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Abstract

Does theory aid inflation forecasting? To address this question, we develop

a novel forecasting procedure based upon a New Keynesian Phillips Curve that

incorporates time-varying trend inflation, to capture shifts in central bank pref-

erences and monetary policy frameworks. We generate theory-implied predictions

for both the trend and cyclical components of inflation, and recombine them to

obtain an overall inflation forecast. Using quarterly data for the Euro Area and the

United States that cover almost half a century, we compare our inflation forecasting

procedure against the most popular time series models. We find that our theory-

based forecasts outperform these benchmarks that previous studies found diffi cult

to beat. Our results are shown to be robust to structural breaks, geographic areas,

and variants of the econometric specification. Our findings suggest that the skepti-

cism concerning the use of theory in forecasting is unwarranted, and theory should

continue to play an important role in policymaking.
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HIGHLIGHTS

• A challenge in inflation forecasting has been the skepticism regarding theory-based
models.

• We derive a New Keynesian Phillips Curve with a time-varying trend.

• We then incorporate it into a novel procedure to forecast inflation.

• These modifications improve forecasting performance in the Euro Area and the
United States.

• Our approach can complement other methods used at central banks over policy-
relevant horizons.
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1 Introduction

“Without resort to theory [. . . ] conclusions relevant to the guidance of policies

cannot be drawn.”Koopmans (1947: p. 167)

Given its policy importance, there exists a substantial literature on inflation dynamics

and the associated problem of inflation forecasting.1 While one strand of the literature is

broadly agnostic about the underlying macroeconomic model that generates the inflation

path,2 another strand has adopted a structural approach, with explicit links to macroeco-

nomic models with microeconomic foundations. A key component of the microfounded

approach to inflation dynamics is the estimation of the so-called New Keynesian Phillips

Curve (NKPC), an aggregate inflation equation arising in dynamic stochastic general

equilibrium (DSGE) models with price adjustment frictions.3 However, the inflation

forecasts generated from single-equation (also known as limited information) methods

involving the NKPC have not been able to compete against simple agnostic time-series

models. This paper proposes two important modifications to help improve the predictive

performance of the NKPC. First, in order to capture shifts in central bank preferences

and monetary policy frameworks, we introduce variation in trend inflation. Second, our

NKPC with a time-varying trend is incorporated into a novel inflation forecasting proce-

dure that is able to generate reliable theory-based inflation predictions at policy-relevant

horizons. The novelty is that theory-implied laws of motion inform the modelling, and

subsequent forecasting, of the trend and cyclical components of observed inflation.

There is growing skepticism in the existing literature with regard to the benefits

of using the NKPC approach to forecast inflation. Empirical findings from a number of

studies have shown that Phillips curve-based inflation forecasts perform poorly in ‘pseudo-

out-of-sample’predictive evaluation against a good univariate benchmark (e.g., Stock and

Watson, 2009). Notably, Atkeson and Ohanian (2001), henceforth AO, found that since

1984 Phillips curve forecasts for inflation in the United States (US) were inferior to a naïve

forecast of 12-month inflation by its average rate over the previous 12 months. The AO

finding has proven diffi cult to overturn in inflation forecasting (e.g., Stock and Watson,

1For comprehensive surveys, see Stock and Watson (1999, 2003, 2007, 2009); Edge and Gürkaynak
(2010); Rossi and Sekhposyan (2010, 2014); Ball and Mazumder (2011); Faust and Wright (2013); Dotsey
et al. (2018).

2This approach applies variants of popular time-series analysis techniques that impose minimal the-
oretical restrictions, e.g., Engle and Granger (1987), Lütkepohl (1987), Harvey (1989) and Johansen
(1996). For a completely agnostic approach —known as Singular Spectrum Analysis —centred on the
learning from pure data structures (without any a priori economic theory modeling), see, e.g., Golyandina
et al. (2001), Hassani et al. (2009) and Patterson et al. (2010).

3Since Galí and Gertler (1999), the most popular approach to estimate the NKPC is via limited-
information single-equation methods, which use the generalized method of moments (GMM) proposed
by Hansen (1982) to operationalize the expectational terms under the rational expectations hypothesis.
See, e.g., Galí et al. (2001, 2003, 2005); Sbordone (2002, 2005); Leith and Malley (2007); Rumler (2007);
Mihailov et al. (2011 a, b); King and Watson (2012).
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2007, 2009; Faust and Wright, 2013). Faust and Wright (2013) evaluate the predictive

performance of a set of 16 commonly applied inflation forecasting methods and three

judgemental forecasts of inflation based on private sector surveys and the Greenbook.

They conclude that judgmental forecasts are remarkably hard to beat, and also find that

very simple methods, which limit or avoid parameter estimation, tend to predict inflation

relatively well. Again, the AO ‘pseudo’or ‘average’random walk (RW) forecast comes

out among the best-performing forecasting methods in terms of predictive accuracy, not

only in inflation forecasts for the US, but also for Canada, Germany, Japan, and the

United Kingdom.

However, the existing literature that forecasts inflation using the NKPC has ignored

time-varying trend inflation from the analysis, by assuming that inflation is either zero

or constant in the steady state. This paper addresses this gap in the forecasting lit-

erature. While several papers have incorporated variations in trend inflation to model

inflation dynamics, e.g., Adolfson et al. (2007) in conducting a Bayesian estimation for

Sweden using a small open-economy DSGE model, Cogley and Sbordone (2008) with a

single-equation estimation focus on US data, and Yazgan and Yilmazkuday (2007) and

Yilmazkuday (2007) in estimating monetary policy rules, this is the first study to examine

their implications for inflation forecasting using the limited information NKPC approach.

As in Adolfson et al. (2007), we introduce drifting trend inflation by assuming price

indexation to both last-period actual inflation and current-period trend inflation.4 From

an empirical and policymaking perspective, such an indexation scheme by the private sec-

tor is important as it captures both inflation persistence and, notably, shifts in monetary

policy preferences and inflation targets. Since central bank mandates and policymaking

frameworks evolve over time in response to changes in the macroeconomic and institu-

tional environment, there should be potential gains, especially in medium- and longer-

horizon inflation forecasting, from capturing such shifts. Moreover, these assumptions

result in inflation dynamics that are broadly consistent with the time-series properties of

our data set.

Armed with our NKPC that incorporates shifts in trend inflation, we propose a novel

‘time-varying trend New Keynesian Phillips Curve (TVT-NKPC)’procedure to forecast

inflation. It highlights the predictive value of allowing for the pervasive drifting trends

in observed macrovariables derived from the microfoundations of price setting and the

resulting aggregate NKPC equation. Our inflation forecasting procedure consists of first

applying a one-sided Hodrick-Prescott (1997) filter to separate trend from cyclical com-

ponents in each fixed-length rolling window or augmenting-length recursive window for

re-estimation and prediction that resembles real-time forecasting in our pseudo-out-of-

4Cogley and Sbordone (2008) incorporate drifting trend inflation by assuming price indexation to
lagged inflation only. They show, using Bayesian time-varying coeffi cient VAR methods, that a purely
forward-looking version of the NKPC fits US quarterly data well for the period 1960:1-2003:4.
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sample exercise.5 Then, the TVT-NKPC equation for the cyclical component of inflation

generates forecasts for this component via a corresponding theory-implied auxiliary vec-

tor autoregression (VAR).6 Following Galí and Gertler (1999), unobservable real marginal

cost (RMC) is proxied by real unit labor cost (RULC). Alternatively, we also construct a

calibrated proxy for RMC based on the open-economy monetary model of McKnight and

