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Abstract

This thesis describes the development of a robotic control scheme
with a novel ‘parallel’ design that combines direct feedback control
with the simultaneous output of a dynamical forward model. Unlike
existing predictive control schemes with a serial ‘sense-calculate-move’
structure where the model fully determines the robot’s behaviour, the
parallel controller can adapt to overcome any feedback delay the sys-
tem experiences without updating its parameters. This is thanks to
replicating the key properties of anticipating synchronisation (AS),
where a slave system (the robot) anticipates a similar master (a mov-
ing target) via delayed self-feedback. Since the robot and target pos-
sess very different dynamics, the output of the forward model is used
to impose a suitable dynamical behaviour on the robot, while the di-
rect feedback term simultaneously drives the robot itself to anticipate
the target. This means that the forward model does not have to be
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related to the robot’s true dynamics so long as it represents a suitable
AS slave system, and that any feedback delay will inevitably be op-
posed by a proportional degree of anticipation. The result is a highly
robust and adaptable predictive controller that can be applied to a
robot without requiring precise knowledge of its dynamics.

2



Contents

1 Individual Contributions 5

2 Introduction 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Strong and Weak Anticipation . . . . . . . . . . . . . 7
2.3 Anticipating Synchronisation . . . . . . . . . . . . . . 9
2.4 Applications in Robotic Manipulator Control . . . . . 14
2.5 Statement of Author Contributions . . . . . . . . . . . 16

3 Integration of Visual and Joint Information to Enable
Linear Reaching Motions 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Proposed Control Law . . . . . . . . . . . . . . 22
3.2.2 Properties of Simplex-Optimised Transformation

Matrix . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.3 Properties of Analytically-Derived Transforma-

tion Matrix . . . . . . . . . . . . . . . . . . . . 29
3.2.4 Mechanism of Joint Relationship Matrix . . . . 31
3.2.5 Energy Efficiency . . . . . . . . . . . . . . . . . 35
3.2.6 Stability Analysis . . . . . . . . . . . . . . . . . 37

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1 Numerical Simulation of a Planar Arm . . . . . 40
3.4.2 Dynamics . . . . . . . . . . . . . . . . . . . . . 41
3.4.3 Simplex Optimisation . . . . . . . . . . . . . . 43

4 Renormalized time scale for anticipating and lagging
synchronization 46
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Analytical Solutions for One Dimensional Linear Case 48

4.2.1 First Order Expansion of the Time Delay Term 48
4.2.2 Solution for the Delay Differential Equation . . 49

4.3 Renormalization of Time . . . . . . . . . . . . . . . . . 51
4.4 Numerical calculations for multidimensional and non-

linear cases . . . . . . . . . . . . . . . . . . . . . . . . 51
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1 Individual Contributions

Chapters 2 to 4 of this thesis have been previously published as re-
search articles under the same titles, while Chapter 5 is formatted as
such for future publication. The author of this thesis, Henry Eberle
(HE) is the first author of Chapters 2 (”Integration of Visual and
Joint Information to Enable Linear Reaching Motions”, published in
Scientific Reports) and 4 (”Anticipation from Sensation: Using Antic-
ipating Synchronisation to Stabilise a System with Inherent Sensory
Delay”, published in Royal Society Open Science) and the third author
of Chapter 3 (”Renormalized time scale for anticipating and lagging
synchronization”, published in Physics Review E), after Yoshikatsu
Hayashi (YN) and Slawomir J Nasuto (SJN). In all cases the co-
authors are YN and SJN, HE’s supervisors. HE set the research
question, performed the literature review and carried out all exper-
iments for Chapters 2 and 4, with YH and SJN providing guidance,
discussing results and contributing to the format and editing of the
manuscripts. For chapter 3, HE developed and performed all numer-
ical simulations and experiments necessary to validate a hypothesis
originated by YH, including producing all corresponding figures. HE
is the sole author of all other chapters of the thesis, and developed
all the code, simulations and models used to perform the experiments
described therein.
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Introduction

1 Introduction

Living things, but particularly animals, must respond correctly to a vast
range of external phenomena and do so quickly, or risk their survival. The
fundamental limitation to this comes from the many delays that exist within
biological systems: muscles do not contract instantly, nor do nervous sig-
nals travel at the speed of light. Nonetheless, animals respond with minimal
delay, to the point that a lagging response to stimuli is often indicative of
a disease or disorder. The solution then, is that animals must be employ-
ing a form of anticipation; not reacting to current events, but responding to
predicted future events. Traditional robotic manipulators do not experience
these difficulties because a combination of high-gain motors and rigid linkages
allows them to respond extremely rapidly to any given command. However,
these robots are not suitable for mixed human environments because their
rigidity, high speed and ability to exert injurious force make them danger-
ous to interact with. Softer, bio-inspired robots are safer, but bring with
them the weaknesses and delays of biological systems. This thesis explores
how a control scheme based on strong anticipation, specifically anticipating
synchronisation, can be used to overcome uncertain or changing delay in a
robotic system, displaying properties distinct from existing predictive control
schemes.

This chapter is divided into three sections that summarise the research
themes driving this thesis: the distinction between strong and so-called
‘weak’ or model-based anticipation, anticipating synchronisation, and the
evidence for its existence within the human motor control system, and the
intersection of the two with the control of robotic manipulators.
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2 Strong and Weak Anticipation

Strong anticipation was first defined in contrast to ‘weak anticipation’ where
an entity (biological or artificial) uses a model of its environment to predict
external events and respond accordingly - what we would otherwise refer to
as predictive control. The existance of a full and accurate dynamical model of
the body allows instantaneous and flawless prediction of how it will respond
to any given control input, and this ability has been placed as vitally impor-
tant for human motor control, and even cognition, by many researchers. In
terms of motor control, researchers such as Kawato [1] and Wolpert [2] have
claimed that internal representations of the body are what allow humans
to make quick, ‘high gain’ movements despite the appreciable neural trans-
mission delay between muscle and brain and vice-versa. In this framework
closed-loop control can be performed because a predictive model cancels out
the delay that would otherwise cause instability. On a more cognitive level,
Blakemore, Frith and Wolpert suggested in 2001 [3] that such a simulation
of the body is responsible for the sensation of body ownership or agency -
selectively cancelling the sensory feedback that arises from volitional move-
ment such that we can separate outside influences from the consequences of
our own actions. What all of these theories have in common is that they
treat the body as a ‘dumb’ object that has no role in motor cognition - much
like a robot. According to Dubois [4], strong anticipation differs in that is an
“endo-anticipation” - the system, brain and body, predicts the environment
with reference to its own behaviour, rather than relying on a model of itself.

Functionally this means that no computational predictions of some n sec-
onds into the future occur; the appropriate ‘predictive’ behaviour can arise
directly out of an organism’s coupling with its environment (in this context
‘coupling’ refers to a feedback response to sensory input). The classic anal-
ogy, as laid out by Stepp and Turvey [5], is that of a baseball outfielder
catching a thrown ball. Intercepting the ball can be achieved with an ana-
lytic solution, modeling the ball’s ballistic trajectory and moving to where it
will land, or a non-analytic solution where the outfielder moves continuously
such that the ball’s movement appears straight. This strategy will place the
catcher in the right place at the right time simply using a negative feedback
loop with a well-chosen error term. Strong (as opposed to ‘weak’, or model-
based) anticipation is to prediction as the outfielder is to feedback control:
anticipating events through a continuous sensory-motor coupling with the
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environment, rather than a predictive model. One can easily see how strong
anticipation, when applied to living organisms, overlaps with many of the
concepts of embodied cognition. In Wilson’s break down of the six major
claims [6] of embodied cognition, it is only the last (that non-motor human
cognition is performed with reference to the motor system) that is not fa-
miliar. Otherwise, both theories stress that cognition and behaviour must
be viewed as a continuous interaction between the organism and the envi-
ronment that is deeply embedded within their local timescale (as opposed
to cognition and action being decoupled). A distinction can be made that
embodied cognition is concerned with discovering how actions and cognitive
events are produced by the interplay of body, brain and environment, while
strong anticipation is focused on how these actions can become anticipatory,
rather than merely reactive.

Strong anticipation is attractive in its parsimony, but potential examples
remain highly specific (like the outfielder), and ‘weak’ model-based anticipa-
tion has many more years of primary research invested in it. One of the most
well-researched potential forms of model-based anticipation is based around
the concept of one or more ‘forward models’ within the human central ner-
vous system (CNS). Such a forward model takes the current sensory input
and a motor control signal and predicts the sensory data that will result. In
principle this can counteract any physiological delay by predicting the de-
layed feedback signal before it arrives and later using the prediction error to
refine the model. This may be paired with an inverse model, which calcu-
lates the correct motor commands for the body to produce a desired sensory
response.

A forward model (and the associated inverse model that controls the body)
that can encompass all the different ways in which the human body’s kine-
matics and dynamics can change when using tools and interacting with the
environments would be massively complex, which has led some to question
whether such a unified model could exist within the brain. The modular se-
lection and identification for control (MOSAIC) model, as defined by Wolpert
and Kawato [7] and expanded upon by Haruno et al. [8] is intended to be an
answer to this problem: it consists of a limited number of forward/inverse
model pairs (modules), each corresponding to a specific sensorimotor context.
Which models are actively engaged in controlling the body is determined by
a ‘responsibility estimator’ which calculates the prediction error for each for-
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ward model and weights the corresponding pair’s contribution in proportion.
This allows previously learned control strategies to be combined to perform
‘intermediate’ tasks, increasing the ability to generalise. The physiological
evidence provided for this hypothesis is the fact that while adaptation to a
novel control task is initially slow, ‘de-adaptation’ once the task is over is
always quick. The authors took this as evidence that a new module is being
learned for the new task, then quickly switched to an existing module once
in a familar context.

All these methods lack what could be described as the key benefit of strong
anticipation; in each case, the delay in reality must be learned and matched
by some internal parameter in order to produce lag-free control. In truly
strong anticipation, this information is encoded into the continuous sensori-
motor interaction with the environment rather than an internal model and
does not need to be learned. This may seem like a vague condition, but
the most rigorous implementation of strong anticipation, anticipating syn-
chronisation (AS), has a number of characteristics that can be tested for
behaviourally.

2.1 Anticipating Synchronisation

AS is a now well-recognised extension of the phenomenon of synchronised
dynamical systems; returning to Stepp and Turvey’s 2010 paper [5], it is
telling that it occupies the greater part of the discussion. Since at least
the 15th century, it has been known that interacting dynamical systems can
synchronise and thus behave identically. More surprisingly, it has recently
been proven that one dynamical system can synchronise with the future state
of another, acting as a predictor. In Voss’s initial study [9] this phenomenon
was demonstrated specifically in the context of chaotic dynamical systems,
which thanks to their hypersensitivity to initial conditions, are extremely
difficult to predict accurately using a model. The first form identified by
Voss was only applicable to systems with an explicit delay dependence. He
showed that such a system (the ‘master’) could be predicted by an otherwise
identical system (the ‘slave’) in which the delayed term is replaced with the
current state of the master as in Eq. 1 and 2:

ẋ(t) = −ax(t) + f(x(t− τ) (1)

ẏ(t) = −ay(t) + f(x(t)) (2)
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where x(t) is the master at time t, y(t) is the slave and x(t−τ) is the master’s
state delayed by τ . This creates an anticipating manifold that is globally at-
tractive, such that the slave will always converge on to the master’s future
state until y = x(t + τ). The anticipation period can be increased to an ar-
bitrary multiple of τ by creating a chain of slaves, each of which anticipates
the last.

Stepp also defined a second, more generally applicable form that can pre-
dict dynamical systems that do not contain an explicit delay term. This
relies on a dissipative coupling as shown in Eq. 3 and 4:

ẋ(t) = f(x(t)) (3)

ẏ(t) = f(y(t)) +K[x(t) − y(t− τ)] (4)

where τ is a time delay that only exists in the coupling imposed on the
slave and K is a constant governing the coupling strength. This creates an
anticipation manifold that is only locally attracting, and the slave will not
anticipate the master if their initial conditions differ too much and the an-
ticipation period that can be achieved is smaller. Nevertheless, this second
method can be applied to a vast family of dynamical systems, and because
of this it is the one that has captured the interest of the most subsequent
researchers. The slave can anticipate the master because of the similar vector
fields of the two systems; the coupling constitutes a local gradient that accel-
erates the time evolution of the slave until y(t) = x(t + τ). As an example,
consider a pair of the simple oscillating system governed by Eqs. 5 (master)
and 6 (slave)

ẋ(t) = a

([
d
0

]
+

[
0 −1
1 0

]
x(t)

)
(5)

ẏ(t) = a

([
d
0

]
+

[
0 −1
1 0

]
y(t)

)
+K[x(t) − y(t− τ)] (6)

where x and y are two-dimensional state vectors, d is a driving term, a is
a time constant, K is the coupling constant and τ is the coupling constant.
The two systems are identical save for the dissipative delay coupling term
added to the slave which, as shown in Fig. 1 causes the slave to converge
on the future state of the master after an initial transient behaviour, such
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that xs(t) = xm(t + τ) from then on. If the master and slave are identical
the coupling will disappear completely at this point, leaving two autonomous
systems, one of which is τ seconds ahead of the other. If they are not iden-
tical, the coupling will never fully disappear and the slave’s anticipation of
the master’s future state will not be fully accurate.
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0.5

0.0
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M
ag
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tu
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Figure 1: Example of anticipating synchronisation using a dissipative delay cou-
pling Both master (red) and slave (green, dashed) are the X-axis evolution of
simple oscillators governed by Eqs. 5 and 6, respectively. The coupling delay
τ = 80ms and the time constant a = 1.

Although a linear difference term is sufficient as a coupling to give a
non-zero period of anticipation, typically a relatively small fraction of the
characteristic timescale, it has been shown that this period can be greatly
increased by taking into account the specific properties of the master and
slave dynamics. In the 2008 study by Pyragas and Pyragienė [10] it was
established that by applying a relatively simple rotational transformation to
the coupling term, a Rössler chaotic attractor could be predicted by many
times the initial anticipation period. This relied on the knowledge that the
system is governed by two fixed points; an unstable spiral nearly coinciding
with the xy plane and a stable manifold aligned with the z axis through
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which the system detours back to the origin. Projecting the coupling differ-
ence term onto the unstable spiral and rotating it such that it was in phase
with the slave allowed a 4x increase in the anticipation period. They went on
to prove analytically that a similar improved coupling could be constructed
for other Rössler-type systems and more complex double-scroll chaotic at-
tractors. The ‘chain’ method of extending anticipation also works for the
dissipative coupling, as established by Voss in 2000 [11]. In this way, an an-
ticipation period of nτ can be achieved, where τ is the ‘inter-slave’ delay and
n is the number of slaves. To prevent the initial transient of the first slave
propagating through the entire chain and rendering the subsequent slaves
unstable it was found necessary to implement an algorithm that limits the
strength of the coupling where the difference between two adjacent systems is
very large. This is because each identical slave can only synchronise with the
‘normal’ behaviour of the master, the transient behaviour being too different.

Although in principle it is difficult to distinguish AS from the forward model-
based hypotheses mentioned in the previous section using behavioural stud-
ies, there is evience of a similar effect in some human motor behaviour. In
a 2009 study by Stepp [12] participants were tasked with following an un-
predictable target (governed by a chaotic Rössler attractor) using a cursor
while their actual hand was hidden from them. The task was repeated mul-
tiple times, with an increasing delay between the movement of the subject’s
hand and the visual movement of the cursor. When the phase relationship
between the target and the subjects’ hand movements was analysed, it was
apparent that as the delay increased the subjects transitioned from trailing
the target (at a small delay of 20ms) to leading it (at 200 and 400ms), indi-
cating anticipation. Crucially, they did not exercise their ‘full’ anticipation
capability from the beginning, nor anticipate at the correct level to cancel
out the delay, despite later demonstrating greater anticipation. Stepp con-
cluded that this behaviour was not consistent with a forward model, which
one would expect to initially under-anticipate before adapting to the delay.
Instead it was posited that the human subjects were acting as the slave in
Eq.3, with the imposed feedback delay corresponding to the term τ . This is
maladaptive where additional feedback delay is imposed in the experiment,
but it should be noted that under normal circumstances this effect would
counteract natural physiological delay and lead to more responsive move-
ment. An alternative explanation for these results was provided in a 2016
paper by Voss and Stepp [13] (following from Voss’s paper in 2015) which
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examined how the AS slave could be replaced with simple relaxation dynam-
ics, retaining an anticipation-like effect in the form of frequency-dependent
negative group delay. In such a system, different frequency components of
the master signal are anticipated by different periods, while some may lag.
However, this would be sufficient to explain the phenomenon observed in
Stepp’s study and would not require that Rössler dynamics exist within the
human brain (which would seem unlikely).

It has not escaped notice that AS has applications for predictive control
in artificial systems as, unlike many methods, it is not restricted by the lin-
earity of the anticipated system (the local difference must be near-linear,
but this is guaranteed if master and slave are sufficiently similar). The first
studies on this subject have focused on how to insert AS into existing predic-
tive control methodology in order to exploit this. In a study by Oguchi and
Nijmeijer [14], a system with delayed control input is effectively controlled
by placing it in series with a model with identical dynamics to the plant.
The plant acts as the master system, while the model is the slave, subject to
a coupling based on delayed self-feedback as in Eq.3. Provided the internal
self-feedback delay matches the delay in the real system, it can be used to
produce an anticipated control signal that ‘cancels out’ the delay and allows
the system to behave as if it does not exist. Additionally, this required that
the slave be driven by a non-delayed copy of the control signal. In a later
study by Alvarez et al. (including Oguchi and Nijmeijer) [15], the same prin-
ciple was used to control a mobile robot over a delayed internet connection
between two hubs, one in the Netherlands and one in Japan. Due to the
more complex nature of network delays, the self-feedback delay was not a
static period, but either provided by a model of the internet connection or
by sending the slave self feedback over the connection itself along with the
control signal (‘signal bouncing’).

The artificial implementations treat the output of the plant and the slave
dynamics as separate elements, and thus the tau term must be tuned or op-
timised to match the true system delay. Signal bouncing allows the true delay
to be used in the slave self-feedback, but is only applicable in a network con-
text. Thus existing implementations cannot match the interpretation from
[12], which can only be resolved if the output of the plant and the slave
are represented by the same term, strongly implying that the plant must be
treated as the slave element (or part of it).
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2.2 Applications in Robotic Manipulator Control

The difficulty in applying anticipating synchronisation as discussed above to
robotics is that most robots, and most robotic control laws, are designed
along entirely dissimilar principles. The classical robot, recognisable from
hundreds if not thousands of theoretical papers (including some present in
this thesis), is an assemblage of rigid rods or bars connected by either pris-
matic or revolute joints [16]. This machine which, to a greater or lesser ex-
tent, resembles nearly every robot used in research or industry makes a virtue
of its simplified dynamics. The lack of flexibility and elasticity means that
its kinematics are unchanging down to very high level of precision, which
ensures that even when moving at very high velocities the position of the
robot’s endpoint can be described by the same set of coordinate transfor-
mations. The inverse of these kinematics can be iteratively solved in order
to yield a controller that minimises total velocity, torque, energy use or any
number of other objective functions and thanks to the robot’s rigidity these
calculations can be performed without an excess of time, processing power
or memory.

