, this work found a negative correlation between winter NDWI and annual GPP. This 

may be partly explained by the fact that in the winter months, high rainfall and low 

evaporation means that the ecosystem is rarely water limited. Nijp et al. (2015) found that 

carbon uptake at their site at Degerö Stormyr peatland in Sweden decreased after rain 

events. They suggest that this is due to the decrease of light availability during rainfall 

events, and advise that this could cause particularly noticeable decreases in photosynthesis 

during seasons when light conditions are below the light saturation level of the ecosystem. 

Therefore the combination of optimal water conditions and light limitation in the winter, and 

optimal light levels and water limitation in the summer, could perhaps explain the 

relationships between NDWI and GPP used to build this model. Further work could explore 

different methods for estimating peatland wetness using remote sensing, for example 

thermal imaging (Luscombe et al., 2015). The combination of different techniques in the 

future of this field of study may yield a greater range of information about peatland condition.  

It is important to consider that the EC flux tower data used as a validation method in this 

study may not be entirely accurate, as they are themselves model outputs. Flux partitioning 

is particularly likely to be a source of uncertainty within the EC data, as it relies on assumed 

and modelled relationships. Other parts of the processing methodology, such as filtering and 

gap-filling, may also introduce errors. Finally, it is worth noting that the footprint of the EC 

towers is not likely to be entirely comparable to the same area as the MODIS data. More 

work at different scales and using diverse methodologies will help to overcome this concern, 

such as comparisons between chamber and EC flux data, and between remote sensing from 

unmanned aerial vehicles (UAVs) and from satellites.  

Using Glencar as an inter-annual validation site was greatly beneficial as it has a ten-year 

data series. Also, using an independent site encourages confidence that the usefulness of 

the TGWa model is not peculiar to the Forsinard Flows reserve sites. As longer term EC 

records for peat bog sites undergoing restoration become available it will be interesting to 

see whether the TGWa model results continue to match the EC data at different stages of 

restoration.  

5.5.2. Model results 

The results from the six restored sites A-F show an increasing trend in GPP in the years 

between felling and 2016. The results from all sites suggest that the average time taken for a 

site undergoing restoration to reach the GPP of near-natural sites is 7.2 (5 to 10) years. This 
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fits with previous studies, which suggest the average time for a restored bog to reach the 

GPP capacity of near natural sites to be from three (Tuittila et al., 1999) to ten years (Soini et 

al., 2009; Strack and Zuback, 2013; Waddington et al., 2010).  

The oldest site in this study (site A, 18 years) shows an increase above the zero line of the 

control sites. This may simply be due to site A being more productive, or it could be an effect 

of restoration. One explanation may be that in the early stages of restoration a higher 

proportion of vascular plants is evident, leading to higher GPP (but also most likely to higher 

respiration), compared to a near-natural bog site with a higher proportion of non-vascular 

plants such as Sphagnum moss. This agrees with Strack and Zuback (2013) who found that 

after ten years the restored bog sites at Bois-des-Bel in Canada had a greater CO2 uptake 

than the near-natural sites during the growing season. Their study also found that uptake 

was correlated with vascular plant cover (Strack and Zuback, 2013), as did Strack et al.'s 

(2016) study covering six restored sites across Canada. A similar result was found in a 

restored fen in Finland by Soini et al. (2009), who also studied their peatland sites ten years 

after restoration and found that the restored sites appeared to be greater carbon sinks than 

the pristine sites, although this result was not statistically significant due to the greater 

variation amongst the restored sites. Hancock et al. (2018) found that conditions at the 

Talaheel site were favourable to vegetation species characteristic of heathland 

environments, which generally have a higher productivity than intact blanket bog vegetation 

communities.   

It is worth mentioning that sites A and B have relatively weak trends. It was not expected that 

site A would show a significant result, as the earliest modelled GPP in this study is for 2005, 

which is already seven years after felling was completed at this site. Vegetation is often well 

established early after felling, and changes little over time leading to a lack of further trend 

(Hancock et al., 2018). In the case of site B, the shallow slope of the trend is likely due to a 

high uptake value in the first years after felling. Sites which were felled in the earlier years 

had smaller trees, and therefore a more open canopy allowing some ground vegetation 

which would have remained after felling. Site B also includes an area of forestry in the top 

left corner of the pixel (see Figure 5.1) which was not felled until 2010-2011. This may 

explain why site B has the highest GPP result in the first year after felling, and therefore the 

shallowest slope.  

At most of the sites the TGWa model shows GPP increases even in the first year after 

felling. Due to the size of the MODIS data product pixels, an area considered to be under 

restoration also often includes small areas of near-natural bog, and generally includes a 

significant proportion of access tracks for machinery into the areas (the former forestry 
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“rides” which were unplanted areas remaining under peatland vegetation). Many of the 

blocks were felled in stages rather than all at once, so it is likely that each 1 km MODIS pixel 

in what is considered the first year of felling actually contained areas which had been felled 

up to two years previously, as well as immediately prior to the modelling period start. Sites 

C, D and E had felling periods of 2 to 3 years, which means that in the year counted in this 

study as the first year after felling would actually have been the second or third year after 

felling for some areas included within the pixel. Also, as trees were felled to waste rather 

than removed from the site, it may be that in the first year after felling the satellite is picking 

up some chlorophyll signal from trees which had been felled but would remain green for 

several months.  

Due to the calibration of the TGWa model with the Glencar data series, the absolute values 

of GPP for the restored sites A to F may be smaller than the actual values. The annual GPP 

values of the two restored sites at the Forsinard reserve for which we have EC data, 

Lonielist and Talaheel, are 501 g C/m2/yr and 551 g C/m2/yr respectively. These values are 

higher than the 337 g C/m2/yr suggested by the model as the average value reached eight 

years after restoration. This effect is due to the optimisation of the ‘a’ and ‘b’ parameters 

using the multi-year dataset from Glencar, which has a lower average annual GPP from the 

EC data than Lonielist or Talaheel. However, the trends in the model results remain 

unaffected by this calibration. 

Here, we focus on GPP rather than NEE. Data are beginning to emerge which suggest that 

the largest control over healthy peatland respiration is in fact GPP, both through the direct 

relationship between GPP and autotrophic respiration, and also a link with heterotrophic 

respiration through the labile carbon availability (Zhao et al., 2016). This suggests that 

although respiration estimates are essential to derive NEE and therefore give a complete 

comparison of atmospheric carbon fluxes at different sites, nevertheless GPP data alone can 

be a very useful indicator of peatland status. Strack et al.'s (2016) study of six Canadian 

peatlands found that restoration had little effect on ecosystem respiration, which remained 

lower than natural sites. Waddington et al. (2010) however found that in the years after 

restoration work at the Bois-des-Bel peat bog, respiration decreased, possibly due to higher 

water tables limiting aerobic respiration, whilst GPP increased. Tuittila et al. (1999) found the 

same effects at a raised bog site in Finland. Both studies suggest that restored peat bog 

sites can function as a carbon sink, for at least part of the year, just two years after 

restoration. However, without respiration data (and other carbon fluxes) we cannot say for 

certain that the sites in this study are carbon sinks, despite an increased GPP. Raising the 

water tables at bog sites undergoing restoration is a crucial part of the process to keep the 

bog healthy and to suppress heterotrophic respiration. Further research is needed to explore 
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how well satellite products can be used to derive modelled estimates of NEE and how these 

compare to GPP. 

It is important to consider that GPP, or even NEE, alone does not give a complete picture of 

peatland restoration. This model should be used in conjunction with ground data to take into 

account not only flux measurements (Hambley et al., 2019), but also vegetation communities 

(Hancock et al., 2018), water table (Gaffney et al., 2018), and other indicators of restoration 

to a healthy bog. Future work should test how suitable this model is for application on peat 

bogs which are being restored from peat extraction sites as well as from forestry plantations.  

5.6. Conclusions 

We have used remote sensing data from MODIS to analyse the response of peatland 

photosynthesis to restoration. Here, we develop a modified version of the Temperature and 

Greenness (TG) model, the annual Temperature, Greenness and Wetness model (TGWa) 

model, which includes additional factors to account for wetness. The TGWa model using 

temperature, NDVI, and NDWI to estimate annual GPP is more accurate in peatland 

environments than the more complex MOD17A2H GPP product. The TGWa model has been 

shown to give good estimates of GPP at three peat bog sites in Scotland and Ireland, where 

the MOD17A2H product performed poorly. The next step is to attempt to calibrate the TG 

model across global boreal peat bogs.  

The results from the six selected restored sites in the Forsinard Flows reserve (aged 

between 1 and 7 years at the start of the modelling time window) indicate that restoration 

improves the uptake of CO2. Modelled GPP fluxes imply that bog sites that undergo felling 

and restoration procedures, such as those in this study, appear likely to reach rates of GPP 

exhibited by near-natural bog after 5 to 10 years. We emphasise that GPP is only one 

measure of successful peat bog restoration, and consideration should also be made of the 

changes in respiration, other carbon fluxes, water table, and vegetation communities.  
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6. Assessing the reliability of peatland GPP measurements by remote sensing from plot to 

landscape scale. 

Lees KJ, Khomik M, Quaife T, Clark JM, Hill T, Klein D, Ritson J & Artz RRE   

Abstract 

Estimates of peatland carbon fluxes based on remote sensing data are a useful addition to 

monitoring methods in these remote and precious ecosystems. There are, however, 

questions as to whether such large-scale estimates can be truly accurate given the small-

scale heterogeneity of many peatlands.  This study considers the reliability of remote 

sensing for estimating ecosystem photosynthesis at different scales at the Forsinard Flows 

RSPB reserve in Northern Scotland. Three sites across the reserve were monitored during 

the growing season of 2017. One site is near-natural blanket bog, and the other two are at 

different stages of the restoration process (19 and 13 years in) after removal of commercial 

forestry. At each site we measured small and landscape scale carbon dioxide fluxes (using 

chamber-based and Eddy Covariance measurement techniques), small scale spectral data 

using a handheld spectrometer, and obtained corresponding satellite data from MODIS. The 

variables influencing GPP at small scale, including microforms and dominant vegetation 

species, were assessed using exploratory factor analysis. A model using land surface 

temperature and a measure of greenness from remote sensing data was tested as an 

estimate of GPP, and compared to chamber and eddy covariance CO2 fluxes. Our results 

show that the temperature and greenness model gives good results at all scales 

(correlations of 0.57 to 0.70 at small scale, 0.74 to 0.85 at large scale), although it is 

dependent on calibration with ground data. Further work is needed to assess how well this 

methodology performs under more extreme conditions and at other locations. Overall, our 

results indicate reasonable confidence in estimates of GPP in blanket bog by remote 

sensing at both small and large scales.   

6.1. Introduction 

Peatlands are important ecosystems for carbon sequestration, but many areas in the British 

Isles have experienced degradation through human land use. As an organic-rich, water-

saturated substrate, peat is capable of storing huge amounts of carbon relative to land area. 

For example, in Scotland peatlands store 56% of total soil carbon whilst occupying 24% of 

the land area (Chapman et al., 2009). Many peatland areas have, however, been subject to 

management such as draining, grazing, burning and planting for commercial forestry, which 

have reduced saturation and increased bulk density and subsidence of the peat (JNCC, 

2011). Restoration of peatland areas is of interest to policy makers as a carbon emissions 

abatement scheme (European Commission, 2018; IUCN, 2016). Remote sensing has the 
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potential to help monitor carbon fluxes in these important, remote and extensive areas that 

are difficult to access for conventional field-based measurements, yet little testing of 

methods has been carried out (Lees et al., 2018). The Forsinard Flows RSPB reserve is an 

ideal study location as it has a chronosequence of areas undergoing restoration from 

commercial forestry (Hancock et al., 2018), and three similar eddy covariance (EC) towers at 

different sites.  