Mihailov (2015). Our TVT-NKPC theory also generates predictions for trend inflation,

which are employed in the forecasting of the trend component of inflation as a stochas-

tic AR(1) process that incorporates a unit root. We build on the predictive accuracy

comparisons in Stock and Watson (2007) and Faust and Wright (2013), by selecting the

agnostic AO inflation forecast and driftless RW as the main benchmarks to evaluate the

predictive performance of our TVT-NKPC inflation forecasting procedure.7

Predictive accuracy is assessed pseudo-out-of-sample via the commonly adopted cri-

terion of root mean squared forecast error at the policy-relevant horizons of 1, 4 (‘short

run’), 8, 12 (‘medium run’), 16 and 20 (‘long run’) quarters using quarterly time series

for the Euro Area (EA) and the US that cover almost half a century, 1970:1-2015:4 (184

quarters), and a forecasting evaluation period that constitutes, roughly, one-third of the

sample, 2000:1-2015:4 (64 quarters). In contrast to the skepticism of the existing litera-

ture, the results from the inflation predictions generated from our theory-based NKPC

method are positive. We find that the TVT-NKPC forecasting procedure outperforms the

conventional random walk benchmark at all horizons, up to a margin of 20-25 percentage

points in the medium- and long-run inflation forecasts (significantly at 1 and 8 quarters

in the EA and US data and also at 16 and 20 quarters in the EA case). Moreover, it

also outperforms quantitatively, by 10-20 percentage points beyond the short run, the

AO benchmark that previous studies have found diffi cult to beat (significantly at the

medium run in the US case). Overall, our findings offer encouragement on the potential

of the TVT-NKPC to generate reliable theory-based forecasts of inflation.

Our results are shown to be robust across structural breaks, involving in particular the

periods of the “great moderation”, the global financial crisis, and the zero lower bound of

quantitative easing. Our forecasting improvements are also robust for both the EA and

the US, and for two alternative econometric specifications: fixed rolling window versus

augmenting window. Further, we demonstrate robustness regardless of the proxy used

5The rolling-window re-estimation, in particular, handles gradual (and possibly unknown) structural
change, as argued in Bauwens et al. (2015), and is implemented in many inflation forecasting studies
(see, e.g., Kascha and Ravazzolo, 2010).

6As far as the cyclical component of inflation is concerned, our approach is related to some extent
to the so-called ‘semi-structural’ forecasting methods found in the studies of Rumler and Valderrama
(2010), Liu and Jansen (2011), Kichian and Rumler (2014) and Posch and Rumler (2015). However,
this literature ignores time-varying trend inflation and assumes agnostic time-series models for real unit
labor cost as the single driving variable in the NKPC equation. The semi-structural approach has had
only nonsystematic, partial success in specific countries and at specific horizons relative to conventional
benchmarks.

7The driftless RW has been the conventional forecasting benchmark since Meese and Rogoff (1983).
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for unobservable real marginal costs.

Our findings suggest that drifting trends, in effect derived carefully from microfounda-

tions, play an important role in the predictive performance of limited information NKPC

models. Consequently, theory-implied forecasts are at least as good, and at many time

horizons better, than agnostic statistical predictions of inflation. Being so, our forecast-

ing method can complement other approaches used to predict inflation at central banks

over policy-relevant horizons. In particular, our method generates inflation forecasts that

are comparable even to high-dimensional DSGE systems, but remains parsimonious and

much less demanding in terms of data and assumptions.

The paper is organized as follows. The next section derives the TVT-NKPC and

justifies theoretically the concept of fundamental inflation and the law of motion of trend

inflation employed in the forecasts. Section 3 discusses our data and empirical implemen-

tation, while section 4 reports and interprets our predictive evaluation results. The final

section concludes. Supplementary material is available online that includes Appendices

A—C.8

2 Theoretical Framework

In this section, we briefly summarize our TVT-NKPC inflation forecasting procedure,

leaving the details in Appendices B.1 and B.2.

We assume that there is full indexation of non-optimized prices for any firm i, Pt(i),

to both last-period actual (gross) inflation Πt−1 with weight 0 ≤ ρ ≤ 1 (as in Cogley and

Sbordone, 2008) and current-period time-varying trend (gross) inflation Πt with weight

1− ρ (as in Adolfson et al., 2007):

Pt(i) = Πρ
t−1Π

1−ρ
t Pt−1(i). (1)

In what follows, x̂t denotes either stationary log-deviations of variables x̃t from their

drifting trend value xt or stationary log gross growth rates. Equation (1) implies, under

Calvo (1983) price setting, the following generalized NKPC:

Π̂t − ρΠ̂t−1 + ρĝΠ
t =

(1− α)(1− αβgΛgY )

α(1 + εω)
M̂Ct + βgΛgYEt

[
Π̂t+1 − ρΠ̂t + ρĝΠ

t+1

]
, (2)

where Π̂t denotes the cyclical component of period t inflation, M̂Ct is the cyclical compo-

nent of period t average real marginal cost, and ĝΠ
t is the growth rate of the time-varying

inflation trend in t relative to t − 1. The parameters α, ε, ω, β, gY and gΛ capture,

8Appendix A contains a full description of our data set, with relevant sources and definitions; Ap-
pendix B provides additional derivations and technical detail; Appendix C presents and briefly discusses
additional results (mostly illustrated in figures and tables to which we sometimes refer to later on).
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respectively, the Calvo probability of not being able to optimize own price in any pe-

riod t, the elasticity of substitution across differentiated products, the degree of strategic

complementarity, the deterministic discount factor, and the growth rates of output and

of the marginal utility of wealth of firm shareholders, both evaluated as constants.

We transform the generalized NKPC equation (2) into a form that is more suitable

for forecasting inflation. We assume that time-varying trend inflation follows an AR(1)

process:9

ĝπt = θĝπt−1 + εĝπ ,t, (3)

where 0 < θ < 1 is the persistence parameter (to be re-estimated in recursive subsamples

in our forecasting procedure) and εĝπ ,t ≡ ln εgπ ,t ∼ i.i.d.
(

0, σ2
ĝπ

)
. Using (3), we can

re-write (2) in quasi-first difference form as:

π̂t − ρπ̂t−1 = γ [Etπ̂t+1 − ρπ̂t] + κm̂ct + ρ (θγ − 1) ĝπt , (4)

where

κ ≡ (1− α)(1− αβgΛgY )

α(1 + εω)
and γ ≡ βgΛgY .

As discussed by Cogley and Sbordone (2008), estimates of ρ tend to cluster around

the point estimate of 0.2.10 Therefore, we calibrate ρ = 0.2 in (4) for the purposes of

re-estimating the other two reduced-form parameters in the TVT-NKPC in quasi-first

differences, κ and γ.

The generalized TVT-NKPC given by (4) can be reduced to two common special

cases typically found in the literature. If ρ = 1, indexation is only to last-period actual

inflation, and this leads to the TVT-NKPC estimated in Cogley and Sbordone (2008).

For example, assuming a zero net inflation steady state (where trend inflation is constant

and so ĝπt = 0; and similarly gΛ = gY = 1 so that γ = β), the NKPC given in (4) reduces

to the well-known ‘hybrid’NKPC, containing a backward-looking term, π̂t−1, that arises

from this indexation:

π̂t =
1

1 + β
π̂t−1 +

β

1 + β
Etπ̂t+1 + κm̂ct. (5)

If ρ = 0, indexation is only to current trend inflation. For example, once again assuming

a zero net inflation steady state, (4) reduces to the standard ‘pure’NKPC:

π̂t = βEtπ̂t+1 + κm̂ct. (6)

9The AR(1) trend-growth assumption is consistent with the time-series properties of our data set
summarized in section 3 further below; see also Table 1 in Appendix C (online).
10Most of these estimates relate to the partial indexation to past inflation only. However, Adolfson

et al. (2007) estimate ρ with Bayesian methods assuming full indexation to both past actual inflation
and current trend inflation, as we do, and report a posterior mode of 0.212 (with standard deviation of
0.066) and a posterior mean of 0.217.
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Comparing the hybrid (5) and pure (6) versions of the NKPC against the generalized

TVT-NKPC (4) shows that current inflation π̂t depends importantly on an additional

driver, namely, current-period innovations to trend inflation, ĝπt (affecting the intercept of

the TVT-NKPC). Furthermore, trend growth in output, gY , and in the marginal utility

of wealth of firm owners, gΛ —by entering the definitions of the reduced-form parameters

of the TVT-NKPC, γ and κ —affects both its intercept and slope.

