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Abstract 
 

Learning in non-stationary environments is a challenging task which requires the updating of predictive models 
to deal with changes in the underlying probability distribution of the problem, i.e., dealing with concept drift. Most 
work in this area is concerned with updating the learning system so that it can quickly recover from concept drift, 
while little work has been dedicated to investigating what type of predictive model is most suitable at any given 
time. This paper aims to investigate the benefits of online model selection for predictive modelling in non-
stationary environments. A novel heterogeneous ensemble approach is proposed to intelligently switch between 
different types of base models in an ensemble to increase the predictive performance of online learning in non-
stationary environments. This approach is Heterogeneous Dynamic Weighted Majority (HDWM). It makes use of 
“seed” learners of different types to maintain ensemble diversity, overcoming problems of existing dynamic 
ensembles that may undergo loss of diversity due to the exclusion of base learners.  The algorithm has been 
evaluated on artificial and real-world data streams against existing well-known approaches such as a heterogeneous 
Weighted Majority Algorithm (WMA) and a homogeneous Dynamic Weighted Majority (DWM). The results show 
that HDWM performed significantly better than WMA in non-stationary environments. Also, when recurring 
concept drifts were present, the predictive performance of HDWM showed an improvement over DWM.  
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1 Introduction 

Many real-world applications of machine learning 
operate in data streaming environments where 
additional data becomes available over time. Examples 
are Cyber Security [1][2][3][4], Sentiment Analysis 
[5][6], Human Activity Recognition [7][8] and Fraud 
Detection Systems [9]. The underlying probability 
distribution of such domains typically exhibits changes 
over time, i.e., these domains usually involve concept 
drift [10][11]. For example, in credit card approval 
[52][53]  the likelihood of defaulting on payment may 
change due to an economic crisis.  

The large number of data streaming applications 
makes the area of learning in non-stationary 
environments (i.e., environments where concept drift 

would occur) increasingly important. Several 
approaches to handling concept drift can be found in 
the literature [10][11][12]. Most studies in this area are 
concerned with how to quickly detect and/or adapt to 
concept drift. In particular, “Active” approaches use 
methods to explicitly detect concept drifts. If a drift is 
detected, new predictive models are typically created 
to learn the new concept thus helping the system to 
recover from the concept drift [13][14][30]. Passive 
approaches do not use concept drift detection methods. 
Instead, they usually maintain an ensemble of 
predictive models called “base models” and use 
weights in order to emphasise the models believed to 
best represent the current concept [19][20][28][29]. 
These approaches also typically create new base 



 

models and enable the deletion of old base models to 
help in dealing with concept drifts.  

Even though it is well known that various types of 
predictive models (e.g., Naïve Bayes, Hoeffding Trees, 
Multilayer Perceptron, etc.) can provide a very 
different predictive performance depending on the 
problem being tackled [15][16], little work has been 
dedicated to the investigation of what type of 
predictive model is most adequate over time in non-
stationary environments. This could be a particularly 
important issue with regard to online learning [11], 
i.e., when each example is learnt separately upon 
arrival and then discarded. 

For instance, when delivering online learning, it is 
difficult to know which type of machine learning 
algorithm would be best to use as a base model for an 
ensemble learning algorithm beforehand, due to the 
initially small amount of data available for evaluating 
base models. However, as more data is received, it is 
desirable that online ensemble learning algorithms 
automatically identify which types of base learners 
work best for the application domain. In addition, if 
the best type of base learner changes due to concept 
drift, online ensemble learning algorithms should also 
be able to automatically identify which types of 
models are best suited to the situation encountered 
after concept drift. 

A good combination of different types of models 
can also sometimes lead to a better predictive 
performance than the use of a single type of model 
[17][18]. Therefore, it would be desirable for online 
learning algorithms applied to non-stationary 
environments not only to detect which is the best type 
of model maintaining the highest classification 
accuracies, but also to use a combination of different 
types of model if that is found to be beneficial. 

Therefore, this paper proposes an online 
heterogeneous ensemble learning algorithm for non-
stationary environments known as the Heterogeneous 
Dynamic Weighted Majority (HDWM). It aims to turn 
one of the most popular passive ensemble approaches, 
namely Dynamic Weighted Majority (DWM) [20], 
into a heterogeneous ensemble. HDWM automatically 
chooses or emphasises the best types of base models to 
be used over time in non-stationary environments. This 
enables it to keep different types of base models and 
use them to improve predictive performance to 
manage concept drift. 

The HDWM algorithm was evaluated on 
artificially induced drift streams and real-world data 
streams. Its predictive performance was compared 
against existing well-known approaches such as the 
Weighted Majority Algorithm (WMA) and Dynamic 
Weighted Majority (DWM).  The HDWM results 
show that it performs significantly better than WMA 
when there is concept drift in the data streams. Its 
heterogeneity and classifier switching mechanism 
make it independent of manually choosing the base 
classifier according to conditions. The results showed 
that despite the heterogeneity of WMA, no significant 
differences were found between DWM (Hoeffding 
Tree) and DWM (Naïve Bayes) with WMA. It is 
extremely difficult to choose the right type of base 
learner in the ensemble. HDWM overcomes this by 
intelligently switching its base learners and showed 
stability in a non-stationary environment.     

This paper is further organised as follows. Section 
2 presents related work. Section 3 describes the 
proposed approach. Section 4 outlines the 
experimental setup and provides an empirical 
evaluation of the developed algorithm. Section 5 
analyses the results and Section 6 sets out concluding 
remarks. 

 

2 Related Work  
There is a rich literature on learning in non-

stationary environments [10][11][12]. In addition to 
categorising existing algorithms into active and 
passive, it is also possible to categorise existing work 
into online and chunk-based approaches [11]. Online 
approaches process each new training instance 
separately and then discard it. Chunk-based 
approaches wait for a whole new batch of data to 
arrive, and then use this new batch for training before 
discarding it. We concentrate on online rather than 
chunk-based learning algorithms, because they are the 
main beneficiaries of an investigation of new 
heterogeneous ensemble approaches, as explained in 
the introduction. 

A new Decision Tree (DT) ensemble was 
proposed [63] to increase the diversity of the ensemble 
by using different training sample numbers for 
different base DT classifiers. Another approach for 
multi-class and imbalanced data was presented [64] in 
which the binary classifiers are first created and then 
integrated in the ensemble by using majority voting to 
make predictions.  



 

In terms of diversity the ensembles are broadly 
classified into homogeneous and heterogeneous, taking 
into consideration the drift handling approaches, the 
ensembles are categorised into active and passive 
approaches. Fig. 1 illustrated the categorisation of 
algorithms for the remainder of this Section. Please 
note algorithms mentioned in this figure are referred to 
in the following sub-sections. As shown in the Figure, 
HDWM is heterogeneous and sharing the features of 
both active and passive learning.  

 

 

Fig. 1: Active and Passive approaches of 
Ensembles  
 

2.1 Heterogeneous Ensembles 
Most existing heterogeneous ensemble techniques 

rely on meta-learning [21][22]; this helps in deciding 
which learning techniques work well on what data. 
Nguyen et al. [23] proposed a general framework to 
integrate feature selection and heterogeneous ensemble 
learning for data stream classification. Cheng et al. 
[24] built a heterogeneous ensemble using three 
different tree-based ensembles (Random Forest, 
Rotation Forest, and Extremely Randomised Trees). It 
was shown that running heterogeneous/different, or 
homogeneous/similar data stream classification 
techniques over vertically partitioned data (data 
partitioned according to the feature space) resulted in 
comparable performance to batch and centralised 
learning techniques [51]. 

The Weighted Majority Algorithm (WMA) [19] 
uses fixed numbers of base learners C=(C1  ,C2  ...CL) 

with an initial weight ‘wi’ equal to ‘1’. The weight is 
updated on each wrong prediction using (wi← βwi), 
where (0 ≤ β < 1) and the final prediction is made 
based on the weighted majority vote among the base 
learners Ci. The diversity of base learners has a 

significant effect in improving the performance on 
different streams. WMA base learners are 
heterogeneous, potentially helping to produce more 
diverse ensembles. However, it lacks the option to 
dynamically add new base learners. The algorithm has 
no explicit method to detect and handle concept drift 
thus being less effective in non-stationary 
environments. 