Upscaling of ecosystem processes is an important research area in ecology, as landscape 

and regional scale estimates are needed for policy decisions (Fu et al., 2014; Le Clec’h et 

al., 2018). Models using satellite data to estimate peatland carbon fluxes are being 

developed to cover large areas (Lees et al., 2018), but it is also important to consider 

landscape heterogeneity in total flux estimates (Zhang et al., 2007). Blanket bogs (peatland 

sustained by rainfall, Lindsay, 2010) in particular have small scale heterogeneity in 

topographic features known as hummocks and hollows, which can vary at scales of less 

than a metre (Belyeal and Clymo, 2001). This microtopographical variation influences 

vegetation communities at small-scale, which can have a significant impact on carbon fluxes 

(Arroyo-Mora et al., 2018; Dinsmore et al., 2009b; Peichl et al., 2018). The existence of 

satellites with very fine spatial resolution (down to tens of metres) means that studies can 

now consider variation within a landscape, but the microtopography of blanket bogs is still 

too small to be detectable from non-commercial satellite data.  

Traditional methods of carbon dioxide exchange measurement include flux chambers and 

Eddy Covariance (EC) towers, both of which are small-scale and expensive to manage and 

maintain. Practitioners need techniques to assess changes in peatland carbon fluxes at a 

landscape scale in order to measure the success of restoration processes and detect where 

to focus their efforts. Satellite data-based models have recently shown successes in 

estimating carbon fluxes from peatland landscapes (Kross et al., 2016; Lees et al., in press), 

but there is still uncertainty over whether these models can adequately detect the variation 

from small-scale peatland heterogeneity (Arroyo-Mora et al., 2018). A Temperature and 

Greenness (TG) model is specifically considered in this study, as this has previously been 

shown to give good results over the reserve (Lees et al., in press). This model combines a 

measure of land surface temperature with a vegetation index, in this case the Normalised 

Difference Vegetation Index  (NDVI), to give an estimate of Gross Primary Productivity 

(GPP).  

The aim of this work is to consider what factors affect GPP in blanket bog, and whether the 

results from small scale measures of photosynthesis are significantly different to results from 

large scale models using satellite data. We hypothesise that the TG model will give good 



122 
 

agreement with chamber flux data at the small scale, and with EC data at the larger scale. 

We also expect that the measurements and estimates at different spatial scales will be 

correlated and within the standard deviation range of each other.  

6.2. Methods 

6.2.1. Field sites 

This research is based at three field sites within the Forsinard Flows RSPB reserve in 

Northern Scotland (approx. 58.3585, -4.0409 to 58.4327, -3.6264, WGS84). The reserve is 

part of the much larger blanket bog Flow Country EU Natura site. Cross Lochs is a near-

natural site (see Levy and Gray, 2015), where no drainage has been applied. An EC tower is 

located at 58.3703, -3.9644 (WGS84), elevation 211 m. Talaheel and Lonielist are both sites 

undergoing restoration, which were previously planted for commercial forestry in the 1980s. 

Talaheel was initially felled, with the trees laid into the planting furrows, in 1998 and has 

since undergone further landscaping to crush the decomposing conifer brash and to create 

peat dams in the furrows (2015/16), which has led to raised water levels (see Hancock et al., 

2018). The EC tower is located at 58.4146, -3.8006 (WGS84), elevation 196 m. 

Lonielist was felled in 2003/2004. At the time of the experiment it retained the distinctive 

pattern of ridges on which the trees were planted, and drainage ditches infilled with the felled 

trees. This site has undergone no further management until the end of this project (-end of 

2017). The EC tower is located at 58.3910, -3.7651 (WGS84), elevation 180 m. 

All three sites are subject to some light grazing by wild red deer (Cervus elephantus). 

Talaheel is fenced as part of a larger enclosure including some forestry, although some deer 

are present inside the fence, whilst Lonielist and Cross Lochs are entirely open to grazing. 

Small scale measurement points were set up in the area within each site’s EC tower 

footprint. The precise distances from the tower and dominant wind directions (Northwest and 

Southwest) were determined from Hambley (2016). At each site two perpendicular crossing 

transects were set up, one including five points and extending away from the tower into the 

dominant wind direction, and one including four points and extending into the secondary 

wind direction (see Figure 6.1). At each point two PVC collars (24 cm in diameter) were 

placed: one on higher microforms (ridges in the restored sites, hummocks at Cross Lochs) 

and one on lower microforms (in the furrows at the restored sites, hollows/lawns at Cross 

Lochs). The collars included a range of vegetation species commonly found within the tower 

footprints and across the Forsinard Flows reserve (see Appendix B for species 

compositions).  
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Figure 6.1 – Location of points within the tower footprint. Two collars, one on a higher 

microform and one in a lower area, were placed at each point.  

6.2.2. Chamber fluxes 

In situ CO2 flux measurements were taken using a LICOR-8100 (LICOR Inc., Lincoln, 

Nebraska, USA) portable infrared gas analyser and custom Perspex chambers of 24 cm 

diameter and 30 cm height. Small 9V battery-operated fans were installed within the 

chambers to circulate the air. The two chambers, one clear and one covered with a blackout 

cloth, were sealed to the collars using rubber mastic (Terostat), and consecutive 

measurements were taken. Each measurement period was five minutes, with a 20 second 

pre-measurement stabilisation period.   

For comparison with the EC and satellite data, the fluxes from all of the collars at each site 

were averaged. A weighted average taking into account the proportion of different 

microfeatures was not used due to the minimal differences found between microform fluxes.  

6.2.3. Field spectrometry 

Spectral measurements in the field were taken using a handheld SVC HR-1024 (Spectra 

Vista Corporation) spectroradiometer mounted on a monopod and held approximately 1m 

from the surface using an 8˚ FOV lens with an on-the-ground footprint within the diameter of 

the collars. The spectral range of the instrument is from 337 nm to 2521 nm.  Three 

measurements were taken of the vegetation within each collar, at three different angles to 

minimise structural effects (opposite the position of the sun and at 90˚ to either side). A 

Spectralon reference panel was also measured between these observations to normalise 

from radiance to reflectance.  

The Normalised Difference Vegetation Index (NDVI) is calculated from the difference 

between reflectance in red wavelengths of light, which plants absorb strongly, and the near-

infrared (NIR), which plants reflect:  
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NDVI = (RNIR – Rred )/ (RNIR + Rred ) 

In this study we calculated the red and NIR bands as the average of the values in 

wavelengths 630-680 nm and 845-885 nm respectively.  

6.2.4. Other factors measured in the field 

Soil moisture was measured using a moisture probe with 6 cm prongs (Theta probe ML2x , 

Eijkelkamp, connected to HH2 moisture meter, Delta-T Devices). At the Lonielist site, 

dipwells were inserted next to each collar, and the water level was monitored manually at the 

same time as the spectral measurements were taken. Soil temperature was measured at 

two different depths, 5 cm and 15 cm, and surface temperature inside the chamber was 

taken at the start and end of each measurement using a lollipop thermometer (Fisherbrand, 

accurate to ± 1˚C).  

To consider the different vegetation communities of the microforms, the species within the 

collars were surveyed in June 2017. All species were recorded as percentage cover over the 

area of the collar, and overlapping canopies sometimes allowed total percentage cover to be 

over 100%. Six species which were found at all three sites were selected as indicators of 

microform vegetation communities. These are shown in Table 6.1. 

Table 6.1 – species selected which were present at all three sites, which microform they 

prefer, and their average (and standard deviation) percentage presence in collars at each 

site.  

Common 
name 

Latin name Hummock or 
Hollow 

Lonielist Talaheel Cross 
Lochs 

Heather Calluna vulgaris Hummock 7.5 ± 11.7 
% 

4.7 ± 9.8 
% 

9.7 ± 9.5 
% 

Common 
cotton grass 

Eriophorum 
angustifolium 

Hollow 10.9 ± 
13.6 % 

17.9 ± 15 
% 

9.4 ± 10.5 
% 

Reindeer 
lichen 

Cladonia portentosa Hummock 12.8 ± 18 
% 

17.6 ± 
26.9 % 

11.4 ± 
18.2 % 

 Sphagnum capillifolium Hummock 19.9 ± 
22.5 % 

16.7 ± 
30.1 % 

27.7 ± 
18.1 % 

Red-
stemmed 
feather moss 

Pleurozium schreberi Hollow 12.3 ± 
22.1 % 

23.6 ± 
27.9 % 

3.9 ± 7.2 
% 

Deer grass Trichiophorum 
germanicum 

Hollow 0.6 ± 2.5 
% 

4.9 ± 8.3 
% 

21.8 ± 
21.6 % 

 

6.2.5. Eddy Covariance 

Net ecosystem exchange of CO2  (NEE) at Lonielist was measured using a LICOR 7200 

enclosed CO2/H2O infrared gas analyser (LI-COR Biosciences Inc. Lincoln, NE, USA), and a 

Gill HS-50 3-D sonic anemometer (Gill Instruments, Lymington, UK). Data was collected at 
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20Hz frequency and half-hourly values recorded by the LI-7550 Analyzer Interface Unit 

(LICOR Biosciences, Inc. NE, USA). The instruments were mounted on top of a scaffolding-

tower at 2.90 m height, pointing into the predominant wind direction (W-SW, 240˚ North 

offset). 

At Talaheel, NEE was measured using the LICOR 7500A open path CO2/H2O gas analyser 

(LI-COR Biosciences Inc. Lincoln, NE, USA) with a custom enclosure added to the analyser 

to create an enclosed system (Clement et al., 2009), and a CSAT sonic anemometer 

(Campbell Scientific, Logan, USA). Data was measured at 10Hz frequency, averaged and 

stored as half-hourly values by the CR5000 datalogger. Instruments were set-up at 4.3m 

height on a scaffolding tower. 

At Cross Lochs NEE was measured using an open-path infra-red gas analyser that was 

integrated into a 3D-CSAT anemometer, the IRGASON, controlled by the EC100 electronics 

control module (Campbell Scientific Ltd. UK).  Data was measured at 10Hz and half-hourly 

averages were recorded on a CR3000 datalogger.  The instruments were set up at 2.3m 

height on a tri-pod tower, pointing 310o NW.  

Raw flux and associated meteorological data were processed using the Eddy Pro software, 

(version 6.2.1, LI-COR Biosciences, NB, USA) for the Lonielist and Talaheel datasets, to 

calculate half-hourly NEE fluxes and frictional velocity (u-star) values.  For Cross Lochs, 

EasyFluxPC software was used (version 1.008CS Campbell Scientific, UT, USA) to obtain 

non-gapfilled half-hourly NEE values and u-star values.  The raw NEE was further quality 

checked using histograms and site-measured global radiation values.  The quality screened 

data from all three sites was then further processed in ReddyProc package in R-software 

(Wutzler et al., 2018) to obtain gap-filled NEE values  and also to partition the fluxes into 

GPP and Reco. Measurements at Lonielist began in March, so 23% of the data was missing 

at the start of the 2017 year.  26% (of 13550 hh) of available NEE half hours were gap-filled 

at Lonielist, 52% at Talaheel (of 17520 hh), and 60% at Cross Lochs (of 17520hh).   

For comparison with the chamber and spectrometer data, the EC data covering the same 

period as the chamber measurements were selected and averaged. For comparison with the 

TG model using MODIS data, the EC fluxes were averaged across 8-day periods and then 

multiplied to give daily values, following Lees et al. (in press).  