We employ two alternative proxies for real marginal costs (RMC): (i) the standard

RULC proxy of Galí and Gertler (1999); and (ii) a proxy using the open-economy mone-

tary model of McKnight and Mihailov (2015), which assumes nonseparable utility prefer-

ences for consumption and real money balances. A log-linear approximation around the

time-varying trend assumed here yields the following expression for the cyclical compo-

nent of RMC:

m̂ct = ωŶt + σĈt − χm̂t + (1− a) Ŝt, (7)

where Ct,mt, and St denote consumption, real money balances, and the (Home economy)

terms of trade, respectively. For the parameters given in (7), ω > 0 is the inverse of the

Frisch labor supply elasticity, σ > 0 is the coeffi cient of relative risk aversion, χ ≥ 0 is the

degree of nonseparability of real money balances, and 0 < a ≤ 1 is the degree of home

bias in production.11 The structural parameters of (7) are calibrated using the values

justified by McKnight and Mihailov (2015). Namely, we set ω = 0.47, σ = 0.16, χ = 0.02

and a = 0.85. Consequently, given the four observable time series for Yt, Ct, mt and St,

we can obtain a proxy for the unobservable (cyclical component of) real marginal cost

implied by the equilibrium conditions of a microfounded open-economy monetary model.

The law of motion for drifting trend inflation implies a straightforward one-step ahead

forecast (for t-indexed variables assumed observed or estimated):

Et
[
Πt+1

]
≡ Πt+1|t = gΠ

t Πt. (8)

We then use this forecast in generating iterative forecasts for any horizon h = 1, ..., 20

quarters for the trend component of inflation after re-estimating (recursively) gΠ
t from the

data. The h-step ahead forecast based on this stochastic AR(1) trend dynamics becomes

Πt+h|t =
(
gΠ
t

)h
Πt, for h = 1, ..., 20. (9)

This is the forecasting procedure for time-varying trend inflation we implement after re-

estimation of gΠ
t at every prediction origin, and then add up to the corresponding forecast

for the cyclical component of inflation generated according to the TVT-NKPC, which we

11As discussed by Woodford (2003), in popular cashless economies (i.e., χ = 0), a policymaker does
not face a trade-off between inflation and output stabilization. However, with χ > 0 money enters (7)
as a negative ‘cost-push’shock.



McKnight, Mihailov and Rumler (August 2019: revised and accepted) 7

describe next.

Evaluating the implied ‘fundamental inflation’measure that arises in equation (4)

requires multiperiod forecasts of the forcing variables. These are generated in our case

from a 3-variate VAR with 4 lags (denoted as 3VAR(4)) of dimension 12:

Ẑ ′t
(1×12)

=
[
m̂ct−jp , ĝ

π
t−jp , π̂t−jp − ρπ̂t−(jp+1)

]′
, jp = {0, 1, 2, 3} .

Note that 0 < κ, ρ (θγ − 1) < 1, and that Ẑt+h|t = AhẐt, where Ẑt denotes the vector

entering the companion form matrix A of the companion 3VAR(1) system and h the

horizon of the forecasts with origin t. We can therefore apply the summation formula

for infinite geometric sequences to the stationary forward-looking solution of the (re-)

estimated TVT-NKPC equation (4) and obtain fundamental inflation in period t:

π̂t − ρπ̂t−1 = κ e′1
(1×12)

(
I12 − γ A

(12×12)

)−1

Ẑt
(12×1)

+ ρ (θγ − 1) e′2
(1×12)

(
I12 − γ A

(12×12)

)−1

Ẑt
(12×1)

.

(10)

In (10), the selection vector e′1 (with 1 as its first element and 0’s elsewhere) extracts

the forecast for m̂ct+h (first row of A) while the selection vector e′2 (with 1 as its second

element and 0’s elsewhere) that for ĝπt+h (second row of A).

In order to generate forecasts for the cyclical component of inflation, π̂t+h|t, conditional

on information at time t, lead expression (10) by one period and note that the 1-period-

ahead forecast of Ẑt is Ẑt+1|t = AẐt. Hence the 1-step-ahead forecast of the cyclical

component of inflation, π̂t+1|t, based on the model-consistent concept of fundamental

inflation implied by our TVT-NKPC theory, is given in terms of current variables as

follows:12

Et [π̂t+1] ≡ π̂t+1|t = ρπ̂t + κe′1 (I− γA)−1AẐt + ρ (θγ − 1) e′2 (I− γA)−1AẐt. (11)

Iterating this cyclical inflation forecast forward, we can construct an h-step-ahead forecast

of cyclical inflation. The outcome is the following general forecasting equation:

π̂t+h|t = ρhπ̂t + κe′1 (I− γA)−1
h∑
i=1

ρi−1AiẐt + ρ (θγ − 1) e′2 (I− γA)−1
h∑
i=1

ρi−1AiẐt, (12)

which is used to generate the forecasts for the cyclical component of inflation.13

12For simplicity, we suppress the explicit notation for the matrix dimensions.
13The auxiliary VAR we use in forecasting can be viewed as nesting the NKPC in other setups (e.g,

Posch and Rumler, 2015), where this is accounted for by jointly estimating the parameters of the VAR
and the NKPC. In the present paper, however, the process for marginal cost is much more complicated,
which is why the NKPC is not nested in the VAR.
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3 Empirical Implementation

In the present section we discuss our empirical implementation of the proposed theory of

inflation dynamics to forecasting inflation in the EA and the US.

We use quarterly data for the EA and the US over almost half a century, from 1970:1

to 2015:4 (184 quarters), and compare forecast accuracy in a pseudo-out-of-sample eval-

uation period of approximately the last third of our full sample, 2000:1-2015:4 (64 quar-

ters), as is common practice. Appendix A (online) provides details of the data sources,

definitions and mnemonics.

Our quarterly inflation measure is defined in a standard way (in annualized % terms),

πt ≡ 400× ln
Pt
Pt−1

,

where Pt is the quarterly GDP-deflator price index. Our preference here for the GDP-

deflator price index as a measure of the aggregate price level in the EA and the US

follows the inflation forecasting literature, notably Stock and Watson (2007) and Faust

and Wright (2013).14

We follow Faust and Wright (2013) in performing iterated multistep forecasts, and not

direct forecasts.15 We also follow Faust and Wright (2013) in forecasting single-quarter

inflation rates, and not cumulative inflation rates over a particular future horizon as done,

e.g., in Stock and Watson (2007). The reason is that the former approach allows to judge

in a more straightforward way how the forecast horizon may affect the predictability

of inflation: if cumulating predicted inflation rates instead, the shorter- and longer-run

forecast accuracy will be conflated over the duration of the respective forecast horizon.