Where dynamics are taken into account, it is to ensure that they do not
interfere with the desired behaviour of the robot. In computed torque con-
trol schemes, a comprehensive dynamical model of a robotic manipulator
is used to calculate a torque input that will linearise the robot’s dynamics.
This allows a controller to impose the linear behaviour that is assumed when
designing kinematic control rules.

Once compliance or flexibility is introduced into a robot however, the com-
putational costs of kinematic control become prohibitive (a good overview
can be found here, by Rus and Tolley: [17]), which is why researchers have
attempted to look for evidence of how animals (and particularly humans)
control their soft bodies. Obviously, robots do not have an ecological niche,
but their emulation of living organisms mean that some of principles of em-
bodied cognition can be brought into play. An illustrative example of how can
be seen in research by Mitsuda et al. with a humanoid robot arm [18], where
they showed that expressing the robot’s pose in binocular coordinates (ver-
tical and horizontal rotation and vergence, or focal length) allowed effective
control using a linear transformation that is much simpler than the kinematic
calculations required when using Cartesian coordinates. This could be con-
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sidered unsurprising, since the human motor and visual systems co-evolved.
The other benefit of a control law based around a linear, static transforma-
tion is that it removes the dependence on precise knowledge of the robot’s
kinematics. As shown in the 2012 paper by Nishida et al. [19], convergence
on a target in the robot’s workspace can be ensured so long as the transfor-
mation matrix does not become orthogonal to the true kinematics during the
movement. This is a relatively weak condition that can be easily fulfilled by
selectively limiting the range of motion of the robot’s revolute joints. Notice-
ably, this constraint is already present in the robot from the Mitsuda study,
and the human arm it is based on. With convergence assured, the properties
of the robot’s motion becomes a feedback control, rather than a coordinate
transformation problem.

Designing a robotic manipulator with autonomous dynamics ideal for dis-
playing strong anticipation is beyond the scope of this thesis; instead it will
examine how a suitable controller can modify a robot’s dynamics such that
the sensorimotor loop containing the robot and the controller behaves as a
usable AS slave. The third chapter, previously published as “Integration of
Visual and Joint Information to Enable Linear Reaching Motions” in Nature
Scientific Reports is concerned with how a linear, static transformation (as
discussed above) can cause a robot arm to converge on a specific trajectory
shape - a straight line. The fourth chapter “Renormalized time scale for an-
ticipating and lagging synchronization”, published in Physical Review E, was
a collaboration with Yoshikatsu Hayashi and Slawomir Nasuto, both of the
Reading University Brain Embodiment Lab, in which this author performed
the numerical simulations. The manuscript explored the mathematical basis
of AS, showing that the effect of delay in the slave’s self-feedback was well
approximated by a renormalisation of the slave’s time constant such that it
evolves at a faster rate than the master. In combination, these two studies
led to the hypothesis that a robot under proportional-derivative (PD) con-
trol could be considered as an AS slave if the master-slave coupling could
be made more robust at higher delay values. Chapter four, published as
“Anticipation from Sensation: Using Anticipating Synchronisation to Sta-
bilise a System with Inherent Sensory Delay” in Royal Society Open Science,
tested this hypothesis by defining two functional arrangements in which a
robot could be coupled with a dynamical model such that it anticipated an
external chaotic signal and display the properties identified in Stepp’s 2009
study - the serial and parallel systems. Chapter five, “Synchronisation-Based
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Control for a Collaborative Robot”, applies the more robust parallel system
to controlling a collaborative Baxter robotic platform and examines how this
control system places in the wider context of strong anticipation.

3 Statement of Author Contributions

The third and fifth chapters of this thesis (“Integration of Visual and Joint
Information to Enable Linear Reaching Motions” and “Anticipation from
Sensation: Using Anticipating Synchronisation to Stabilise a System with
Inherent Sensory Delay”) were written by me (Henry Eberle) based on work
undertaken by the same, with Dr. Yoshikatsu Hayashi and Prof. Slawomir
Nasuto acting in their role as PhD supervisors to revise and moderate the
manuscript before publication.

I performed the numerical analysis and simulations for the paper “Renor-
malized time scale for anticipating and lagging synchronization” which forms
chapter four, as well as generating and formatting the figures.

I am the sole author of all other chapters in this thesis.
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Integration of Visual and Joint Information to
Enable Linear Reaching Motions

Abstract

A new dynamics-driven control law was developed for a robot arm,
based on the feedback control law which uses the linear transforma-
tion directly from work space to joint space. This was validated using
a simulation of a two-joint planar robot arm and an optimisation al-
gorithm was used to find the optimum matrix to generate straight
trajectories of the end-effector in the work space. We found that this
linear matrix can be decomposed into the rotation matrix represent-
ing the orientation of the goal direction and the joint relation matrix
(MJRM ) representing the joint response to errors in the Cartesian
work space. The decomposition of the linear matrix indicates the
separation of path planning in terms of the direction of the reach-
ing motion and the synergies of joint coordination. Once the MJRM

is numerically obtained, the feedfoward planning of reaching direc-
tion allows us to provide asymptotically stable, linear trajectories in
the entire work space through rotational transformation, completely
avoiding the use of inverse kinematics. Our dynamics-driven control
law suggests an interesting framework for interpreting human reaching
motion control alternative to the dominant inverse method based ex-
planations, avoiding expensive computation of the inverse kinematics
and the point-to-point control along the desired trajectories.

Introduction

Path planning for reaching tasks is a fundamental problem both in robotics
[1] and behavioural science [2] . While many control schemes can guarantee
convergence of an end effector upon a target, controlling the path it takes is
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much more complex. This is because traditionally, once a target has been
defined in the robot’s work space using its sensors, the necessary final pose to
intercept the object must be calculated using some form of inverse kinemat-
ics: the explicit transformation of work space coordinates into joint angles.
However, inverse kinematics are both computationally intensive and, more
importantly, very sensitive to error. Small errors in the kinematic model
used can translate into large deviations from the desired pose and unsta-
ble motion. Furthermore, if a robot is commanded to simply minimise the
difference between its current joint state and a calculated final pose, it will
execute a movement that is linear in terms of its joint space, but strongly
curved in the work space in which it actually operates. While the end effector
still converges upon the target, the trajectory is ultimately not determined in
visual coordinates, making it difficult to navigate the external environment.
Ideally, the end effector should execute a direct, straight path in the work
space in which the target is defined. In order to produce a straight trajectory,
most robot control systems must create an explicit path to the target. This
requires a complete specification of the desired motion [3] and the leading
methods all require a detailed specification of the robot’s kinematics and/or
dynamics [4] .

Human reaching motions have characteristic properties that distinguish them
from those of robots, the most visible being that they are near-straight in the
work space [5] . Human hand movements also have a distinctive ’bell-shaped’
velocity profile that can be effectively described by the minimum jerk model.
There are many theories of how this control is achieved, several of which
rely on the existence of paired forward and inverse models used to calculate
appropriate torques for any movement [6] . One model that does not rely on
this assumption is the equilibrium point (EP) hypothesis, which holds that
human motions are governed by the human central nervous system (CNS)
modulating the resting length of muscles without reference to kinematics [7]
. The EP hypothesis frames movements as the convergence of a dynamical
system upon a stable point, rather than the product of a kinematic or geo-
metric calculation. Although there is disagreement on what reference frame
or frames the (CNS) operates in when executing reaching movements, the
motions themselves are strongly influenced by visual feedback. It has been
demonstrated in experiments by Wolpert et al. [8] and Flanagan and Rao [9]
that by distorting subject’s visual feedback on the position of their hand, the
curvature of their reaching movements can be increased, implying that the
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CNS is attempting to achieve a straight path in terms of the available visual
feedback.

Figure 1: Block diagram of the robot control loop. The transform matrix is
updated on a slow timescale in response to the performance of the control (the LI
of its movements).

Some have stated that inverse dynamic models are a necessity for the
control of the human body, arguing that it is the only way to execute specific
motions with such a complex system [10] [11] . This paper comes from the
viewpoint that computational complexity can be saved on the part of the
controller by exploiting the dynamic properties of the system (a robot in this
case).

Many researchers have utilised vision as a basis for controlling robots, either
transforming visual data into feedback for a conventional robot controller
(position-based visual servoing) [12] or attempting to align the robot’s view
with a specific scene corresponding to a work space target (image-based vi-
sual servoing) [13]. This often involves continuously recomputing the system
Jacobian to obtain the correct joint velocities to reach the target, requiring
detailed information on the robot’s kinematics. Where this is not avail-
able, such as when a robot is physically modified, the central assumptions of
kinematics-based control break down, and robust control can no longer be
ensured.

Our study considered whether it is possible to cause an arm to generate
a straight path with its end effector by correcting visual path deviations as
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they arise during movement. This does not require a precise kinematic model
and is thus much less sensitive to erroneous or incomplete data on the robot’s
link lengths and joint states. This method relies on the robot’s nature as a
dynamic system moving in the work space, as opposed to being derived from
the system’s statics, like the Jacobian transpose method. We thus also aim
to demonstrate that this method is energy efficient compared to the Jacobian
transpose method, based on this distinction.

It has been established that a control law based on a linear transformation
of visual information can enable a robot end effector to converge on a target
within a specific area of the work space [14] . It has also been shown that in a
humanoid robot, the relationship between the binocular coordinates (viewing
directions and vergence angle) of its end effector and the joint space coordi-
nates of its arm is well-approximated by a linear transformation where the
arm is positioned to occupy the front visual field of the robot [15] . However
in these cases the linear transformation has been treated as an approxima-
tion of the kinematics, rather than being examined in terms of the dynamics.

In this paper, a control law based on a static linear transformation matrixM
is used to complete the sensory-motor loop of a simulated robot arm, with
the aim of creating straight movements in the end effector. The matrix M
is reminiscent of the concept of a ’body schema’, a dynamic representation
of the body’s behaviour. In humans this is the element of body representa-
tion that allows an understanding of how the body’s elements will coordinate
[16] [17] . In the simulated robot, M encodes a dynamic relationship between
the arm’s components that results in a stereotyped movement. Because M
defines how the dynamics of the arm’s joints interact, rather than acting as
a computational model of the dynamics themselves, it is much simpler than
the kinematic and dynamic models typically employed in the field of robotics.

Results

Proposed Control Law

The control law used in this study aims to coordinate the dynamics of the
robot’s individual joints such that its end effector moves in a straight line.
To this end, a linear transformation matrix is applied to visual feedback to
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constrain the joint’s motion with respect to the work space, as can be seen
in the system block diagram in Fig.1. The proposed control law can be seen
below:

τ = M(Kp(xd − x) −Kvẋ), (1)

where M is a static transformation matrix applied to the visual informa-
tion to alter the arm’s trajectory behaviour. τ is the vector of joint torques
and x is the work space position of the end effector. xd is the target in the
work space. Kp is a proportional gain matrix for the work space error, while
Kv is a velocity gain matrix.

Figure 2: Image of the arm model: The location of the arm’s ’hand’, x = [x1, x2], is
calculated from the arm’s origin at its first joint. The vector q = [q1, q2] represents
the rotation of the arm’s two joints, while l1 and l2 are the link lengths. The
lengths of the sections connecting the links’ centres of mass (c1, c2) to the joints
are represented by lc1 and lc2.
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Figure 3: This figure shows the elements of the Linear Index (LI), which is a
measure of the straightness of a path in Cartesian space. For this study LI = D/L
Where L is the absolute distance between the starting and end positions of the
robot’s end effector. D is the largest perpendicular deviation from the straight
line vector that connects the start and end positions. In the line illustrated here,

L = 6 and D ≈ 0.06, so the LI is
0.06

6
≈ 0.01.

Due to the two-dimensional nature of the model’s work space and joint
space (illustrated in Fig.2), M becomes a 2x2 matrix composed of four pa-
rameters that must be optimised to produce direct, straight line trajectories.
We used a simplex optimisation algorithm to optimise M automatically to
produce desirable motions, defined as those with a low Linear Index (LI).
The LI (see Fig. 3), as utilised by Desmurget et. al [18] is calculated by
finding the greatest distance between the path taken by the end effector
and the straight path connecting its starting and end points, as measured
perpendicularly from the straight path:

LI = D/L (2)

Where L is the absolute distance between the starting and end positions of
the robot’s end effector. D is the largest perpendicular deviation from the
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straight line vector that connects the start and end positions. The mass of
the links was set at 1 arbitrary unit each, and their lengths at 4 within the
simulation to obtain the results presented here, although the behaviour at
larger masses and longer lengths is not qualitatively different.

Properties of Simplex-Optimised Transformation Ma-
trix

In order to eliminate the confounding effects of very large or small effective
gains, each matrix produced by the optimisation algorithm was normalised
by dividing it by its largest element. The optimised matrix was dependent
on the orientation of the straight path from start point to target (θ), and
appears to be the product of a 2D rotation matrix T (−θ) and a constant
matrix. At the angular origin of 0 radians on the X axis of the workspace
the optimal matrix is ( 1 1

−1 1 ), implying that this is the constant component,
given this specific robot structure.

In order to validate that this was an invariant, ‘base’ component of M ,
the procedure shown in Fig.4 was used, where targets are sampled at evenly
spaced polar coordinates and reaching motions to the targets are then sim-
ulated. By mapping the LIs of the resulting trajectories to their intended
targets in the work space as a heat map, it is possible to see how M ’s effec-
tiveness varies with the angle of motion. LI was thresholded at 0.5 (largest
perpendicular deviation is half the length of the ideal straight path) because
the 0 to 0.5 range encompasses the vast majority of variation in ‘successful’
motions that converged on the target. Visual verification of simulations that
produced LIs above 0.5 found that the end effector oscillated at high speeds
without reaching the chosen target, so the visual representation can be safely
divided into convergent (blue-green) and non-convergent (red) zones.

In Fig.5 it can be seen that while each of the simplex-optimised matrices
is associated with linear motions at 0 radians (example trajectories for these
MJRM values can be seen in Fig.6), M = ( 1 1

−1 1 ). The closest to the value
of M to ( 1 1

−1 1 ) had the widest region of lowest LI centred around 0 radi-
ans, representing an optimal condition for straight motions in this direction
(the matrices have been normalised with respect to their largest element to
discount the effect of a higher control gain).
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Figure 4: Radial motions are simulated with starting positions (shown as dots)
initialised on a circle surrounding the origin, and targets (shown as crosses) placed
at fixed distances up to the limit of the arms reach. Each start point/target pair
represents a different orientation of movement (θ). The LIs of the resulting trajec-
tories are then calculated and drawn onto the target point of each corresponding
movement, producing a heatmap.
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Figure 5: Comparison of four matrices optimised for movements with an orienta-
tion of 0 radians. The LI of outward reaching movements is visible as a heat map in
the arm’s workspace, with the LI values mapped to the target of each movement.
LI is saturated at higher values as these correspond to non-convergent trajecto-
ries where the measure becomes unreliable. (a) M =

(
0.9808 0.9909
−1 0.7828

)
, arrived at

using simplex optimisation. (b) M =
(

0.6585 1
−0.6572 −0.174

)
, arrived at using simplex

optimisation. (c) M =
(
0.4714 0.5744
−1 −0.1705

)
, arrived at using simplex optimisation. (d)

M =
(

1 1
−1 1

)
, the hypothesised optimum (lowest LI) value for movements with an

orientation of 0 radians.
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Figure 6: Paths taken by the end effector between the points (1,0) and (7,0), where
M is set to a number of values. The first three matrices are the result of simplex
optimisation, with each normalised by its largest value. The final matrix is the
normalised 2D rotation matrix for −π/4 radians.

The considerations above lead to the hypothesis that the linear behaviour
was not purely the property of a rotational transformation, and that the
optimum M for a given radial motion could be factored into a rotational
transformation and an invariant underlying matrix. These were denoted as
a constant joint relationship matrix (MJRM), encoding the relationships be-
tween the motion of each joint in the arm and a 2D rotation matrix (T (−θ))
that aligns the coordinates of the target radial trajectory with the X1 axis
of the work space:

M = MJRM · T (−θ), (3)

Thus, for the optimum M for any given orientation of movement, it was
possible to post-multiply the final value by T (−θ) to find if the value of
MJRM was invariant.
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Properties of Analytically-Derived Transformation Ma-
trix

In order to confirm thatM could be decomposed into the componentsMJRM

and T (−θ), the path generation procedure in Fig.4 was again used. The value
of MJRM was set to ( 1 1

−1 1 ), corresponding to the optimal value at 0 degrees
and this was post-multiplied by a rotation matrix T (θ). If our hypothesis
was correct, the combination of these two matrices would be the optimum
M matrix for movements with the radial coordinate θ.

The test results are shown in Fig. 7, where it can be seen that there is a
region of very low LI values (representing straight movements) occupying
over a quarter of the work space. It can also be seen that multiplying the
MJRM by a rotation matrix rotates this region by the specified number of
radians in the opposite direction, as hypothesised.

Figure 7 shows LI values up to 0.5, as higher values represent undesirable
trajectories that have not converged on the target, making the calculation
of LI unreliable. The transition between the convergent and non-convergent
regions is very abrupt, with only a few degrees of moderately high LI sepa-
rating them.

In order to see whether the ‘convergent region’ of the control law would
be widened or constricted by the inclusion of joint space feedback, Eq. 1 was
altered to include joint space feedback using a target calculated with the
arm’s inverse kinematics:

τ = kM(Kp(xd − x) −Kvẋ) + (1 − k)(Gp(qd − q) −Gvq̇), (4)

where q is the vector of joint rotations and qd is the joint space target
calculated using the arm’s inverse kinematics (qd = f−1(xd)). The variable
k is a dimensionless scalar in the range 0 ≤ k ≤ 1 controlling the proportion of
kinematic feedback used by the control law. The effect of including kinematic
feedback can be seen by comparing Fig. 8 with Fig. 7, which shows that
including kinematic feedback does not qualitatively affect the results, but
does slightly expand the area in which the arm is stable. Adding the joint
space feedback thus appears to have a stabilising influence, but only when
sufficiently near the stable region for the work space terms.
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Figure 7: LI values for different M matrices where the MJRM is kept constant
at
(

1 1
−1 1

)
and the angle of T (−θ) varies by π/2 radians, Kp = ( 100 0

0 100 ), Kv =
( 150 0

0 150 ), k = 1, link lengths = [4,4]. (a) θ = 0, M =
(

1 1
−1 1

)
. (b) θ = π/2,

M =
(−1 1
−1 −1

)
. (c) θ = 3π/2, M =

(
1 −1
1 1

)
. (d) θ = π, M =

(−1 −1
1 −1

)
.
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Figure 8: LI values produced where both visual and kinematic feedback is used.
The MJRM remains constant at

(
1 1
−1 1

)
and the angle of T (−θ) varies by π/2

radians, Gp = ( 200 0
0 200 ), Gv = ( 300 0

0 300 ), k = 0.5, link lengths = [4,4]. (a) θ = 0,
M =

(
1 1
−1 1

)
. (b) θ = π/2, M =

(−1 1
−1 −1

)
.