The Modal Mixture Model (M3) [25] is a 
heterogeneous chunk-based ensemble for non-
stationary environments. New classifier members are 
added to the ensemble at each data chunk and the 
weights are computed based on past performances. A 
weighting mechanism is used to deal with non-
stationary environments. The algorithm continuously 
updates the models regardless of whether real drift 
occurs or not. 

The Heterogeneous Ensemble with Feature drifT 
for Data Streams (HEFT-Stream) [23] is an online 
classifier that incorporates feature selection by 
applying the Fast Correlation Based Filter (FCBF) [26] 
algorithm that dynamically updates the relevant feature 
subsets for data streams. This is beneficial because 
non-stationary environments may present feature drift 
[23][41]. In high-dimensional datasets, not all features 
are significant for training a classifier and the 
relevance of a feature may grow or shrink over time. 
Given a set of p different classifier types, 
M={M1,M2,…Mp}, the ensemble is initialised with k 
classifiers of each model in M.  It determines the most 
discriminative feature subset on a chunk using a 
sliding window. If the subset is different from the 
previous one, there is a feature drift. The approach 
then looks for the most accurate classifier having the 
smallest aggregated error and builds a new classifier. 
Finally, it removes the classifier with the least 
accuracy from the ensemble and adds the best 
classifier to the ensemble. However, after the 
initialisation stage, the algorithm never utilises the M 
models to create new classifiers. Therefore, there are 
chances that the ensemble may become homogeneous 
again in the future.  

BLAST (short for best last) [42] introduced an 
Online Performance Estimation framework to weight 
the votes of (heterogeneous) ensemble members. 
Based on zero/one loss function, i.e. returns '1' on 
correct predictions and '0' otherwise, the weights are 
increased accordingly. Based on the performances on 
w (window size) it nominates one of its members to be 



 

an active classifier and sets its weight to '1' and the 
weights of the remaining classifiers to '0'. The weights 
are updated on a predefined interval. The HEFT [23] 
and Online Accuracy Updated Ensemble (OAUE) [28] 
apply a similar approach in which worst performing 
models are replaced with new learners, unlike the 
BLAST that temporarily reduces the weights of a 
poorly performing member. However, it utilises a 
static ensemble size similar to WMA [19].  

 
2.2 Active and Passive Homogeneous 
Approaches to Deal with Concept Drift 

This section presents related work on passive and 
active online learning approaches for non-stationary 
environments which are not based on heterogeneous 
ensembles. Chunk-based approaches, could potentially 
use off-line procedures such as cross-validation to 
choose the best type of base learner for each new 
chunk of data, even though this has not been 
investigated so far. Therefore, this section will not 
cover chunk-based approaches. Sections 2.2.1 and 
2.2.2 explain active and passive online ensemble 
approaches for non-stationary environments, 
respectively. 

 

2.2.1 Active Approaches 
Active approaches for dealing with non-stationary 

environments are typically based on single learners. 
They use concept drift detection methods to determine 
whether a concept drift has occurred. When concept 
drift detection occurs, methods for dealing with 
concept drift are triggered. A common strategy is to 
reset the single learner to learn the new concept from 
scratch [14][58]. Some drift detection methods used in 
active approaches are explained in Section 2.3. 

A few ensemble-based active approaches are also 
available in the literature. Adaptive Classifiers-
Ensemble (ACE) [30] is an active online ensemble that 
consists of one online learner, a set of offline 
classifiers trained on old data, and a method that uses 
the offline classifiers to detect concept drift. Ensemble 
predictions are based on a weighted majority vote 
across all classifiers. The classifier weights are based 
on their accuracy on the most recent training 
examples. ACE claims to be able to handle sudden, 
gradual and recurring concepts better than other 
systems. However, its integral drift mechanism 
restricts the algorithm to integrate with other drift 
detection methods.  

Bifet et. al. [14] presented an algorithm that 
combines restricted Hoeffding trees using stacking and 
an ADWIN [31] change detector. They applied 
ensemble trees using a weighing mechanism based on 
combining the log-odds of their probability estimates 
using sigmoid perceptron. The learning rate of the 
perceptron is determined by using a change detector 
that is also responsible for resetting the weaker base 
learners. The algorithm uses the learning rate α = 
2/(2+m+n) for ‘m’ attributes and ‘n’ instances in the 
data stream. However, choosing the learning rate is 
problematic on identically distributed data and results 
in slow adaptation of the perceptron. One option is to 
reset the learning rate when drift is detected which 
improves the learning curve (rate of accuracy over 
time) while keeping the learning rate relatively large. 

Todi [43] is based on two online classifiers for 
learning and detecting concept drift; ‘H0’ and ‘H1’. 
Drift detections are performed based on a statistical 
test of equal proportions to compare ‘H0’s 
performance on recent and old training examples. 
When a concept drift is detected, ‘H0’ is reset. ‘H1’ is 
never reinitialised upon drift detection but can be 
replaced by ‘H0’ when a concept drift is confirmed. 
Keeping the two classifiers can help to deal with false 
positive drift detections, as ‘H1’ can be selected for 
prediction in the case that the reset ‘H0’ classifier is 
inaccurate after the drift detection. The Todi 
predictions are the predictions given by the classifier 
with the best accuracy with the most recent training 
examples. 

Diversity for Dealing with Drifts (DDD) [13] is 
an online active ensemble learning approach that 
creates different ensembles with different levels of 
diversity to achieve robustness for different types of 
concept drift. A drift detection method is used to 
activate very high diversity ensembles which are not 
helpful during stable concepts, but that can help to deal 
with slow drifts, or drifts that do not cause too many 
changes with respect to the current concept.  

Even though these approaches are based on single 
learners rather than heterogeneous ensembles, their use 
of drift detection methods can inspire the proposal of 
novel heterogeneous ensemble approaches. In 
particular, our proposed heterogeneous approach 
makes use of a drift detection method, being classified 
as an active approach. 

 
 



 

2.2.2 Passive Approaches 
Most passive learning approaches (those that do 

not rely on drift detection methods) deal with concept 
drift by maintaining an ensemble of base models and 
use weights to emphasise the models believed to best 
represent the current concept [11]. 

Addictive Base learner Ensembles (AddExp) [27] 
adds a new base model (a.k.a. base learner) for every 
wrong classification given by the ensemble. The 
weight assigned to the new base model is equal to the 
total weight of the ensemble multiplied by the 
parameter γ ϵ (0,1). The weight of each base model is 
updated by being multiplied by a pre-defined 
parameter (β, 0 ≤ β < 1), when it gives a wrong 
prediction. A pruning method eliminates the oldest 
base models for reducing the ensemble size. 
Alternatively, the base models whose weight is below 
a certain threshold can be deleted. The prediction 
given by the ensemble is the weighted majority vote of 
the predictions given by the base models. 

The Online Accuracy Updated Ensemble (OAUE) 
[28] combines chunk-based and online ensemble 
methods. The weights of the base learners are 
calculated by estimating the prediction error on the last 
d examples. The window size is utilised to create a 
new base learner for a set of ‘d’ examples and 
periodically removes the weaker base learners from 
the ensemble. The output is predicted by aggregating 
the predictions of base learners using a weighted 
voting rule. However, the algorithm is highly 
dependent on the window size. It is likely therefore 
that a small window size may lose the sudden concept 
drift, while a larger window may result in false 
concept detection.  

The Dynamic Weighted Majority (DWM) [20] is 
one of the most popular ensemble approaches to deal 
with concept drift. Each base learner is associated with 
a weight. Weights start with value one and are 
multiplied by a pre-defined parameter β, 0 ≤ β < 1, 
when their associated learner gives a wrong prediction 
in a time step multiple of period ρ. This weighting 
mechanism of DWM is inspired by the WMA. The 
predictions are based on the weighted majority vote 
derived from the base learners. DWM enables removal 
and addition of base learners at every ρ time step. A 
new base learner is added whenever the ensemble 
prediction is wrong in a time step multiple of ρ. 
Removal of learners is controlled by a pre-defined 
weight threshold parameter θ. A base learner is 

removed if its corresponding weight is lower than θ in 
a time step multiple of ρ. In this way, new learners are 
created to learn new concepts and poorly performing 
learners, which possibly had learnt old concepts, are 
removed. The algorithm normalises the weights by 
uniformly scaling them such that the highest weight 
will be equal to one. This is done to prevent newly 
added base learners from dominating the decision-
making of existing ones. However, despite using the 
WMA weighting mechanism, DWM does not exploit 
one of the key aspects of WMA - the use of different 
types of base models. 