[Table 1 about here]

Table 1 summarizes the models of inflation dynamics included in our predictive ac-

curacy comparisons. As in Stock and Watson (2007), among others, we implement the

forecasts in two variants, using recursively re-estimated (i) fixed-length rolling sample

window and (ii) augmenting-length sample window. In addition, and also as a robustness

check, the predictive performance of the TVT-NKPC forecasting procedure is examined

in two other variants, depending on the proxy for unobservable real marginal cost (RMC),

either (i) a monetary open economy (MOE) RMC proxy constructed from four observ-

able variables as implied by equation (7) above, or (ii) the standard real unit labor cost

(RULC) proxy for RMC. These TVT-NKPC forecasts are then compared against the

14As discussed in Clark and Doh (2014), this is a broader aggregate price measure than the alternative
consumer price index (CPI) measure of inflation. While these two common inflation measures do not
generally stray too far apart, they do not follow precisely the same dynamics. CPI inflation tends to be
more volatile than GDP-deflator inflation, especially in the US data (see figures 2 and 3 in Appendix C).
15See Appendix B.3 (online) for definitions and further detail on iterated versus direct forecasts.
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forecasts from two typical univariate statistical specifications for inflation as (alternative

and agnostic) benchmarks, (i) the conventional driftless random walk and (ii) the widely

used AO pseudo random walk. Under the random walk without drift univariate bench-

mark, which predicts the same inflation for any quarter at any horizon h as that observed

in the most recent quarter, the inflation forecast can be written as (assuming again that

t-indexed variables are observed)

πt+h|t = πt. (13)

For the second univariate benchmark we employ the AO pseudo random walk, which is

essentially a random walk forecast designed for the horizon of 12 months, with Stock

and Watson (2007) adapting it to quarterly data and extending the AO forecast to other

horizons.16 The iterated version of the AO forecast, adjusted to our quarterly frequency,

can then be written as

πt+h|t ≡
1

4
(πt + πt−1 + πt−2 + πt−3) . (14)

That is, the adjusted AO model forecasts the 4-quarter-ahead inflation and, by extension,

the inflation in any earlier or future quarter, h (= 1, . . . , 20 in our case), to be the same

as the average of the latest four quarters of observed inflation.

It is important to emphasize as well the congruence of the theoretical choices intro-

duced earlier with the corresponding empirical implementation of our novel forecasting

procedure. More specifically, the theory-based trend and cyclical inflation components

implied by our derivation of the TVT-NKPC are also consistent with the stationarity

properties of both the EA and US data, as evidenced by the formal test results reported

in Table 1 in Appendix C (online) and as illustrated visually in Figures 1—4, to which we

return with some discussion further down. Accordingly —in a ‘double’, theory-informed

and data-supported, justification —trend inflation is forecast using the univariate stochas-

tic AR(1) trend model defined in (3), while cyclical inflation is forecast by the auxiliary

3VAR(4) model embodied in (12) as an empirical implementation of (4).17

In line with the literature, we report and compare accuracy for pseudo-out-of-sample

predictions in terms of the Theil U-statistic, defined as the ratio of the root mean squared

forecast error (MSFE) of the (theory-based) model of inflation dynamics (in the numera-

tor of Theil’s ratio) relative to that of the respective benchmark, RW or AO in our case,

(in the denominator) for the policy-relevant horizons of 1, 4, 8, 12, 16 and 20 quarters.

The modified Diebold-Mariano (1995) test (MDM), proposed by Harvey et al. (1997) to

correct for small-sample bias, checks for the statistical significance of the difference in

16Atkeson and Ohanian (2001) proposed a naïve model of US inflation dynamics initially designed for
the monthly frequency that has nevertheless performed very well at horizons of 1 and 2 years in the US
data.
17The final instrument set and lags in the TVT-NKPC GMM re-estimation was selected with view to

the Hansen (1982) J-test statistic for the validity of the overidentifying restrictions.
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predictive accuracy between pairs of non-nested model forecasts.18 We focus on the one-

sided version of the p-value for the MDM test because we are interested here primarily

in the improvement —not the deterioration —in predictive accuracy over the respective

benchmark (i.e., Theil’s U ratios lower than 1) that arises from the application of our

TVT-NKPC forecasting procedure.

Figure 1 depicts the EA (blue) and US (red) quarterly GDP-deflator inflation at

annualized % rate in our sample (1970:1—2015:4), where the shaded area corresponds to

our forecasting evaluation period (2000:1—2015:4). The patterns of inflation dynamics in

the EA and the US display some similarities as well as some differences. The high inflation

of the 1970s, due to the global oil shocks, and the subsequent disinflation of the 1980s is a

common feature, yet during these first two decades in our sample EA inflation was higher

than US inflation (and, unsurprisingly, quite heterogeneous within the area). The ‘great

moderation’in the world economy, usually identified to have begun in the mid-1980s for

the US, but somewhat later for the EA, after the European exchange-rate mechanism

crisis of 1992:3—1993:2, and to have ended with the recent global financial crisis (GFC)

of 2007:3—2009:4, is evident in inflation dynamics in both the EA and US data. Then, in

the last 15 years of the sample, with the ECB now responsible for EA monetary policy,

inflation has been low and relatively stable: lower and less volatile compared to the US,

and almost reversing itself into deflation near the end of the GFC.

[Figure 1 around here]

We have kept the turbulent GFC quarters together with the preceding ‘great mod-

eration’low inflation subperiod and the subsequent ‘deflation scare’subperiod, where a

number of economies have been operating at the zero lower bound of nominal interest

rates, in part with the goal to ensure a relatively long rolling window; in part we also

wanted to subject our forecasting procedure to a more challenging empirical test. More

precisely, the fixed-window length in the rolling estimation, which is equivalent to the

initial estimation sample in the augmenting-window recursive estimation, is 113 effective

quarters, with the first quarter of 2000 being the horizon of our first 1-step-ahead inflation

prediction over the forecasting evaluation period.

The results from the stationarity tests we performed in our full sample are reported

in Table 1 of Appendix C (online). Inflation is conclusively found to be nonstationary

in both the EA and US data; that is, by both the Augmented Dickey-Fuller (ADF) test

with a null of unit root (with constant included as well as excluded)19 at all conventional

significance levels and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test with a null

18For a detailed discussion of the rationale and advantages of using the MDM test in forecast accuracy
comparisons, see Faust and Wright (2013), Clark and McCracken (2013), and Clark and Doh (2014).
19See Dickey and Fuller (1979) and Said and Dickey (1984), as well as Schwarz (1978) and MacKinnon

(1996).
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of stationarity (with constant included)20 at the 5% and 10% significance levels (not

at the 1% level). When a linear trend is also included, in addition to the constant

in the ADF and KPSS specifications, this trend comes out statistically significant and

negative for both the EA and the US, which is clearly seen too by inspection of Figure 1.

The formal statistical tests here regarding (non)stationarity are important in that their

findings support the TVT-NKPC forecasting procedure. The methodology proposed here

relies on first separating a time-varying inflation trend from the inflation cycle, before

the prediction exercise for observed inflation is then undertaken by components (with

potentially differing or diverging dynamic or stationarity properties).

[Figures 2 and 3 about here]

Figures 2 and 3 illustrate these trend and cycle components, respectively, of EA and

US quarterly GDP-deflator inflation at annualized rate.21 Again, checking Table 1 in

Appendix C (online), the ADF and KPSS tests are conclusive with regard to establishing

the stationarity of the inflation cycle around the drifting inflation trend in both the EA

and the US at all conventional levels of statistical significance. The KPSS test is also

conclusive regarding the nonstationarity (in our sample) of trend inflation in both the EA

and the US, whereas the ADF test confirms this finding at all conventional significance

levels only for the US but not for the EA (at the 10% level).

[Figure 4 about here]

Figure 4 depicts the EA (blue) and US (red) change in quarterly (log-) GDP-deflator

trend inflation at annualized % rate, as another major determinant of inflation dynamics

around a time-varying trend according to the generalized NKPC equation (4). It is found

stationary (in our sample) for both the EA and the US at all conventional significance

levels by the KPSS test. In addition, for both the EA and the US, it is found stationary

at the 5% and 10% levels by the ADF test too, but nonstationary at the 1% level. These

findings are broadly consistent with the theoretical law of motion imposed in equation

(3).