Mechanism of Joint Relationship Matrix

The fact that the control law defined in Eq. 1 produces near-straight trajec-
tories (with the optimal MJRM) can be understood in terms of the arm’s
geometry and dynamics, instead of a coordinate transformation. Any move-
ment of a revolute joint causes a curve in the trajectory of the end effector,
deviating from the desired straight path. The JRM connects the torque at
the joints to the motion of the end effector such that any deviation caused
by one joint is compensated by the other. In this way, the motions of the
two joints coordinate and the end effector remains on a straight trajectory.

This section considers the simplest case of an arm with links of equal length
where the end effector approaches a target on the positive X1 axis, with the
second joint below it as pictured in Fig. 9. Because of this, there is no need
to transform the coordinate system and M is equal to the MJRM . The op-
timal MJRM matrix in this case has the form ( 1 1

−1 1 ). This form of matrix
produces a motion of the end effector represented by the thick line in Fig. 10,
indicating that the movements of the two joints are coordinated.
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Figure 9: Instantaneous movement of a 2-joint planar arm: q = [q1, q2] represents
the angles of the arm’s two joints. r1 and r2 represent the radii of the sub-
movements caused by joints 1 and 2, respectively while T = [T1, T2] represents
the magnitudes of the resulting tangential displacements of the end effector. For
this example the MJRM is set to the identity matrix I.

In order to understand the effect of the optimal MJRM , it is useful to
decompose the movement of the end effector into two superimposed move-
ments, as illustrated in Fig. 9. The first is the rotation of the entire arm
around the base joint of the first link, giving a circular trajectory of the end
effector with radius equal to the distance between the base joint and the
end effector (r1 in Fig. 9). The second movement is the rotation of the end
effector around the second joint. This follows a circular path with a con-
stant radius equal to the length of the second joint (r2 in Fig. 9), but also
causes a change in the radius of the first sub-movement (r1). These two sub-
movements are governed by the first and second rows of MJRM , respectively.

Here we consider the tangential displacements T1 and T2 caused by the first
and second sub-movements, respectively, in order to explain how the control
law described by Eq. 1 maintains a straight path.

In order for the end effector to remain on a straight path, the vertical com-
ponents of the tangents T1 and T2 must cancel, leaving a net horizontal
movement of the end effector. Because the angle between T1 and T2 changes
as the arm extends, in order to follow the X1 axis the velocity of joint 2
must change over time in order to maintain this balance. If it does not, the
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end effector will diverge from the straight path as seen in the solid line in
Fig. 10. In practice, the control law described by Eq.1 does not calculate
the exact velocities needed, but relies on the fact that so long as the signs
of the elements of MJRM) are correct, the end effector will eventually be
drawn onto the line connecting the arm origin to the target. As the first
joint ’extends’ the arm by accelerating in a positive direction, it causes the
vertical component of T1 to grow, meaning that joint 2 must respond by ac-
celerating in a negative direction to maintain balance. This is also why the
transformation T (−θ) is required in Eq.3, as the necessary signs will differ
with the orientation of the radial movement. The fact that all elements of
the optimum MJRM have the same magnitude is a reflection of the fact that
the links have the same length; the optimal MJRM gives the closest match
in joint velocities over the course of the movement, requiring smaller reactive
corrections.

Figure 10: Trajectories between [1,0] and [7,0] where MJRM equals
(

1 0
−1 0

)
(solid

line), ( 1 0
0 1 ) (dashed line) and

(
1 1
−1 1

)
(thick line). Kp = ( 100 0

0 100 ), Kv = ( 150 0
0 150 ),

k = 0, link lengths = [4,4].
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The dashed line in Fig. 10 demonstrates how errors caused by one joint
are corrected by the other when MJRM is set to the 2x2 identity matrix. In
this case, the second joint reacts to the deviations caused by the first, but
the speed of this correction is fundamentally limited by the response time of
the joints (this can be seen in Fig. 11). In effect the problem of kinematic
error has been replaced by one of temporal error; a failure of the joints to
coordinate. The antidiagonal terms of the optimal MJRM counteract this
effect with a basic form of forward modeling: feedback of opposing sign is fed
into the two joints, relying on their similar dynamic responses to create the
similar movements. The deviations that must be corrected are thus rendered
smaller and the instability associated with delay in the sensory-motor loop
is reduced.

Figure 11: Velocities of joint q1 (solid line) and q2 (dashed line) where MJRM

equals ( 1 0
0 1 )
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Energy Efficiency

The MJRM matrix utilised in this control law operates by extending the
arm, while simultaneously correcting any deviations from a straight line. We
investigated whether this corrective method could execute a straight path
while using relatively little energy, as opposed to if the torques were set di-
rectly by kinematic calculation. To that end this section measures the sum
of squared torque (proportional to energy used for a DC motor) used by the
MJRM (set at ( 1 1

−1 1 )) and the transpose of the arm Jacobian, when substi-
tuted into the control law (Eq. 1). Our paper does not distinguish between
motor and braking torques because it is attempting to characterise an upper
estimate in the absence of any mechanism for energy storage or restoration.
It is intended to be a comparison between the velocity profiles produced by
each control strategy, each of which requires the motors to exert a different
amount of torque.

The Jacobian transpose is often used in closed loop control of robot ma-
nipulators as a means of transforming desired end effector forces into joint
torques (JTF = τ ). The justification for this use is based on the relation-
ship between end effector forces and joint torques defined by the virtual work
principle:

δw = F T δx− τ T δq, (5)

Where δw is the change in the work performed by the arm, F is the vector
of forces at the end effector, τ is the vector of joint torques, δx is change in
the Cartesian coordinates of the end effector and δq is the change in joint
coordinates. This states that end effector forces can be directly transformed
into joint torques where the arm is in equilibrium.

As can be seen in Fig. 12 and Fig. 13, respectively, the MJRM method
is considerably more efficient than the Jacobian transpose at simple point-
to-point movements, but the difference is much less marked where the arm is
tracking a moving equilibrium point. However, while the Jacobian transpose
uses more energy to track at lower control gains, the energy used by the
MJRM method slightly decreases.

We postulate that this is because the Jacobian transpose’s use as a transfor-
mation comes from the arm’s statics, while the act of reaching requires the
arm to perform work. This renders the direct relationship between forces
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and torques invalid and leaves the Jacobian transpose as an inappropriate
transformation so long as the arm is out of equilibrium. In contrast, our
method’s assumptions are not violated if the arm is in motion.

Figure 12: Comparison of torque applied during a point to point motion from [1,0]
to [7,0] using the MJRM

(
1 1
−1 1

)
(dashed line) and the Jacobian transpose (solid

line) as the transformation matrix.
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Figure 13: Comparison of torque applied tracking a point moving from [1,0] to
[7,0] at a speed of 0.05 per second using the MJRM

(
1 1
−1 1

)
(dashed line) and the

Jacobian transpose (solid line) as the transformation matrix.

Stability Analysis

Lyapunov’s direct method was employed to prove the stability of the control
law described by Eq. 1 when applied to a simulated robot arm with dynamics
described by Eq. 19. Firstly, a Lyapunov candidate was defined:

V =
1

2
q̇TRq̇ +

1

2
(xd − x)TKv(xd − x) − (xd − x)TRM−1q̇ (6)

In order to prove V is positive-definite, we rewrite the expression in matrix
form:

V =
1

2
x′TAx′ (7)

where:
x′ =

[
ẋT (xd − x)T

]T
(8)
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and

A =

[
J−TRJ−1 −J−TRM−1

−(J−TRM−1)T Kv

]
(9)

where J is the Jacobian J = ∂x
∂q

. As A is a symmetric 2x2 block matrix;
its Schur complement can be used to prove that it is positive definite. Thus
A > 0 (and thus V > 0) iff:

1. Kv > 0

2. J−TRJ−1 − J−TRM−1Kv
−1M−TRJ−1 > 0

The first inequality is always true, as Kv is a positive diagonal matrix. Sim-
plifying, and using the knowledge that Kv = kvI, the second inequality
becomes:

Kv >M
−1M−TR (10)

Thus, setting Kv to a sufficiently large positive value will ensure that V is
positive definite.

Differentiating V with respect to time gives:

V̇ = q̇TKpM (xd − x) − q̇TKvMẋ− q̇TSq̇ +
1

2
q̇T Ṙq̇ − q̇TJTKv(xd − x) + q̇TJTRM−1q̇ − (xd − x)T ṘM

−1
q̇

(11)

− (xd − x)TKp(xd − x) + (xd − x)TKvẋ+ (xd − x)TM−1Sq̇

WhereR is the positive-definite, symmetric inertial matrix and S is a matrix
of Coriolis forces. Ṙ− 2S is a skew-symmetric matrix, which means that:

q̇TSq̇ +
1

2
q̇T Ṙq̇ = 0 (12)

and thus in matrix form:

V̇ = −1

2
x′TBx′ (13)

where:

B =

[
cJ−T (KvMJ − JTRM−1)J−1 1

2
J−T (ṘM

−1 −M−1S −KpM)
1
2
(J−T (ṘM

−1 −M−1S −KpM ))T Kp

]
(14)
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B is not a symmetric matrix, but the Schur complement of its Hermitian
part can be calculated yielding V̇ negative definite (and Eq. 1 asymptoti-
cally stable) iff:

1. Kp > 0

2. (KvMJ + JTMTKv) > JTRM−1 +M−TRJT + ((ṘM
−1 −M−1S −

KpM)J+JT (ṘM
−1−M−1S−KpM))Kp

−1((ṘM
−1−M−1S−KpM)J+

JT (ṘM
−1 −M−1S −KpM))T

The first inequality is true for all Kp > 0 and thus applies to any diag-
onal gain matrix of the form Kv = kvI. The second inequality holds if
(KvMJ + JTMTKv) > 0, both Kv and Kp are sufficiently large and Kv

is sufficiently larger than Kp. In particular, since S and Ṙ are unbounded
in q̇, the control gains set an effective constraint on the arm velocity, in that
the gains must be large enough to counteract the Coriolis and other forces
that act on the moving arm. Beyond the geometric constraints related to
the end effector’s location in the work space, these stability conditions are
very similar to those of a traditional kinematics-based control law with a
proportional-derivative control loop.

Discussion

This study demonstrates that the otherwise complex task of planning a
straight path for an end effector can be solved without explicitly defining
the path itself. This is achieved by exploiting the dynamic relationship be-
tween an open chain robot’s components. The fact that the movement of
any link affects all others further down the chain allows the implementation
of a visual-motor loop that continuously corrects deviations from the desired
path without relying on accurate kinematics, which are not available for all
robotic systems.

A consequence of this is that not all standard means of comparison can be
used in this case, as the tests rely on assumptions that are not applicable to
our study. Tracking tests, for example, cannot be properly applied because
the control is optimised for a cost function calculated over an unconstrained
trajectory as no true reference trajectory exists, only a start point and target.
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The simplicity of the MJRM matrix and the wide area rendered stable by
any given value also allow stable reaching motions to be achieved much more
simply than in the classical robot model. The transformation matrix can
easily be generalised over the entire work space by applying a rotational
transformation. This transformed visual feedback can be linearly combined
with conventional inverse-kinematics based error to add more reliability to
the control, but if accurate encoder or visual sensors are available it is un-
likely to be necessary.

Furthermore, the MJRM method exerts less torque (and thus uses less en-
ergy) to move when in a non-equilibrium state than the Jacobian transpose.
This could render it useful in situations where sufficient control gain to rigidly
track a moving equilibrium point is not possible.

Because the MJRM method has no assumptions about the kinematics be-
yond their basic geometry, there are few barriers to extending it to more
complex robots. All this requires is that the elements of the MJRM matrix
must retain the same sign over the whole movement, which necessitates joint
limits in a more complex redundant arm. Similarly, an extension to a three-
dimensional workspace can be easily envisioned, although this would require
two independent rotations of the matrix, and the area in which one rotation
is valid would be smaller as a fraction of the total workspace.

In future work we hope to apply the same self-correcting behaviour to ar-
bitrary motions within the work space, allowing true global stability to be
achieved. The degree to which this method can be extended to systems
with many degrees of freedom is a matter of continued investigation. There
is preliminary evidence that redundant arms controlled using this method
experience continual self-motion unless appropriate joint limits are imposed.

Methods

Numerical Simulation of a Planar Arm

The control scheme developed in this study was tested using a numerical
simulation of a two-joint planar robot arm. This is the simplest form of an
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arm capable of executing the ‘reaching’ motions the study aims to optimise.
This reduced to a minimum the number of parameters that had to optimised
while retaining the classical robot arm form.

Figure 2 shows the arm model used in this study, along with its primary
attributes. The model’s sensors can be thought of as accurate encoders at
the joints and an undistorted camera overlooking the arm in a bird’s-eye view
to detect the end-effector position. The block diagram of the overall system
can be seen in Fig. 1.

The model was implemented in Simulink, using a third-order ordinary dif-
ferential equation solver with a constant step size of 0.005s. The primary
components of the simulation are the arm’s dynamics and the control law
described by Eq. 1. Due to their relative complexity these are both imple-
mented as custom MATLAB functions embedded in Simulink blocks. The
control law block produces a time series of torque values that are input into
the dynamics block to calculate the arm’s joint acceleration over time. This
is integrated twice and used to determine the arm’s joint state. The position
of the arm’s end effector and joints is calculated using the forward kinematics
of the arm and treated as the visual feedback.

The reaching target is simply modeled as a constant Cartesian coordinate
vector.

Dynamics

The links of the arm are modeled as thin, uniform rods with the moment of
inertia j = ml2/3 (where m is the link mass and l is the link length) and
their centre of mass halfway along their length. In the case we are modeling,
the links have the same mass (m1 = m2) and equal length (l1 = l2). The arm
is considered to be supported by a parallel plane, reducing the gravity term
to 0. This restriction to a fixed plane replicates the constraints placed upon
human subjects in many reaching experiments [8] [9] .

The dynamics of the simulation are derived by solving the Lagrange equation
for a driven robotic system:
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d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= τ (15)

where τ is the vector of joint torques, q is the vector of joint angles and
L = V −U where V and U are the kinetic and potential energy, respectively.
Because no gravity is experienced by the arm, U is set to 0.

V = V1 + V2 (16)

V1 =
1

2
m1ẋ

2
1,c1 +

1

2
m1ẋ

2
2,c1 +

1

2
j1q̇

2
1 (17)

V2 =
1

2
m1ẋ

2
1,c2 +

1

2
m1ẋ

2
2,c2 +

1

2
j2(q̇

2
1 + q̇22) (18)

Where x1,cn and x2,cn are the x1 and x2 coordinates of the nth joint’s centre
of mass, respectively.

Solving Eq.15 gives the final dynamics equation:

q̈ = R(q)−1(τ − S(q, q̇)q̇) (19)

with the inertial matrix:

R(q) =

[
j1 + j2 + 2m2l1lc2C2 +m2l

2
1 +m1l

2
c1 +m2l

2
c2 j2 +m2l1lc2C2 +m2l

2
c2

j2 +m2l1lc2C2 +m2l
2
c2 j2 +m2l

2
c2

]

(20)
and a Coriolis force vector with the form below.

S(q, q̇) =

[
−m2l2lc2(2q̇1 + q̇2)q̇2S2

m2l1lc2q̇
2
1S2

]
(21)

Cn = cos qn and Sn = sin qn. Equation 19 is used to calculate the acceleration
of the arm joints given the control torques. No friction is modelled at the
joints (this is understood not to weaken the stability conditions for robotic
control).
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Simplex Optimisation

In order to optimise the transformation matrix MJRM we used the widely-
known simplex algorithm defined by Nelder and Mead [19] . Each element of
the simplex is a value for the transformation matrix M in Eq. 1 (each with 4
elements, giving a 5-point simplex). The error for each matrix was acquired
by substituting it into Eq. 1 and simulating a point-to-point movement of
the robot in which all other parameters were fixed, before calculating the
LI (defined in Eq. 2). By using this algorithm to continuously generate new
matrices, it was possible to find the optimal value of MJRM for a specific
start/endpoint pair. Unlike the original formulation of the simplex algo-
rithm, the algorithm used here does not include the ‘contraction’ step that
reduces the simplex’s deviation around the mean if the projected new value
has a sufficiently high error. Not including this step improved the algorithms
likelihood of finding a good solution in all the experiments performed.

The initial simplex to be optimised was generated by pseudo-randomly per-
turbing a ‘seed’ matrix. When performing individual ‘runs’ of experiments
optimising for radial movements at a series of angles, this matrix was ran-
domly chosen and kept constant throughout.

Because the end effector position is based on the angle of both joints, it was
assumed that the components of M are inter-related, but without knowing
this relationship, it was not possible to design a problem-specific algorithm.
This limited the choice of algorithms to general optimisers. The simplex op-
timisation algorithm created by Nelder and Mead [19] was a good fit in that
it is often used to optimise sets of variables with unclear relationships. Addi-
tionally, algorithms of this form do not require the derivative of the problem,
which could not practically be found due to the sheer number of simulations
that would be required.

References

[1] Hashimoto, K. A review on vision-based control of robot manipulators.
Advanced Robotics 17, 969–991 (2003).

[2] Shadmehr, R. The computational neurobiology of reaching and pointing:
a foundation for motor learning (MIT press, 2005).

43



[3] Macfarlane, S. & Croft, E. A. Jerk-bounded manipulator trajectory
planning: design for real-time applications. Robotics and Automation,
IEEE Transactions on 19, 42–52 (2003).

[4] Nakanishi, J., Cory, R., Mistry, M., Peters, J. & Schaal, S. Operational
space control: A theoretical and empirical comparison. The Interna-
tional Journal of Robotics Research 27, 737–757 (2008).

[5] Morasso, P. Spatial control of arm movements. Experimental brain
research 42, 223–227 (1981).

[6] Wolpert, D. M. & Ghahramani, Z. Computational principles of move-
ment neuroscience. nature neuroscience 3, 1212–1217 (2000).

[7] Feldman, A. G. & Latash, M. L. Testing hypotheses and the advance-
ment of science: recent attempts to falsify the equilibrium point hypoth-
esis. Experimental Brain Research 161, 91–103 (2005).