Existing passive ensembles can be seen as 
performing dynamic model selection approaches when 
they assign different weights to their base learners and 
when they decide to remove base learners from the 
ensemble. However, these approaches have not 
exploited the use of different types of base learners, 
i.e., they have not exploited the potential benefit of 
heterogeneous ensembles. Even though the weighting 
mechanism of DWM was inspired by WMA which is a 
heterogeneous ensemble, all its base learners in DWM 
are homogeneous, e.g., either all of them are Naïve 
Bayes or all of them are Hoeffding Trees.  

 

2.3 Drift Detection Methods 
 

Several drift detection methods have been 
proposed. An example of a drift detection method 
based on statistical process control is the Drift 
Detection Method (DDM). It tracks the minimum error 
pmin of an online learning model over time and its 
corresponding standard deviation smin by updating 
these variables whenever a new training example is 
received. A warning that a concept drift may be 
occurring is triggered if (pi + si   ≥  pmin+ 2 × smin), 
where ‘pi’ is the current error rate and ‘si’ is the current 
standard deviation [32]. When this happens, new 
training examples are used not only to update the base 
model, but also stored in a buffer for future use. A 
concept drift is detected if (pi + si   ≥  pmin + 3 × smin). 
The base model is then deleted and a new one is 
created to replace it using all the examples stored in 
the buffer. 

The Early Drift Detection Method (EDDM) [33] 
is similar to DDM but takes into consideration the 
distance between two error classifications instead of 
the error rate. The average distance between two errors 
is represented as ‘p'i’ and its corresponding standard 
deviation is ‘s'i’. The warning level is reached if (pi + 2 



 

× s'i) / (p'max + 2 × s'max) < ∝ and the drift level is 
reached if (p'i + 2 × s'i) / (p'max + 2× s'max )< β, where 
∝ and β are pre-defined constants. 

The Statistical Test of Equal Proportion to Detect 
concept drift (STEPD) [43] monitors the two 
predictive accuracies of a single online classifier, i.e. 
accuracy among the most recent examples and overall 
accuracy from the beginning of the learning. It detects 
significant decreases in these predictive accuracies by 
using a statistical test of equal proportions. If the 
accuracies are statistically similar, then it is assumed 
that there is no concept drift. If the accuracies are 
significantly different, then a concept drift is detected. 
STEPD uses significance levels for drifts and 
warnings. Like DDM and EDDM, it stores examples 
in a short-term memory during the warning period and 
re-builds the classifier on drift detection based on the 
stored examples.  

Giacomo et al. [46] analysed two different 
approaches for building histograms in the context of 
change detection. When building histograms, 
nonparametric monitoring procedures were applied 
which implemented likelihood [47][48] and distance-
based approaches [49][50]. Their results show that the 

combination of uniform density histograms and a 
distance-based method achieved the best results in 
change-detection performance. 

As will be shown in Section 3, the HDWM 
algorithm can make use of any drift detection method 
in its framework. 

 

3 The Proposed HDWM Algorithm 
 

An overview of the proposed approach HDWM is 
shown in Fig. 2. HDWM maintains a dynamic list of 
learners. In Stage 1, the seed learners Ɛ1 to Ɛa are 
initialised. In Stage 2, the learners in the dynamic 
learners are prequentially tested on each instance in the 
data stream. In Stage 3, the same instance is used for 
training the dynamic list. In Stage 4, on globally 
wrong prediction,  a best performing learner is cloned 
from the seed learners and added to the dynamic list. 
The max size of dynamic list is controlled using 
parameter Bmax. The learners of the ensemble (Ɛm) 
make their predictions use their corresponding weights 
wm. 

 

 
Fig. 2: Overview of HDWM 

 
The global predictions on instances xi for class 

label y’i from a set of classes ‘C’ is based on the 
prediction made by ‘m’ base learners in dynamic list, Ɛ 

j (xi) ∈ C. The ground truth for each example consists 
of pairs (xi,yi), and the aim was to combine the 
weighted predictions of each learner using their 



 

corresponding weight wj using Weighted Majority 
voting as shown in Eq. (1). 

 

 
(1) 

       
Each learner in Ɛ is associated to a weight 

{w1,w2,…,wm}. The method to update the weights is 
similar as defined in DWM [20], i.e. by being 
multiplied by a factor β (0 ≤ β < 1) upon 
misclassifications at time-steps multiple of Period ‘ρ’, 
where ρ >= 1 is a pre-defined parameter.  

HDWM implements both an active and passive 
approach for handling concept drifts, so that it is able 
to efficiently deal with different types of drift (gradual 
and abrupt). To implement a passive approach HDWM 
removes weaker learners and their associated weights 
from the dynamic list once their weights fall below the 
value predefined in parameter θ. After every ‘ρ’ time-
steps, it performs the following tasks  
1) When the global prediction of ensemble is wrong, 
a new learner is cloned from the “best” seed. The best 
seed is the seed corresponding to the base learner in Ɛ 
with the best weight. 
2) Once the ensemble size exceeds a user pre-
defined threshold Bmax, the base learner which has the 
lowest weight is removed  among Ɛj, a+1 ≤ j ≤ m,.  
These two approaches restrict the ensemble size to 
reduce the computational costs while enabling the 
ensemble to remain heterogeneous.  

To implement an active approach, HDWM uses 
parameter δ to select a concept drift detection method 
e.g., DDM [32] or EDDM [33] and link it to each base 
learner in the ensemble. The predictions taken from 
the base learners are injected into their corresponding 
drift detection methods to detect concept drifts and 
warnings. To handle concept drifts HDWM has two 
options 1) Reset the learning of the seeds and their 
corresponding weights and re-train them. 2) Delete the 
weakest learners and create new learners of the same 
type as the best performing learner by cloning its seed. 

The HDWM is outlined in Algorithm 1. Initially, 
the seed learners ‘Ɛ1 to Ɛa are initialised based on their 
base learning algorithm (line 2). Each learner in the 
dynamic list is assigned an equal weight 1.0 (line 3).  
Each base learner Ɛj in the dynamic list is asked for 
predictions on ‘xi’ instances (Line 8), where ‘i’ is the 
time-step and x is the vector representing attributes in 
the data-stream. Similar to the DWM rule [20] the 
weights of the learners are decreased upon incorrect 
predictions (Line 10-11). Over time when the 
ensemble grows, the base learners whose weights fall 
below θ are deleted while keeping intact the seeds in Ɛ 
for future use (Line 13-15), and set the flag d = 1 
which indicates that the base learner has been deleted. 
By ensuring that at least one base learner of each type 
is maintained in Ɛ, it is certain that a given type of base 
learner can repopulate the ensemble whenever it 
becomes beneficial, even if this follows a period of 
time when this type of base learner was not beneficial.  

If no learner is deleted (line 17), the base learner’s 
prediction is used to compute the weighted sum for 
each class (line 18). The maximum and minimum 
weights are stored in appropriate variables (line 19). 
The class with the most weight is then set as the global 
prediction (line 24). Weights are normalised using the 
DWM rule [20] (Line 26) and the parameter ρ is used 
to control the period for adding or removing the new 
dynamic learners.   

An active drift detection method such as DDM [32] 
or EDDM [33] is invoked (line 22) and in the case of 
drift detection by any of the base learners, the Active 
Handle Drift (Algorithm 1.1) is invoked. The 
integration method for Active Drift Detection is 
explained in Section 3.1. On global wrong predictions 
(Line 27) the Passive Drift Handler (Algorithm 1.2) is 
invoked on (line 28). To control the ensemble size 
(line 30-32) parameter Bmax is a user defined value to 
remove weaker learners from the dynamic learners list. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Algorithm 1:  HDWM ({x,y}
1
n , β, θ, ρ) 

Input: {x,y}
1
n : Stream of examples and class label 

 {LearningAlgorithm}
1
a : Set of Heterogeneous Seed Base Learning Algorithms 

 β: factor to decrease weights, 0 ≤ β < 1  

 θ: threshold to delete base learner 

 ρ: period between base learner removal, creation and weight update 

{Ɛ,w,δ}
1
m : Set of Seeds, Dynamic learners and Drift Detection Method    

d {0,1}: base learner delete flag 

Bmax: Max size of ensemble  

c ∈ ℕ*: Number of classes, c ≥2 

∧ , λ ∈ {1,…,c}: global and local predictions 

σ ∈ ℝc : sum of weighted prediction for each class 

 