Finally, figures 4 and 5 in Appendix C (online) depict the cyclical component of the

EA (blue) and US (red) quarterly MOE and RULC proxies, respectively, for the (log-)

real marginal cost at annualized % rate, as a major determinant of inflation dynamics

according to the TVT-NKPC equation (4). The findings in Table 1 in Appendix C

(online) are convincing once again in establishing stationarity of the cyclical component

of both these proxies for RMC around their drifting underlying trends in both the EA

20See Kwiatkowski et al. (1992), as well as Bartlett (1950) and Andrews (1991).
21In all figures illustrating trend or cycle of a time series, these two components have been separated for

the whole sample by applying a two-sided Hodrick-Prescott (1997) filter. See also Figure 1 in Appendix
C (online) for the robsutness of our Hodrick-Prescott trend inflation measure in the US case.
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and the US data at all conventional levels of statistical significance. One could also notice

that the MOE RMC measure and the RULC RMC alternative do not exhibit quite the

same patterns of dynamics and volatility in our data set, and therefore may not be equally

useful in the forecasting exercise at its various horizons.

The stationarity test results summarized above therefore support the TVT-NKPC

forecasting procedure. The cyclical component of inflation, or rather its empirically

constructed analogue in our sample, is stationary because all of its component drivers in

equation (4) are stationary; hence the projection for the cyclical component for inflation

extracted via the companion form of the theory-implied 3VAR(4), as in (12), is justified

and in line with the required stationarity for the implemented forecasting iterations at

any horizon ahead.

4 Results on Predictive Accuracy

In this section we present the key results from evaluating the predictive accuracy of

our TVT-NKPC inflation forecasting procedure. Additional estimation and forecasting

results, as further robustness checks, are presented in Appendix C (online). We begin by

discussing our findings with regard to the EA data, before moving to the US case.

4.1 Forecasting EA Inflation

Our main results with regard to the EA, reported in Table 2, can be summarized as

follows.

[Table 2 about here]

First, comparing the root mean square forecast errors in panel A of the table, it can

be seen that the RW benchmark results in the worst predictive accuracy, that is the

largest root MSFE, across all six horizons, relative to the AO benchmark forecast and

all four variants of the TVT-NKPC procedure. This finding reveals that our theory-

based forecasting procedure is able to extract predictive content from EA inflation data

that helps to improve forecasting compared to the RW benchmark of nonpredictability.

Moreover, at the medium (8 and 12 quarters) and longer (16 and 20 quarters) horizons,

the TVT-NKPC procedure in all its four variants, that is, no matter the re-estimation

of either a fixed- or augmenting-length recursive window or the choice of proxy used for

RMC, achieves the most accurate prediction, beating in terms of root MSFE even the

AO forecast. With bold fonts denoting the best forecast by horizon, one can see that for

the EA data the RULC RMC rolling-window forecast dominates, winning at 8, 12 and 16

quarters, while the RULC RMC augmenting-window comes most accurate at the longest
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horizon of 20 quarters. However, at the two shorter-run horizons of 1 and 4 quarters the

AO benchmark predicts EA inflation with the smallest root MSFE.22

We next consider the difference in predictive accuracy comparing the TVT-NKPC

forecasts with the RW benchmark, reported in panel B of Table 2. The TVT-NKPC

forecasts beat the RW forecast at all six horizons, with a gain ranging from 22.4% (sta-

tistically significant at horizon of 1 quarter, where the benefit of the MOE RMC proxy in

the augmenting-window variant is illustrated) to 26.8% (statistically significant at hori-

zon of 16 quarters, where the advantage of the RULC RMC proxy in the rolling-window

variant becomes evident). More generally, our TVT-NKPC forecasts are significantly

more accurate than the RW forecast at all horizons beyond the immediate short run of

1 quarter (where they are statistically worse) except 12 quarters (yet still numerically

better by 19.1%) and 4 quarters (numerically better by 1.3%).

Third, to further judge whether the best variant of the TVT-NKPC forecast is more

accurate than the AO forecast in a statistically significant way, we compute Theil’s U

ratio using the root MSFE of the AO forecast as the denominator and the (one-sided)

MDM statistics for this benchmark. Panel C of Table 2 reports that these two compared

forecasts are not statistically distinguishable at all horizons. Of note, however, at the

medium (8 and 12 quarters) and longer (16 and 20 quarters) horizons, the TVT-NKPC

forecast (in all its four variants) outperforms the AO forecast, by a numerical margin of

up to 9.9%.

Comparing the four variants of the TVT-NKPC forecasts, we see from Table 2 that

re-estimating a fixed- versus augmenting-length recursive window of the data and using

the RULC versus MOE RMC proxy tends to perform better, especially at horizons of

12 and 16 quarters. Yet the use of the MOE RMC proxy in its augmenting-window

implementation brings a considerable advantage in coming very close to the best forecast

at the immediate horizon of 1 quarter and at the longest horizon of 20 quarters.

4.2 Forecasting US Inflation

Turning to the US data, our main results reported in Table 3 do not change the essence

of the conclusions summarized in section 4.1 for the EA data; there are however some

interesting differences and nuances worth mentioning, as follows.

[Table 3 about here]

First, now the MOE-RMC fixed rolling window variant comes out as the most accurate

forecast (i.e., lowest root MSFE, in bold), winning at two horizons, 1 and 16 quarters.

22Figures 14 (short run), 16 (medium run) and 18 (long run) in Appendix C provide a visual illustration
for the best-performing variant of our TVT-NKPC forecasts against actual inflation in the EA.
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The AO forecast is best only at 4 quarters, whereas the RW forecast is not that much far

off overall.23

Next, in panel B of Table 3 we see that in the US case the TVT-NKPC forecast in

its MOE-RMC fixed rolling window version is statistically more accurate than the RW

forecast at horizon of 1 quarter, whereas the RULC-RMC variant (in both windows, fixed

and augmenting) is statistically dominating the RW at 8 quarters. At the remaining four

prediction horizons the best TVT-NKPC variant is not statistically distinguishable from

the RW forecast, but is numerically much more accurate, with gains from 7.6% at 4

quarters to 21% (MOE-RMC in augmenting window, again) at 20 quarters.

Third, panel C of Table 3 reveals that now, in the US data, the best variant of

our TVT-NKPC forecast dominates the AO forecast in a statistically significant way at

the medium run of 8 and 12 quarters. It also dominates numerically, by an important

margin, the AO forecast at the long run of 16 (18.8%) and 20 (8.6%) quarters, remaining

indistinguishable statistically at the short run of 1 and 4 quarters from the AO benchmark.

Finally, looking across the four variants of implementing the TVT-NKPC forecasts,

we see from Table 3, and somewhat consistent with the analogous conclusion in the EA

data, that none of these variants really dominates the remaining ones across more than

1-2 of the 6 forecast horizons examined.

4.3 Policy-Relevant Insights from Our EA and US Inflation

Forecasts

Overall, for the EA we can conclude that the TVT-NKPC procedure significantly out-

performs the RW benchmark at all horizons except 4 and 12 quarters ahead; however,

even when the statistical significance is not confirmed, the Theil U ratio does indicate

that there are important numerical gains to using the TVT-NKPC procedure. Moreover,

while the TVT-NKPC procedure does not significantly outperform the AO benchmark

at any of the six horizons, the numerical gains of using it are considerable, beating the

AO forecast by almost 20% at the longer horizons of 12, 16 and 20 quarters.

Overall, the findings for the US present more similarities than differences with respect

to those for the EA. We can conclude that our TVT-NKPC forecasting procedure out-

performs the conventional random walk benchmark at all horizons, significantly at 1 and

8 quarters in the EA and US data, and also at the longer run of 16 and 20 quarters in

the EA case. Moreover, it also outperforms quantitatively, by about 10 to 20 percentage

points in general, beyond the short run of 1 and 4 quarters, the agnostic AO benchmark

that previous studies have found diffi cult to beat, significantly at the medium run of 8

and 12 quarters in the US case.