[8] Wolpert, D. M., Ghahramani, Z. & Jordan, M. I. Perceptual distortion
contributes to the curvature of human reaching movements. Experimen-
tal brain research 98, 153–156 (1994).

[9] Flanagan, J. R. & Rao, A. K. Trajectory adaptation to a nonlinear visuo-
motor transformation: evidence of motion planning in visually perceived
space. Journal of neurophysiology 74, 2174–2178 (1995).

[10] Kawato, M., Furukawa, K. & Suzuki, R. A hierarchical neural-network
model for control and learning of voluntary movement. Biological cyber-
netics 57, 169–185 (1987).

[11] Wolpert, D. M., Miall, R. C. & Kawato, M. Internal models in the
cerebellum. Trends in cognitive sciences 2, 338–347 (1998).

[12] Wilson, W. J., Williams Hulls, C. & Bell, G. S. Relative end-effector
control using cartesian position based visual servoing. Robotics and
Automation, IEEE Transactions on 12, 684–696 (1996).

[13] Corke, P. I. Visual control of robot manipulators-a review. Visual ser-
voing 7, 1–31 (1993).

44



[14] Nishida, R. & Kawamura, S. A new feedback robot control method
based on position/image sensor integration. In Intelligent Robots and
Systems (IROS), 2012 IEEE/RSJ International Conference on, 5012–
5017 (IEEE, 2012).

[15] Mitsuda, T., Maru, N., Fujikawa, K. & Miyazaki, F. Binocular visual
servoing based on linear time-invariant mapping. Advanced robotics 11,
429–443 (1996).

[16] Giummarra, M. J., Gibson, S. J., Georgiou-Karistianis, N. & Bradshaw,
J. L. Central mechanisms in phantom limb perception: the past, present
and future. Brain research reviews 54, 219–232 (2007).

[17] Holmes, N. P. & Spence, C. The body schema and multisensory rep-
resentation (s) of peripersonal space. Cognitive processing 5, 94–105
(2004).

[18] Desmurget, M., Jordan, M., Prablanc, C., Jeannerod, M. et al. Con-
strained and unconstrained movements involve different control strate-
gies. Journal of Neurophysiology 77, 1644–1650 (1997).

[19] Nelder, J. A. & Mead, R. A simplex method for function minimization.
Computer journal 7, 308–313 (1965).

Author contributions statement

H.E. developed/performed the simulations, and analysed the data. H.E.,
S.N., and Y.H. discussed the results, and all contributed to writing and
editing the manuscript of the paper.

Acknowledgments

This research was in part made possible by a generous studentship from the
University of Reading.

Additional information

The authors have no competing financial interests to declare.

45



Renormalized time scale for anticipating and
lagging synchronization

Abstract

Anticipating synchronization has been recently proposed as a mech-
anism of interaction in dynamical systems which are able to bring
about predictions of future states of a driver system. We suggest that
an interesting insight into the anticipating synchronization can be ob-
tained by the renormalization of the time scale in the driven system.
Our approach directly links the feedback delay of the driven system
with the renormalized time scale of the driven system, identifying the
main component in the anticipating synchronization paradigm and
suggesting an alternative method to generate the anticipating and the
lagging synchronization.

1 Introduction

Synchronization of oscillations is abundant in nature from physical, chem-
ical to biological systems [1, 2]. The synchronization of chaotic systems is
a surprising phenomenon considering the exponential divergence of the tra-
jectories, and chaotic synchronization as a new subfield of nonlinear systems
has been increasingly investigated in the past two decades [3].

Anticipating synchronization has been recently proposed as a mechanism
of interaction in dynamical systems able to bring about predictions of future
states of a driver system by a driven system. A general framework was
identified for anticipation by the driven system with delay [4]:

ẋ(t) = f [x(t)] (1)

ẏ(t) = f [y(t)] +K[x(t)− y(t− τ)], (2)
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where f(·) describes the internal dynamics of the state variables of both the
driver system, x, and the driven system, y. Note here that the state variables
can be extended to the multidimensional state variables. The second term
in the driven system is a coupling term which drives it to be synchronized
with the driver system. The term y(t − τ) takes into account the feedback
delay in the driven system referring to its own state.

The anticipating synchronization is simply identified by the condition that
manifold, y(t) = x(t + τ) be stable, hereafter, it will be called anticipating
manifold. This implies that the driven system is anticipating the future state
of the driver system.

This paradigm of anticipating synchronization in a uni-directional cou-
pling configuration has been investigated in a variety of systems, chaotic
lasers [5], autonomous chaotic systems [6], and excitable systems in the noisy
environment [7, 8] numerically and experimentally. The paradigm was also
extended to excitable systems in order to develop a control method to predict
the driver’s behavior, and to prevent the driver from firing [9]. Interestingly,
it is the presence of a delay in the coupling that is a necessary condition to
achieve the driven system’s anticipation of the driver’s dynamics. Pointing
out the mechanism of the anticipating synchronization, the lowering of the
excitability threshold of the slave in a delayed coupling scheme was shown
to be a general mechanism for anticipating synchronization in excitable sys-
tems [8], and the linear stability analysis of the simple linear systems has
been performed [10], and the effectiveness of the first order expansion was
explored as a proof of concept [11].

In this paper, the paradigm of the anticipating synchronization is ex-
plored, leading to essential understanding of how the time delay gives rise
to anticipating synchronization of the driven system, and we propose an
alternative method of renormalized time step to generate the anticipating
synchronization. The positive status of the delayed feedback is shown in a
straightforward manner, i.e., the first order approximation of the coupling
term of the driven system leads to the renormalization of time, amounting
to speeding up the evolution of the driven system. On the other hand, the
renormalization of time can also lead to the lagging synchronization by slow-
ing down the evolution of the driven system. The chaotic system and the
excitable systems were used to numerically validate the anticipating and lag-
ging synchronization based on the renormalization of time.
Anticipating synchronization is still in many ways an unintuitive phenomenon.
Although the final result is easily understood, the mechanism rarely is out-
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side the field of dynamics. Possibly as a result of this, it is yet to be exploited
in other fields where it could have useful applications, particularly in engi-
neering. In addition to deepening our understanding of the phenomenon, it
is hoped that reformulating anticipating synchronization in terms of renor-
malized time may make it more palatable to researchers in other areas of
study.

2 Analytical solutions for one dimensional lin-

ear case

2.1 First order expansion of the time delay term

Consider a linear stability analysis for the anticipating manifold, taking a
linear system, f(x) = αx. First, we shift the time of the driver system by τ
in Eq. (1). Subtracting Eq. (1) from Eq. (2), we have

ż(t) = αz(t)−Kz(t− τ), (3)

defining the transversal system, z(t) = x(t + τ) − y(t). As a next step, we
expand the delay term, z(t− τ) in τ to the first order. After rearranging of
the terms, the equation (3) becomes

ż(t) = − K − α
1−Kτ z(t). (4)

Equation (4) specifies two conditions for the presence of anticipating manifold
as follows;

K > α, (5)

Kτ < 1. (6)

These two conditions also indicate that the anticipatory horizon, the maxi-
mum τ value in the τ -K plane should be given by the intersection of Kτ = 1
and K = α.

On the other hand, when τ < 0, Equation (4) specifies one condition for
the presence of anticipating manifold as follows;

K > α (7)
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2.2 Solution for the delay differential equation

The stability conditions for the linear systems with the delay term can be
obtained by calculating complex Lyapunov exponent. Extending the state
variable to the complex plane, the stability conditions for the anticipating
manifold can be calculated for the explicit time delay. In contrast to the
section II A. where the solution for the driver dynamics is given by x = Aeαt,
the solution should be given by x = Ae(α+iω)t. Thus, the driver dynamics
follows ẋ(t) = (α + iω)x(t). The corresponding driven dynamics is given by
ẏ(t) = (α + iw)y(t) + Keiβ[x(t) − y(t − τ)] where the coupling constant is
also given by the complex number, Keiβ. The transversal system, z(t) =
x(t+ τ)− y(t) evolves as

ż(t) = (α + iw)z(t)−Keiβz(t− τ). (8)

The solution of the Eq.(8) should be given by z(t) = Be(λ+iω)t where λ is a
Lyapunov exponent. By substituting the solution into Eq.(8), we have

λ = α−Kei(β−ωτ)e−λτ . (9)

Here, let β compensate the time delay, τ on the imaginary axis by setting
β = ωτ [6]. The equation (9) can be rewritten as

λ = α +
1

τ
W (−τKe−ατ ) (10)

where W (x) is the Lambert W function, x = W (x)eW (x). As a multivalued
function, W (x) has two values in the region −1/e < x < 0. For λ = 0, −ατ =
W (−τKe−ατ ) should have solution forW0(x). This condition imposes−ατ =
W (−1/e)(= −1) which is the extreme value of W (x) function. Thus, the
maximum τ is determined by τ > −1/α, and K = α is obtained from
x = −1/e. The anticipation horizon coincides with the one based on the first
order expansion (Fig. 1).
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Figure 1: Stability diagram of the anticipating synchronization for the linear
system. The solid line represents the case when the delay term, y(t − τ) is
treated exactly. The dashed line represents the case when y(t−τ) is expanded
to the first order. The dotted line K = α represents the stability boundary
for both cases (α = 0.5). The stability regions are determined by the area
surrounded by the solid line and dotted lines for the non-expansion case and
by the dashed and doted lines for the case of the first order expansion.

The stability conditions for Lyapunov exponent, λ < 0 determines the
stability region in τ − K plane for a given α. The solution of Eq. (10)
when λ = 0 gives the necessary condition for stability to be α < K. For the
condition when Re(λ) = 0, substituting λ = iθ (θ ∈ [0,∞]) into Eq. (10)
leads to K = (α2 + λ2)1/2 and τ = tan−1(θ/α)/θ. The stability region of the
system is then determined by the region shown in Fig. 1. Note here that
the τ can only give the positive value as a function of θ. Thus, there is no
analytical solution for the region τ < 0, confirming that Equation (2) cannot
refer to the future state of itself.

In contrast to the statement that x(t + τ) − y(t) is a fixed point of this
system for any time delay τ (the anticipation horizon) [4], the maximum
τ value is given by the intersection of two functions, namely, Kτ = 1 and
K = α. This is the same as in the case of stability analysis for the first order
expansion, even though the stable area is larger for the driven system on the
time delay term.

Thus, from the above analysis, it follows that even explicit account of the
feedback delay does not increase the anticipatory horizon compared to the
one obtained from the first order expansion. The analytical calculations in
this section are restricted to the one dimensional and linear case. We will
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validate the outcome of the first order expansion of the time delay term by
numerical calculations in the following sections.

3 Renormalization of time

Let us further consider the outcome of the first order expansion of the time
delay term. The expansion of z(t − τ) up to the first order is equivalent to
the expansion of y(t− τ) in Eq. (2) to the first order, which gives

dy(t)

dt∗
= f [y(t)] + k[x(t)− y(t)] (11)

where t∗ = t/(1 − kτ) is a renormalized time in the driven system. From
K > 0 and τ > 0 and from Eq. (6), we can obtain 0 < 1 −Kτ < 1, which
leads to t < t∗. For the case of τ < 0, we have 1 − kτ > 1, which leads to
t∗ < t. This outcome suggests that the time scale of the driven system should
be larger or smaller than that of the driver system, depending on the sign
of τ . Thus, with respect to the first order expansion, the time delay in the
coupling term in Eq. (2) can be equivalently replaced by the renormalized
time in the driven system.

4 Numerical calculations for multidimensional

and nonlinear cases

4.1 Rössler chaotic system

Even though the analytical characterization was obtained only for the one
dimensional linear dynamics, the anticipating synchronization based on the
renormalized time should be applied to more complex hyperbolic systems.
As a test model, we numerically examine the coupled dynamics of a driver
and driven system using a Rössler chaotic system. The chaotic oscillator
model for the driver system is given,

dx1
dt

= −x2 − x3 (12)

dx2
dt

= x1 − ax2, (13)

dx3
dt

= b− x3(x2 − c), (14)
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where x1, x2 and x3 are state variables. For the driven system based on Eq.
(11), we have similarly,

dy1
dt∗

= −y2 − y3 +K(x1 − y1) (15)

dy2
dt∗

= y1 − ay2, (16)

dy3
dt∗

= b− y3(y2 − c), (17)

where y1, y2 and y3 are state variables of the driven system and K(x1 − y1)
represents a coupling between the driver and driven systems. Note that the
driven system incorporates the renormalized time scale, t∗ = t/(1 − kτ) in
the time derivative.

Figure 2 shows the numerical results of the Rössler chaotic system when
τ = 0.4. It is interesting to note that the driven system on the renormalized
time scale can show the precedence of phase, even though its amplitude differs
more from that of the driver system. Also, shifting the renormalized time for
the condition, t∗ < t when τ = −0.4, the driven system showed the lagging
synchronization (Fig. 2). With respect to the first order approximation, we
found that the reference to its own future state in the feedback loop actually
lead to the delay in response to the driver system. It is intriguing, the the
lagging synchronization cannot be achieved by the explicit term in Eq. (2).
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Figure 2: Time series of Rössler chaotic system, x1(t) and y1(t). The solid
line represents the driver system with the time step, 4tstep = 0.0005, the
dashed line represents the driven system on the renormalized time step, cor-
responding to τ = 0.4, and the dotted line represents the driven system
on the renormalized time step, corresponding to τ = −0.4. The values for
parameters were a = 0.15, b = 0.20, c = 10.0, K = 1.0.

Figure 3 shows the stability diagram of the cross-correlation coefficient
with respect to the driver system. The maximum values of the cross-correlation
coefficients in the cross-correlation functions were calculated, and the individ-
ual values were plotted in τ -K plane. Stability is determined experimentally
using the cross-correlation coefficient - as the anticipation manifold becomes
unstable there is an abrupt transition from high (close to 1) to very low cor-
relation coefficient. This manifests as a highly visible discontinuity in the
figures. In the case of the renormalised timescale, the cross-correlation is
undefined for an unstable manifold and the region is left blank as a result.

For the region τ < 0.4 in Fig. 3 (b), the cross-correlation coefficients
are close to 1, therefore, there is a good agreement between the driver and
driven systems in terms of the amplitudes of the curve profiles. However,
the cross-correlation coefficients with respect to the driver system decrease
gradually as τ increases more than 0.4 and the area of the good agreement in
terms of the amplitude of the curve profile is smaller than the one calculated
from the original case of the delay differential equation (Fig. 3 (a)).

53



Figure 3: Stability diagram of the cross-correlation coefficient with respect to
the driver system (Rössler system). The maximum values of the coefficient
in the cross-correlation functions were plotted in τ -K plane. The driven
systems were based on (a) time delay term (b) renormalized time step. The
values of parameters were a = 0.15, b = 0.20, c = 10.0.

Figure 4 shows the stability diagram of the time shift of the driven system,
4t with respect to the driver system. The time shift is defined by the time
lag in the cross-correlation functions at which the maximum values of the
coefficient are to be found. Ideally, the anticipating manifold should be
fulfilled as 4t = τ where τ is a self-feedback delay of the driven system.

However, the driven system based on the renormalized time step shows
the larger time shift, 4t > τ for the region of τ > 0.4. In this region of
τ > 0.4, even though the deviation from the driver system becomes larger
in terms of amplitude correlation of the functions (Fig. 3), we found the the
tendency of the driven system for larger precedence of the driver in the case
of the renormalized time step compared to the driven system with the time
delay (Fig. 4 (b)). Additionally, in the renormalized case, anticipation is
highest at the stability boundary Kτ = 1, as this maximizes t∗ = t/(1−kτ).
The anticipation period in the delay coupled case is dependent only on the
delay τ , above a minimum value of K (see the area below K = 0.1 in Fig.
4), and thus doesn’t exhibit this effect.

Note here that the stability diagram obtained by the one dimensional
case (Fig. 1) showed a qualitative agreement with the stability diagram of
the chaotic system (Fig. 3 and Fig. 4).
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Figure 4: Stability diagram of the time shift with respect to the driver sys-
tem (Rössler system), which gives the maximum value of the coefficient
in the cross-correlation functions. The driven systems were based on (a)
Time delay term (b) Renormalized time step. The values of parameters were
a = 0.15, b = 0.20, c = 10.0.

Figure 5 shows the stability diagram of the lagging synchronization with
the positive τ region. We found that stability region for the negative τ is
consistent with the stability regions derived for the linear case (K > α),
and also the smooth transition was found from the lagging to anticipating
synchronization as τ increases from the negative to positive value.

Figure 5: Stability diagram of the lagging synchronization with respect to the
driver system (Rössler system). The driven systems were based on the renor-
malized time step. (a) Stability diagram of the maximum cross-correlation
coefficient. (b) Stability diagram of the time shift. The values of parameters
were a = 0.15, b = 0.20, c = 10.0.
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4.2 Excitable systems

4.2.1 Adler system

As a next step, we numerically validate that the renormalization of the time
step can also work for an excitable system. Adler system is used to study the
excitable behavior responding to the same external forcing of the driver and
driven system. We consider two identical Adler’s systems in unidirectional
coupling under the simultaneous external perturbation I(t) on both systems,

dx

dt
= µ− cosx+ I(t) (18)

dy

dt∗
= µ− cos y + I(t) +K(x− y) (19)

where state variable x (driver system) and y (driven system) are angular
variables, µ is the bifurcation parameter. When |µ| > 0, the system exhibits
the excitable behavior. For the driven system, the time scale is renormalized
as t∗ = t/(1−Kτ).

The excitable systems possess a single stable rest state, corresponding
to a fixed point. The small perturbation of the system, for example, the
environmental noise pushes the state variable out of the fixed point, and the
large excursions of the state variables follow, which are called spikes. Since
many biological systems, e.g., neurons, are essentially the excitable systems
with a few feedback pathways, it is important to consider the excitable system
triggered by the random noise to test our hypothesis of the renormalized time.
Figure 6 shows that the renormalization of the time step can work in good
agreement in terms of amplitude with the driver system for the anticipating
synchronization as well as the lagging synchronization.

The driven system based on the renormalized time step showed a wide
range of maximum amplitude correlation values with the driven system (Fig.7
(b)), and the degrees of the correlation were almost identical with to those
of the driven system based on the time delay feedback (Fig. 7 (a)).
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Figure 6: Time series of Adler system, x(t) and y(t). The solid line repre-
sents the driver system with the time step, 4tstep = 0.0005, the dashed line
represents the driven system on the renormalized time step, corresponding
to τ = 5.0, and the dotted line represents the driven system on the renormal-
ized time step, corresponding to τ = −5.0. The values of parameters were
µ = 0.95, K = 0.01.