1 for  seed = 1 to a     // Loop over seeds 

2  Ɛseed ←  Initialised_Seeds (LearningAlgorithmseed) // Clone seeds to Dynamic List    

3  wseed  ← 1.0                                                  

4 end for  

5 for  i = 1 to n   // Loop over examples                                            

6  for  j = 1 to m                                                                      // Loop over ensemble of learners                                           

7   d ← 0                                                                            // Learner’s delete flag                                            

8    λ = Classify (Ɛj, xi )  // Classify using both Seeds and dynamic learners in Ɛ 

9       if (i mod ρ = 0) then  

10    if (λ≠ yi ) then  

11     wj  ← β wj  // Update weight using DWM [20] rule 

12    end if  

13    if (wj  < θ and 𝑗 > a) then                        // j>a prevents deletion of seeds from Ɛ 

14     {Ɛj, wj  } ← remove ({Ɛj, wj  }, θ)               // Delete learners whose Weights < θ 

15     d ← 1;                                                               // Set deleted flag to True 

16    end if  

17    if (d ≠ 1) then                                                           // If no learners are deleted 

18     σλ  ← σλ + wj  

19     wmin  ← min(w), wmax  ← max(w)     

20    end if  

21     end if  

22   Call Active Drift Handler (λ , Ɛ, xi ) (Algorithm 1.1)  

23  end for  

24  ∧  ← argmaxj σj     

25  if (i mod ρ = 0) then  

26   w ← normalize-weights (); // Using DWM [20] rule 

27   if (∧ ≠ yi) then // Global prediction is wrong 

28    Call Passive Drift Handler (Algorithm 1.2)  

29   end if  

30   if  size(Ɛ) = Bmax then  

31    { Ɛ,w} ← remove({Ɛ,w}, wmin)                                            

32   end if  

33   for i = 1 to m  

34    Train (Ɛi, xj )                                                                                                 

35   end for  

36  end if  

37 end for  



 

 

3.1 Drift Detection and Handling 
 

Algorithm 1.1 outlines Active drift handling in 
HDWM. The seeds are reset upon the occurrence of 
drifts. The weight of the seeds are set to 0.5 instead of 
1.0 (Lines 3-6) to prevent the domination of seeds 
over the new base learners. Finally, the seed learners 
are trained when the warning state is detected.  

 

Algorithm 1.1 HDWM ActiveDrift Handling (λ, Ɛ, δ, w, xj) 

Input: Ɛ:  Set of Seeds and Dynamic learners  
            λ: local predictions from base learners 

            w: ensemble weights 
            δ: Drift detection Method 
 
1:   δlocal ← DriftDetectionMethod(λ) 

2:   if (δlocal drift = true )           // drift is detected 

3:             for  seed = 1 to a 

4:                      Ɛseed  ←  reset   

5:                      wseed   ←  0.5   

6              end for 

7    end if    

8:   if (δ_local  warning = true)      // warning is detected 

9:         for  j = 1 to a             // Loop over seed learners 

10:                   Train (Ɛi, xj )  

11       end for 

12: end if                                                                                              

 
Algorithm 1.2 implements the Passive drift 

handling mechanism in HDWM. In the case of 
globally wrong predictions the index position and the 
type of best seed learner is determined (line 1), a new 
classifier of a similar type is created (line 2) and 
added to the list dynamic learners from the seed 
learner (line 3). New learners are given weights 0.5 
(line 5) to prevent new learners dominating over the 
existing ones.  
 

Algorithm 1.2 PassiveHandleDrift (Ɛ, w) 

Input: Ɛ:  Set of Seeds and Dynamic learners 

            w: ensemble weights 

            wmax : maximum weight 

            m: size of the dynamic learners 

             {LearningAlgorithm}
1
a : Set of Seed Base Learners  

 

1: Seed ← bestLearner { Ɛ, wmax } 

2:  Nseed  ← Initialised_Seeds {LearningAlgorithmseed}     

3:  Ɛ  ← Ɛ U Nseed    // append classifier to dynamic list  

4:  m   ← m+1 

5:  wm ← 0.5 

 

3.2 Maintaining the Heterogeneity 
 

WMA [19] maintains heterogeneous ensembles, but 
is unable to deal with concept drifts due to its inability 
to create new learners and delete old learners. DWM 
[20] can deal with concept drift through the addition 
of new learners and deletion of inaccurate learners. 
However, it does not benefit from multiple types of 
base learners. Even if DWM was initialised with 
multiple types of base learners, because it deletes 
inaccurate base learners, it could become 
homogeneous over time and once it became 
homogeneous, it would not have any strategy to re-
introduce other types of base learners if they become 
beneficial once again. 
HDWM overcomes these problems presented by 
WMA and DWM. It enables the ensemble to deal 
with concept drift through the addition and removal of 
base learners, at the same time as it ensures that the 
ensemble can benefit from heterogeneity. It achieves 
that by ensuring that seed learners of any type can 
repopulate the ensemble whenever they become 
beneficial. 
 

4 Experimental Setup 
 

This Section investigates the HDWM algorithms 
and compares their accuracy and drift handling 
capabilities with WMA (due to its heterogeneity) and 
DWM (due to its ability to dynamically include and 
exclude base learners from the ensemble). Friedman 
tests with their corresponding post hoc tests are 
performed to support the comparison of several 
algorithms on multiple data streams.  

Different variations of HDWM were compared to 
evaluate its sensitivity to parameters (e.g. drift and 
warning threshold, ensemble size) and variations of 
the algorithm that deactivate some of its 
characteristics (e.g. drift detection, warning detection, 
weighted vote). The second set of experiments 
concern the evaluation of computational resources 
usage (CPU time and RAM-Hours). Finally, 
experiments were presented comparing HDWM and 
other state of-the-art ensemble classifiers. Since 
accuracy can be misleading on data sets with class 
imbalance or temporal dependencies, Kappa M and 
Kappa Temporal were also used. Kappa M has 
advantages over Kappa statistic as it has a zero value 
for a majority class classifier [59]. Kappa Temporal is 



 

applied since it replaces the majority class classier 
with the NoChange classifier [60]. This enables better 
estimations for data sets with temporal dependencies.  

The evaluation metrics used are Prequential (P) 
Testing and Periodic Holdout (H). In Prequential 
Testing, each instance is used to test the model before 
it is used for training, and the accuracy is updated 
incrementally. The prequential accuracy is calculated 
based on the Massive Online Analysis (MOA) 
Windows Classification Performance Evaluator 
(WCPE) [34] with a window size of 1000. The 
Holdout method uses predefined partitions of train 
and test instances. However, it requires labelled test 
datasets which are difficult to obtain readily for real 
world applications.  This method is applied in 
STAGGER (Drift) as pre-defined partitions of 
training and testing instances were used; the details 
are explained in section 4.1.  

 
4.1 Data Streams 

 

The artificial data streams used in the experiments are 
generated through the MOA workbench [34]. The 
details of the streams are given below, and the MOA 
commands to generate these streams are available in 
Appendix A. The characteristics and configuration of 
these data streams are summarised in Table 1.     
 

 RandomTrees (Recurring) [34] generates a stream 
based on a randomly generated tree. The stream 
contains two sudden drifts. The first concept drift 
occurs at time step 25k and causes the first concept, 
which is described by 5 numerical attributes, to be 
replaced by 5 nominal attributes. At location 75k, the 
occurrence of a sudden drift re-introduces the first 
concept, which then lasts for 100k instances. 

 Hyperplane (Gradual Drift) [34] is a flat d-
dimensional space represented by i∑d

 wi xi = 0, such 
that {xi… xd} are randomly generated instances and 
‘w’ is the weight attribute. The instances are positive 
if i∑d

 wi xi ≥ w0, where w0 is the total weight.  Gradual 
drift is introduced by slightly rotating the hyperplane 
by modifying wi to 0.001 for each instance, and 5% 
noise is added in the stream. 

 Random Radial Basis Function (Gradual Drift) 
[34] consists of a fixed number of randomly 
positioned centroids with a single standard deviation, 
class label and weight. New instances are generated 
by randomly choosing a centre. Gradual Drift is 

generated by choosing two centroids and gradually 
moving the centre at the speed level of 0.001 for each 
instance, and adding 5% noise in the stream.  