23Figures 15 (short run), 17 (medium run) and 19 (long run) in Appendix C provide a visual illustration
for the best-performing variant of our TVT-NKPC forecasts against actual inflation in the US.
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While our task was not to study DSGE-based forecasts of inflation, and compare our

method against these, we, finally here, also relate —briefly and indirectly —the forecasting

performance of the TVT-NKPC procedure to that of a key representative of what may

be termed structural models estimated using full information methods. Our choice of

such a benchmark is taken from Faust and Wright (2013), who study — among their

many other forecasting models we mentioned earlier —the predictive power of a DSGE

model with time-varying inflation trend (labeled by them as the “DSGE-GAP”model)

in US quarterly data. Using the respective numbers reported in their paper to calculate

the corresponding Theil U ratios relative to the AO forecast, as in our tables 2 and

3,24 we find that the DSGE-GAP model, which also incorporates “theory consistent”

reduced-form parameters, does not perform significantly or distinguishably better than

our TVT-NKPC forecasts. More precisely, the Theil U ratios of the Faust-Wright (2013)

DSGE-GAP model to the AO model at horizons of 1, 4 and 8 quarters are, respectively

1.06, 1.01 and 1.00, which is similar to the accuracy reflected in our tables 2 and 3 for the

TVT-NKPC procedure. Observe as well that, as already stressed, the predictive power of

our procedure becomes stronger than that of the AO forecast especially at the longer end

of the prediction horizons, namely at 12, 16 and 20 quarters, which range beyond what

Faust and Wright (2013) have documented for their DSGE-GAP model. All in all, we

see that the TVT-NKPC procedure does not predict less precisely than the DSGE-GAP

model of Faust and Wright (2013) at the reported shorter horizons, and may even have

an advantage at longer horizons —which remains to be explored in future work.

5 Concluding Comments

Previous results reported in the inflation forecasting literature have suggested some skep-

ticism concerning the value added of theory-based models relative to the RW and AO

forecasting benchmarks. Yet these models have typically exploited variants of the tradi-

tional and rather simple Phillips curve or of the New Keynesian Phillips Curve derived

around a zero or constant trend inflation steady state in either single-equation estimation

or DSGE system estimation, with King and Watson (2012) comparing the latter two

alternative NKPC-based approaches and focusing on the choice of alternative real unit

labor cost measures and some ensuing contradictory findings. This study has instead

proposed a generalized New Keynesian Phillips Curve derived around a time-varying in-

flation trend with an additional proxy for unobservable marginal costs constructed from

four observable time series arising from a monetary open-economy model that proved use-

ful in the shortest and longest end of the forecast horizon we examined. On this basis, the

corresponding model concept of fundamental inflation employed to predict the inflation

24Note, however, that the sample and forecasting evaluation periods considered by Faust and Wright
(2013) are somewhat different from ours, 1960:1—2011:4 and 1985:1—2011:4, respectively.
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cycle captured in the NKPC has been combined with a theory-informed but also data-

supported prediction for the time-varying trend (TVT) to obtain a TVT-NKPC forecast

for actual inflation. In effect, our limited information approach to forecasting inflation

offers a simpler alternative to the recent advances in better predicting of inflation that

is based on full-information DSGE systems (see, e.g., Cai et al., 2018). We believe that

both these theory/NKPC approaches have their strengths and weaknesses and should be

used as complementary to each other.

Our results on comparative forecasting accuracy, using two quarterly data sets, namely,

for the EA and the US over 1970:1-2015:4, that include some quite variable inflation pe-

riods, suggest that there is a role for theory: in both data sets the TVT-NKPC forecasts

were overall much more accurate numerically than the AO benchmark (by 10-20 percent-

age points in the medium to longer run), and sometimes in a statistically significant way

too, as in the US data at the medium-run horizons of 8 and 12 quarters ahead, that has

been found to be quite diffi cult to beat in previous comparative studies (e.g., Atkeson and

Ohanian, 2001; Stock and Watson, 2007, 2009; Faust and Wright, 2013). These results go

some way to re-establishing confidence in the merit of Koopmans’s dictum that we should

‘resort to theory’to guide policy —and, we would add, empirical work and forecasting.

This study is part of continuing research seeking to build better theory-based forecast-

ing procedures, which in practice combine with econometric methods of implementation.

Present lines of enquiry include searching for an optimal length of the re-estimation win-

dow, considering alternative methods of trend adjustment, and robustifying the forecasts

to possible structural breaks (see, for example, Castle et al., 2016), all of which may

improve the TVT-NKPC forecasts, and including metrics other than quadratic loss to

evaluate the forecasts.
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Forecasting evaluation period 2000:1—2015:4
Forecast horizon, quarters 1 4 8 12 16 20

Panel A: Root MSFE
Theory-Based TVT-NKPC Procedures of Inflation Forecasting

MOE RMC (roll) 0.729 0.884 0.912 0.829 0.745 0.883
MOE RMC (rec) 0.706 0.879 0.914 0.842 0.759 0.838
RULC RMC (roll) 0.751 0.873 0.892 0.816 0.739 0.880
RULC RMC (rec) 0.765 0.879 0.892 0.822 0.747 0.833

Agnostic Univariate Benchmarks of Inflation Forecasting
RW Forecast 0.909 0.885 1.038 1.001 0.996 1.092

AO (Pseudo-RW) Forecast 0.669 0.815 0.913 0.894 0.819 0.921
Panel B: Theil U-stat to RW ≡ root MSFE of TVT-NKPC w.r.t. RW forecast
MOE RMC (roll) 0.802*** 1.000 0.879 0.821 0.748* 0.808
MOE RMC (rec) 0.776*** 0.993 0.881 0.834 0.762* 0.767*
RULC RMC (roll) 0.826** 0.987 0.859* 0.809 0.742* 0.805
RULC RMC (rec) 0.842** 0.993 0.860* 0.814 0.751* 0.763*
Panel C: Theil U-stat to AO ≡ root MSFE of TVT-NKPC w.r.t. AO forecast
MOE RMC (roll) 1.090** 1.086 0.999 0.927 0.909 0.958
MOE RMC (rec) 1.053 1.078 1.001 0.942 0.926 0.910
RULC RMC (roll) 1.121*** 1.072 0.977 0.914 0.901 0.955
RULC RMC (rec) 1.143** 1.079* 0.977 0.920 0.912 0.905

Table 2: Predictive Performance of TVT-NKPC Forecasts in the EA Data - MDM Test

Note: Bold font indicates the best forecast by horizon. All forecasts are iterated (see online

Appendix B.3), and implemented in two versions; (i) ‘roll’denotes fixed-length rolling window;

(ii) ‘rec’denotes augmenting-length recursive window. ‘TVT-NKPC’is eq. (4), derived in online

Appendices B.1 and B.2; its reduced-form parameters γ and κ —after calibrating ρ = 0.2, see

Adolfson et al. (2007) and Cogley and Sborodone (2008) —are re-estimated in the pseudo-out-

of-sample forecasting simulation via GMM using 5 lags of the dependent variable and 6 lags

of the other variables in eq. (4) as instruments. As discussed in section 2, we employ two

proxies for real marginal cost (RMC) in eq. (4): (i) ‘MOE RMC’denotes a monetary open-

economy RMC proxy; (ii) ‘RULC RMC’denotes a real unit labor cost proxy. The modified

Diebold-Mariano (1995) t-statistic (see Harvey et al., 1997) with p-values using Newey-West

(1987) HAC standard errors, tests the null of no significant difference in the forecast accuracy

of two compared (non-nested) models; statistical significance of the (one-sided) test is shown at

conventional levels: *** 1%, ** 5%, and * 10%. These results are robust to applying instead

the original Diebold-Mariano (one-sided) test —see Table 2 in Appendix C (online).
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Forecasting evaluation period 2000:1—2015:4
Forecast horizon, quarters 1 4 8 12 16 20