Figure 7: Stability diagram of the cross-correlation coefficient with respect
to the driver system (Adler system). The maximum values of the coefficient
in the cross-correlation functions were calculated in τ -K plane. The driven
systems were based on (a) Time delay term (b) Renormalized time step. The
value of parameter was µ = 0.95.
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Figure 8: Stability diagram of the time shift with respect to the driver system
(Adler system), which gives the maximum value of the coefficient in the cross-
correlation functions. The driven systems were based on (a) Time delay term
(b) Renormalized time step. The value of parameter was µ = 0.95.

Figure 8 shows the stability diagram of the time shift of the driven sys-
tem, 4t with respect to the driver system. The anticipating manifold should
be fulfilled, 4t = τ . In the excitable system, the driven system based on the
renormalized time step showed the wider stable region fulfilling the antici-
pating manifold, compared to the chaotic system (Fig. 3 and Fig. 4). Note
here that when τ > 1.5, the stronger tendency of the time shift was found
towards the future state of the driver system, 4t > τ .

It is straightforward to understand that the larger time step leads to
the higher frequency of the angular state variable. Since the state variable
of excitable system, once perturbed to be out of the fixed point, travels
the orbit which follows the connection of the saddle and the node. The
amplitude of the state variable is well preserved as the state variable travels
the orbit. According to the study by Cizak et. Al., the coupling term in the
driven system (Eq. (2)) gives rise to the effective µeff (µeff > µ) [8], They
explained the dynamical mechanism of anticipating synchronization based on
the fact that µeff decreases the response time from the onset of perturbation
to the time at which the pulse reaches its maximum amplitude. Regarding
the first order expansion, substituting y(t− τ) by y(t)− dy

dt
τ in the coupling

term would also lead to the increase of µeff on the onset of perturbation,
resulting into the decrease in the response time. Thus, for this Adler system,
two explanation, namely, the faster evolution and the effect of µeff on the
decrease in the response time would be plausible.

Figure 9 shows the stability diagram of the lagging synchronization with
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the positive τ region. We found that the degrees of the correlation were close
to one with those of the driver system (Fig. 9 (a)) and that the gradual time
shift for the lagging synchronization was also found in the negative τ region
(Fig. 9 (b)).

Figure 9: Stability diagram of the lagging synchronization with respect to the
driver system (Adler system). The driven systems were based on the renor-
malized time step. (a) Stability diagram of the maximum cross-correlation
coefficient. (b) Stability diagram of the time shift. The values of parameters
were a = 0.15, b = 0.2, c = 10.0.

4.2.2 FitzHugh-Nagumo system

The FitzHugh-Nagumo system is another example of a excitable oscillator,
a simplified version of the Hodgkin-Huxley model which models activation
and deactivation dynamics of a spiking neuron. This behavior is typical for
spike generations in a neuron after stimulation by an external input current.
The equations for this dynamical system are given by

dv1
dt

= v1 −
1

3
v31 + I(t) (20)

dw1

dt
= ε(v1 + a− bw1) (21)

where v1 is a membrane voltage, and w1 is a linear recovery variable. When
the external stimulus exceeds a certain threshold value, the system will be
kicked out from the fixed point, and exhibit a characteristic excursion in
phase space. On the other hand, the driven system based on the renormalized
time, t∗ is described by

dv2
dt∗

= v2 −
1

3
v32 + I(t) +K(v1 − v2) (22)
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Figure 10: Time series of FitzHugh-Nagumo system, v1 and v2. The solid
line represents the driver system with the time step, 4tstep = 0.0005, the
dashed line represents the driven system on the renormalized time step, cor-
responding to τ = 0.75, and the dotted line represents the driven system
on the renormalized time step, corresponding to τ = −0.75. The values of
parameters were ε = 0.08, a = 0.70, b = 0.80, K = 0.10.

dw2

dt∗
= ε(v2 + a− bw2). (23)

Figure 10 shows the numerical results of the FitzHugh-Nagumo system
for τ = ±0.75. We observe the steady phase shift for the anticipating and
the lagging synchronization for the continuous firing. Figure 11 shows the
stability diagram of the cross-correlation coefficient with respect to the driver
system. When τ > 1.0, the driven system starts to deteriorate from dynamics
of the driver system. Regarding the stability diagram of the time shift of the
driven system (Fig. 12), we found the stronger drive of 4t in the region
defined by K < 0.2 and τ > 0.5 with respect to the driver system.

Figure 13 shows the stability diagram of the lagging synchronization. We
found that the driven system on the renormalized time scale shows a good
agreement with the driven system in terms of amplitude (Fig. 13 (a)) as well
as the steady lagging shift (Fig. 13 (b)).
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Figure 11: Stability diagram of the cross-correlation coefficient with respect
to the driver system (FitzHugh-Nagumo system). The maximum values of
the coefficient in the cross-correlation functions were calculated in τ -K plane.
The driven systems were based on (a) Time delay term (b) Renormalized time
step. The values of parameters were ε = 0.08, a = 0.70, b = 0.80.

Figure 12: Stability diagram of the time shift with respect to the driver
system (FitzHugh-Nagumo system), which gives the maximum value of the
coefficient in the cross-correlation functions. The driven systems were based
on (a) Time delay term (b) Renormalized time step. The values of parameters
were ε = 0.08, a = 0.70, b = 0.80.
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Figure 13: Stability diagram of the lagging synchronization with respect
to the driver system (FitzHugh-Nagumo system). The driven systems were
based on the renormalized time step. (a) Stability diagram of the maximum
cross-correlation coefficient. (b) Stability diagram of the time shift. The
values of parameters were ε = 0.08, a = 0.70, b = 0.80.

5 General discussion

Our approach directly links the feedback delay of the driven system with the
renormalized time scale of the driven system (Section III), identifying the
main component in the anticipating synchronization paradigm, and suggest-
ing an alternative method to generate the anticipating synchronization as
well as lagging synchronization.

The following points summarize the method of renormalized time step,
extending the paradigm of anticipating synchronization;

1. Larger time scale amounts to the faster evolution of the state variable
of the driven system based on the internal dynamics.

2. Smaller time scale amounts to the slower evolution of the state variable
of the driven system based on the internal dynamics.

3. Coupling term drives the state variable of the driven systems to be
synchronized with the one of the driver system.

4. Interplay between internal dynamics and coupling term gives rise to
the steady the anticipating or lagging synchronization of the driven
system.
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In this study, we proved the ability of anticipating synchronization based
on the renormalized time steps in the one dimensional linear case, and sys-
tematically validated the outcomes of the renormalized time steps for the
case of multidimensional nonlinear dynamics by the numerical calculations.
The stability diagram showed that tuning of τ can induce the anticipating
synchronization for τ > 0 and the lagging synchronization for τ < 0. It is
intriguing that the lagging synchronization is only possible in the case of the
renormalized time steps.

From the numerically obtained stability diagrams, the renormalized time
scale of the driven system was proven to be the alternative method to induce
the anticipating synchronization when the time delay term is not available
to the driven system. Our results have an important implication that the
different time scales of the dynamical systems can be considered as differ-
ent clocks governing their temporal evolution of the dynamical systems, i.e.,
depending on the sign of τ , the time evolution of the driven system can be an-
ticipating or lagging with respect to the driver system. When the dynamical
systems running based on the different clocks interact uni-directionally, the
anticipating synchronization can appear without any time delays. Therefore,
our approach will further expand this interesting paradigm towards a wider
range of dynamical scenarios.

In behavioural sciences, the feedforward model or the internal predictive
model is motivated by the assumption that the feedback delays destabilize
the controlled objects. Internal models have been a wide spread concept to
explain the human motion overcoming the time-delay in the sensory-motor
systems [12]. Kawato concluded that forward internal models can predict
sensory consequences from efference copies of issued motor commands and
that inverse internal models can calculate necessary feedforward motor com-
mands from desired trajectory information. However, this approach ignores
the dynamics of motion, and can be considered as the mapping between the
positions in work space and the sequence of motor commands in a static
manner.

On contrary to the internal model, Stepp performed tracking experiments
in which the participants were given delayed visual feedback of their own
movements, and found some characteristics of anticipating synchronization
[13]. Even though his finding is at the empirical level, the attempt to em-
phasize the dynamical coupling with the changing environment should be
appreciated to make a link between human behavior and dynamical systems
[14, 15]. Also, in the interpersonal interactions, Hayashi and Kondo found
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that humans follow the feedback control to tune the cycle time based on the
synchronization errors, and that the gain parameters changes as a function
of tapping frequency [16]. From the perspective of renormalization of time,
we found that the tuning of the gain parameters can be attributed to the
internal time scale to detect the cycle time of tapping motion. Therefore,
the internal time scale functioning flexibly to anticipate the changing envi-
ronment or lag behind it could be a fundamental mechanisms of the living
systems for which ‘orienting towards the future’ is a crucial nature [17].

Using a biologically plausible neuronal model, Matias et. Al. showed
that master-slave configuration with the inhibitory neuron can induce antici-
pating synchronization without the explicit time delay, rather, it was simply
triggered by biological plausible delay of the inhibitory neuron to regulate
the slave neuron [18]. Recently, identifying the neuronal populations in the
cortical regions, the anticipating synchronization was presented as a plausi-
ble model for the observed phase shifts in a certain primate cortical circuit
under a visual task [19]. This kind of studies can be also explored in terms
of the different time scales involved in the individual dynamical systems.

The presence of any feedback delay is regarded as an unfortunate fea-
ture of biological and robotic systems. However, as shown in this paper,
the positive, productive status of the delayed feedback should be empha-
sized in terms of the ’internal clock’ of the biological systems, as it may
have very important implications for our understanding of how neuronal and
cognitive systems can predict future outcomes of the changing environment
during many crucial tasks from neuronal systems to sensory-motor systems
of humans [13, 15, 8, 20, 21].

References

[1] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Dover
Publications, New York, United States, 2003).

[2] A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A universal
concept in nonlinear sciences (Cambridge University Press, Cambridge,
England, 2001).

[3] L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990).

[4] H. U. Voss, Phys. Rev. E, 61, 5115 (2000).

64



[5] C. Masoller, Phys. Rev. Lett. 86, 2782 (2001).

[6] K. Pyragas and T. Pyragiene, Phys. Rev. E 78, 046217 (2008).

[7] M. Ciszak, O. Calvo, C. Masoller, C. Mirasso, and R. Toral, Phys. Rev.
Lett. 90, 204102 (2003).

[8] M. Ciszak, F. Marino, R. Toral, and S. Balle, Phys. Rev. Lett. 93,
114102 (2004).

[9] M. Ciszak, C. R. Mirasso, R. Toral, and O. Calvo, Phys. Rev. E 79,
046203 (2009).

[10] O. Calvo, D. R. Chialvo, V. M. Eguiluz, C. Mirasso, and R. Toral,
Chaos, 14, 7 (2004).

[11] N. Corron, J. N. Blakely, and S. D. Pethel, Chaos, 15, 023110 (2005).

[12] M. Kawato, Current Opinion in Neurobiology, 9, 718 (1999).

[13] N. Stepp, Experimental Brain Research, 198, 521 (2009).

[14] N. Stepp and M. T. Turvey, Cogn. Syst. Res. 11-2, 148 (2010).

[15] Y. Hayashi, J. Blake, and S. Nasuto, Anticipation Across Disciplines,
M. Nadin (Ed) (Springer, New York, United States, 2015).

[16] Y. Hayashi and T. Kondo, Physical Review E, 88-2, 022715 (2013).

[17] R. Rosen, Anticipatory Systems: Philosophical, Mathematical, and
Methodological Foundations (Springer, New York, United States, 2012).

[18] F. S. Matias, P. V. Carelli, C. R. Mirasso, and M. Copelli, Physical
Review E 84, 021922 (2011).

[19] F. S. Matias, L. L. Gollo, P. Carelli, S. Bressler, M. Copelli M, C. R.
Mirasso, Neuroimage, 99, 411 (2014).

[20] Y. Hayashi and Y. Sawada, Phys. Rev. E, 88, 022704 (2013).

[21] S. Nasuto, S. and Y. Hayashi, Anticipation Across Disciplines, M. Nadin
(Ed) (Springer, New York, United States, 2015).

65



Anticipation from Sensation: Using
Anticipating Synchronisation to Stabilise a

System with Inherent Sensory Delay

Abstract

We present a novel way of using a dynamical model for predictive
tracking control that can adapt to a wide range of delays without
parameter update. This is achieved by incorporating the paradigm
of anticipating synchronisation (AS), where a ‘slave’ system predicts
a ‘master’ via delayed self-feedback. By treating the delayed output
of the plant as one half of a ‘sensory’ AS coupling, the plant and
an internal dynamical model can be synchronised such that the plant
consistently leads the target’s motion. We use two simulated robotic
systems with differing arrangements of the plant and internal model
(‘parallel’ and ‘serial’) to demonstrate that this form of control adapts
to a wide range of delays without requiring the parameters of the
controller to be changed.

1 Introduction

Closed-loop control is ubiquitous precisely because it is so useful - negative
feedback allows a system to remain stable in the face of disturbance and
continue functioning even in a changing environment. It is no surprise, then,
that negative feedback loops are found so often in living organisms, which
must cope with uncertain environmental conditions - the very concept of
homeostasis is predicated upon them. However, some processes such as mo-
tor control are difficult to explain: closed-loop control is highly sensitive to
feedback delay, and delays in the nervous system would not seem to support
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the quick movements that animals like humans make routinely. Some theo-
rists argue that this can be reconciled through ‘strong anticipation’ [1], where
a continuous coupling between the controlling process within the nervous sys-
tem and the body itself allows otherwise delayed feedback to be predicted.
This suggests a useful paradigm for the control of artificial systems as well,
but practical examples of how a strongly anticipating system could be con-
structed are lacking. We have designed a framework for using the paradigm
of anticipating synchronisation (AS) to enable closed-loop control in the pres-
ence of uncertain or variable delays that we call the ‘sensory coupling’, which
we believe displays the hallmarks of strong anticipation, and applied it to a
classic control task of tracking a moving target with a simple robot arm.

AS is an extension of the phenomenon of synchronisation in dynamical sys-
tems , where a ‘slave’ system can be made to synchronise with the future,
rather than the instantaneous, state of an identical (or similar, in terms of
their vector fields) ‘master’. The evidence for an AS-like phenomenon in hu-
man motor behaviour comes from delayed-feedback manual tracking exper-
iments where human subjects attempted to synchronise the motion of their
hands with a moving cursor. Stepp conducted one such study [2] in which
subjects were instructed to track a chaotically oscillating target using a cursor
that showed a delayed version of their movement. Subjects led (anticipated)
the target in proportion to this delay until it reached a maximal value, rather
than anticipating to the maximum degree immediately. This result is cor-
roborated by multiple earlier studies that used similar methodology ([3], [4],
[5]). Stepp found this consistent with a type of AS system identified by Voss
[6], where anticipation is caused by a coupling term K[x(t) − y(t − tdelay)]
added to the slave, as in Eq. 2 and Fig.1:

ẋ(t) = f(x(t)) (1)

ẏ(t) = f(y(t)) +K[x(t)− y(t− τ)] (2)

but only if τ represents the feedback delay imposed by the experiment. A
later collaboration between Stepp and Voss even indicated that so long as
the continuous coupling with the body exists, the slave does not need to
be similar to the master, and similar results can be achieved by a filter-like
system that exhibits negative group delay [7].
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Figure 1: A generalised AS configuration based on delayed slave self-feedback, as
described in [6]. The master (x) and slave (y) are governed by the same dynamics,
save for the coupling term K[x(t) − y(t − τ)]. This term effectively increases the
time constant of the slave, causing it to evolve more quickly than the master until
y(t) = x(t + τ), at which point the coupling term reduces to 0 and the slave is
synchronised with the future value of the master. If the master and slave dynamics
are merely similar, not identical, synchronisation can occur, but the coupling will
never fully disappear.

This is in direct opposition to the theory postulating that motor control
is dependent on a series of ‘forward models’ that fully replace the real, de-
layed sensory input with an estimate that is learned over time [8][9]. Miall
and Wolpert [10] argued this explains how humans can perform fast move-
ments that should be hindered by their physiological delays; the model is
feed-forward, and does not need to wait for input from the body. This has
not stopped AS potential for control theory applications from being recog-
nised by some authors.

However, where AS has been applied to control it has been utilised within
standard existing control frameworks rather than in an attempt to replicate
strong anticipation. Oguchi and Nijmeijer [11] demonstrated that an AS
slave system with a specified anticipation period could be inserted into a
control loop, stabilising it analogously to a Smith predictor [12][13]. The de-
layed feedback is fully replaced by a predicted signal, allowing the controller
to be designed as if the delay does not exist, but in principle the slave and
its self-feedback could be replaced by a feed-forward model that estimates
some n time steps ahead.

68



Although AS can be used within predictive control as shown by Oguchi and
Nijmeijer, existing predictive controllers cannot be used to implement or
replace a strongly anticipating AS controller. Firstly, there is no one ele-
ment within the AS paradigm that can be replaced with a predictive model,
as anticipation is a result of the continuous interaction between the mas-
ter and slave. Secondly, and more importantly, there is no single predictive
controller with fixed parameters that would exhibit equivalent behaviour to
the strongly anticipating control proposed by Stepp and Voss, where the con-
troller anticipates in proportion to the real feedback delay within the system.

We hypothesise that a control scheme based directly on the strong antic-
ipation principle and utilising AS can be designed by coupling a correctly
designed dynamical model to the real output of the plant through the sen-
sors - a sensory coupling. Because the sensed output of the plant is subject
to both, the delays introduced by the plant itself (feedback delay, τf ), and
those that result from sensory processing (sensory delay, τ), the anticipation
period will always be equal to the true delay within the system. The logic of
this principle is similar to that of ‘signal bouncing’ [14], which avoids mod-
elling network delay by ‘bouncing’ the output of a predictive model through
the delaying channel itself.

We test our hypothesis by using a simulated robot (modelled in Simulink) to
perform a tracking task in the presence of delay. Because of the challenges
specific to this application, namely that the plant can only be controlled by
a torque signal that is defined in a different coordinate system to the target,
there are restrictions on how this coupling can be applied. Nonetheless, we
believe we identified the two most plausible systems.

The ‘parallel’ system couples the plant itself to an internal model that en-
codes the ‘normal’ response of the control loop without delays. With both
the model and plant tracking the same target, the plant synchronises with
the future state of the model, anticipating by a sufficient amount to counter-
act the delays in the real system.

The ‘serial’ system treats the moving target as the master, with an inter-
nal model predicting its motion. The control signal that corresponds to this
predicted target is calculated and used to control the plant. The output of
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the plant, subject to the real system delays, forms the ‘slave’ part of the sen-
sory coupling and ensures the degree of anticipation is always appropriate. In
both of these cases, anticipation cannot occur without continuous interaction
with the real target and plant, fulfilling on a basic level the requirements of
strong anticipation.