6.2.6. Satellite data 

The Moderate Resolution Imaging Spectroradiometer (MODIS) on satellite Terra was used 

in this study as an example of a coarse resolution broad band satellite, which is widely used 

in environmental studies. Two MODIS products were used in this study, the 250 m 
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MOD13Q1 NDVI product (Didan, 2015), and the 1 km MOD11A2 Daytime Land Surface 

Temperature (LST) product (Wan et al., 2015). The NDVI product is given in 16-day periods, 

whilst the LST product is given in 8-day periods. The MODIS data products were 

downloaded using the MODIS ORNL web service through Matlab code (see Appendix C) 

(Santhana Vannan et al., 2009). Cloud filtering was applied to remove pixels extensively 

affected by cloud cover, whilst letting though data which was affected by clouds but still 

useable. Each of the MODIS product contains information about the quality of the data in 

each pixel, and this was used to select which 8-day or 16-day pixels were useable. 

MOD13Q1 pixel reliability index was used to remove snow/ice or cloud affected values. 

MOD11A2 quality control data was used to remove periods when data was not produced 

due to cloud effects or other issues. Gap-filling was then performed across each year using 

the techniques described by Wang et al. (2012), before combining the data into the TG 

model.  

6.2.7. The TG model 

The Temperature and Greenness (TG) model combines a measure of temperature with a 

vegetation index to give an estimate of GPP (Sims et al., 2008). The model is formulated, 

following Moore et al. (2013), but using NDVI following the results of Lees et al. (in press): 

GPP = NDVIs × LSTs × m 

NDVIs = NDVI – 0.1 

 LSTs = min[(LST-minLST)/(optLST-minLST), (maxLST-LST)/(maxLST-optLST)] 

Where NDVIs is the scaled Normalised Difference Vegetation Index and LSTs is the scaled 

Land Surface Temperature (see Sims et al., 2008). minLST, optLST and maxLST (given in 

˚C) are the minimum, optimum and maximum Land Surface Temperature calculated for an 

ecosystem from past data. We have used 40˚C, 25˚C and -2.5˚C for maxLST, optLST and 

minLST respectively, following Lees et al.'s (in press) work on the same study sites.  

 ‘m’ is a site-optimisation parameter which was given the value of 5.875 in Lees et al. (in 

press). For this study the GRG Nonlinear Solver in Microsoft Office Excel 2013 was used to 

optimise the m parameter at both small and large scales. The m parameter for the TG model 

using spectrometer data was optimised to the chamber data across all months and sites, 

and was given the value 0.4397. This small-scale version of the TG model gives an estimate 

of GPP per hour.  

The m parameter for the TG model using MODIS data was optimised to the EC data across 

the whole of 2017 (where EC data was available) and across all three sites. It was given the 
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value 8.046. This large-scale version of the TG model gives an estimate of GPP per day. 

The small-scale m parameter was also applied to the large-scale TG model to assess the 

effect of scale versus methodological error (see Section 6.3.3).  

6.2.8. Statistical analysis 

An Exploratory Factor Analysis (EFA) was used to simplify the large range of variables 

measured which could affect GPP on a small scale. EFA is a variable reduction technique 

designed to draw out the underlying factors affecting the measured variables. In this case 

the EFA was used because we expect that the variables measured are related to each other 

by means of underlying constructs, for example, the vegetation species included are likely to 

be related to each other due to underlying features of their microhabitats.  

The variables considered included those explained in Section 6.2.4 (selected vegetation 

species, PAR, surface temperature, soil temperature at 5 cm and 15 cm, soil moisture, and 

microforms), and also the NDVI, which is a measure of vegetation greenness and health, 

and the Normalised Difference Water Index (NDWI) which has been shown to have a 

relationship with moisture conditions in peatland vegetation (Lees et al., in prep).Repeated 

measures were accounted for by including the time of year as a variable. In order to create a 

linear relationship the temporal distance from the midsummer solstice (in days) was used as 

a measure of season. These variables are referred to in the results by short names given in 

Table 6.2. 

Table 6.2 – short names given to each variable in the EFA. 

Short name Description  

Feather_moss The proportion of Pleurozium schreberi in the collar (%) 

Reindeer_lichen The proportion of Cladonia portentosa in the collar (%) 

S_cap The proportion of Sphagnum capillifolium in the collar (%) 

Deer grass The proportion of Trichiophorum germanicum in the collar (%) 

Cotton grass The proportion of Eriophorum angustifolium in the collar (%) 

Heather The proportion of Calluna vulgaris in the collar (%) 

NDWI The calculated NDWI of the collar from the hand-held spectrometer 

NDVI The calculated NDVI of the collar from the hand-held spectrometer 

PAR The average PAR taken across the clear chamber flux measurement 
period.  

Surface_temp The air temperature at the soil surface (˚C) 

Soil_temp_5cm The soil temperature at 5 cm depth (˚C) 

Soil_temp_15cm The soil temperature at 15 cm depth (˚C) 

Solstice_dist Temporal distance (days) of each measurement from the midsummer 
solstice 

microfeature Whether the collar was on a high area (hummock/ridge) or low area 
(hollow/ditch) 
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The EFA was limited to five factors, and explained the majority of the variance seen in 

variables at each site. The resulting factor scores were then correlated with the GPP in order 

to assess which factors and variables were most important in determining peatland GPP at 

small scales, and whether these could be assessed using remote sensing.  

All analysis was done in base R (R Core Team, 2017).  

6.3. Results 

6.3.1. Factors affecting GPP at small scale 

The six vegetation species considered in this analysis show several significant differences 

between hummock and hollow percentage coverage (see Figure 6.2). At the near-natural 

Cross Lochs site there is significantly more heather (Calluna vulgaris) and S. capillifolium on 

the hummocks, but significantly more deer grass (Trichiophorum germanicum) in the 

hollows. The Lonielist site also has significantly more heather on the hummocks, but 

significantly more red-stemmed feather moss (Pleurozium schreberi) in the hollows. There 

were no significant differences between hummock and hollow vegetation at the Talaheel site 

in 2017 (see Appendix D).  

There are also differences between the three sites in terms of vegetation cover. Cross Lochs 

is richer in deer grass than the other two sites, whilst Talaheel is particularly favourable to 

common cotton grass (Eriophorum angustifolium) (see Table 6.1). Cross Lochs also has a 

greater variety of species, with some present that were not included in our collars at the 

other two sites such as bog myrtle (Myrica gale), bog asphodel (Narthecium ossifragum), 

and sundew (Drosera rotundifolia). 

 

* 

* 

* 

* 
* 
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Figure 6.2 – The left graph is the data from Lonielist, whilst the right is from Cross Lochs. 

There were no significant differences at Talaheel. Stars show a significant difference 

between hummock and hollow.  

These selected vegetation species were also used in the EFA, where they are linked to 

underlying factors which also affect microtopography (Lonielist and Cross Lochs), the NDWI 

(Talaheel and Cross Lochs), and soil moisture (Cross Lochs). These factors also correlate 

with GPP.   

The EFA results are shown in Figure 6.3, along with the factor correlations with GPP. At 

Lonielist the second factor has the highest correlation with GPP (0.68), and is linked with the 

NDVI and the three temperature variables. The third and fourth factors also show some 

correlation with GPP (0.21, 0.28) and are connected with the microforms variable and the 

vegetation species variables.  

At Talaheel only the first and third factors show much correlation with GPP (0.46, 0.36). The 

first factor is connected to the NDVI, NDWI, temperature and temporal distance from solstice 

variables, whilst the third is linked with the NDWI and NDVI, and percentage cover of cotton 

grass and deer grass.  

At Cross Lochs the first factor is correlated with GPP (0.50) and links with temporal distance 

from solstice, temperature, NDWI and PAR. The second factor also correlates with GPP (-

0.22) and is connected to the microform variable, several plant species, soil moisture and 

the NDWI. The negative correlation here suggests that the collars classed as hollows have a 

higher GPP than those classed as hummocks; this is opposite of the result at Lonielist. The 

third factor correlates positively with GPP (0.36) and is connected to the two soil temperature 

variables, NDWI and NDVI. 
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Figure 6.3 – Lonielist, Talaheel and Cross Lochs factors. Each of the five factors is indicated 

by a different pattern fill. The variables are given on the y axis, and the factors which underly 

and are connected with each variable have a loading strength shown by the stacked bar 

lengths. Legends show correlation of the scores for each factor with GPP values.  For 

example, the first factor at Cross Lochs is shown by the unfilled bars, and has high loading 

strengths associated with PAR, the three temperature variables, and the temporal distance 

from the solstice. It also has a correlation of 0.50 with GPP. See Appendix D for more 

information.  

6.3.2. Comparison of modelled and measured GPP at small scale  

Figure 6.4 shows the TG model using the spectrometer NDVI and the surface temperature 

applied to each of the sites across the measurement period. The agreement between the 

model and the chamber data is generally very good temporally, with the boxplots well within 

error bars across the year. The chamber fluxes have larger ranges than the TG model 

results at each site throughout the growing season. The TG model tends to underestimate 

the highest chamber GPP values, as can be seen from the scatter plots in Figure 6.4. It 

appears that a polynomial model might better describe the relationship than a 1:1 line, 

particularly at the Cross Lochs site. The possible reasons for this are discussed in Section 

6.4.  

Cross Lochs 
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Figure 6.4 - Boxplots and scatterplots (by month) comparing the chamber-measured GPP 

and GPP calculated from the TG model using hand-held spectrometer data and the surface 

temperature measurements for each site. There is no TG model result in June at Lonielist 

due to the poor weather causing lack of spectral measurement. 1:1 lines are plotted on the 

scatter graphs.  
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6.3.3. Comparison of small-scale modelled and measured GPP with EC and satellite data 

Figure 6.5 shows the average GPP across the experiment period from the chamber data and 

EC data, and modelled from the spectrometer and MODIS data. The correlations between 

the chamber fluxes and the spectrometer TG fluxes across all months are 0.57 at Talaheel, 

0.68 at Lonielist, and 0.70 at Cross Lochs. The TG model using MODIS data is calibrated on 

a daily rather than hourly time frame, and so is shown in separate graphs. The correlation 

between the EC data and the MODIS TG model (DoY 70 to 265) is 0.74 at Lonielist, 0.74 at 

Cross Lochs, and 0.85 at Talaheel.  

The chamber GPP is lower than the EC GPP at all three sites (54.9% lower at Lonielist, 72% 

at Talaheel, 62% at CrossLochs). The TG model using MODIS data and the ‘m’ parameter 

calibrated from small-scale data matches better with hourly chamber fluxes than EC fluxes. 

The difference between chamber GPP from hummocks and hollows is greatest at Lonielist 

and shows higher GPP values from hummocks. The difference is less pronounced at Cross 

Lochs, but shows the opposite effect, with higher GPP from hollows. Talaheel shows less 

clear differences between the two types of microform. At all three sites the differences in 

microtopography shown by the spectrometer TG results are less pronounced than those 

from the chambers.  

Figure 6.6 gives an example image of the TG model applied across part of the Flow Country 

in July 2017. The forested areas have the highest values in the model, whilst the recently 

felled areas have the lowest GPP.  



134 
 

 

Figure 6.5 – The different estimates of GPP for each site across the growing season. 

Chamber is the GPP data from the flux chamber measurements, Spectrometer TG is the 

GPP estimates from the TG model incorporating surface temperature and the NDVI taken in 

the field, MODIS TG is the TG model using LST and NDVI MODIS data, and EC is the data 

from the partitioned EC tower data. The small-scale results are split into hummocks (black) 

and hollows (grey). The data are shown on two separate graphs for each site due to the 

differing temporal calibrations of the TG model from spectrometer and MODIS data – left-

hand graphs are on an hourly timescale, right-hand on daily. EC and MODIS TG are shown 

on both graphs; the EC data on the left graph are averaged across the half-hourly periods 

covering the chamber flux measurement period, and on the right graph are averaged over 8-

day periods to match the MODIS time period. The MODIS TG is calibrated to the EC data in 

the right-hand graphs, and using the ‘m’ parameter calculated for the small-scale TG model 

in the left graphs.  
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Figure 6.6– Images showing GPP calculated with the TG model using MODIS data from 12th 

July 2017, and RGB Sentinel-2 imagery from September 2017 (closest clear image) over 

part of the Flow Country including the Forsinard Flows RSPB reserve. Forestry 

compartments are overlaid on the images, with darker green showing earlier felling and 

therefore ecosystems which should be closer to natural bog. Red dots show field chamber 

measurement points.  