Panel A: Root MSFE
Theory-Based TVT-NKPC Procedures of Inflation Forecasting

MOE RMC (roll) 0.854 1.156 1.165 1.249 1.255 1.662
MOE RMC (rec) 0.986 1.125 1.438 1.370 1.291 1.144
RULC RMC (roll) 0.914 1.041 1.100 1.229 1.286 1.655
RULC RMC (rec) 0.922 1.036 1.127 1.227 1.261 1.179

Agnostic Univariate Benchmarks of Inflation Forecasting
RW Forecast 0.970 1.127 1.333 1.360 1.470 1.447

AO (Pseudo-RW) Forecast 0.868 1.027 1.222 1.344 1.376 1.251
Panel B: Theil U-stat to RW ≡ root MSFE of TVT-NKPC w.r.t. RW forecast
MOE RMC (roll) 0.881* 1.034 0.874 0.918 0.854 1.149
MOE RMC (rec) 1.016 0.998 1.079 1.007 0.878 0.790
RULC RMC (roll) 0.942 0.924 0.826* 0.903 0.875 1.114
RULC RMC (rec) 0.950 0.919 0.845* 0.902 0.858 0.812
Panel C: Theil U-stat to AO ≡ root MSFE of TVT-NKPC w.r.t. AO forecast
MOE RMC (roll) 0.984 1.134** 0.953 0.929 0.912 1.329
MOE RMC (rec) 1.135*** 1.096 1.177* 1.020 0.938 0.914
RULC RMC (roll) 1.053 1.014 0.901** 0.914* 0.935 1.323
RULC RMC (rec) 1.061 1.001 0.922** 0.913* 0.916 0.943

Table 3: Predictive Performance of TVT-NKPC Forecasts in the US Data - MDM Test

Note: See the note below Table 2 and Table 3 in Appendix C (online).
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A Data Sources and Definitions

This Appendix A provides details on our data sources and definitions.

A.1 Euro Area

• Source: 16th update to the database underlying the Area Wide Model (AWM), see Fagan,
Henry and Mestre (2005) and their ECB (2001) working paper at http://www.ecb.europa.eu/;

the units of the series follow Eurostat or ECB conventions, that is:

— real GDP and its components are in millions of ECU/euro corrected with reference
year 1995;

— nominal series are (typically) in millions of ECU/euro corrected;

— deflators are (generally) set to 1 in 1995.

• Mnemonics and Definitions —all variables are released at quarterly frequency and as sea-
sonally adjusted at the data source:

—EAMTD ⇔ MTD in the AWM: Imports of Goods and Services Deflator;

—EAPCR ⇔ PCR in the AWM: Private Consumption (Real);

—EATOT ≡ EAMTD / EAXTD;

—EARULC ⇔ ULC in the AWM: Unit Labour Costs, calculated as the ratio of com-

pensation of employees to real GDP (ULC = WIN / YER);

—EAXTD ⇔ XTD in the AWM: Exports of Goods and Services Deflator;

—EAYED ⇔ YED in the AWM: GDP Deflator;

—EAYER ⇔ YER in the AWM: GDP (Real).

• Source: FRED (Federal Reserve Economic Data), Economic Research Division, Federal

Reserve Bank of St. Louis; http://research.stlouisfed.org/fred2/ (accessed on 2 September

2017)

• Mnemonics and Definitions:

—EAM1 ⇔ MYAGM1EZQ196N at FRED via the International Monetary Fund / In-

ternational Financial Statistics (IMF/IFS): M1 for Euro Area, Euros; Frequency:

Quarterly, Not Seasonally Adjusted (subsequently seasonally adjusted, for consis-

tency with the remaining raw data employed in the present study, using the Census-

X12 procedure);

—EAM1R ≡ EAM1 / EAYED.
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A.2 United States

• Source: FRED (Federal Reserve Economic Data), Economic Research Division, Federal

Reserve Bank of St. Louis; http://research.stlouisfed.org/fred2/ (accessed on 2 September

2017)

• Mnemonics and Definitions —all variables are released at quarterly frequency and as sea-
sonally adjusted at the respective original data source:

—USGDPD⇔ GDPDEF at FRED via the Bureau of Economic Analysis (BEA): Gross

Domestic Product —Implicit Price Deflator, Index 2009=100, Quarterly, Seasonally

Adjusted;

—USM1 ⇔ MANMM101USQ189S at FRED via the Organization for Economic Co-

operation and Development / Main Economic Indicators (OECD/MEI): M1 for the

United States, National Currency, Quarterly, Seasonally Adjusted;

—USM1R ≡ USM1 / USGDPD;

—USMD ⇔ A021RD3Q086SBEA at FRED via BEA: Imports of Goods and Services

—Implicit Price Deflator, Index 2009=100, Quarterly, Seasonally Adjusted;

—USRGDP⇔ GDPC1 at FRED via BEA: Real Gross Domestic Product, Billions of

Chained 2009 Dollars, Quarterly, Seasonally Adjusted Annual Rate;

—USRPCE ⇔ PCECC96 at FRED via BEA: Real Personal Consumption Expendi-

tures, Billions of Chained 2009 Dollars, Quarterly, Seasonally Adjusted Annual Rate;

—USULC: ULCNFB_20120606 at FRED via BEA: Nonfarm Business Sector, Unit

Labor Cost, Index 2009=100, Quarterly, Seasonally Adjusted;

—USRULC ≡ USULC / USGDPD;

—USTOT ≡ USMD / USXD;

—USXD ⇔ A020RD3Q086SBEA at FRED via BEA: Exports of Goods and Services

—Implicit Price Deflator, Index 2009=100, Quarterly, Seasonally Adjusted.



McKnight, Mihailov and Rumler (August 2019: revised and accepted) 3

B Technical Appendix

This Appendix B provides further technical details.

B.1 Derivation of a Generalized NKPC with Drifting Trend Inflation

In the present section, we provide the steps in the derivation of our generalized TVT-NKPC,

eqs. (2) and (4) in the main text.

B.1.1 Log-Linear Optimality Condition of Price-Setting Firms

Denoting the cumulative gross inflation rate between dates t and t+ s as

Πt,t+s ≡
Pt+s
Pt

,

it is convenient to define

Ψt,t+s ≡
s−1∏
s=0

Πρ
t+sΠ

1−ρ
t+s+1, (1)

with the normalization Ψt,t = 1, which generalizes the analogous definition in Cogley and

Sbordone (2008). The demand for intermediate good i at t+ s if producer i last reoptimized at

t is thus

Yt,t+s(i) =

[
Ψt,t+sP

∗
t (i)

Pt+s

]−ε
Yt+s, (2)

where P ∗t (i) is the optimal price for i chosen at t.

As is standard, let us define the stochastic discount factor (or pricing kernel) as

Mt,t+s ≡ β
Λt+s
Λt

,

where β is the deterministic discount factor and Λt denotes the marginal utility of wealth of

firm owners.

It follows that if a producer i is drawn to reset her price at time t, she will select P ∗t (i) so

as to maximize expected discounted future profits,1

max
P ∗t

Et

∞∑
s=0

(αβ)s
Λt+s
Λt

[
Ψt,t+sP

∗
t

Pt+s
Yt,t+s − TCt+s (Yt,t+s)

]
, (3)

where Et is the expectation operator conditional on information available at time t, Yt,t+s is

firms’(expected) output at their optimally set price in t, subject to the sequence of demand

constraints in (2), and the time-varying function TCt+s,t (·) is the (expected) real total cost
function.