The stability and tracking accuracy of the parallel and serial systems are
tested and discussed in sections 3 and 4, respectively. In addition to being
compared with each other, comparisons are made with an unmodified control
loop without anticipation 2 and one that does use AS, but without the new
sensory coupling.

2 Common System Elements

2.1 Common Control Loop Dynamics

We present modifications to an underlying closed loop control system, seen
in Fig.2. The plant is a simple two-link planar arm, modelled as two thin
rods connected by frictionless revolute joints:

q̈ = R(q)−1(τ − S(q, q̇)q̇) (3)

Where q, q̇ and q̈ are the rotational joint position, velocity and acceleration
respectively, τ is the torque at the joints, R(q) is an inertia matrix and
S(q, q̇) is a vector of Coriolis forces.

The Cartesian position of the arm’s end effector (xeffector) is related to the
rotational position of its joints (q) by the forward kinematic equation:

xeffector1 = l1 cos (q1) + l2 cos (q1 + q2) (4)

xeffector2 = l1 sin (q1) + l2 sin (q1 + q2) (5)

Where l1 and l2 are the lengths of the rods that compose the arm.

The target’s motion follows the x and y terms of a chaotic Rössler system,
governed by Eqs.6-8, such that xtarget1 = x and xtarget2 = y.

ẋ = −y − z (6)

ẏ = x− 0.15y (7)

ż = 0.2 + z(x− 10) (8)
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Figure 2: Block diagram of the basic control loop, without any form of anticipation
applied. Green blocks represent unchangeable elements of the underlying system.
The controller transforms the Cartesian difference between the position of the
target and the end effector of the robotic arm plant into appropriate motor torques
using Eq.9. The sensory delay term (τ) represents a delay in processing all sensory
information, while the feedback delay term (τf ) represents a delayed reaction from
the plant.

Figure 3: Illustration of the task performed by the simulated robot arm: the
target, represented by a blue arrow, moves along a chaotic trajectory, while the
controller changes the joint angles q1 and q2 of the arm in order to track it with
the end effector. The length of each link is set at 4, while their masses are set at
5 (in arbitrary units).
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The arm must track the target, meaning that the end-effector of the arm must
maintain the target’s position and velocity (Fig.3). This is achieved through
the use of a simple proportional-derivative control law based on the Jaco-
bian transpose method, which is a well-documented means of transforming
a Cartesian error into appropriate torques at the joints [15]:

τ = JT (Kp(xtarget − xeffector)−Kvẋeffector), (9)

where KP and KV are the proportional and derivative gain terms, and J is
the derivative of the arm’s forward kinematics (Eq. 5) with respect to the
joint angles q.

2.2 Simulation Parameters

We simulate the control loop using MATLAB Simulink with a ode3 Bogacki-
Shampine fixed-step solver at a time resolution of 0.001 s. The control loop
performance is hindered by two distinct ‘problematic’ delays, both modelled
by a Simulink variable-time transport delay block. Firstly, a delay (τ) is ap-
plied to output from both the target and plant, representing an unavoidable
sensory processing delay. The feedback delay (τf ) applies only to the feed-
back from the plant, and represents an additional delay between the plant
receiving the control signal u and its observable response. These both rep-
resent delays in the controlled system that ordinarily prevent stability and
must be overcome through the introduction of the AS paradigm in the form
of the sensory coupling.

2.3 Predictive Tracking Problem

The aim for the two sensory coupling-based models is to effectively compen-
sate for τ and τf through anticipation, ensuring that the robot neither lags
the target nor loses tracking accuracy when subject to these delays. As such,
their performance is compared against that of the original control loop (Fig.2)
when τ and τf are both 0. Lag (or lead, when successfully anticipating the
target) is measured in seconds and calculated by cross-correlating the X-axis
positions of the target and end effector over 200 s of simulated tracking and
finding the time lag (or lead) of the maximum correlation coefficient. The
accuracy of the robot’s tracking is treated separately from anticipation - the
standard performance measure of root mean squared error between target
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and end effector is calculated after time-shifting the end-effector’s output to
account for lag/lead (lag-adjusted RMS error):

ERMS =





√∑T
t=|l|(xtarg(t)− xeffector(t− |l|))

T − 2|l| l >= 0

√∑T−|l|
t=1 (xtarg(t− |l|)− xeffector(t))

T − 2|l| l < 0

Where T is the length of the simulation and l is the lag term. This is done
because an accurate anticipation of the target with appreciable lead time
would exhibit a high RMS error, despite being the desired outcome of the
experiment. Performing the time shift allows both the accuracy of the pre-
diction and the length of the anticipation period to be judged simultaneously.

this makes it possible to distinguish behaviour that is merely anticipatory
with behaviour that is anticipatory and accurate, which is our stated goal.

Without delays, and with the gain values KP = 70 and KV = 100, the
lag-adjusted root-mean-square error between the positions of the end-effector
and target is 0.1024 (for comparison, the target’s distance from the origin
varies between 0 and 2) and the lag is 0.01 s. The basic control loop becomes
increasingly unstable as delay is increased, with unstable oscillations masking
any tracking behaviour at or above 0.045 s feedback or sensory delay.
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3 Anticipation Using Plant Dynamics (Par-

allel System)

Figure 4: The parallel system. The dynamics of the plant (g(qplant,u)) and con-
troller (u = C(err)) are replicated in an internal model (delineated by a dashed
box) that uses instantaneous feedback to produce the primary control signal u.
Green blocks represent unchangeable elements of the underlying system, while yel-
low blocks have been added to enable anticipation. The delayed feedback from the
plant provides the ‘slave’ component for the coupling term, which is transformed
by the controller into a secondary control signal (ucouple) that is scaled by the
coupling constant K. This drives the plant itself to anticipate the target.

In order to anticipate the target while using only the plant dynamics the
plant and an internal model with identical dynamics are coupled in what we
call a ‘parallel’ configuration, which can be seen in Fig.4. This is based on
the principle that anticipation can occur between non-autonomous dynamics
that share a common driver [16] [17]. In the parallel system the plant an-
ticipates the internal model, which is itself driven to follow the target - the
result is that the plant anticipates the target by a small amount.

As stated in the introduction, information from the plant is affected by an
associated sensory delay, τ and feedback delay, τf . However the internal
model is not, and because of its instantaneous feedback it is used to calcu-
late the control signal for both itself and the plant, and is treated as the AS
master. The plant’s state acts as the delayed self-feedback necessary for the
AS coupling, designating it as the slave. Because the plant is a robot that
must be controlled by applying torque at its joints, the control law in Eq.9
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(with gains of Kp = 70 and Kv = 100) transforms the difference between
the target and plant positions into an appropriate coupling torque that is
added to the plant’s control input. This coupling torque drives anticipation
in the plant and compensates for discrepancies between the control signal
based on the internal model and the actual state of the plant.

We expect the sensory coupling to increase the system’s robustness to dis-
turbance in the plant, as opposed to a controller based only on an internal
model, so the relationship between coupling strength and stability is exam-
ined in addition to anticipation.

3.1 Testing

In order to find the limits of the parallel system’s anticipation, the tracking
task was simulated over a range of vaues for K and both τ and τf and the
lag and lag-adjusted RMS error. This allows the region in which stable an-
ticipation (and thus, accurate tracking) occurs to be plotted as a function of
coupling strength and delay. The system was also exposed to a sensory delay
that was abruptly doubled in length partway through a movement in order
to test its robustness to non-constant delay.

Finally, the system was again simulated over a range of K and τ values,
this time perturbing the plant with a large torque impulse and recording the
RMS error immediately afterwards in order to determine the coupling’s effect
on robustness with respect to external disturbance.

3.2 Results

As the τf is increased in this system, the plant begins leading the target as
hypothesised (this can be seen in Fig.6a). This is associated with a decrease
in tracking accuracy however; once the feedback delay has reached 0.5 s the
error has grown noticeably (Fig.6b).

When τ is increased, as seen in Fig. 5a, the lag changes very little over the
stable area, which is the same as in the previous condition. This reflects that
the plant’s anticipation is near equal to the delay on the target information.
This holds even if the delay increases during the movement. Fig.7 shows how
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a mid-execution doubling of sensory delay does not affect the system’s lag,
although the increase in tracking error can be observed in specific peaks of
the end effector’s motion (insets a and b).

(a) Lag (b) Lag-adjusted RMS error

Figure 5: Lag (a) and lag-adjusted RMS error (b) between xtarget and xeffector,
plotted as a heat map. τf is set to 0 s, while τ is varied between 0.01 and 0.5 s. Lag
remains close to 0 to the left of the stability boundary (which can be approximated
by Kτ = 0.14), beyond which error rises above acceptable levels and lag can no
longer be accurately measured. For this reason, the error is saturated at 0.5.
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(a) Lag (b) Lag-adjusted RMS error

Figure 6: Lag (a) and lag-adjusted RMS error (b) between xtarget and xeffector,
plotted as a heat map. τ is set to 0 s, while τf is varied between 0.01 and 0.5 s.
Anticipation (seen here as blue, negative lag values) increases with τf , reaching its
maximum near the stability boundary (which can be approximated by Kτ = 0.14)
beyond which error rises above acceptable levels and lag can no longer be accurately
measured. For this reason, the error is saturated at 0.5.
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Figure 7: X-axis movement of the target (blue, solid line) and the end effector of
the parallel system plant with K = 0.3 (green, dashed line), which must track it.
τ = 0.1 s before rising to 0.3 s at the 300 s point. The increase in τ causes the
end effector to oscillate more after non-sinusoidal moments of the target (compare
inset figures a and b), but does not cause a proportionate increase in lag.

Finally, the coupling has a beneficial effect on the system’s ability to resist
perturbation. As seen in Fig.8, an increased K value makes the system more
robust to a large impulse disturbance, even at low delays, and more so than
the original control loop. This is clearly displayed in Fig.9, where it can be
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seen that the response of the parallel system to disturbance is much smaller
in magnitude.

Figure 8: RMS error in the 100 s after an impulse torque disturbance of magnitude
700 is applied at both joints, plotted as a function of K and τ on a heat map.
The heat map is saturated above an error of 0.5, representing a failure to track
the target. Higher values of K reduce the effect of the disturbance, meaning that
the stable region is bounded by the approximate Kτ = 0.14 stability boundary, as
well as a lower limit in K of approximately 0.1. A white dotted line indicates the
highest delay value (0.045 s) at which the original control loop is stable (subject
to the same conditions).
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Figure 9: Instantaneous error between the positions of the target and the end
effector (xtarget − xeffector) for the parallel system with K = 0.9 (blue line) and
the unmodified control loop (green dashed line) along the X-axis in response to
a large impulse torque of magnitude 4000 and duration 0.3 s at both arm joints
beginning at 200 seconds. Both systems are subject to the delay terms τ = 0s and
τf = 0.045s. The parallel system exhibits a significantly reduced response, ceasing
oscillation within 5 seconds.

3.3 Discussion of Parallel System Performance

In the parallel system, the plant itself is turned into a predictor by treating
its coupling with the internal model as an additional control signal. Through
this sensory coupling, the internal model becomes the master and the plant
the slave, a reversal of the relationship seen in the work of Oguchi and Ni-
jmeijer [11] and indeed the general expectation that a predictor would be a
separable element from the system under control. This is reminiscent of the
principle of morphological control [18]: in effect, since an AS-based predictor
is being ‘simulated’ by altering the dynamical behaviour of the robot, the
same results could theoretically be achieved by manufacturing a robot which
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already exhibits the correct dynamics to anticipate the target. However, even
in this scenario it is highly unlikely a single robot could act as an accurate
predictor in multiple contexts, so the parallel control structure would still be
necessary if the robot needed to perform a variety of tasks.

The parallel system is very stable both to feedback delay and disturbance at
the plant, becoming more so as the coupling strength is increased. Where
the delay is 0, this is nothing more than an increase in control gain, but
the mechanism becomes distinct as the delay increases. Correcting a distur-
bance can be thought of as a form of initial-value problem. A sufficiently
strong coupling allows a slave system to synchronise with the master, even
if their current states differ, which is the situation created by a disturbance
to the plant. However, the prediction loses accuracy at inflection points in
the target’s motion, corresponding to characteristic chaotic features of the
Rössler dynamics governing it. These are the points where the dynamical
behaviour of the target and robot diverge most strongly, causing a transient
discrepancy that persists for a short period. This is a known consequence
of a mismatch between AS master and slave dynamics, and could be limited
in future by taking into account prior information on the target dynamics,
rather than limiting ourselves to only replicating the dynamics of the plant
in the parallel model.

4 Anticipation Using Environmental Dynam-

ics (Serial System)

In our second, ‘serial’, system the internal slave contains both the dynamics
of the both the target and the plant, in order to anticipate the visual error
term err (the difference between the positions of the target and end effector).
This term is fed directly into the controller, replacing the true delayed value
of err, as seen in the block diagram shown in Fig.10a.

The target is treated as the master, while the slave has the same dynam-
ics as the system described in section 2.1 and shown in Fig.2, minus the
sensory and feedback delays. This constitutes an autonomous system that
can be synchronised with the target’s motion. The coupling term (Eq.10) is
added directly to the ẋ and ẏ terms of the target dynamics within the slave
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(Eq. 6, Eq. 7). The plant itself is treated as a delay between sensing the
movement of the target and sensing the end effector’s response. Theoreti-
cally, any sensory or actuation delays (within certain stability bounds) will
be compensated by an equal period of anticipation.

K[xtarg(t− τ)− xplant(t− τ − τf )] (10)

Since the target dynamics are incorporated in the slave, the serial system
should be able to more accurately anticipate all features of the target’s move-
ment and thus achieve better prediction accuracy than the parallel system.

We compare this with an approach where the state of the slave is delayed
within the slave model (τmodel and fed directly fed back in the coupling, as
in Fig.10b, in order to demonstrate that our system is not vulnerable to
applying anticipation that does not match the true system delay.
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Figure 10: The serial system and an alternative system based on direct slave
feedback. The internal slave model is delineated by a dashed box. Green blocks
represent unchangeable elements of the underlying control loop, while yellow blocks
have been added to enable anticipation.
a) The serial system. An internal model of the system’s dynamics acts as the
’slave’ in an anticipating synchronisation, while the output of the plant provides
delayed self-feedback. The output of the model is a prediction of the future value
of the err term, which is used to drive the controller without lag.
b) Alternative system where the delayed self-feedback is taken directly from the
slave with an independent delay τmodel that must be tuned to closely match the
sum of delays in the system. This entails the removal of feedback from the real
slave.

4.1 Testing

In order to find the limits of the serial system’s anticipation, the tracking
task was simulated over a range of vaues for K and both τ and τf and the
lag and lag-adjusted RMS error. This allows the region in which stable an-
ticipation (and thus, accurate tracking) occurs to be plotted as a function of
coupling strength and delay. The system was also exposed to a sensory delay
that was abruptly doubled in length partway through a movement, and its
response compared with that of the system described in Fig.10b.
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The system was simulated over a range of K and τ values while subject
to a torque disturbance at a fixed point in each movement. The system sta-
bility was also compared against that of the original control loop by exposing
both to a step disturbance and recording their response.

4.2 Results

The relationship between anticipation time, coupling strength and feedback
delay can be seen in Fig.11a. The lag between target and end effector de-
creases and is replaced by a significant degree of anticipation as the feed-
back delay τf is increased.Unlike the parallel system, the prediction accuracy
barely decreases within the region of stable anticipation, as seen in Fig.11b.

Where the feedback delay is set to 0 s, the lag remains close to 0 for a
range of values of τ , as can be seen in Fig.12a, indicating that the anticipa-
tion closely matches the delay. As shown in Fig.12b, the dependence of the
tracking accuracy on τ is the same as its dependence on τf .

The serial system is very robust to changes in delay. Even if τ doubles
mid-movement, the behaviour of the system does not change, while a system
based on internal delay falls out of step with the target (Fig 13).

The serial system was found to be much less robust to disturbance than
the parallel system when subject to the same tests, with even a small dis-
turbance to the plant’s torque causing major instability and divergence from
the target trajectory.
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(a) Lag (b) Lag-adjusted RMS error

Figure 11: Lag (a) and lag-adjusted RMS error (b) between xtarget and xeffector,
plotted as a heat map. τ is set to 0 s, while τf is varied between 0.01 and 2 s. The
anticipation (seen as negative lag) closely matches τf within a near-rectangular
region bounded by K > 1 and τf < 1s, while at higher delays tracking no longer
occurs and lag cannot be accurately measured. For this reason, the error is satu-
rated at 0.5.

(a) Lag (b) Lag-adjusted RMS error

Figure 12: Lag (a) and lag-adjusted RMS error (b) between xtarget and xeffector,
plotted as a heat map. τf is set to 0 s, while τ is varied between 0.01 and 2 s.
The lag remains close to 0 s within a near-rectangular region bounded by K > 1
and τf < 1 s, while at higher delays tracking no longer occurs and lag cannot be
accurately measured. For this reason, the error is saturated at 0.5.
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Figure 13: X-axis position of the target (blue, solid line), the end effector of the
serial system (green, dashed line), and the end effector of the alternative system
using direct slave feedback with τmodel = 0.3 (red, dotted line). In both cases,
τ = 0.1 s before rising to 0.7 s at the 300 second point (black, dashed vertical line)
and K = 1. To begin with, all three coincide in time, but after the increase in τ
the system with direct slave feedback clearly lags (by the difference between τ and
τmodel).

4.3 Discussion of Serial System Performance

The serial system achieves a long period of highly accurate anticipation by
replicating the full dynamics of the target system in the internal slave, mean-
ing that even a chaotic target can be tracked with very high accuracy (as
seen in Fig. 13). Because the true plant is assumed to behave identically
to the matching dynamics within the slave, its output is treated as simply a
delayed version of the slave’s state. Any disturbance to the plant will violate
this assumption, and in practice the serial system becomes unstable when
subject to much smaller disturbances than the parallel, to the point that a
counterpart to Fig. 9 could not be made.
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This limitation is linked to the sensitivity to initial conditions of the chaotic
dynamics that represent the target in the slave. These diverge exponentially
from the target’s actual movement when the plant, and thus the sensory
coupling, is disturbed. It would be possible to achieve anticipation using
less-sensitive dynamics to represent the target within the slave, but these
would no longer match the target dynamics and thus limit both the an-
ticipation period and accuracy that can be achieved, resembling more the
performance of the parallel system.

5 General Discussion

In this work we sought to find a ‘middle ground’ between two very different
approaches to reconciling AS with the problem of controlling delayed sys-
tems. Oguchi and collaborators [11] [14] adapted well-understood predictive
control frameworks such that a feed-forward predictive model could be re-
placed by an AS slave with delayed self-feedback. In contrast, the works of
Voss and Stepp identified a strong correspondence between human subjects’
ability to anticipate a moving target and the feedback delay they experienced
and fitted a plausible high-level AS [2] (and later, anticipatory negative group
delay [7]) model to this behaviour. With the parallel and serial systems based
on the sensory coupling we aimed to apply the beneficial properties of the
anticipatory systems designed in the latter approach (the ability to respond
to a wide range of delays with the appropriate degree of anticipation) to a
well-defined nonlinear control task - tracking a moving target with a planar
two-joint robot arm.