6.4. Discussion   

The EFA correlations with GPP showed that the NDVI and temperature were dominant in the 

factors affecting GPP at all sites. This endorses the use of the TG model, which makes use 

of both these variables. All three temperature variables, at surface, 5 cm and 15 cm, were 

included as variables, but they are strongly related and only one is necessary in the model. 

The surface temperature provides much more short-term variation compared to soil 

temperature, and has a relationship with the incoming radiation available for photosynthesis, 

as shown by the EFA. The variation which surface temperature adds to the model is 

therefore more than seasonal change, and can provide information on day-to-day changes in 

GPP due to weather and radiation, and even changes throughout the day. 

Lonielist GPP results at small scale showed the greatest difference between hummocks and 

hollows, particularly in July when we had clear skies and high temperatures during the 

measurement period. This difference may be more evident at Lonielist than the other sites 

due to the relic furrow and ridge system creating more extreme microtopographical features 

than would otherwise be found in a peat bog. Wu et al. (2011) found that there was no 

difference in GPP between hummocks and hollows at the Mer Bleue bog in Canada, 

consistent with our results from Cross Lochs, but did find a significant difference in 

respiration with hummock ecosystem respiration higher than hollows. They showed that 

shrubs were the dominant influence on hummock carbon cycling, whilst mosses were the 

dominant factor in hollows. In contrast, Waddington and Roulet (1996) found that hummocks 

at their study site in a Swedish peatland had greater CO2 uptake than hollows during the 

growing season, similar to our results at Lonielist. It is somewhat surprising that Cross 

Lochs, the near-natural site, showed a small but opposite difference  in fluxes between 

microforms. Lindsay et al (1988) found that some areas of the Flow Country were dominated 

by pool and hollow type landforms due to the wet climate, and it may be the case that our 

classifications of landforms at Cross Lochs were based on the need to distinguish areas of 

different heights within close range, and did not always satisfy the descriptions of true 

hummocks and hollows. In general, the differences in GPP fluxes between microforms did 

not seem to be large or temporally consistent during our study period. The period during 
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which measurements were taken, however, was mostly quite cold and wet and a stronger 

difference between fluxes from microforms might have been seen under dryer conditions.  

Despite small differences in GPP among the chamber locations, we did observe significant 

differences in vegetation between the microtopographical features at each site and also in 

general between the sites. The significant differences in selected vegetation species are 

consistent with their preferred microhabitats. Both Lonielist and Cross Lochs show a greater 

proportion of heather (Calluna vulgaris) on the higher areas of ground. Cross Lochs has 

higher percentages of S. capillifolium, a Sphagnum species well known to be hummock 

forming (Laine et al., 2009) on the higher areas, and more deer grass (Trichiophorum 

germanicum) in the hollows, whilst Lonielist has significantly more red-stemmed feather 

moss (Pleurozium Schreberi) in the furrows. It is worth noting that there is ecological 

succession in play as well as microtopographical features when we consider these three 

sites, as shown in Hancock et al. (2018). The presence of deer grass (Trichiophorum 

germanicum) seems to be associated more with the near-natural site at Cross Lochs. 

Talaheel has higher relative proportions of common cotton grass (Eriophorum angustifolium) 

which has been found to colonise disturbed areas of ground (Phillips, 1954). Malhotra et al. 

(2016) found that there was there was a clear relationship between microtopography and 

species distribution at the Mer Bleue bog in Canada. Their work showed that 

microtopography in the bog was due to varying rates of decomposition of different vegetation 

communities, and that fine spatial structures explained up to 40% of species distribution.  

The selected vegetation species showed influence on GPP, although these varied between 

the sites. The two wetter sites, Cross Lochs and Talaheel, show greater connections 

between GPP and measures of moisture, both NDWI and soil moisture measured using the 

probe. Both Lonielist and Cross Lochs show some correlations between factors linked with 

microtopography and GPP, although the relationship is stronger at Lonielist. Malhotra et al. 

(2016) found that water table depth was a significant factor in maintaining distinct vegetation 

communities on microtopographical features. Their work was done on the Mer Bleue bog in 

Canada, which can be described as near-natural, and therefore is most similar to our site at 

Cross Lochs which also had links between microtopography and soil moisture, as shown by 

the EFA. 

The apparent polynomial relationship between the chamber GPP and spectrometer TG 

results is possibly a result of the different species dominating the flux at different times of 

year. As shown in Lees et al. (in prep), NDVI linear model relationships to GPP were steeper 

in the early months of the growing season (particularly March) and shallower at the peak of 

the growing season. It was hypothesised that this was due to Sphagnum species having a 
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steeper linear model relationship between NDVI and GPP than vascular plants (Letendre et 

al., 2008; Whiting, 1994). As Sphagnum is a dominant influence on carbon fluxes in the 

colder months of the year (Glenn et al., 2006) but vascular plants dominate during peak 

growing season, this could cause the changes seen in the relationship across the months 

measured. Although the temperature factor in the TG model corrects for this somewhat by 

reducing the higher NDVI values of the early months and increasing the lower NDVI values 

of the peak months, it does not completely eliminate these different relationships. Cross 

Lochs shows this effect very clearly, as this is the site with the most mixed vegetation and 

the highest proportion of Sphagnum (27.7 ± 18.1 % S. capillifolium). It may be that in order 

to develop a TG model which has a linear relationship with measured GPP at small-scale, 

vascular plants and mosses such as Sphagnum need to be considered separately 

(Huemmrich et al., 2010; Peichl et al., 2018). These differently calibrated models could then 

be combined in different proportions across the year according to when each type of 

vegetation is dominant.  

There was a clear difference between the GPP values from the chambers and the EC 

towers, with the EC data giving higher results at all three sites (Figure 6.6). There are many 

possible reasons for this, including errors from the chamber methodology. The collar 

insertion method, which involved cutting into the peat and root mass around the collar base, 

could have damaged the vegetation and so reduced chamber fluxes. Heinemeyer et al. 

(2011) found that collar insertion prior to using a flux chamber could reduce respiration at 

peatland sites by up to 30-50%, even several months after insertion. The chamber 

measurements were also subject to a reduction in PAR, which is likely to result in a 

reduction in GPP. Background concentrations of CO2 within the chambers were monitored to 

ensure they were close to atmospheric levels at the start of each measurement, and as the 

measurements were only five minutes long CO2 build-up is unlikely to have affected the 

results. Some of the chamber data showed noise, suggesting that there were minor leaks 

where the chamber was not perfectly sealed. The data from these measurements was still 

useable, but may show slightly lower results than the real flux. It is possible that there were 

some changes in chamber volume throughout the experimental period due to collar settling 

and vegetation growth which were not accounted for in the measurements and could have 

led to slight under or overestimation (Morton and Heinemeyer, 2018). 

Factors affecting the EC fluxes may also be responsible for the differences seen. Cross 

Lochs, which shows a large difference between EC and chamber GPP results, has an open 

path sensor compared to the other two sites which have closed paths, and this may have led 

to inaccuracies in the flux measurements (Helbig et al., 2016). Cross Lochs was also 

dominated during the measurement periods by winds from the South, and some North-
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Easterlies, rather than the South-West and North-West directions of the transects, and this 

may have affected the areas included in the footprint and therefore the overall flux. The 

ecosystem respiration results are similar from the chambers and the EC tower (not shown), 

suggesting that the difference is not caused by the partitioning equations used in EC data 

processing.  

Laine et al. (2006) compared NEE from EC and chamber measurements at a blanket bog 

site in Glencar, Ireland, which is climatically and structurally similar to the Forsinard Flows 

reserve. They found that there were significant differences between microforms, but that 

these were linked to soil moisture (Heikkinen et al., 2002, also showed this), corroborating 

the suggestion that our study period was generally too wet to show much influence on GPP 

from microforms. Laine et al. (2006) found a correlation of 0.82 between EC and interpolated 

chamber NEE, even when footprint size and direction variation was not accounted for. They 

did note, however, that agreement decreased towards the extremes of the temperature 

range, agreeing with the current work where differences were particularly noticeable in the 

hot period of July.  

Griffis et al. (2000) also compared chamber and EC fluxes, at a subarctic fen in Manitoba. 

They found that chamber measurements of GPP were 32% lower than EC GPP results, 

similar to the current work. They also showed that hummocks dominated the CO2 fluxes, 

which corresponds with the Lonielist site showing greater agreement between hummock and 

EC GPP than between hollow and EC GPP. Heikkinen et al. (2002) also found that carbon 

fluxes from chamber measurements were somewhat lower than those from EC over the 

same period, at a subarctic fen in Northern Finland.  

Application of the TG model with MODIS data and small-scale ‘m’ parameter matched 

chamber data better than hourly EC data, suggesting that the difference between chamber 

and EC GPP is not only a result of spatial scale. The TG model is clearly very dependent on 

calibration to measured data, and therefore the uncertainty of measurements used in the 

model calibration will form a large part of the uncertainty estimates of the TG model.  

Generally, the agreement between the TG model and the measured fluxes is shown to be 

good at small scale, with correlations of 0.57 to 0.70. The Lonielist and Cross Lochs sites 

show slightly better agreement than the Talaheel site. Talaheel was also the only site to 

show almost no connection between microtopography and GPP. This may be due to the 

recent landscaping of the site to put in peat dams in the remaining planting furrows, which 

has created large flat areas and deep pools, rather than the more natural small hummocks 

and hollows. It may be the case that the vegetation species have not had time since the 

work done in 2015/16 to develop their ecological niches. It is also clear that the water levels 
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at Talaheel have been increased by the recent drain blocking, and areas which we would 

consider hollows are often flooded and so unsuitable for taking flux or spectral 

measurements. This may also be affecting the agreement with the model, as the Talaheel 

site might be responding to temperature and seasonal changes differently to sites which 

have had less recent disturbance.  

The GPP estimates calculated with the TG model that used data from MODIS were in very 

good agreement with the GPP derived from EC data (correlations of 0.74 to 0.85). This 

corroborates the work done on developing the model in Lees et al. (in press). The ‘m’ 

parameter calibrated for the TG model against EC data in this study, which uses data from 

2017, is higher than that calculated in Lees et al. (in press) which used 2014/15 data. This 

may be because the growing season of 2017 was particularly wet; this supports the 

development of the annual Temperature, Greenness and Wetness (TGWa) model in Lees et 

al. (in press), which associates high summer wetness with increased annual GPP.  

The application of the TG model across part of the Flow Country in Figure 6.6 gives an 

example of how the model could be used to monitor peatland health, and in particular 

restoration progress. It is evident that areas which have been recently felled have a low 

GPP, whilst those which were felled a decade ago are shown to have a GPP similar to near-

natural blanket bog areas. The size of the MODIS pixels makes the model using this data 

useful over landscapes where large areas are under consistent management, but less useful 

over areas of the Forsinard reserve where forestry blocks are small.  