 SEA (Sudden and Gradual Drift) [45] contains 
three attributes, function xi  ∈ R and the value of xi is 
between 1.0 and 10.0. The target concept is 
determined using the equation y = [x0 + x1 + x2 ≤ θ], 
such that θ ∈ {7,8,9,9.5}. Two drifts are generated by 
changing the function x1 to x2. Gradual Drift appears 
at 25 for (width = 10k) and Sudden Drift at 75k for 
total 100k instances. For SEA (Sudden) two drifts are 
generated at the same location by using (width =1).  

 STAGGER (Sudden Drift) [44] consists of three 
attributes, i.e. colour ∈ {Red, Green, Blue}, size ∈ 
{Small, Medium, Large} and shape ∈ {Circle, 
Rectangle, Square}. The three concepts are [size = 
Small ∧ colour = Red], [colour = Green ∨ shape = 
Circle] and [size; Medium ∨ Large]. The stream 
consists of 120 training instances, each concept is 40 
instances long and sudden drifts appear at location 40 
and 80. Each instance is evaluated on 100 test 
instances using Periodic Holdout (H). 

 LED (Sudden Drift) [55] generates a stream 
defined by a 7-segment LED display and the task is to 
predict the digit (0-9). Such a stream was generated 
by emulating a sudden drift by combining two 
distributions. The first distribution was generated with 
the LEDGenerator and the second distribution was 
generated at location 50k using LEDGeneratorDrift 
and one attribute comprised a concept drift. 

 WaveForm (Sudden Drift) [55] is a 3-class 
problem defined by 40 numerical attributes and shares 
its origin with the LED. The problem is to predict one 
of the three waveform types. The first distribution was 
generated with a WaveFormGenerator and the second 
distribution was generated at location 50k using 
WaveFormGeneratorDrift and setting 20 attributes 
with drift. 

 Sensor dataset [54] deployed in the Intel Berkeley 
Research Lab, the sensor ID is used to label the class. 
The dataset consists of 220k instances; the input 
attributes include time-stamped topology information, 
along with humidity, temperature, light and voltage. 
The true drift locations are not known but gradual 
drifts exist as the light during working hours is 
generally stronger than at night, and the temperature 
readings of specific sensors may rise if there are 
meetings in the room [35]. 



 

 The Spam email dataset [36] contain input 
attributes that represent a gradual concept drift by the 
SpamAssassin collection. The dataset consists of 
9,324 instances, 500 attributes and two target classes 
i.e. spam and legitimate. The attributes represent the 
presence of a given word in the email. 

 The Electricity dataset [37] contains data 
consisting of 45,312 instances for a period of two 
years collected from the Australian New South Wales 
Electricity Market. Input attributes include day of the 
week, the NSW electricity demand, the Victoria 
electricity demand and the scheduled electricity 
transfer between states. The binary prediction task is 
to identify the change (up or down) of the price 
relative to a moving average. The concept drift 
appears due to changes in consumption habits due to 
unexpected events and seasonality. 

 The Forest Cover type [57] dataset consists of the 
observation (30 x 30 meter cell) determined from the 
US Forest Service (USFS) Region 2 Resource 
Information System (RIS) data. The task is to predict 
the type of forest cover from cartographic variables 
such as Elevation, Slope, soil type etc.  

 

Table 1: Characteristics of the Data Streams and 
Parameters Used in the Experiments 
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[P] = Prequential Evaluation, [H] Periodic Holdout Evaluation, 
[R]= Recurrent Drift, [S] = Sudden Drift, [G]=Gradual Drift,  
Freq. and period are defined in Table 2. 

 

4.2 Test Configuration  
All the experiments are evaluated in terms of time 

and predictive performance. Processing time is 
measured in seconds and is based on the CPU time 
used for training and testing. All the experiments were 
performed on machines with Core i7 @ 3.4 GHz, 4 

GB of RAM and experiments are presented in terms 
of CPU time. All experiments were executed within 
the MOA (Massive Online Analysis) framework.  
The cross-validation techniques for measuring model 
performance are not suitable as the data streams 
originate from non-stationary environments.  
Therefore, the prequential method [62] was used, 
which is a commonly accepted estimation procedure 
in non-stationary environments. In this method each 
example is first used to test the model before it is used 
for training. The advantage of this method is that all 
the instances are used in training and testing, and 
therefore no specific holdout set is needed. 

To determine the statistical significant differences 
between algorithms, non-parametric tests were carried 
out using Demsey’s methodology [40]. For the 
statistical test the Friedman test was applied with α= 
0.05 and the null hypothesis, “no statistical difference 
between the algorithms”. If the null hypothesis was 
rejected, the Nemenyi post hoc test was used to 
identify which pairs of algorithms differ from each 
other. 

The base learners used in DWM are NB (Naïve 
Bayes) and HT (Hoeffding Tree). HDWM and WMA 
are using four base learners, i.e. HT-MC (Majority 
Class at leaves), HT-NB (Naïve Bayes at leaves), HT-
NBAdaptive and NB. The values β = 0.05 and θ = 
0.01 are used as per the default values used in DWM 
[32]. Table 2 gives a description of the parameters 
used in the experiments.  

 

Table 2: Parameters used in the experiments 

Code Description 

β Penalise learner's weight on wrong prediction 

θ Threshold of weights to remove base leaners 

Period The interval to create or remove base learners or 
to manipulate their weights 

Freq. The number of training examples between 
samples of learning performance 

 

For the large data streams (size > 100K) and real-
world datasets, the period is ‘50’. For small datasets, 
the period is ‘1’. 'Freq' is the MOA sample frequency 
parameter corresponding to the number of training 
examples between samples of learning performance. 
Freq=1k is used for instances more than 100k and for 
smaller streams a lower value is applied.  

To investigate the heterogeneity and its influence 
on active and passive drift handling approaches, a 
variant of HDWM, HDWM-P was developed which is 
heterogeneous although not utilising the Active Drift 



 

handling option. This variant is used in the 
experiments in Section 5.3. The details of variants 
used in the experiments are described in Table 3. 

 

Table 3: Variants used in the Experiments 

Algorithms Description of Algorithm 

HDWM  
HDWM uses Naïve Bayes and Hoeffding Tree; 
its Heterogeneous ensemble uses both Active and 
Passive Drift Handling.  

HDWM – P 

HDWM uses Naïve Bayes and Hoeffding Tree; 
its Heterogeneous ensemble uses only Passive 
Drift Handling, as used in Heterogeneity 
Analysis.  

 

5 Evaluation of HDWM  

 

This section investigates the proposed algorithm 
and compares its model switching capabilities, 
predictive accuracy and drift handling capabilities 
against the existing ensemble-based approaches 
WMA and DWM. We also investigated the effect of 
heterogeneity on the predictive performance and 
ensemble size in the presence of gradual, recurrent 
and sudden drifts on artificial data streams and real-
world datasets.  

 

5.1 Predictive Performance 
The predictive capabilities of our new approach 

were tested on artificial data-streams and real-world 
datasets, corresponding ranks are determined such 
that higher averages are representing lower ranks. 
Significance tests and post hoc comparisons on ranks 
are performed to determine significance level and 
critical differences. The predictive accuracies of 
HDWM, DWM and WMA are shown in Table 4.  

 
Table 4: Predictive Accuracies (%) of DWM-NB, DWM-HT 
WMA and HDWM  

Streams HDWM DWM-NB DWM-HT WMA 
SEA (S) 88.12 (1) 87.98 (2) 87.71 (3) 85.79 (4) 
STAGGER (S) 82.8 (1) 81.82 (2) 81.26 (3) 55.08 (4) 
RTree R 85.27 (1) 74.05 (4) 75.32 (3) 79.78 (2) 
LED (S) 73.37 (3) 73.41 (1.5) 73.41 (1.5) 65.01 (4) 
Wave (S) 82.16 (1) 80.31 (4) 80.34 (3) 80.65 (2) 
Hyperplane (G) 88.12 (2) 88.08 (3) 88.19 (1) 80.54 (4) 
SEA (G and S) 87.64 (1) 87.58 (2) 87.21 (3) 85.71 (4) 
RRBF(G) 92.59 (3) 92.65 (2) 93.09 (1) 77.93 (4) 
Electricity 89.4 (1) 79.73 (4) 84.06 (2) 80.92 (3) 
Spam 90.54 (1) 87.83 (4) 88.39 (2) 88.04 (3) 
Sensor 92.04 (1) 90.79 (3) 90.96 (2) 72.86 (4) 
Forest Cover 91.03 (1) 82.92 (2) 79.33 (4) 80.65 (3) 

Avg. Ranks 1.42 2.79 2.38 3.42 

In both drift and real-world streams the χ2r statistic is 
15.25 (df =3, N = 12) and the p-value 0.0016 shows 
significant differences at the level of significance of 
0.05. The method to calculate chi-squared and p-value 
is described by Demsar  [40]. The Nemenyi test [39] 
was applied for pairwise comparison. The critical 
difference [40] is 1.35. It is evident from the bar chart 
(green bars) in Fig. 3 that HDWM performed 
significantly better than DWM-NB i.e. (2.79 – 1.42 = 
1.38 > 1.35) and WMA (3.42 – 1.42 = 2.0 > 1.35).  