Both the parallel and serial systems exhibited hallmarks of strong antic-
ipation: no anticipation occurred unless there were delays present in the
underlying control loop, and where it did occur it was proportional to that
delay, as seen in Figs. 6, 5, 11 and 12. This is qualitatively the same be-
haviour that led Stepp to suggest AS as a principle employed in human motor
control, and it is also uniquely useful for the control of artificial systems (such
as robots), representing control that is both adaptable and robust. Continu-
ous feedback from the plant allows compensation for multiple levels of delay
without changing the gain of the controller or the parameters of the internal
dynamical model (a concept outlined by the comparison in Fig. 13 between

87



the serial system and its counterpart without this feedback).

In performing a tracking task an additional criterion was imposed, that in
addition to exhibiting stable anticipation the robot’s motion must closely
match that of the target. In this latter respect the serial system was more
successful, showing low overall error over the majority of the parameter region
in which it was stable, unlike the steady increase of error with delay shown
by the parallel system (compare Fig. 5b with Fig.12b). This is unsurprising
in that the serial system anticipates the target using a slave that contains
identical dynamics, which previous studies on AS have suggested is a ‘gold
standard’ for accurate prediction. However, in this case the chaotic Rössler
dynamics of the target were highly sensitive to external disturbance, which
was inevitably transmitted through the sensory coupling,causing instability.
This suggests that for control tasks, where robustness to disturbance is at
least as important as robustness to delay, there may be trade-offs for fully
accurate prediction.

The parallel system exhibited much greater robustness to disturbance and
a lesser accuracy than the serial system, as can be seen in Fig. 8. This
suggests that while the near-perfect prediction of the serial system would
be appropriate for tasks where unexpected events will not occur, it is the
parallel system that is more suited for robots performing ‘human-like’ tasks
in unstructured environments, particularly since it is not limited to antici-
pating a single type of target. Since many solutions exist for actuation in
predictable environments, it would seem that the parallel system has a larger
niche in the existing robotic control landscape.

6 Conclusions

We have introduced two closed loop control systems that represent early ap-
plications of the principles of strong anticipation to robotic control, utilising
the paradigm of anticipating synchronisation. Thanks to a ‘sensory cou-
pling’ between an internal model and the true dynamics of the plant, delays
within the control loop are seamlessly counteracted by a matching degree
of anticipation, ensuring that the robot’s response neither lags nor becomes
unstable. This holds true even if the delay changes mid-execution, with no
need to change a corresponding parameter within the internal model. In the
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‘parallel’ system, the sensory coupling is fed to the plant concurrently (or
‘in parallel’) with the primary control signal to enable anticipation while in
the ‘serial’ system the same coupling drives the internal model to produce a
primary control signal that anticipates the target.

Both of these proposed control schemes would be applicable to controlling a
teleoperated robot, or one with slow actuation (such as a soft robot). In par-
ticular, the ‘parallel’ system exhibits robustness to both unpredictable delay
and unmodelled disturbances, while its internal model’s dynamics are not
specific to the chaotic target in this tracking task, meaning it is not limited
to tracking only one possible target. This fact, combined with the fact that
the serial system’s target-specific dynamics proved unstable in response to
disturbances, indicates that strong anticipation through coupling with the
body dynamics alone could be a useful paradigm for tasks in highly unstruc-
tured environments.

In addition to testing this new control methodology on a more complex robot
model, this work could be greatly expanded by exploring the behaviour of
these systems where their internal model does not match the dynamics of
the plant or the target. Although counter-intuitive, there is evidence that
this could have a beneficial effect on the robustness of the control, and would
allow for a more generally applicable controller.
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Synchronisation-Based Control for a
Collaborative Robot

Abstract

Collaboration with another person requires a certain ability to an-
ticipate their movements and respond proactively, a capability that
most humans take for granted, but which robots do not yet possess.
Modeling a human’s intentional motor activity would be excessively
complex, but Anticipation Synchronisation (AS) is a surprisingly ver-
satile dynamical phenomenon that suggests that such a model is not
needed. AS allows a dynamical ‘slave’ system to anticipate a similar
‘master’ through the use of delayed self-feedback, however the inter-
nal dynamics of a robot manipulator are very different from those of
a human arm, so the coupling is prone to instability. Therefore, this
manuscript defines a control system based around an internal feedback
loop that enforces idealised ‘slave’ dynamics upon the robot such that
it can anticipate the Cartesian trajectory of a target with substantially
different internal dynamics. This is tested using a Baxter collabora-
tive robot, which is designed to safely interact with humans at the
cost of velocity limitations.

1 Introduction

To create a true collaborative robot, one which can physically cooperate with
a human partner, the robot must be able to anticipate its user’s behaviour.
This is clearly understandable from human-to-human collaborative move-
ments such as manipulating a large object, or even dancing; any delay in
reacting to the partner may cause a breakdown in the collaborative move-
ment and a failure of the shared task. It is particularly important that a
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robot provides a seamless cooperative experience, because it cannot commu-
nicate with its human partner in order to improve its performance or defuse
their frustration. Thus, conventional (that is to say, essentially reactive)
closed-loop control is not the ideal paradigm for controlling a collaborative
robot. The obvious alternative is to use one of the many predictive control
frameworks that have been devised to control systems that incorporate de-
lay, but this implies a need to comprehensively model the motor behaviour
of the human partner. While many stereotypical human movements are well
characterised (such as simple reaching motions, by the minimum-jerk model
[1]), there is no complete model to predict what a human user is ‘about to do’.

Instead of trying to build this model of the human, we can turn to another
solution: strong anticipation. This relates to the idea that organisms like
human beings anticipate events by continuously coupling their own (cogni-
tive or somatic) processes to the dynamics of the environment, contrasting
with methods that need to construct a model of the predicted system (‘weak’
anticipation). The most plausible implementation of this principle is antici-
pating synchronisation (AS), where a ‘slave’ dynamical system synchronises
with the future of a ‘master’, rather than its instantaneous state [2]. This is
not a violation of causality, but relies on the fact that a deterministic dynam-
ical system’s current state is strongly determined by its past. The difference
between the state of the master and the delayed state of the slave constitutes
a coupling term (K[x(t) − y(t − τ)]) that will drive the slave towards the
future of the master:

ẋ(t) = f(x(t)) (1)

ẏ(t) = g(y(t)) +K[x(t) − y(t− τ)] (2)

if the vector spaces of the master (x) and slave (y) are similar, and the delay
term (τ) is not too large, the synchronisation manifold will reach a stable
state where y(t) = x(t+ τ) and the coupling reduces to 0. Because on short
timescales many dynamical systems exhibit similar behaviour, there is no
need for f to equal g, and the slave can be governed by significantly simpler
dynamics than the master. There is thus no need to model the complex
cognitive processes of the human user, so long as a slave system can be de-
signed that can aticipate the short-term dynamics of their motor behaviour.
It has been suggested by Ishida and Sawada [3] that a control strategy with
this characteristic is advantageous in minimising transient errors caused by

94



an unpredictably moving target, and may be how human beings cope in a
constantly-changing environment.

The dissipative coupling term resembles proportional-derivative control, but
differs in an essential way. While AS deals with the relationship between
similar dynamical systems, a robot is expected to execute movements that
may run counter to its autonomous dynamics. The crucial difference then is
in the nature of the slave or plant. In order to connect the two the robot’s
behaviour must be altered such that it behaves as a slave with similar dy-
namics to the target, rather than as a merely kinematic object.

AS has typically been applied to isolated pairs or chains of autonomous
systems since its discovery, but there have been studies that attempt to com-
bine it with feedback control. An AS based predictor was used by Oguchi
and Nijmeijer to replace a standard predictive model in a system that would
otherwise be too nonlinear for most predictive control methods [4]. More
recently, a similar method was used to enable the control of mobile robots
via long-distance telecommunication [5].

AS allows a new relationship with delay: if the slave’s self-feedback becomes
delayed, it will actually respond by anticipating the master. If we substitute
‘slave’ for ‘plant’ we can see why this would be significant - while classical
control becomes unstable and fails if the feedback from the plant is delayed, a
system based on synchronisation would be expected to begin anticipating the
user (the master) instead. This aligns strongly with the principles of proac-
tive control [3]. Although leading the target in phase would seem equally
as problematic as lagging it, it in fact allows the minimisation of transient
errors when the target moves abruptly, at the cost of lesser accuracy during
steady motion. Given the apparent unpredictability of a human user, this is
a highly desirable property for a collaborative robot to have.

The nature of the plant’s dynamics must be considered more carefully than
when designing a classical control law. If the natural timescale of the plant
is similar to that of the desired task, stable synchronisation can be achieved
with a weak coupling term. If the timescale is significantly different, a larger
coupling term will be needed, implying a greater energy expenditure and
reducing the systems robustness to delay.
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Due to these considerations, and the time and resources involved in produc-
ing a custom robotic platform, we will be tailoring the task to the capabilities
of the existing Baxter compliant robot. This has two useful properties for
how purposes: Baxter’s compliant joints introduce dynamics that are more
complex than those of a fully rigid robot arm, allowing synchronisation with
a wider range of movements, and a fully-featured simulation of the robot
already exists, which can be used to implement a master system.

2 Methods

2.1 Robotic Platform

The Baxter robot consists of two 7 degree of freedom arms mounted on either
side of a central column capped with an articulated screen ‘head’, constituting
a humanoid ‘torso’. This is attached to a 91cm pedestal, giving the robot
a total height of 185cm. The arm joints are referenced with alphanumeric
labels from S1 at the base to W1 at the wrist, as seen in Fig. 1.

96



Figure 1: Joint positions on Baxter’s left arm. All right arm joints are identical
to those on the left, except that S0, E0, W0 and W2 are mirrored. Image from
Rethink Robotics SDK wiki [6].

As a collaborative robot, Baxter is primarily designed for safety when
interacting with humans, which is achieved through a combination of spe-
cialised hardware and software. Each arm joint contains a series elastic ac-
tuator [7] that allows control of joint stiffness and direct measurement of
joint torque. Combined with a real-time onboard controller this allows the
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robot to maintain arm velocities and forces that do not risk serious harm to
the humans around it. A secondary effect of these safety constraints is that
Baxter will not accept commands that cause self-collision (as defined by any
element of its kinematic model intersecting any other).

In designing the task used to test our new control scheme, a conscious effort
was made remain within some of these constraints by utilising Baxter’s veloc-
ity control facility. This allows direct control of the velocities at each joint,
but prevents them exceeding a maximum value of 2 rad/sec (or 4 rad/sec for
the three terminal wrist joints) and automatically halts the robot in the event
of a collision or a sustained ‘crush’ against an external object. The ability
to control the robot’s velocity is crucial to implementing AS, depending as
it does on the time evolution of the slave, so this was considered the best
compromise between safety and the requirements of the study.

2.2 Collaborative Task

The aim of this study is to demonstrate proactive cooperation with a partner,
and we have chosen to concentrate on a task where the robot aims to main-
tain a constant displacement between its end effector and the user’s hand.
Many forms of bimanual manipulation involve this form of action, such as
moving a piece of furniture, or operating one half of a saw, for example. The
robot is considered to be the follower (or slave, for our purposes) in all these
actions, in line with expected use cases for a collaborative robot.

We define an ersatz ‘sawing’ cooperative task where the robot must sim-
ulate holding one end of an object that must be moved back and forth with
a partner by maintaining a constant displacement from the user’s hand (in
practice a tracking task). An unpredictable human partner is represented by
a periodic oscillator with pseudorandom variation in its amplitude. This is
not intended to be a faithful reproduction of a true human movement, but
to model the unpredictable variations that proactive control is intended to
address.

2.3 Parallel AS Controller

Anticipation requires a degree of autonomous behaviour that is sufficiently
similar to the master, and preliminary results suggested that despite its in-
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built elasticity, Baxter’s unmodified dynamics did not meet this requirement.
Therefore it was necessary to define a control input that would force Baxter
to exhibit the required autonomous dynamics. This was achieved by creating
a simulated control loop where a ‘robot’ with identical kinematics to Bax-
ter, but modified joint dynamics, tracks the target without feedback delays.
Provided the new joint dynamics are chosen correctly, this model produces
a control signal that enforces the same behaviour in the real robot’s joints,
allowing it to act as an effective slave. Two distinct forms of joint dynamics
are used in this way, chosen because of their proven individual success at
anticipating smooth continuous master signals; leaky integrators (relaxation
dynamics) as in Eq.3 and harmonic oscillators (Eq.4).

u̇(t) = −Au(t) +GM [xT (t) − f(u(t))] (3)

u̇(t) = −An(t) +GM [xT (t) − f(u(t))] (4)

ṅ(t) = Au(t) −GM [xT (t) − f(u(t))]

In both cases u is a vector corresponding to the three arm joints under active
control, while in Eq.4 n is a harmonic feedback term. Both slave systems are
subject to a self-feedback term, GM [xT − xe], where G is a gain constant,
xT is the spherical coordinate vector of the target and xe is the spherical
coordinates of the slave’s ‘end effector’, derived using the robot’s forward
kinematics (adapted from [8]) and the spherical transformation (Eq.5). This
feedback term causes the slave to track the course of the target as if it shares
the robot’s kinematics.

M is a static linear transformation matrix, based on the Joint Relationship
Matrix from [9], adapted to a three-dimensional spherical workspace and a
robot with three active joints. The use of spherical coordinates allowed a
direct relationship between the joints S0, S1 and E1 and the azimuth, delta
and radius coordinates of the end effector, ensuring convergence over the
entire reachable workspace.

r =
√
x21 + x22 + x23 (5)

θ = arccos
x3
r

φ = arctan
x2
x1
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In our sensory coupling the human partner (or synthetic surrogate) is consid-
ered the ‘master’ system and the output of the robot’s encoders represents
a measurement of the slave’s state. However, the differences between the
modelled dynamics and those of the robot mean it is more stable to couple
the robot to the output of the model, treating it as an approximation of the
target’s state. In order to construct the AS coupling, the difference between
the spherical position vectors of the ‘end effector’ within the model (xe) and
Baxter’s end effector (xR) with feedback delay τ is calculated and multiplied
by a constant, K, and transformation matrix, M . This is added to the out-
put of the internal feedback loop (u̇), multiplied by a scaling constant B,
creating the velocity command vector for the robot.

v(t) = Bu(t) +KM [xe(t) − xR(t− τ)] (6)

The final result is a variation on the ‘parallel system’ from [10] where stable
anticipation arises from the interaction between a model of a conventional
PD control loop and an AS coupling term. In that case, the internal feedback
loop identically reproduced the dynamics of the robot, but the interaction
between Baxter’s compliant joints and safety firmware makes its dynamics
very difficult to accurately simulate, motivating the use of a simpler model.
The block diagram of this system is shown in Fig.2.
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Figure 2: Block diagram of the proposed control scheme, where the plant (Baxter)
anticipates a target with unknown dynamics through the combination of a pri-
mary control signal uslave produced by an internal control loop with specific ‘ideal’
dynamics and a second ‘coupling’ control signal ucouple based on delayed feedback
from the robot itself. Green blocks represent intrinsic elements of the underlying
system, while yellow blocks have been added to enable anticipation. The internal
control loop imposes a specific dynamical behaviour on the plant which is suitable
to act as an AS slave that can anticipate the target’s movements. Thus, the addi-
tion of the coupling term causes the robot to lead the target, if the feedback delay
(τ) is large enough.

Position control is based around the transformation M which maps the
individual spherical coordinates on to the s0, s1 and e1, with all other joints
fixed via an independent high-gain control loop. The coordinates θ and φ are
controlled by joints s0 and s1, respectively, while the radial coordinate can
be controlled by using joint e1 to extend the arm, increasing r. Because s1
also effects the radial coordinate, M is not a true coordinate transformation,
however since the joints are effectively coupled through the forward kinemat-
ics, e1 can continuously compensate for s1’s effects on r. This limits the arm
to variations on a single pose, allowing the static linear transformation to
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ensure convergence on the target. This is preferable to using inverse kine-
matics because, in particular, the use of a Jacobian-based methods becomes
difficult when the instantaneous pose of the robot is not available, as in the
scenario we present here.

Finally, the feedback delay term is implemented as last-in-first-out buffer
that holds the holds the endpoint coordinate vectors received from Baxter’s
internal forward kinematics solver and holds them for a specified period.

3 Testing

In order to test this control method a faithful simulation of the Baxter robot
attempts to follow a ‘partner’ that oscillates along the X-axis with a constant
frequency of 0.5Hz, but pseudo-random amplitude (generated by applying a
moving average filter to the output of NumPy’s random() function). Both
candidate slave systems are presented with a low (τ = 0.01s) and high (τ =
0.2s) feedback delay condition and this is compared against the performance
of a basic PD controller that uses the same transformation matrix (Eq.7).

v(t) = KM [xT (t) − xR(t− τ)] (7)

The degree of anticipation (or lag) is measured by taking the X-axis motion of
the target and the robot end effector over 10 minutes, removing the DC offset
from both and cross-correlating them, extracting the lag with the highest
correlation coefficient down to a resolution of 0.01s. All analysis is performed
using Cartesian coordinates, as this is the format in which Baxter natively
publishes its position data.

4 Results

4.1 Leaky Integrator Slave

At 0.01s feedback delay, the lag is 0.01s, as displayed in Fig.3a, and in the
cross correlation peak. This is considerably lower than that achieved by
the PD controller in the same low-delay condition (0.46s, as seen in Fig.4),
despite optimal gain. Once τ is raised to 0.2s, the robot begins leading the
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target by 0.09s, albeit with reduced fidelity to the original waveform (Fig.3b).
The difference in lead time can be observed in the cross correlation function
between target and robot depicted in Fig.5, where the peak for the 0.2s
condition clearly indicates negative lag.
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(a) 0.01s feedback delay
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(b) 0.2s feedback delay

Figure 3: An example of the parallel controller with leaky integrator slave dynamics
tracking a pseudo-random oscillating target along the X-axis, with 0.01s (a) and
0.2s (b) feedback delay. The target is represented by a solid line, while the robot’s
end effector is shown as a dashed line. An increase in feedback delay causes the
robot to lead the target on average, at the cost of reduced accuracy.
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Figure 4: PD controller tracking a pseudo-random oscillating target along the X-
axis, with 0.01s feedback delay. The target is represented by a solid line, while the
robot’s end effector is shown as a dashed line.