Previous studies suggest that finer resolution remote sensing data matches other 

measurements of GPP better than coarser resolution satellites (Fu et al., 2014; Gonzalez del 

Castillo et al., 2018; Knox et al., 2017). Fu et al. (2014) found that Landsat-like reflectance at 

30 m resolution gave better agreement with Eddy Covariance measurements of GPP than 

coarser resolution MODIS reflectance across different ecosystems in the USA. Similarly, 

Gonzalez del Castillo et al. (2018) used proximal measurements of NDVI 10-20 m above the 

canopy of a tropical dry forest in Mexico to give better agreement with EC data than satellite 

measurements. Knox et al. (2017) found that a vegetation index calculated using a digital 

camera at fine spatial resolution gave better agreement with EC GPP than Landsat indices 

at restored marshland in California. However, all these studies used EC data as a 

comparison, whereas our study also includes chamber data. We have found that both small-

scale spectrometer data and large-scale MODIS data can be used to give good estimates of 

GPP in peatland landscapes, but the results are dependent on the calibration. Future work 

should consider aerial remote sensing as an intermediate scale between field spectrometry 

and satellite data.  
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6.5. Conclusions 

In this study we have used a Temperature and Greenness (TG) model to estimate GPP from 

remotely sensed data at small-scale and large-scale, and compared this to chamber and EC 

measures of GPP.  

The TG model successfully models the factors which have the greatest relationship with 

GPP at our study sites, and so produces an estimate of GPP which is comparable at small 

and large scales. Our results suggest that the differences in GPP caused by peatland small-

scale heterogeneity are temporally and spatially inconsistent, and that the TG model 

provides an average estimate. However, the difference in the NDVI factor of the model 

between Sphagnum and vascular species does appear to have an effect on the relationship 

between measured and modelled GPP, and it is suggested that future iterations of the TG 

model for use at small scale should consider the dominant flux influences from different 

vegetation types across the year.  

The EC results for GPP are larger than those from the chambers, possibly due to several 

reasons including variation within the tower footprint, and the challenges of collar insertion 

and chamber methodology. Future work should consider taking chamber measurements at 

higher temporal frequency, possibly using automated chambers, to assess the causes of this 

discrepancy. The TG model, however, shows good agreement with the chamber data at 

small-scale and the EC data at large scale, suggesting that the model design is robust at all 

scales, although dependent on the calibration data used. 
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7. Discussion and Conclusions 

7.1. Summary of research 

Remote sensing data have been used to model carbon fluxes over many different 

ecosystems, but it is only within the last fifteen years that this has occurred with peatland 

studies. The literature review showed that there have been very promising results in the use 

of remote sensing to give information about peatland carbon fluxes (e.g. Connolly et al., 

2009; Harris and Dash, 2011; Kross et al., 2016, 2013; Letendre et al., 2008; Schubert et al., 

2010; Van Gaalen et al., 2007), but that there are still many challenges for future research. 

Many of the models discussed in the literature review were developed over forestry, 

agriculture, or grassland (e.g. Running and Zhao, 2015; Sims et al., 2008; Xiao et al., 2004; 

Yuan et al., 2007), and it was suggested that the unique features of peatlands, such as 

water saturation and small-scale heterogeneity, could cause challenges when applying these 

models to peatland area.  

In particular, Chapter 2 highlighted the need for longer-term, larger-scale studies taking into 

account different study sites around the world. It suggested that future projects which 

consider the whole carbon cycle, starting with a better understanding of how ecosystem 

respiration relates to remotely sensed data, will be hugely beneficial. GPP was shown to 

have reliable correlations with variables which can be measured by remote sensing, such as 

vegetation indices, whilst other elements of the peatland carbon cycle such as heterotrophic 

respiration and DOC, are harder to analyse using remote sensing techniques.  

The literature review brought out a research gap in the use of remote sensing data at 

peatland sites undergoing restoration, and the work in this thesis has contributed towards 

filling that gap. The literature review also suggested that looking into the best spectral 

indices for use in peatland environments would be helpful to researchers working in this 

area, as would a better understanding of the issues surrounding microtopography and the 

upscaling of carbon fluxes across heterogeneous sites. These two issues have both been 

considered in this thesis, and we are now in a position to suggest answers to some of the 

questions raised by the literature.  

The literature review concludes by suggesting that the most accurate model for peatland 

GPP using remote sensing data may include a vegetation index such as the NDVI or EVI, a 

measure of temperature, and a measure of wetness. This has proved to be the case 

throughout this thesis, and particularly in the development of the TGWa (annual 

Temperature, Greenness and Wetness) model.  
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The laboratory study (Chapter 3) into Sphagnum drought stress considers the strengths of 

remote sensing data for detecting changes in photosynthesis of this key peatland genus 

under extreme conditions. This experiment was designed to consider the effects of different 

precipitation patterns and long drought periods on Sphagnum functioning, as these may 

become more common as a result of climate change (Hoegh-Guldberg et al., 2018; Jenkins 

et al., 2010). Recovery after prolonged drought was measured to give more information 

about Sphagnum resilience to desiccation. Spectral reflectance was recorded throughout the 

experiment, and the areas which showed change were noted, including particularly the red 

absorption zone. A laboratory study was designed for this part of the project to allow control 

over the environment and the different inputs of water. The controlled environment also 

enabled very accurate measures of carbon flux and spectral reflectance to be taken, by 

minimising background variation.  

The work found that there was no significant difference in the carbon function response to 

drought between the two species, S. capillifolium and S. papillosum. This was somewhat 

unexpected, as we had predicted that a hummock-forming species such as S. capillifolium 

would be more resilient to drought than S. papillosum which prefers wetter microhabitats. In 

fact, our results showed that both species were very resilient to drought, and only showed a 

significant decrease in GPP (compared to the control samples) after approximately 30 days 

of zero water input. We did find that the optimum water content was different for the two 

species, and that it was higher for S. papillosum as predicted.  

The spectral data collected in this study showed a clear decrease in the absorption of red 

light as the samples were progressively affected by water limitation. This change can be 

given a numerical value through using the NDVI which considers the difference between the 

red light wavelengths and the Near Infrared (NIR). The NDVI is easily calculated from 

satellite bands which are freely available from sources such as MODIS, Landsat and 

Sentinel-2.  There were some limitations to implementing this study in the laboratory rather 

than under field conditions, for example the removal of Sphagnum from its basal stem, the 

use of deionised water rather than rainwater, and the lack of wind-enhanced drying and 

drainage from below. If there was the opportunity to study Sphagnum GPP and vegetation 

indices under drought stress in the field, this would improve our understanding of the 

relationships found here.  

Recovery after inundation was assessed as part of this experiment. The samples which had 

been subjected to uninterrupted drought did not show much sign of carbon function 

recovery, and still showed no red absorption feature. This suggests that although Sphagnum 

is resilient to drought, once function is affected recovery becomes difficult. This study was 
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limited, however, by the use of small Sphagnum cushion samples with no basal stem 

contact. It also points to the NDVI as an index which can detect drought damage in 

Sphagnum even after water levels have risen. This chapter concludes by recommending that 

further work into the recovery of drought-affected Sphagnum would aid researchers in 

determining the likely effects of climate change induced drought periods on blanket bog 

ecosystems.  

Chapter 4 looked at spectral indices in more depth, and aimed to answer some of the 

questions raised by the literature review concerning which spectral indices give the best 

information about blanket bog photosynthesis and wetness. It particularly considered the 

differences in results from broad-band and hyperspectral indices, using data from both the 

laboratory and the field. The results from this study showed that the NDWI gave the best 

agreement with laboratory measures of Sphagnum wetness. The correlation between NDWI 

and wetness in the field was less conclusive, and more work needs to be done into the links 

between water table, which is commonly measured in the field, surface wetness, rainfall, and 

water indices. Spectral indices which use the difference between the red and near-infrared 

zones (the EVI, NDVI and the CIm) gave the best agreement with field and lab measures of 

photosynthesis.  

The robust testing of the different indices, in varying conditions in both the field and the 

laboratory, suggests that these results are reliable. The key outcome of this study is that the 

use of hyperspectral indices is not necessarily an improvement on broad-band indices, 

meaning that broad-band satellite sensors such as MODIS can be used with confidence.  

In the fifth chapter we validated and adapted the TG (Temperature and Greenness) model 

for use over blanket bog sites, and then applied it to a chronosequence of restored sites at 

the Forsinard Flows reserve. The TG model, locally calibrated to each site, was shown to 

give much better agreement with the EC data than the global MOD17A2H product. In order 

to improve the inter-annual variation of the model, the wetness factor, based on winter and 

summer NDWI differences, was added to the TG model, giving the TGWa model introduced 

in this thesis. This model contains the three elements identified in the literature review as 

those which would give the best estimate of GPP. This model can be considered a useful 

addition to peatland monitoring methods, but currently relies on site-specific calibration. 

Future work should validate the TGWa model against a greater range of peatland sites and 

assess whether the need for site-specific calibration can be limited.  

The developed TGWa model was applied to six different sites across the Forsinard Flows 

reserve which were felled in different years from 1998 to 2007. The results suggest that 

photosynthesis increases in the years after felling, and reaches the GPP of near-natural bog 
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sites after 5 to 10 years. This study is one of the first to use remote sensing data to study 

peatland restoration progress, and so gives useful information for governments and 

stakeholders. We suggest that this model is useful as an addition to the range of techniques 

used to monitor peatland restoration progress, to aid in upscaling point-scale field data to the 

wider landscape.   

One of the concerns raised by the literature review was the difficulty in applying models 

using coarse resolution satellite data to environments which are so heterogeneous at the 

microtopographic scale. The upscaling research project in this thesis aimed to further our 

understanding of the factors affecting peatland GPP at small scales, and whether the TG 

model can adequately capture the effects of these factors. This chapter also considers the 

agreement between EC data and the TG model calculated from MODIS data, and whether 

the results from the satellite data based model and the hand-held spectrometer data based 

model are comparable.  

The results from this study showed that the TG model is scalable as it is based on input 

variables which affect GPP at both small and large scales. Small-scale heterogeneity of the 

blanket bog was shown to have minimal effects on the GPP results, although it was noted 

that 2017 had an unusually cold and wet summer, and microtopography might have been 

more influential under dryer conditions. The comparison of the TG model results calculated 

using data from the handheld spectroradiometer with the flux chamber GPP indicated a good 

performance of the model at small scale. The relationship is not entirely linear, however, and 

it is suggested that this is an effect of the dominance of different vegetation types across the 

year. The relationship between the EC data and the MODIS TG model was maintained, 

although the calibration of the ‘m’ parameter was different to the results of Chapter 5. Much 

of the model’s goodness of fit is still dependent on calibration methodology, as seen from the 

difference between EC data and chamber fluxes, which in turn influenced the TG results at 

different scales. Future work should consider testing the TG model at intermediate scales, 

perhaps using data from UAVs, and testing a version of the model which includes different 

calibrations for vascular and non-vascular vegetation.  

7.2. Improving conceptualisation of peatland productivity 

In order to better visualise the relationships between factors affecting carbon fluxes, and the 

remote sensing methods we have used in this project to estimate them, a conceptual 

diagram was created (see Figure 7.1). This diagram is not intended to be the basis of a 

comprehensive process model, but rather a lens through which to view the progress made in 

this research project.  
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Much of the work in this thesis has focused on measuring and estimating GPP, and so this is 

shown in the central graph of the diagram. The key factors which have been found to control 

GPP are: PAR, which in turn influences surface temperature; soil and vegetation moisture 

content, which is linked to rainfall and microtopography (as well as other variables not 

considered, e.g. wind speed); and vegetation composition and health (which are related to 

the two previous factors). The vegetation health and composition are detectable using 

spectral reflectance through indices such as the NDVI.  