 
Fig. 3 Bar chart for pairwise comparisons between HDWM, 

DWM and WMA. Green bar indicates significantly different, and 
blue bars represent no significant difference 

 
Tables 5 and 6 provide the Kappa measures for the 
experiments. The Kappa evaluation measure is widely 
used in data stream mining, it can handle both multi-
class and imbalanced class problems. The larger the 
Kappa value, the more generalised the classifier, 
negative Kappa values indicate low predictive 
accuracy. Kappa values for Spam and Forest Cover 
datasets were negative in HDWM, DWM and WMA 
due to the large numbers of attributes in these 
datasets. 
 
Table 5: Kappa Temporal DWM-NB, DWM-HT WMA and 
HDWM  

Streams HDWM DWM-NB DWM-HT WMA 
SEA (S) 73.81 (1) 73.47 (2) 72.87 (3) 68.84 (4) 
STAGGER (S) 49.2 (1) 40.14 (2) 39.44 (3) -19.43 (4) 
RTree R 68.69 (1) 47.73 (4) 50.34 (3) 59.35 (2) 
LED (S) 70.54 (1) 70.47 (2) 70.46 (3) 61.14 (4) 
Wave (S) 73.36 (1) 70.41 (4) 70.46 (3) 70.94 (2) 
Hyperplane (G) 75.05 (3) 76.14 (2) 76.37 (1) 61.07 (4) 
SEA (G and S) 71.68 (3) 73.03 (1) 72.22 (2) 66.69 (4) 
RRBF(G) 91.14 (2) 91.13 (3) 91.66 (1) 73.39 (4) 
Electricity 16.91 (1) -44.88 (4) -14.83 (2) -36.85 (3) 
Sensor 92.5 (1) 90.78 (3) 90.95 (2) 72.84 (4) 

Forest Cover -153.1 (1) -361.2 (3) -163.1 (2) -388.9 (4) 

Avg. Ranks 1.45 2.73 2.27 3.55 
 

 



 

Table 6: Kappa M for DWM-NB, DWM-HT WMA and HDWM  

Streams HDWM DWM-NB DWM-HT WMA 
SEA (S) 66.65 (1) 66.17 (2) 65.39 (3) 60.4 (4) 
STAGGER (S) 13.09 (1) 0.59 (3) 0.72 (2) -76.4 (4) 
RTree R 66.0 (1) 43.27 (4) 46.2 (3) 55.98 (2) 
LED (S) 69.99 (1) 69.92 (2) 69.91 (3) 60.39 (4) 
Wave (S) 72.62 (1) 69.6 (4) 69.65 (3) 70.13 (2) 
Hyperplane  74.46 (3) 75.58 (2) 75.81 (1) 60.1 (4) 
SEA (G and S) 64.01 (3) 65.74 (1) 64.7 (2) 58.55 (4) 
RRBF(G) 90.88 (2) 90.87 (3) 91.41 (1) 72.58 (4) 
Electricity 71.84 (1) 50.91 (4) 61.26 (2) 53.36 (3) 
Sensor 92.15 (1) 90.36 (3) 90.54 (2) 71.6 (4) 
Forest Cover 64.45 (1) 38.85 (3) 61.99 (2) 37.55 (4) 

Avg. Ranks 1.45 2.82 2.18 3.55 
The statistical tests applied on Kappa Temporal on 
drift and real-world streams, with the χ2r statistic of 
15.76 (df =3, N = 11) and the p-value of 0.0012 
showed significant differences at the level of 
significance of 0.05. Statistical tests for Kappa M on 
both drift and real-world streams, the χ2r statistic is 
15.10 (df =3, N = 11) and the p-value 0.0017 also 
shows significant differences at the level of 
significance of 0.05. The Nemenyi test [39] was 
applied for Kappa Temporal and Kappa M for 
pairwise comparison. The critical difference [40] is 
1.41. HDWM performed significantly better than 
WMA. 
 

Even though WMA is heterogeneous, it performed 
worst in most of the drift streams and real-world 
datasets, the reason is a lack of drift handling 
capabilities. Apart from this, there was no significant 
difference between DWM-NB and DWM-HT, DWM-
HT and WMA and DWM-NB and WMA. This makes 
it extremely difficult to choose an optimal base 
classifier in DWM. We can conclude that HDWM is 
independent of deciding on which type of base 
classifier should be used. 
 

5.2 Resources comparison  
To analyse the benefits in terms of resources usage 

we compare HDWM, DWM and WMA. We recorded 
an evaluation time of HDWM in CPU seconds by 
setting max size of ensemble (Bmax) to 25, 50,100 for 
all the data sets. It is expected that HDWM requires 
more processing time compared with WMA and 
DWM due to the seed learners that always reside in 
the ensemble. As shown in Fig. 4, the total CPU time 
is increasing by setting a larger value of Bmax, 
however, the average predictive accuracies are not 
significantly affected.  

     
Fig. 4 CPU time (Seconds) and Predictive Accuracies of HDWM, 
DWM and WMA.  

5.3 Analysis of Heterogeneity 
      

The objective of this analysis is to investigate how 
the heterogeneity of an ensemble affects its predictive 
performance and whether the higher accuracy 
achieved in HDWM is due to its heterogeneity or due 
to its active drift handling capabilities. The results of 
these experiments are shown in Table 7.   
 

Table 7: Heterogeneity Test, Predictive Accuracies (%) 

Streams HDWM -P DWM (NB) DWM (HT) 
SEA (S) 87.73 (2) 87.98 (1) 87.71 (3) 
STAGGER (S) 82.31 (1) 81.82 (2) 81.26 (3) 
RTree R 75.51 (1) 74.05 (3) 75.32 (2) 
LED (S) 73.44 (1) 73.42 (2) 73.41 (3) 
Wave (S) 80.35 (1) 80.31 (3) 80.34 (2) 
Hyperplane (G) 88.21 (1) 88.08 (3) 88.19 (2) 
SEA (G and S) 87.26 (2) 87.58 (1) 87.21 (3) 
RRBF(G) 93.04 (2) 92.65 (3) 93.09 (1) 
Electricity 84.09 (1) 79.73 (3) 84.06 (2) 
Spam 88.72 (1) 87.83 (3) 88.39 (2) 
Sensor 90.98 (1) 90.79 (3) 90.96 (2) 
Forest Cover 86.92 (1) 82.92 (2) 79.33 (3) 
Avg. Ranks 1.25 2.42 2.33 

For this experiment the DWM performance was 
compared with the Naïve Base and Hoeffding Tree as 
base learners in its ensemble and compared it with 
HDWM-P (a variant of HDWM without active drift 
handling) which is reliant on a passive approach 
similar to the DWM. The Friedman statistics [38] in a 
heterogeneity test, the χ2r statistic is 10.16 (df=2, N = 
12) and the p-value 0.0062 indicates significant 
differences at the level of significance of 0.05. Post-
hoc test using the Nemenyi test [39] was applied for 
pairwise comparison. The critical difference is 0.902. 
Box-plot in Fig. 5 shows that HDWM-P performed 
significantly better than DWM-NB i.e. (2.42 – 1.25 = 
1.08 > 0.902) and DWM-HT (2.33 – 1.25 = 1.17 > 
0.902). Given that the main difference between 



 

HDWM-P and DWM is the heterogeneity, these 
results indicate that heterogeneity plays a key role in 
improving the HDWM accuracy over DWM. In 
particular, the model switching mechanism 
maintained the accuracy, making it independent of 
manually selecting base learners.  