Figure 5: Cross-correlation between the target and robot end effector X-axis tra-
jectories for the parallel controller with leaky integrator slave dynamics at 0.01s
feedback delay (solid line) and 0.2s feedback delay (dashed line). The peak correla-
tion coefficient for the 0.2s feedback delay condition is located at 0.09s, indicating
that the robot is leading the target..
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4.2 Harmonic Oscillator Slave

The harmonic oscillator-driven slave actually slightly leads the target by
0.03s at 0.01s feedback delay (Fig. 6a), but exhibits the same time response
as the leaky integrator at τ=0.2s, with a lead of 0.09s (Fig. 7). However, the
harmonic oscillator produces fewer erroneous oscillations when anticipating
certain features of the target motion (compare the 5-10s period in Figs.3b
and 6b).
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(a) 0.01s feedback delay

0 5 10 15 20 25
Time (Seconds)

0.02

0.00

0.02

0.04

X 
Po

sit
io

n

(b) 0.2s feedback delay

Figure 6: An example of the parallel controller with harmonic oscillator slave
dynamics tracking a pseudo-random oscillating target along the X-axis, with 0.01s
(a) and 0.2s (b) feedback delay. The target is represented by a solid line, while
the robot’s end effector is shown as a dashed line. Where feedback is delayed by
0.2 seconds the robot noticeably leads the target
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Figure 7: Cross-correlation between the target and robot end effector X-axis tra-
jectories for the parallel controller with harmonic oscillator slave dynamics at 0.01s
feedback delay (solid line) and 0.2s feedback delay (dashed line). Both peaks are
located at a negative lag, indicating the robot is anticipating the target, but the
anticipation time is greater in the 0.2s feedback delay condition (at 0.09s) than in
the 0.01s condition (0.03s).

5 Discussion

In both the oscillator and relaxation cases there was a clear correspondence
between feedback delay and anticipation, consistent with Stepp’s observa-
tions in [11], but in neither case did the robot’s lead time approach the full
value of the feedback delay. This is expected, as neither of the slave dynamics
used fully matches those of the target, reducing the maximum possible an-
ticipation. Nonetheless, this result is consistent with Stepp’s human studies,
where the delayed cursor actually perceived by the subjects never overtook
the target - the robot is only ‘aware’ of the delayed feedback, and it is this
delayed version of the end effector that converges on the target. This is qual-
itatively different from the behaviour of systems where a forward model is
placed in serial with the target and the plant such as Oguchi and Nijmeijer’s
[4]. In such systems the prediction horizon is fixed, and any additional delay
will ‘subtract’ from the prediction time.
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Of the two slaves the harmonic oscillator-based slave exhibited a greater
tendency to anticipate, unambiguously leading the target even in the lowest
delay condition. This is in one way unsurprising, because the master signal
resembles an oscillation at the same natural frequency as the slave, with only
the amplitude pseudo-randomised. In another respect this is curious, because
the target motion is generated by low-pass filtered noise - i.e. a leaky inte-
grator. Since the master is driven by a pseudo-random process, neither slave
can be considered a perfect match, but it is clear that the oscillators’ local
behaviour (sinusoid-like peaks) is sufficiently similar to the master to produce
a prediction comparable to that of the leaky integrators’. Additionally the
slave is not one, but three systems connected through nonlinear kinematics.
The fact that they can cooperate to anticipate a single target signal is a very
novel result.

Finally, although adding feedback delay to the system validated its abil-
ity to predict a target, the system’s behaviour when the delay is minimal
is also worth examining. Both the oscillator and relaxation dynamics suc-
cessfully eliminated the lag displayed by the PD controller under the same
conditions. This strongly indicates that anticipation is occurring in response
to the delay already present in the robot control loop, increasing the overall
responsiveness of the system.

6 Conclusions

Although AS has properties that could be usefully applied to collaborative
control, where predicting a human partner’s movements is crucial, it relies
on a similarity in dynamics between robot (slave) and partner (master) that
simply may not exist. This chapter has resolved this issue by expanding
upon the parallel system developed in Chapter 4. What would ordinarily be
a single control loop is split into two: the first a forward model responsible for
setting the robot’s behaviour as a dynamical ‘slave’, and the second acting
like an AS coupling term, driving the thus-modified robot to anticipate the
target. The resulting controller can counteract any feedback delay the sys-
tem experiences with a proportional degree of anticipation, without requiring
exact knowledge of the delay value. Our use of both leaky integrators, and
harmonic oscillators as the basis for the forward model to predict a pseudo-
random oscillation firmly establishes that this parallel structure relaxes any
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requirement that the model should exactly match the robot’s dynamics. In
its stead is the principle that the model should represent the dynamics the
robot would need to anticipate the target - a much easier condition to meet.

The results in this chapter demonstrate that an existing collaborative robot
can display the same adaptive anticipation capability observed in human
delayed-feedback tracking experiments, which is an optimal behaviour for
reducing lag and transient error. Outside of manipulators, a similar control
system would be useful in an assistive exoskeleton, which while not com-
monly described as a collaborative robot, is judged by the same metrics of
continuous, safe physical interaction with a human partner. Describing such
a system is beyond the scope of this study, but a form of the parallel con-
troller could theoretically be used to force a rigid exoskeleton to behave more
like the user’s own musculoskeletal system, allowing safe anticipation of their
movements in the absence of more suitable biomimetic materials.
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General Discussion

1 General Discussion

This thesis has charted the development of a robotic control scheme with
a novel ‘parallel’ design that combines direct feedback control with the si-
multaneous usage of a dynamical forward model. This allows the robot to
anticipate its target’s motion in proportion to the feedback delay it experi-
ences, mimicking the phenomenon of anticipating synchronisation (AS) first
described by Voss in 2000 [1] and drastically reducing the delay’s effects.

Existing predictive controllers ranging from the MOSAIC framework [2] to
even the AS-based controller developed by Oguchi and Nijmeijer [3] are or-
ganised serially in an intuitive ‘sense-calculate-act’ loop: the state of the
system is sensed, the correct movement command is calculated with the aid
of a model, and this command is executed by the robot. In these cases, it is
important that the model match the robot’s desired behaviour near-exactly,
because errors can only be corrected post-hoc by altering the model parame-
ters. The parallel controller differs significantly, because the robot is governed
by two parallel, simultaneous feedback loops, one simulated and one ‘real’,
with neither fully describing the desired system behaviour. In fact, the only
‘prediction’ in this scheme is that observed in the robot’s movement, which
consistently leads the target - a reflection of the AS relationship in which a
‘slave’ system anticipates a ‘master’.

The first step towards the goal of a controller with these properties was
described in Chapter 2: ”Integration of Visual and Joint Information to En-
able Linear Reaching Motions”. In this chapter I explored how a simple
linear transformation matrix could be used instead of inverse kinematics to
produce a specific path (a straight line) with a robot arm’s end effector,
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building on work by Nishida et. al [4] that established the conditions for
such a matrix to ensure convergence on a target. Such an effect can only be
achieved by ensuring that the elements of the arm, the joints, ‘cooperate’ so
that when one moves in a way that draws the end effector off the desired
path the others react and compensate. If the reaction is slow or delayed the
resulting trajectory will be ‘bumpy’ and inefficient so, in other words, the
joints must behave as if they are synchronised. Anticipation is simply an ex-
tension of synchronisation, as established by Voss [1], and can be produced
by introducing delayed self-feedback to the driven system, but the relation-
ship between a robot and its target is not the same as the robot’s joints with
each other. Therefore, success in this study did not necessarily imply that
the robot as a whole could predict a target as I desired. In fact, attempts to
treat the target and the robot as the master and slave in an AS manifold by
simply adding feedback delay inevitably led to the system becoming unstable.

The reasons for this were made clear in Chapter 3: ”Renormalized time
scale for anticipating and lagging synchronization ”. For this manuscript
I performed the numerical simulations necessary to validate the hypothesis
that AS could be well-approximated by its second-order Taylor expansion -
equivalent to renormalising the time constant of the slave. This describes
the majority of stable AS behaviour well because where the master and
slave are similar and the delay is sufficiently small the anticipation man-
ifold [master(t) − slave(t − τ)] is approximately linear, regardless of the
nonlinearity of the systems themselves. From this it was clear that standard
robotic feedback control cannot lead to successful anticipation because the
relationship between the robot and its target remains inherently nonlinear,
due to the large differences in their dynamics.

In Chapter 4 ”Anticipation from Sensation: Using Anticipating Synchro-
nisation to Stabilise a System with Inherent Sensory Delay” I explored two
avenues for resolving this obstacle and creating a stable anticipation manifold
between target and robot. The ‘serial’ controller simulates a nested feedback
loop in which a copy of the target is tracked by a copy of the robot, and
treats this model as the AS slave system. So long as slaves’s dynamics are
correct, it’s output can be used to drive the robot’s motion and the error
term between the target and the robot’s end effector drives the slave’s antic-
ipation. This enables the robot to lead the target by an impressive period,
and the system can cope with large changes in feedback delay, but any dis-
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turbance will break the correspondence between the model and the robot and
cause immediate instability. Overcoming this flaw required stepping outside
of the traditional serial structure seen in so many predictive control laws and
combining the output of the model with direct feedback. This led to the
first iteration of the parallel controller, which retained the ability to adapt to
changing delay while being much more resilient to disturbance and no longer
requiring a copy of the target dynamics.

This version of the parallel controller used a full copy of the robot’s dy-
namics to construct its forward model, simulating a version of the robot that
tracks the target without delay. When there is no feedback delay or dis-
turbance, the system’s behaviour is identical to a basic PD control law, but
when delay increases the two feedback loops diverge in function. The forward
model imposes a stable dynamical behaviour on the robot that allows it to
behave similarly to an AS slave system, while the ‘real’ control loop acts like
the AS coupling term, driving the robot to anticipate and lead the target.
The model is effective not because it uses a copy of the robot’s dynamics,
but because the feedback loop has leaky integrator-like properties, which as
shown by Voss and Stepp [5] allow a system to exhibit a phenomenon similar
to anticipation. This was validated in Chapter 5: ”Synchronisation-Based
Control for a Collaborative Robot” in which I implemented a modified ver-
sion of the parallel controller where the robot’s dynamics were replaced by
a group of leaky integrators representing its joints, without disrupting its
ability to anticipate. With the link between the model and the robot broken,
it was possible to design a model based on the known behaviour of the target
instead, with the potential for a higher quality of anticipation. In the case
of an oscillatory pseudorandom target, a group of harmonic oscillators was
also an appropriate choice, given that the target exhibits sinusoidal peaks.

The success using harmonic oscillators as the model component of the paral-
lel controller merits further discussion, as the smooth, oscillatory movements
it was able to anticipate are common in many applications. The oscillatory
behaviour that was imposed on the robot in Chapter 5, and which allowed
it to anticipate, could in fact already exist in a robot with sufficiently elastic
elements. In that case the forward model would become obsolete: simple
under-actuated feedback control would allow such a robot to anticipate the
target without any further computation. For this reason I believe that the
control methods developed in this thesis are very relevant to the emerg-
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ing field of soft robotics, where the robot’s kinematics and dynamics are of
ten too computationally intensive to use or simply not available. Inverse
kinematics-free control and consideration of how the robot’s autonomous dy-
namics compare with those of its desired behaviour could resolve many of
these issues now faced by researchers.

For example, coordination-based control as demonstrated in chapter 2 does
not require the links or other elements of the robot to maintain a constant
length or shape so long as their effect on each others’ motion is consistent.
This condition requires an additional rotational transformation when using
Cartesian coordinates, but a more bio-inspired coordinate system based on,
for example, arm extension/retraction and orientation could subsume this
problem. Since this form of control requires a responsive feedback loop it
could be problematic for robots based around elastic or pneumatic actuators
- which is where the parallel controller’s use becomes apparent. Turning the
robot itself into an anticipator can compensate for actuator lag even if it
may vary in ways that are difficult to model (such as external forces, and the
effects of the soft robot’s own deformation).
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Conclusions

1 Conclusions

The field of robotics is crowded with predictive control systems, both theoret-
ical and realised, so it is necessary to be clear on what is unique about strong
anticipation through anticipating synchronisation. Strong anticipation has
been primarily investigated in terms of how it can explain the behaviour of
organisms, so not all of its properties are relevant to robotics. This thesis
has focused on two that are: the ability to anticipate nonlinear systems,
and non-parametric adaptation to changing or unknown feedback delay. The
value of the first is relatively obvious; nearly every conventional robotic ma-
nipulator has highly nonlinear kinematics and dynamics, and advances in
soft and compliant indicate that this trend will only accelerate. The second
holds the promise of a robot that will execute with minimal lag even if the
feedback delay affecting the robot cannot be modeled. Together these prop-
erties would enable predictive control that is both simple and robust.

Despite the usefulness of AS in predicting nonlinear systems being previously
recognised, the specific case of robotic manipulators which has the master
(target) and slave (robot) defined in different coordinate systems (Cartesian
and joint rotation, respectively) is under-investigated. This is only natural
given that AS research has concentrated on highly similar master/slave pairs,
but has left few indications on how to bridge the gap between AS and exist-
ing robotic control methods. Defining a control law based on a static linear
transformation in chapter 1 acted as a first step here, making it simpler to
formulate the task of reaching towards a target as a dynamical process that
could be synchronised or synchronised with. In addition to being surpris-
ingly effective as an implicit path-planning method, using this method to
track a moving target with feedback delay revealed that a robot driven by

115



PD control can show some of the properties of anticipating synchronisation.
The reason this has not been considered an important result in the past is
twofold: firstly it occurs in the absence of explicit path planning, which is an
unusual condition, and secondly the effect is only visible in the small range
of feedback delay within which the control remains stable. Turning this ob-
servation into the basis of a practical anticipatory system thus required a
significant change in the role of the controller.

The serial system presented in chapter 4 resolves this problem by treating the
whole of the feedback loop containing target, controller and robot as the basic
unit of the AS slave. A copy of these combined dynamics is placed between
the real target and robot, and the control signal generated within this model
control loop is used to drive the latter. The difference term between the real
target and robot becomes the AS dissipative coupling term. As a result the
slave model (and as a result, the robot itself) anticipates the target in pro-
portion to the feedback delay, even if the length of the delay changes during
the course of the movement. However the serial system could not tolerate
any disturbance which caused the motion of the robot to diverge too much
from that of the target, and this lack of robustness makes it unsuitable for the
unstructured environments in which changing delays are most likely to occur.

Much more promising is the parallel system where there is no attempt to
model the target dynamics, and an internal feedback loop is used to alter the
behaviour of the robot so that it can be used as the anticipating slave. In this
way the dynamical ‘model’ is actually acting as a controller that constrains
the robot’s dynamics in order to preserve stability. In chapter 3, this de-
sired behaviour was identical to the robot tracking the target without delay,
so the robot’s ‘body’ dynamics were reproduced in full, but this is not the
only viable form of slave. Chapter 4 applies the parallel system to Baxter, a
humanoid robot with inbuilt compliance designed for safe human-robot col-
laboration. Baxter’s compliant joints and safety-preserving firmware mean
that its dynamics are very complex in practice, and a full dynamical model
would not have been a feasible solution. Instead, two types of simple dy-
namics known to be able to anticipate a wide range of continuous dynamical
systems were used - harmonic oscillators and relaxation dynamics/leaky inte-
grators. Imposing these dynamics onto the joints of the robot’s arm allowed
it to act as a predictor for a smooth, pseudorandom oscillation as predicted
by Stepp and Voss. The explicit anticipation in this case is the result of an
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imposed feedback delay, and under ‘normal’ circumstances a system based on
this principle will merely seem to have minimal lag, as the anticipation pe-
riod will be in proportion to (but not exceeding) the delays naturally present
in the system. This is in line with Stepp’s original findings, which showed
a gradual transition from lag to anticipation, and subjective human experi-
ence, which is reactive.

This use of highly simplified dynamics runs directly counter to the stan-
dard practice in control engineering that a model must be as close to reality
as possible. However this convention is borne out of the needs of feedforward
control, where even small parameter errors can cause the system to diverge
from its desired behaviour over time. A controller built around negative feed-
back has no such limitation, as it can continually correct errors as they occur.
When dealing with significantly delayed systems this would be considered a
moot point - it is impossible to react to information one has not yet received,
and closed-loop controller are notorious for losing stability when subject to
feedback delay. However, it has been shown here that a system based on AS
can take delayed feedback and respond proactively to its target, despite not
possessing anything even approaching an accurate model.

In fact, an exact model of the plant may be counterproductive - the cen-
tral conceit of the parallel system is that the robot being controlled does not
have suitable autonomous dynamics to anticipate the external master, but
while this is certainly true of Baxter and most other robotic manipulators, it
does not have to be. To take the example of the ‘sawing’ task in chapter 5, a
robot with natural elasticity that predisposes it to oscillate passively would
almost certainly be able to synchronise with the partner as an ordinary AS
slave, without additional control inputs. Thus, the natural extension of this
research is to examine soft robotic systems as platforms for AS-based control.
The design of many soft robots is already task-specific, but in the future it
may be advantageous to examine how their dynamics relate to their desired
behaviour (the master) in addition to the more common question of how
their many degrees of freedom affect their kinematics.

What this thesis cannot do is shed any light on how (or whether) the human
body and brain exhibit strong anticipation. The human body has much more
complex autonomous dynamics than any of the robots examined here (or any
robot yet designed), and it is plausible that this means its dynamics do not
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need to be altered in order for it act as an anticipating slave. On the other
hand, and in contrast to other animals, humans execute a huge variety of
motor tasks, well beyond the scope of those for which it could be considered
an ‘optimal’ slave. The differences between bouncing a ball and driving a
car, for example, are such that it is hard to conceive of a single control rule
that would encompass them both. The parallel system, in a modular form,
might represent a way in which the body’s dynamics could be modulated
so that it adopts the ‘correct’ dynamics to anticipate the dynamics of the
environment. The author does not not foresee a means to separate this form
of AS from any other using purely behavioural data. However, if the body is
acting as the slave, then one would expect that the signals from the brain to
the muscles do not relate to the anticipated future position of the body, as
the AS coupling is based on current state of the master and the past of the
slave. It may be possible to construct a suitable causality measure between
a target a subject is manually tracking with feedback delay and their EMG,
but this is beyond the scope of this thesis.

In terms of immediate applications of this work, chapter 4 presents a complete
framework for how a robot with known dynamics can continue to operate nor-
mally in the presence of sensory and/or feedback delay that cannot be accu-
rately modeled. This could easily occur if the sensor system is connected via
an unreliable network or if the robot itself exhibits lag time before executing
instructions. Neither of these scenarios correspond to an optimised classical
robotic system, but as such the parallel controller could be a means of ex-
tracting improved performance from inferior, damaged or aged components.
This method could also be used to increase the responsiveness of robots with
compliant elements, from robots with series elastic actuators (such as Baxter
in chapter 5) to genuinely soft robots. Such machines can only become more
common as more and more roles that require human contact (carer, nurse,
assistant) are desired to be filled by robots.
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