The laboratory study on drought stress in Sphagnum made it clear that water input is a major 

factor influencing GPP. Chapter 4 on spectral indices shows that the water content of 

Sphagnum samples in the lab was strongly correlated to the water indices tested. The 

relationship between water input and GPP, and also with the water indices, was also 

somewhat supported by the fieldwork performed at Forsinard Flows, although as the growing 

season of 2017 was generally wet throughout the range of moisture contents is minimal. The 

EFA in chapter 6 indicated that microtopography, moisture levels, and the NDWI were all 

related to each other, and also have a correlation with GPP.  

The two other factors which have an effect on GPP are PAR and surface temperature, which 

are also related to each other. PAR was shown to have a strong effect on GPP in the 

laboratory experiment and needed to be corrected for. In the field, surface temperature had 

a large impact on GPP and was clearly related to incoming solar radiation. Surface 

temperature functions therefore partly as a proxy for PAR within the TG model, both across 

the year and across the day.  

Vegetation indices using the NIR and red, or red-edge, areas of the spectrum, which were 

shown to be the most effective for estimating GPP in peatland vegetation, are affected both 

by the vegetation community and by plant function. The laboratory and field correlations 

between NDVI and GPP showed different slopes, which we assessed as likely to be related 

to the difference between Sphagnum alone and other peatland vegetation communities. 

Plant carbon function (ie. the presence and activity of chlorophyll) which is affected by the 

factors listed above, is largely what determines changes in vegetation indices assuming 

species is constant. This is seen in both the laboratory and field studies.  

The plant species which have the most influence on GPP and red-edge indices vary 

seasonally. In the winter and early spring months Sphagnum is a dominant influence on 

ecosystem GPP, whilst vascular plants dominate the summer. Because of this, the 

temperature component of the TG model acts partly as a seasonal modifier on the 

relationship between NDVI and GPP, minimising the effect of dominant plant species.  
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Figure 7.1 shows how the TGWa model takes into account the factors we have found to 

affect GPP.  The NDWI is a proxy for surface wetness, the surface temperature is a factor in 

its own right but also performs as a proxy for PAR, and the vegetation indices take into 

account both vegetation species and other factors affecting the LUE of plants.  

 

  

Figure 7.1 – Conceptual diagram of the relationships between key environmental factors and 

measured variables in this thesis. The central time-series graph represents the annual cycle 

of GPP, whilst the top right graph shows the daily cycle. The factors which we have found to 

affect GPP include PAR (represented by the sun), which affects surface temperature (the 

thermometer) and the relationship between moisture content, microtopography and rainfall 

(represented in the bottom image by undulating surface topography, water input rainfall, and 

dipwells). The vegetation health and composition (central image) is affected by both 

moisture and temperature, resulting in GPP that is detectable by vegetation indices such as 

the NDVI (represented by the spectral reflectance diagram to the right).   

7.3. Wider implications and future work  

The success of the TG model across all our study sites and at different scales is a step 

forward in developing remote sensing methods to study peatland carbon fluxes. Application 

of this model to restored sites in the Forsinard Flows RSPB reserve is a useful addition to 
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the growing body of literature which recommends peatland restoration as a carbon 

emissions reduction technique. We hope that future iterations of this model will be part of the 

suite of methods used to monitor peatland health and restoration in Great Britain and 

beyond, and that the estimates it provides will be an asset to groups restoring peatlands 

under government-funded schemes. Currently we recommend that the model is used in 

conjunction with other monitoring methods, but we suggest that future work into the site-

specific ‘m’ parameter could increase its usage as a stand-alone measure across large 

areas. Future work on the TGWa model should include calibrating against more peatland 

sites around the world, and attempting to discern whether there are other factors related to 

this calibration which could be added to the model to make it applicable worldwide with less 

reliance on ground data collection.  

Future research from this project could take several different pathways. Work looking at the 

impact of climate change on peatland ecosystems could continue the research done in 

Chapter 3 into the damage done to Sphagnum moss carbon function by long drought 

periods, and in particular whether this damage is irreversible. The focus of such work should 

be on how well vegetation indices such as the NDVI can continue to match photosynthesis 

measurements during recovery from drought. Water and vegetation indices could then be 

used to detect peatland areas which are particularly vulnerable to climatic change. The 

wildfires on English peatlands in the summer of 2018 provide a unique opportunity to use 

remote sensing for retrospective analysis of the conditions that caused the fire (low moisture 

content etc.) for future risk modelling.  

The understanding of the link between water table depth, water indices, rainfall, moisture 

content and microtopography could also be improved through further work. To test the link 

between water indices and field measures, spectral data collected at more frequent intervals 

across peatlands could be used to assess the relationship to both rainfall, which is 

commonly measured at meteorological stations, and water table depth, which is often 

recorded at peatland field sites. Another study on moisture and GPP variation across 

microtopography could give additional information if completed in a dryer year when the 

variations are likely to be more pronounced. Such an experiment could be used to suggest 

whether or not the robustness of the TG model across scales would endure under more 

extreme conditions.  

In addition to this, future work into extending the model to include an estimate of peatland 

ecosystem respiration would be a good step forward towards being able to model the 

complete carbon cycle of peatland ecosystems from remote sensing data. Our work in 

chapter 3 suggests that the correlation between GPP and respiration in Sphagnum is strong 



150 
 

and remains constant under drought stress. If this correlation was found to be similar across 

other peatland vegetation types, modelled GPP could be the starting point for estimating 

respiration.  

Another avenue of potential future work in this area would be to extend the work done on 

method development in this thesis to a wider range of satellite data sensors, in particular 

newer satellites with higher spatial resolution such as Sentinel-2. This could be pursued in 

combination with developing new methods from other available forms of remotely sensed 

data, for example SAR data from ENVISAT and Sentinel-1.  

7.4. Conclusions 

Here, the key findings from this project are mapped onto the six research objectives 

specified in Section 1.2.  

Objective 1: To analyse the current state of remote sensing for peatland carbon flux 

estimation, and to determine the gaps in our knowledge.  

It was found that gaps in the literature included an understanding of how peatland 

microtopography could affect remote sensing based estimates of carbon flux, a 

thorough consideration of the best indices for estimating peatland carbon fluxes 

under different conditions, and the use of remote sensing based estimates of carbon 

flux over peatlands undergoing restoration. These gaps were used as research 

questions to define the direction of this project. The literature review also found that the best 

model for estimating peatland GPP was likely to include temperature, a vegetation index, 

and a measure of wetness.  

Objective 2: To assess how peatland vegetation carbon fluxes change under stress, and 

whether this change is detectable using remote sensing.  

The carbon fluxes of Sphagnum moss decrease under drought stress, and this 

change is detectable using remote sensing. The laboratory experiment showed that 

Sphagnum was resilient to drought stress up to approximately 30 days without water. After 

that period drought damage started to be evident from changes in carbon fluxes, and also 

changes in the spectral reflectance. The change in the red light area of the reflectance 

spectrum was particularly interesting, as it did not recover after the samples were rewetted. 

This suggests that indices such as the NDVI could be useful in detecting long-term 

Sphagnum damage caused by drought.  

Objective 3: To compare different spectral indices under a range of conditions and 

determine which give the most accurate information about peatland environments.  
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Hyperspectral indices were found to give minimal improvement over broad-band 

indices on monitoring peatland vegetation health. Using both laboratory and field results, 

it was evident that the best index for giving information about peatland vegetation moisture 

content was the NDWI, and the best indices for matching GPP were the NDVI, EVI and the 

CIm. This shows that broad-band indices, which can easily be calculated from freely 

available satellite data such as from MODIS, can give useful information about peatland 

vegetation health.  

Objective 4: To develop a model using remote sensing data that can give reliable and 

accurate estimates of peatland GPP.  

The TG model and TGWa model were calibrated and developed for peatland 

ecosystems and are shown to give good agreement with intra- and inter-annual EC 

data, respectively, at blanket bog sites. The calibrated TG model gave good agreement 

with the data available from two restored sites at the Forsinard Flows reserve. The TGWa 

model incorporates a wetness component on an annual basis which improved the fit with 

annual values of GPP from EC data at the long-running site at Glencar. This model is 

suggested as a useful addition to the suite of monitoring methods available for peatland sites 

undergoing restoration.  

Objective 5: To use the developed model to measure restoration progress at a landscape 

scale.  

The TGWa model suggested that peatland restoration at the Forsinard Flows reserve 

is successful in terms of GPP after five to ten years. This result, drawn from over ten 

years of applying the TGWa model using satellite data from six sites undergoing restoration 

across the reserve, is a success story for practitioners. Increasing GPP to near-natural levels 

is a key aim of peatland restoration, particularly when protecting carbon stores and 

increasing carbon sequestration is the aim. The work in this study adds to a growing body of 

evidence that such work is successful over relatively short timescales of less than a decade.  

Objective 6: To assess whether the developed model is accurate at both small and large 

scale, particularly taking into account the small-scale heterogeneity of many peatland 

landscapes.   

The TG model was found to match field measurements of GPP at small and large 

scales, although the relationship is dependent on model calibration. The TG model 

results calculated from hand-held spectrometer data matched the flux chamber GPP quite 

well, and the relationship was maintained for the TG model using MODIS data when the ‘m’ 

parameter calculated from calibration against the chamber data was applied. When the TG 
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model using MODIS data was calibrated against EC data the relationship between the model 

results and the EC values was strong. However, the EC and chamber GPP were different 

across the growing season, indicating that the success of the TG model is dependent upon 

the data used for calibration. Heterogeneity had some influence on small-scale GPP, but 

other factors such as NDVI and temperature were more consistently important.  

Overall, the results from the studies included in this project have progressed our 

understanding of remote sensing for the estimation of peatland carbon uptake. The work 

described in this thesis has led to a clearer picture of the effects of extreme conditions on 

carbon flux and spectral reflectance, and has given further evidence that the spectral data 

available from satellites is useful in monitoring peatland health, even when the available data 

is at coarse spatial resolutions and produces broad-band indices. The developed TGWa 

model is proven to be an asset to peatland restoration monitoring, and the application of the 

model to sites across the Forsinard Flows reserve gave an indication of ongoing restoration 

success for carbon uptake.   
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Appendix A – Correcting for background light effects 

When it became apparent that background light levels were affecting the carbon flux results, 

a PAR sensor was added to the Licor-8100, and PAR measurements were recorded for 

each net carbon flux measurement (NEE). Sample CapA1 (a sample of S. capillifolium from 

control group A) was selected as a control, and 11 measurements of NEE and PAR were 

taken across the course of a morning, approximately every 25 minutes from 8.30am to 12 

noon. This was repeated with eight other randomly selected samples (covering both species 

and different stages of dryness) in the next few weeks of the experiment. The results are 

shown in Figure A1 and Table A1. It can be seen that for all the samples tested, the GPP 

was increasing with PAR.  

It is likely that each sample would have a different response curve to PAR, and that this 

might change with water content. Unfortunately time constraints meant that we could not 

create an individual response line for each sample on each day, so we compromised by 

using an averaged response line.  

A PAR to GPP regression is normally a response curve but the low light levels in this 

experiment meant that the saturation point was not reached and so a linear regression is 

appropriate. The intercept value is unimportant as it will be applied equally across all 

samples. The slope value is the focus here. The average slope value is 0.0204, so the 

regression equation used is: 

GPPr = 0.0204 × PAR 

The correction applied to the GPP measurements is then: 

GPP = GPPm – GPPr + 1.4 

Where GPPm is the measured GPP from the chamber fluxes, and GPPr is the estimated 

GPP from the regression line.  
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Figure A1 –GPP related to PAR for nine different Sphagnum samples.  

Table A1 –Each sample tested for PAR:GPP relationship, as shown in Figure A1. This table 

gives the slope of the regression line for each sample, the correlation between the PAR and 

GPP values, and the number of measurements taken.  