 
Fig. 5 Pairwise bar chart for Heterogeneity Test (Green bar) 

significantly different, (blue bars) No significant differences 
 

5.4 Further Analysis on Artificial Drift 
Streams 

In this section an in-depth analysis of the results 
achieved in the previous experiment are presented 

using the artificial drifts data streams.  The predictive 
performances are analysed and the capabilities of each 
algorithm are graphically presented to investigate how 
these algorithms react to different type of drifts. The 
ensemble size was also analysed. The Ensemble Size 
in a dynamic base classifier is an important factor for 
balancing performance because a larger ensemble 
requires more processing time but may improve 
predictive accuracy. 

 

5.4.1  Accuracy over Time 
 

Fig. 6(a) represents RandomTree recurring concept 
drifts. HDWM (85.27%) and WMA (79.78%) handled 
the drift on a recurring concept at 75,000 instances. 
DWM-NB (74.05%) and DWM-HT (75.32) were 
unable to cope after the first sudden drift at 25,000. 
The base learners in DWM forgot the previous learnt 
concepts due to inclusion and removal of their base 
learners; unlike the WMA whose base learners are 
never deleted.  

      

     

Fig. 6(a): Predictive Accuracies RandomTree (left) and RRBF (right) on Artificial Data Streams. Solid and dashed vertical black lines 

indicate the centre point of the drifts, and start/end of the drifts, respectively. The time steps between the start and end of the drift (inclusive) 

compose the drift window. 

 



 

        
Fig. 6(b): Predictive Accuracies SEA Abrupt (left) and SEA Mixed (right) on Artificial Data Streams. Solid and dashed vertical black lines 

indicate the centre point of the drifts, and start/end of the drifts, respectively. The time steps between the start and end of the drift (inclusive) 

compose the drift window.

In HDWM the seeds are never deleted and retain the 
previously learnt concepts, this helps HDWM in 
appropriately dealing with recurring concept drifts. 
In RRBF Fig. 6(a), which represents gradual drifts, 
HDWM (92.59%) and DWM are able to deal with 
concept drifts appropriately due to periodically 
including new base learners while WMA does not; 
this being due to its static ensemble size. HDWM not 
only maintained the predictive accuracy of DWM but 
slightly improved it. 
 

SEA Fig 6(b), represents abrupt drifts at 25,000 
instances and 75,000 instances. HDWM and DWM 
handled these drifts appropriately, however, WMA 
failed to adapt to the new concept. SEA (Mixed) Fig. 
6(b), represents gradual and sudden drifts. Gradual 
drift is centred around instance 25,000 with a 
window of 10,000 instances and is represented using 
a dotted line while the sudden drift occurs at 75,000 
instances. DWM and HDWM both handled these 
drifts appropriately, but WMA reacted late on mixed 
concept drifts. 

 

5.4.2 Ensemble Size 
Due to the seed learners that always remain in the 

dynamic list, HDWM maintained a larger ensemble 
size (Average 27.6).  HDWM in RTree (R) and Wave 

(S) utilised smallest ensemble (13.19 and 18.02) in 
achieving higher predictive accuracies (85.27% and 
82.16%) compared with DWM and WMA. Table 8 
represents average ensemble sizes and corresponding 
ranks achieved in HDWM and DWM; the lower 
averages representing higher ranks. The plots for the 
ensemble size in artificial data streams are shown in 
Fig 7(a) and (b).   

 

Table 8: Average Ensemble Size in Artificial Data Streams  

Streams HDWM DWM-NB DWM-HT 
SEA (S) 61.39 (3) 35.72 (2) 25.38 (1) 
STAGGER (S) 12.18 (3) 7.73 (2) 7.07 (1) 
RTree R 13.19 (1) 28.37 (3) 16.69 (2) 
LED (S) 33.94 (1) 37.1 (2.5) 37.1 (2.5) 
Wave (S) 18.02 (1) 37.83 (3) 29.09 (2) 
Hyperplane (G) 22.91 (3) 14.28 (2) 13.52 (1) 
SEA (G and S) 43.56 (3) 37.89 (2) 25.6 (1) 
RBF(G) 16.26 (1) 8.76 (2) 10.48 (1) 

Average 27.6 25.9 20.6 
Avg. Ranks 2.25 2.18 1.56 

 

 

 

     



 

 
Fig. 7(a): Average Ensemble Size RandomTree (left) and RRBF (right) in Artificial Data Streams 

 
 

Fig. 7(b): Average Ensemble Size SEA Abrupt (left) and SEA Mixed (right) in Artificial Data Streams 
 

5.5   Further Analysis on Real-World  
Datasets   

Artificial data streams are typically designed for 
controlled environments. Several challenges emerge 
when dealing with real-world classification problems. 
The primary issues are the identification and location 
of the concept drifts. Accordingly, the HDWM was 
also evaluated on real-world data streams; namely: 
Electricity [37], Sensor [54], Forest Cover type [57] 
and Spam email dataset [36]. As there are only 4 
datasets and thus 4 observations, no significance test 
was performed. However, the obtained results show 
improvements. 

 

5.5.1  Accuracy over Time 
 

As shown in Fig. 8, HDWM achieved the highest 
predictive accuracies on Spam email (90.54%), 
Electricity (89.4%), Forest Cover type (91.03%) and 
Sensor (92.04%). Overall the HDWM average ranking 
in real-world datasets is (1.0), DWM-HT (2.5) and 
DWM-HT and WMA (3.25). 
 
 
 

       

      
Fig. 8(a): (Left) Average Predictive Accuracies Electric dataset, (Right) Spam Email 



 

 
 

          

Fig. 8(b): (Left) Average Predictive Accuracies Sensor, (Right) Forest Cover 

5.5.2 Ensemble Size  
 

The ensemble sizes in DWM and HDWM are 
dynamic, i.e. growing and shrinking based on the 
predictive performance and the drift detections. 
HDWM achieved higher accuracy on the Sensor 
dataset (90.73%) using the lowest ensemble size 
(Average 8.04). Table 9 shows the average ensemble 
size and ranks in real world datasets with the lower 
averages representing higher ranks.  
 

The plots in Fig. 9(a) and (b) show average ensemble 
sizes for real-world datasets. In general HDWM uses 
a slightly larger ensemble size (11.29) as compared 
with DWM (10.74), The reason for the larger 
ensemble in HDWM is that its base learners begin 

with 4 seed learners unlike DWM which uses a single 
base learner that evolves over time.  
 

Table 9: Average Ensemble Size (%) and ranks of DWM-NB, 
DWM-HT WMA and HDWM, Real-world datasets  

Streams HDWM DWM-NB DWM-HT 
Electricity 12.26 (3) 11.33 (1) 11.88 (2) 
Spam 11.45 (3) 7.79 (1) 8.12 (2) 
Sensor 8.04 (1) 8.58 (2) 9.06 (3) 
Forest Cover 13.41 (2) 15.26 (3) 10.04 (1) 

Average 11.29 10.74 9.78 
Avg. Ranks 2.25 1.75 2.00 

 
   

     
Fig. 9(a): Average Ensemble size in Electric (left) and Spam Email (right) 

 



 

        
Fig. 9(b): Average Ensemble size in Sensor (left) and Cover Type (right) 

5.6 Parameters Analysis 
 

In terms of how to set the parameters in real world 
problems, the difficulty is that the best values may 
change over time. Potentially, one could run multiple 
versions of the approach with different parameter 
settings [61]. The parameters ‘β’, ‘θ’ and ‘Period’ 
were analysed and their effect on prediction 
accuracy, ensemble size and drift detections. The 
values for β ' and ' θ ' are randomly chosen between 0 
and 1. While the period was also analysed on random 
values 1, 25 and 50; the period = 1 representing 
inclusion of all the instances in the data stream and 
then gradually increased by skipping 25 instances. 
The results on the ‘effect of ‘Period’ on Predictive 
Accuracy and Drift Detection’ is shown in Table 10. 
As evident from the table, the average prediction 
accuracy is gradually increasing while the number of 
drift detections is decreasing by applying a larger 
value of ‘period’. 
 