Sample slope correlation no. of measurements 

PapC1 0.00148 0.86 9 

CapC3 0.00455 0.96 6 

PapB1 0.003247 0.86 6 

PapC4 0.001292 0.7 9 

PapB3 0.000844 0.51 9 

PapE2 0.000811 0.61 6 

CapE2 0.002336 0.91 6 

CapA1 0.000967 0.91 11 

CapD3 0.002798 0.79 6 

 

As the first four weeks of the experiment did not have attached PAR data, it was necessary 

to find a proxy correction method. The timing of the NEE measurements was considered a 

proxy for PAR, because the main changes in background light were seen across the 

mornings as the sun rose. Cloud cover changes had some effect on PAR, but these were 
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minimal in comparison with the increasing PAR across the mornings. Figure A2 and Table 

A2 show the models used.  

 

Figure A2 – GPP as a function of time for nine different Sphagnum samples. Measurement 

no. is used to indicate time, as measurements started at the same time each morning, and 

each sample took five minutes to complete measurements.  

Table A2 –Each sample tested for PAR-time relationship, as shown in Figure A2. This table 

gives the slope of the regression line for each sample, the correlation between the PAR and 

GPP values, and the number of measurements taken. 

Sample slope correlation no. of measurements 

PapC1 0.0065 0.73 9 

CapC3 0.0123 0.81 6 

PapB1 0.0071 0.97 6 

PapC4 0.0031 0.37 9 

PapB3 -0.0008 -0.16 9 

PapE2 0.0027 0.54 6 

CapE2 0.0063 0.94 6 

CapA1 0.007 0.85 11 

CapD3 0.0041 0.5 6 
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The average slope value is 0.0054, so the equation used is: 

GPPr = 0.0054 × measurement number 

GPP = GPPm – GPPr + 0.2 

1.4 is added to the PAR correction, and 0.2 to the time correction, in order to match the 

midpoint of GPP results across the dataset. Figure A3 compares the results from the time 

correction and the PAR correction for the nine samples used to compute the corrections. 

 

Figure A3 – PAR-corrected GPP plotted against time-corrected GPP for the nine tested 

samples. A 1:1 line is drawn.  

Note that the order of samples on each day was randomised, and all significant trends are 

considered with respect to the control A, and the same correction is applied to all samples.  
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Appendix B – Field collars species composition 

Collar L1a L1b L2a L2b L3a L3b L4a L4b L5a L5b L6a L6b L7a L7b L8a L8b 

Calluna_vulgaris 10 
 

5 
 

20 
   

40 
 

20 5 
  

20 
 

Erica_tetralix 
  

5 
          

10 
  

Eriophorum_angustifolium 40 10 20 40 
 

20 15 5 
 

15 10 
     

Eriophorum_vaginatum 
                

Trichiophorum_germanicum 
        

10 
       

Molinia_caerulea 
           

30 10 15 
 

20 

Sphagnum_capillifolium 50 
  

40 60 30 60 
 

20 
 

9 
 

30 
  

19 

Sphagnum_papillosum 
                

Cladonia_portentosa 
 

40 25 
  

5 5 
 

5 25 60 
 

5 
 

30 5 

Woody_debris 
 

35 4 5 
  

5 
    

5 
   

5 

Polytrichum_commune 
 

5 40 10 5 40 
 

35 5 50 
 

30 50 5 50 20 

Pleurozium_schreber 
 

10 
     

60 5 10 1 10 
 

70 
 

30 

Narthecium_ossifragum 
  

1 
 

15 
 

15 
 

10 
       

Cladonia_chlorophate 
               

1 

Aulacominum_palustre 
   

5 
       

15 
    

Lichenomphalia_umbellifera 
     

1 
          

Dicranum_scoparium 
                

Camplyopos_introflexus 
                

Drosera 
                

Myrica_gale 
                

Menyanthes_trifoliata 
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Marchantiophyta 
                

bare 
                

dung 
     

4 
  

5 
  

5 5 
   

 

Collar T1a T1b T2a T2b T3a T3b T4a T4b T5a T5b T6a T6b T7a T7b T8a T8b 

Calluna_vulgaris 2.5 
     

8 
  

20 
 

10 
  

35 
 

Erica_tetralix 2.5 5 
 

3 
 

3 7 2 10 5 
 

1 5 10 2 
 

Eriophorum_angustifolium 60 15 20 15 35 30 5 25 9 20 15 
  

5 13 20 

Eriophorum_vaginatum 
                

Trichiophorum_germanicum 
 

14 
      

5 20 
 

15 24 
   

Molinia_caerulea 
          

15 20 
    

Sphagnum_capillifolium 
 

65 
   

2 80 
   

70 50 
    

Sphagnum_papillosum 
                

Cladonia_portentosa 
 

1 60 1 25 40 
  

70 15 
  

70 
   

Woody_debris 
   

5 
         

5 10 
 

Polytrichum_commune 
       

2 
   

1 
   

70 

Pleurozium_schreber 25 
 

20 75 20 20 
 

70 5 10 
 

2 1 80 40 10 

Narthecium_ossifragum 
                

Cladonia_chlorophate 
   

1 
   

1 
   

1 
    

Aulacominum_palustre 
                

Lichenomphalia_umbellifera 
                

Dicranum_scoparium 10 
   

20 
           

Camplyopos_introflexus 
        

1 
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Drosera 
                

Myrica_gale 
                

Menyanthes_trifoliata 
                

Marchantiophyta 
                

bare 
     

5 
   

10 
      

dung 
                

 

Collar C1a C1

b 

C2a C2b C3a C3b C4a C4b C5a C5b C6a C6b C7a C7b C8a C8b 

Calluna_vulgaris 5 
 

20 15 10 1 1 
 

20 
 

18 15 30 5 15 
 

Erica_tetralix 5 10 5 
 

10 1.5 
 

15 10 15 
 

5 7 
 

2 2 

Eriophorum_angustifolium 5 20 2.5 20 
  

10 15 
   

10 33 25 
 

10 

Eriophorum_vaginatum 
              

15 
 

Trichiophorum_germanicum 15 60 
 

5 3 40 30 30 10 60 15 30 
   

50 

Molinia_caerulea 
                

Sphagnum_capillifolium 
  

65 15 45 30 35 30 55 10 40 20 30 30 23 15 

Sphagnum_papillosum 
             

40 
  

Cladonia_portentosa 65 5 
 

40 2 10 
 

5 5 5 10 
   

30 5 

Woody_debris 
                

Polytrichum_commune 
                

Pleurozium_schreber 
   

5 25 7.5 10 
       

15 
 

Narthecium_ossifragum 
                

Cladonia_chlorophate 
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Aulacominum_palustre 5 
               

Lichenomphalia_umbellifera 
                

Dicranum_scoparium 
     

7.5 5 
        

10 

Camplyopos_introflexus 
                

Drosera 
  

7.5 
   

4 
  

5 2 
    

2 

Myrica_gale 
          

15 
     

Menyanthes_trifoliata 
    

5 2.5 5 
         

Marchantiophyta 
 

5 
     

5 
 

5 
 

20 
   

6 

bare 
                

dung 
                

 

 

 

 

 

 

 

Photos taken in June, collars L5b, T1b, C6a, showing the variety of species present. 
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Appendix C – Matlab code for MODIS data extraction, and MODIS datasets 

All MODIS data used in this project (unless specified otherwise) were downloaded using a 

version of the MODIS ORNL web service (Santhana Vannan et al., 2009) through the Matlab 

code ‘modisClient’ written by Tristan Quaife. The ORNL web service has since changed its 

API and consequently the version of the modisClient code in this thesis no longer works. 

This example shows the Matlab code to retrieve, cloud-filter, and gap-fill the daytime LST, 

NDVI, and bands needed to calculate the NDWI, at a site located at 45.4094, -75.5185 

(WGS84) in the year 2015.  

lat = 45.4094; 
lon = -75.5185; 
filename = 'data.xls'; 
date1 = 2015000; 
date2 = 2015365; 
modisClient(); 
addpath( [pwd '/utils'] ); 
addpath( [pwd '/utils/inpaintn'] ); 
d2=modisClient ('MOD11A2', 'LST_Day_1km', lat, lon, date1, date2,3,3); 
d2=modisClientGetQC (d2, 'QC_Day'); 
dmask2= modisMaskQC(d2, [[0:4:2^8],[0:4:2^8]+1]); 
dtirp2=modisDCT_interp( dmask2 ); 
newdata2=squeeze(dtirp2.data(4,4,:)); 
xlswrite(filename,newdata2,'Sheet3'); 
d3 = modisClient ('MOD13Q1', '250m_16_days_NDVI', lat, lon, date1, 
date2,1,1); 
d3=modisClientGetQC (d3, '250m_16_days_pixel_reliability'); 
dmask3= modisMaskQC(d3, [0,1]); 
ditrp3=modisDCT_interp( dmask3 ); 
newdata3=squeeze(ditrp3.data(5,5,:)); 
plot(newdata3); 
u=repelem(newdata3,2); 
xlswrite(filename,u,'Sheet4'); 

 
This example shows the Matlab code to retrieve, cloud-filter, and gap-fill the bands needed 

to calculate the NDWI in summer (JAS) and previous winter (OND), at a site located at 

45.4094, -75.5185 (WGS84) in the year 2015.  

lat = 45.4094; 
lon = -75.5185; 
filename = 'data.xls'; 
date1 = 2015177; 
date2 = 2015265; 
date3 = 2014273; 
date4 = 2014361; 
modisClient(); 
addpath( [pwd '/utils'] ); 
addpath( [pwd '/utils/inpaintn'] ); 
d = modisClient ('MOD09A1', 'sur_refl_b02', lat, lon, date1, date2,1,1); 
d=modisClientGetQC (d, 'sur_refl_state_500m'); 
dmask= modisMaskQC_special(d); 
ditrp=modisDCT_interp( dmask ); 
newdata=squeeze(ditrp.data(3,3,:)); 
plot(newdata); 
d2 = modisClient ('MOD09A1','sur_refl_b06', lat, lon, date1, date2,1,1); 
d2=modisClientGetQC (d2, 'sur_refl_state_500m'); 
dmask2= modisMaskQC_special(d2); 
ditrp2=modisDCT_interp( dmask2 ); 
newdata2=squeeze(ditrp2.data(3,3,:)); 
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plot(newdata2); 
  
C = newdata - newdata2; 
D = newdata + newdata2; 
NDWI = C./D; 
NDWI_JAS = mean(NDWI); 
d = modisClient ('MOD09A1', 'sur_refl_b02', lat, lon, date3, date4,1,1); 
d=modisClientGetQC (d, 'sur_refl_state_500m'); 
dmask= modisMaskQC_special(d); 
ditrp=modisDCT_interp( dmask ); 
newdata=squeeze(ditrp.data(3,3,:)); 
plot(newdata); 
d2 = modisClient ('MOD09A1','sur_refl_b06', lat, lon, date3, date4,1,1); 
d2=modisClientGetQC (d2, 'sur_refl_state_500m'); 
dmask2= modisMaskQC_special(d2); 
ditrp2=modisDCT_interp( dmask2 ); 
newdata2=squeeze(ditrp2.data(3,3,:)); 
plot(newdata2); 
C = newdata - newdata2; 
D = newdata + newdata2; 
NDWI = C./D; 
NDWI_OND = mean(NDWI); 
NDWI_JAS; 
NDWI_OND 

 
 

Product code Spatial resolution Temporal resolution Date range 

MOD17A2H 
GPP 

500 m 8-day Talaheel: June 2014 – 
June 2015 
Lonielist: March 2014 – 
April 2015 
Glencar: Jan 2002 – 
Dec 2012 

MOD13Q1 
NDVI 

250m 16-day Talaheel: June 2014 – 
June 2015 
Lonielist: March 2014 – 
April 2015 
Glencar: Jan 2002 – 
Dec 2012 
Restoration and Control 
sites: Jan 2005 – Dec 
2016 

MOD11A2 
daytime LST 

1 km 8-day Talaheel: June 2014 – 
June 2015 
Lonielist: March 2014 – 
April 2015 
Glencar: Jan 2002 – 
Dec 2012 
Restoration and Control 
sites: Jan 2005 – Dec 
2016 

MOD09A1 
bands 2 and 6 

500 m 8-day Glencar: Jan 2002-Dec 
2011 
Restoration and Control 
sites: 2005 – 2016, day 
177-265 and 273-361 
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Appendix D – Supplementary material from Chapter 6 

The raw results from the EFA, and the correlations of each factor with GPP, for each site are 

shown here.  

Lonielist 
 
Loadings: 
                Factor1 Factor2 Factor3 Factor4 Factor5 
Sostice_dist    -0.78                                   
Surface_temp     0.80    0.55                           
PAR              0.75                                   
NDWI            -0.52                                   
soil_temp_5cm    0.46    0.88                           
soil_temp_15cm   0.32    0.92                           
NDVI                     0.57                    0.37   
Heather                          0.93    0.34           
Deer_grass                       0.82                   
microfeature                     0.39    0.68           
S_cap                                    0.74    0.56   
Feather_moss                            -0.73           
Reindeer_lichen                                 -0.99   
soil_moisture                                           
Cotton_grass                    -0.40    0.33           
 
               Factor1 Factor2 Factor3 Factor4 Factor5 
SS loadings       2.53    2.35    1.94    1.88    1.56 
Proportion Var    0.17    0.16    0.13    0.13    0.10 
Cumulative Var    0.17    0.33    0.45    0.58    0.68 
 
Test of the hypothesis that 5 factors are sufficient. 
The chi square statistic is 133.59 on 40 degrees of freedom. 
The p-value is 5.23e-12  

 

Factor 1 2 3 4 5 
GPP 0.17 0.68 0.21 0.28 0.17 

 

Talaheel 

Loadings: 
                Factor1 Factor2 Factor3 Factor4 Factor5 
soil_temp_5cm    0.91    0.40                           
soil_temp_15cm   0.96                                   
NDVI             0.73            0.42                   
Surface_temp     0.43    0.83                           
PAR                      0.70                           
NDWI             0.32   -0.54    0.64                   
Cotton_grass                    -0.77                   
S_cap                                    0.97           
microfeature                                     0.57   
Reindeer_lichen                         -0.48    0.83   
Feather_moss                            -0.48   -0.60   
Sostice_dist    -0.32   -0.37                           
soil_moisture           -0.45                           
Heather                                                 
Deer_grass                       0.42                   
 
               Factor1 Factor2 Factor3 Factor4 Factor5 
SS loadings       2.69    2.12    1.59    1.53    1.49 
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Proportion Var    0.18    0.14    0.11    0.10    0.10 
Cumulative Var    0.18    0.32    0.43    0.53    0.63 
 
Test of the hypothesis that 5 factors are sufficient. 
The chi square statistic is 205.54 on 40 degrees of freedom. 
The p-value is 3.95e-24  

 

Factor 1 2 3 4 5 
GPP 0.46 0.044 0.36 0.0049 0.00021 

 

Cross Lochs 

Loadings: 
                Factor1 Factor2 Factor3 Factor4 Factor5 
Sostice_dist    -0.69                                   
soil_temp_5cm    0.82            0.53                   
soil_temp_15cm   0.77            0.58                   
Surface_temp     0.85                                   
PAR              0.60                                   
microfeature             0.65                   -0.31   
Heather                  0.73                           
Deer_grass              -0.97                           
S_cap                    0.68           -0.55   -0.31   
NDVI                             0.81                   
NDWI            -0.41    0.42    0.57                   
Reindeer_lichen                          0.99           
Cotton_grass                                     1.00   
soil_moisture           -0.46                           
Feather_moss             0.33                   -0.31   
 
               Factor1 Factor2 Factor3 Factor4 Factor5 
SS loadings       3.05    2.89    1.77    1.37    1.36 
Proportion Var    0.20    0.19    0.12    0.09    0.09 
Cumulative Var    0.20    0.40    0.51    0.60    0.70 
 
Test of the hypothesis that 5 factors are sufficient. 
The chi square statistic is 233.18 on 40 degrees of freedom. 
The p-value is 4.2e-29  

 

Factor 1 2 3 4 5 
GPP 0.50 -0.22 0.36 -0.12 0.0024 

 

Tables C1 to C4 show the results from Mann-Whitney tests to determine whether any of the 

variables considered in this study have significant differences between hummocks and 

hollows across the months and sites studied.  
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Table C1 – P-values for Mann-Whitney tests for key vegetation species at each site. If the 

value is significant the microtopographical feature with the higher proportions of that species 

is given in brackets.  

Species Cross Lochs Talaheel Lonielist 

Calluna vulgaris 0.017* (Hu) 0.75 0.011* (Hu) 

Eriophorum 
angustifolium 

0.18 0.87 0.87 

Cladonia portentosa 0.91 0.47 0.38 

Sphagnum 
capillifolium 

0.039* (Hu) 0.95 0.12 

Pleurozium 
schreberi 

0.41 0.37 0.016* (Ho) 

Trichiophorum 
germanicum 

0.034* (Ho) 0.65 0.38 

 

Table C2  – P-values for Mann-Whitney tests showing whether the difference between 

hummocks and hollows was significant or not for each factor at Lonielist. If the value is 

significant the microtopographical feature with the higher proportions of that species is given 

in brackets. 

Lonielist March April May June July August September 

Moisture 0.27 0.095 0.96 0.81 0.67 0.23 0.63 

WTD 0.23 0.84 0.82 0.62 0.96 0.80 0.60 

Surface 
temp 

1 0.68 0.96 0.17 1 0.63 0.71 

5 cm temp 0.63 0.25 0.15 0.62 0.56 0.19 0.59 

15 cm temp 1 0.23 0.56 0.46 0.039* 
(Hu) 

0.015* 
(Hu) 

0.019* (Hu) 

GPP 0.38 0.69 0.054 
(Hu) 

0.11 0.0074** 
(Hu) 

0.038* 
(Hu) 

0.28 

Respiration 0.28 0.42 0.015* 
(Hu) 

0.019* 
(Hu) 

0.0070** 
(Hu) 

0.23 0.46 

NDVI 0.71 0.69 0.91 N/A 0.10 0.28 0.51 

CIm 0.33 0.84 0.54 N/A 0.0499* 
(Hu) 

0.10 0.13 

NDWI 0.065 0.69 0.61 NA 0.01* 
(Ho) 

0.083 0.28 

PAR 0.19 0.84 0.15 0.29 0.60 0.83 0.79 
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Table C3  – P-values for Mann-Whitney tests showing whether the difference between 

hummocks and hollows was significant or not for each factor at Talaheel. If the value is 

significant the microtopographical feature with the higher proportions of that species is given 

in brackets. 

Talaheel March April May June July August September 

Moisture 0.53 0.53 0.33 0.87 0.90 0.56 0.92 

Surface 
temp 

1 0.53 0.37 0.92 0.80 0.87 0.27 

5 cm temp 0.83 0.53 0.53 0.92 0.95 0.63 0.92 

15 cm temp 0.52 0.75 0.83 0.19 0.52 1 0.83 

GPP 0.84 1 0.65 0.88 0.54 0.44 0.88 

Respiration 1 0.53 0.72 0.88 0.16 0.83 0.96 

NDVI 1 1 1 0.80 0.71 0.96 0.65 

CIm 0.31 0.69 0.19 0.51 0.90 0.44 0.96 

NDWI 0.55 0.22 0.88 0.51 0.097 0.88 0.88 

PAR 0.92 1 0.16 0.80 0.89 0.63 0.0030* 
(Hu) 

 

Table C4  – P-values for Mann-Whitney tests showing whether the difference between 

hummocks and hollows was significant or not for each factor at Cross Lochs. If the value is 

significant the microtopographical feature with the higher proportions of that species is given 

in brackets. 

Cross 
Lochs 

March April May June July August September 

Moisture 0.74 0.20 0.16 0.015
* (Ho) 

0.043* 
(Ho) 

0.0040** 
(Ho) 

0.026* (Ho) 

Surface 
temp 

0.87 0.62 0.37 0.75 0.96 0.65 0.60 

5 cm temp 0.42 0.62 0.64 0.40 0.29 0.36 0.31 

15 cm temp 0.51 0.71 0.046* 
(Ho) 

0.016
* (Ho) 

0.039* 
(Ho) 

0.31 0.014* (Hu) 

GPP 0.34 0.54 0.33 0.38 0.28 0.65 0.96 

Respiration 0.13 0.11 0.96 0.27 0.28 0.92 0.0018** 
(Hu) 

NDVI 0.75 0.41 0.32 0.083 0.083 0.44 0.19 

CIm 0.39 0.11 0.57 0.083 0.23 0.57 0.88 

NDWI 0.31 0.56 0.23 0.96 0.57 0.33 0.065 

PAR 0.39 0.90 0.83 0.75 0.96 0.23 0.56 
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Data storage information 

Dataset Description Chapters 
used in 

Location/contact 

KJL_README Information file for all 
data 

3,4, 5, 6 https://doi.org/10.5285/ab
9f47f9-9faf-4403-a57e-
25e31f581ed0  

KJL_spectrometry_l
ab 

Raw spectral 
measurements from the 
lab, in the format 
KL_DD_MM 

3,4 The James Hutton 
Institute 

KJL_data_lab 
 

All laboratory 
measurements including 
fluxes and vegetation 
indices 

3,4 https://doi.org/10.5285/ab
9f47f9-9faf-4403-a57e-
25e31f581ed0  

KJL_corrections_lab Data used for PAR 
corrections 

3,4, 
Appendix 
A 

https://doi.org/10.5285/ab
9f47f9-9faf-4403-a57e-
25e31f581ed0  

KJL_spectrometry_fi
eld 

Raw spectral 
measurements from the 
field, in the format 
KJL_site_month 

4,6 
 

The James Hutton 
Institute 

KJL_LICOR_field Raw LICOR data files 
from the field, in the 
format KJL_site_month 

4,6 The James Hutton 
Institute 

KJL_data_field All field measurements 
including fluxes and 
vegetation indices 

4,6, 
Appendix 
C 

https://doi.org/10.5285/ab
9f47f9-9faf-4403-a57e-
25e31f581ed0  

KJL_species_field Percentage of species in 
each collar, surveyed in 
June 

4,6, 
Appendix 
B, C 

https://doi.org/10.5285/ab
9f47f9-9faf-4403-a57e-
25e31f581ed0  

KJL_TGdevelopmen
t_MODIS 

Processed and gap-filled 
MODIS data used to 
develop the TG model 
(Lonielist, Talaheel) 

5 https://doi.org/10.5285/ab
9f47f9-9faf-4403-a57e-
25e31f581ed0  

KJL_TGWa_develop
ment_MODIS 

Processed and gap-filled 
MODIS data used to 
develop the TGWa 
model (Glencar) 

5 https://doi.org/10.5285/ab
9f47f9-9faf-4403-a57e-
25e31f581ed0  

KJL_restoration_MO
DIS 

Processed and gap-filled 
MODIS data for the six 
sites undergoing 
restoration 

5 https://doi.org/10.5285/ab
9f47f9-9faf-4403-a57e-
25e31f581ed0  

KJL_data_MODIS Processed and gap-filled 
MODIS data for the field 
sites (Lonielist, Talaheel 
and Cross Lochs)  

6 https://doi.org/10.5285/ab
9f47f9-9faf-4403-a57e-
25e31f581ed0  
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