Table 10: Effect of ‘Period’ on Predictive Accuracies % & Drift 
Detection, β = 0.5 and θ = 0.01 (Fixed) 

Streams 

Period =1 Period =25 Period =50 

Acc%
 

# D
rifts 

Acc%
 

# D
rifts 

Acc%
 

# D
rifts 

SEA (S) 84.0 (3) 0 87.9 (2) 2 88.1 (1) 2 
STAGGER (S) 85.2 (1) 0 61.3 (2) 0 60.8 (3) 0 
RTree R 76.5 (3) 6 82.5 (2) 1 84.4 (1) 1 
LED (S) 54.8 (3) 4 72.2 (2) 1 73.4 (1) 1 
Wave (S) 78.2 (3) 5 82.1 (2) 0 82.2 (1) 0 
Hyperplane 77.5 (3) 4 85.5 (2) 0 87.5 (1) 0 
SEA (G and S) 82.9 (3) 0 87.7 (1) 1 87.1 (2) 4 
RRBF(G) 90.8 (3) 8 93.0 (1) 4 92.6 (2) 8 
Electricity 89.4 (1) 8 89.3 (2) 2 88.4 (3) 2 
Spam 93.9 (1) 2 89.9 (2) 0 89.7 (3) 0 
Sensor 83.2 (3) 26 93.6 (1) 1 92.5 (2) 3 
Forest Cover 90.7 (1) 10 90.4 (2) 0 89.7 (3) 0 
Avg. (Ranks) 82.3(2.2) 6.08 84.6(1.7) 1.0 84.7(2.0) 1.75 

 

The effect of ‘β’ on Predictive Accuracy and 
Ensemble Size is analysed by keeping a static value 

of ‘Period = 50’. This value was chosen for 
subsequent experiments, as it achieved the highest 
accuracies in the experiments outlined in Table 10.  
In Table 11, the average ensemble size and accuracy 
is increasing by choosing a larger value of ‘β’. 
 
Table 11: Effect of ‘β’ on Predictive Accuracies % & Ensemble 
Size, Period = 50 and θ = 0.01 (Fixed) 

Streams 

β = 0.1 β = 0.5 β = 0.75 

Acc%
 

Ensem
ble 

 Size 

Acc%
 

Ensem
ble 

 Size 

Acc%
 

Ensem
ble 

 Size 

SEA (S) 87.6 (3) 13.5 88.1 (1) 23.6 87.9 (2) 23.7 
STAGGER (S) 60.8 (1) 4.0 60.8 (2) 4.0 60.7 (3) 4.0 
RTree R 75.2 (3) 8.5 84.4 (2) 13.7 88.8 (1) 20.5 
LED (S) 72.5 (3) 9.4 73.4 (1) 23.8 73.4 (2) 24.5 
Wave (S) 80.3 (3) 13.3 82.2 (2) 17.4 83.5 (1) 24.5 
Hyperplane  88.2 (1) 9.4 87.5 (3) 19.8 87.6 (2) 24.4 
SEA (G and S) 87.4 (2) 12.3 87.1 (3) 17.2 88.3 (1) 23.2 
RRBF(G) 92.6 (2) 8.6 92.6 (1) 14.8 92.5 (3) 20.3 
Electricity 85.8 (3) 7.07 88.4 (2) 10.7 89.7 (1) 15.8 
Spam 89.2 (3) 6.36 89.7 (2) 8.6 90.1 (1) 9.5 
Sensor 93.0 (1) 6.74 92.5 (2) 10.3 91.7 (3) 13.8 
Forest  85.7 (3) 7.17 89.7 (2) 11.5 91.3 (1) 16.5 

Avg. (Ranks) 83.2(2.2) 8.8 84.7(2.0) 14.6 85.5(1.7) 18.3 
 

Table 12: Effect of ‘θ’ on Predictive Accuracies % & Ensemble 
Size, Period = 50, β = 0.5 (Fixed) 

Streams 

θ = 0.01 θ = 0.05 θ = 0.1 

Acc%
 

CPU
 tim

e 

Acc%
 

CPU
 tim

e 

Acc%
 

CPU
 tim

e 

SEA (S) 88.1 (2) 102.5 88.1 (1) 103.6 88.0 (3) 95.1 
STAGGER (S) 60.8 (2) 0.04 60.8 (2) 1.0 60.8 (2) 1.0 
RTree R 84.4 (1) 238.5 81.0 (2) 195.9 79.9 (3) 155.0 
LED (S) 73.4 (1) 664.5 73.3 (2) 690.0 73.3 (3) 589.3 
Wave (S) 82.2 (1) 1195.6 81.9 (2) 766.1 81.5 (3) 730.1 
Hyperplane 87.5 (3) 508.6 87.8 (2) 429.3 88.2 (1) 343.1 
SEA (G and S) 87.1 (3) 127.1 87.7 (1) 106.4 87.6 (2) 99.7 
RRBF(G) 92.6 (2) 203.4 92.6 (1) 127.2 92.5 (3) 121.5 
Electricity 88.4 (1) 148.4 88.3 (2) 153.5 87.9 (3) 127.6 
Spam 89.7 (3) 148.9 90.0 (1) 155.6 89.9 (2) 128.1 
Sensor 92.5 (2) 106.5 92.5 (3) 965.2 92.9 (1) 788.1 
Forest 89.7 (1) 668.2 89.3 (2) 607.0 88.4 (3) 492.6 

Avg. (Ranks) 84.7(1.8) 442.5 84.4(1.8) 358.4 85.5(2.3) 305.9 
 



 

In another experiment, parameter ‘θ’ was analysed 
on predictive accuracies and CPU-time. Beta = 0.5 
was fixed due to the moderate average ensemble size 
in the experiment outlined in Table 11. The results in 
Table 12 show that the CPU-time slightly decreased 
by increasing the value of θ. By increasing ‘θ’ the 
average ranks increased from 1.8 to 2.3. The lower 
ranks show a higher predictive performance.  

 

6 Conclusion  
 

The development of Heterogeneous Dynamic 
Weighted Majority (HDWM) algorithms revealed the 
ability to reduce human dependency on re-defining 
the best type of predictive models for a particular 
problem. The algorithm exhibited responsive 
adaptation; dealing appropriately with changing 
environments in a shorter period to increase the 
reliability and predictive accuracy of the model. It 
was also found that heterogeneity was a key enabler 
for the improved accuracy achieved by HDWM.  

HDWM improved the predictive accuracies in the 
presence of different types of drifts, such as Gradual, 
Sudden and Recurring. It had been a key challenge in 
data stream mining, as some algorithms heavily rely 
on forgetting mechanisms while others retain 
previous learning. The HDWM seeding mechanism 
and dynamic inclusion of new base learners 
benefiting the use of both forgetting and retaining the 
models. In some of the data streams it performed in a 
similar way to DWM-HT and DWM-NB and the 
WMA, however the HDWM achieved these 
accuracies using a compact ensemble size and CPU 
time. The overall accuracy plots are representing the 
independence of choosing the right type of models in 
a given time and conditions. 
As future work, we would like to investigate the 
HDWM performance on more diverse problems and 
in the presence of large number of attributes. We will 
also investigate to reduce its dependency on human 
pre-defined parameters. 
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Appendix A 

 
SEA (Sudden Drift) 
EvaluatePrequential -s (ConceptDriftStream -s (generators.SEAGenerator -f 4) -d (ConceptDriftStream -s 
(generators.SEAGenerator -f 3) -d (generators.SEAGenerator -f 2) -p 50000 -w 1) -p 25000 -w 1) -i 100000 -f 
1000 
 
SEA (Gradual and Sudden Drift) 
EvaluatePrequential  -s (ConceptDriftStream -s (generators.SEAGenerator -f 2) -d (ConceptDriftStream -s 
(generators.SEAGenerator -f 3) -d (generators.SEAGenerator -f 4) -p 50000 -w 1) -p 25000 -w 10000) -i 100000 
-f 1000 
 
HyperPlane (Gradual Drift) 
EvaluatePrequential -s (generators.HyperplaneGenerator -k 10 -t 0.01) -i 100000 -f 1000 
 
RandomTrees (Recurring Drift)  
EvaluatePrequential -s (RecurrentConceptDriftStream -x 10000 -s (generators.RandomTreeGenerator -o 0) -d 
(generators.RandomTreeGenerator -u 0) -p 25000 -w 1) -i 100000 -f 1000 
 
RandomRBF (Gradual Drift) 
EvaluatePrequential -s (clustering.RandomRBFGeneratorEvents -n) -i 100000 -f 1000 
 
LED (Sudden Drift) 
EvaluatePrequential -s (ConceptDriftStream -s generators.LEDGenerator -d (generators.LEDGeneratorDrift -d 7) 
-p 50000) -i 100000 -f 1000 
 
WaveFormDrift (Sudden Drift) 
EvaluatePrequential -s (ConceptDriftStream -s generators.WaveformGenerator -d 
(generators.WaveformGeneratorDrift -d 20) -p 50000 -w 1) -i 100000 -f 1000 