Substituting the demand function (2) in the objective (3),

1All firms that are given the opportunity to reset their price in period t behave in an identical manner. Hence,
P ∗t (i) = P ∗t .
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Et

∞∑
s=0

(αβ)s
Λt+s
Λt

[(
Ψt,t+sP

∗
t

Pt+s

)1−ε
Yt+s − TCt+s

(
Ψt,t+sP

∗
t

Pt+s

)−ε
Yt+s

]
.

The first-order necessary condition (FONC) on P ∗t is

Et

∞∑
s=0

(αβ)s Λt+s
Λt

[
Ψt,t+s
Pt+s

(
Ψt,t+sP ∗t
Pt+s

)−ε
Yt+s − ε

ε−1
Ψt,t+s
Pt+s

(
Ψt,t+sP ∗t
Pt+s

)−ε−1
Yt+sMCt,t+s

]
= 0, (4)

where MCt,t+s depends on terms that are specific to the firms resetting their price at t and not

changing it through t+ s,

MCt,t+s = MCt+s

[
Ψt,t+sP

∗
t

Pt+s

]−ε
Yt+s (5)

and MCt+s denotes the average (or aggregate) real marginal cost in the model economy. Using

the fact that the optimal price P ∗t is known at t and multiplying (4) by P
∗
t , we obtain

Et

∞∑
s=0

(αβ)s
Λt+s
Λt

(
Ψt,t+sP

∗
t

Pt+s

)−ε
Yt+s

[
Ψt,t+sP

∗
t

Pt+s
− ε

ε− 1
MCt,t+s

]
= 0.

Denoting the optimal relative price as

p∗t ≡
P ∗t
Pt

allows to further express the FONC of price-setting firms in t more compactly,

Et

∞∑
s=0

(αβ)s
Λt+s
Λt

(
Ψt,t+s

Πt,t+s
p∗t

)−ε
Yt+s

[
Ψt,t+s

Πt,t+s
p∗t −

ε

ε− 1
MCt,t+s

]
= 0. (6)

With these assumptions on price-setting, the aggregate price level evolves according to

Pt =

[
(1− α) (P ∗t )1−ε + α

(
Πρ
t−1Π

1−ρ
t Pt−1

)1−ε
] 1
1−ε

, (7)

which can also be written in terms of the optimal relative price as

1 = (1− α) (p∗t )
1−ε + α

(
Πρ
t−1Π

1−ρ
t

Πt

)1−ε

. (8)

In line with the New Keynesian literature, the individual real marginal cost at t + s of a firm

i drawn to set optimally its price at t, denoted as MCt,t+s, is assumed to be related to the

average (or aggregate) real marginal cost in the model economy, MCt+s, according to

MCt,t+s = MCt+s

[(
Ψt,t+sP

∗
t

Pt+s

)−ε]ω
= MCt+s

(
Ψt,t+s

Πt,t+s
p∗t

)−εω
, (9)
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where ω denotes the elasticity of firm i’s real marginal cost to its own real output. Substituting

the above expression in the firm’s price-setting FONC yields

Et

∞∑
s=0

(αβ)s
Λt+s
Λt

(
Ψt,t+s

Πt,t+s
p∗t

)−ε
Yt+s

[
Ψt,t+s

Πt,t+s
p∗t −

ε

ε− 1
MCt+s

(
Ψt,t+s

Πt,t+s
p∗t

)−εω]
= 0.

Collecting terms and using standard definitions in NKPC derivations for the numerator and

denominator, we obtain

(p∗t )
1+εω =

ε
ε−1Et

∞∑
s=0

(αβ)s Λt+s
Λt

(
Ψt,t+s
Πt,t+s

)−(1+ω)ε
Yt+sMCt+s

Et

∞∑
s=0

(αβ)s Λt+s
Λt

(
Ψt,t+s
Πt,t+s

)1−ε
Yt+s

≡ Ct
Dt
. (10)

Then, using the fact that Ψt,t = Πt,t = 1, we re-write Ct as

Ct =
ε

ε− 1
MCtYt + αβ

ε

ε− 1
Et

∞∑
s=1

(αβ)s
Λt+s
Λt

(
Ψt,t+s

Πt,t+s

)−(1+ω)ε

MCt+sYt+s.

In the next steps, we express the sum term as an expression involving Ct+1. To do so, one

needs to replace all t-indexed terms by t+ 1-indexed terms. First, the above expression can be

re-written as

Ct =
ε

ε− 1
MCtYt + αβ

ε

ε− 1
×

Et

∞∑
s=0

(αβ)s−1 Λt+1

Λt

Λt+1+(s−1)

Λt+1

(
Ψt,t+1+(s−1)

Πt,t+1+(s−1)

)−(1+ω)ε

MCt+1+(s−1)Yt+1+(s−1).

Then, terms like Ψt,t+1+(s−1) above are expressed as corresponding terms in Ψt+1,t+1+(s−1)

below, as follows:

Ψt,t+1+(s−1)

Πt,t+1+(s−1)
=

Ψt,t+1+(s−1)

Πt,t+1+(s−1)

Ψt+1,t+1+(s−1)

Ψt+1,t+1+(s−1)

Πt+1,t+1+(s−1)

Πt+1,t+1+(s−1)

=
Ψt+1,t+1+(s−1)

Πt+1,t+1+(s−1)

Ψt,t+1+(s−1)

Ψt+1,t+1+(s−1)

Πt+1,t+1+(s−1)

Πt,t+1+(s−1)
.

Now, using the definitions of Πt,t+s and Ψt,t+s we obtain

Πt+1,t+1+(s−1)

Πt,t+1+(s−1)
=

Pt+1+(s−1)
Pt+1

Pt+1+(s−1)
Pt

=

1
Pt+1

1
Pt

=
Pt
Pt+1

=
1

Πt+1

and
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Ψt,t+1+(s−1)

Ψt+1,t+1+(s−1)
=

Ψt,t+s

Ψt+1,t+1+(s−1)
=

s−1∏
j=0

(
Πρ
t+jΠ

1−ρ
t+j+1

)
s−2∏
j=0

(
Πρ
t+1+jΠ

1−ρ
t+1+j+1

) .
Notice that

s−2∏
j=0

(
Πρ
t+(1+j)Π

1−ρ
t+1+(j+1)

)
=

s−1∏
j=1

(
Πρ
t+jΠ

1−ρ
t+1+j

)
so that

Ψt,t+1+(s−1)

Ψt+1,t+1+(s−1)
=

s−1∏
j=0

(
Πρ
t+jΠ

1−ρ
t+j+1

)
s−2∏
j=1

(
Πρ
t+jΠ

1−ρ
t+1+j

) = Πρ
tΠ

1−ρ
t+1 ,

and, finally,

Ψt,t+1+(s−1)

Πt,t+1+(s−1)
=

Ψt+1,t+1+(s−1)

Πt+1,t+1+(s−1)
=

Πρ
tΠ

1−ρ
t+1

Πt+1
.

Hence, it follows that

Ct =
ε

ε− 1
MCtYt + αβ

ε

ε− 1
×

Et

Λt+1

Λt

(
Πρ
tΠ

1−ρ
t+1

Πt+1

)−(1+ω)ε ∞∑
s=0

(αβ)s
Λt+1+s

Λt+1

(
Ψt+1,t+1+s

Πt+1,t+1+s

)−(1+ω)ε

MCt+1+sYt+1+s

 ,
which can be re-written recursively as

Ct =
ε

ε− 1
MCtYt + αβEt

Λt+1

Λt

(
Πρ
tΠ

1−ρ
t+1

Πt+1

)−(1+ω)ε

Ct+1

 . (11)

Proceeding in a similar fashion with Dt, we obtain its analogous recursive representation:

Dt = Yt + αβEt

Λt+1

Λt

(
Πρ
tΠ

1−ρ
t+1

Πt+1

)1−ε

Dt+1

 . (12)

To induce stationarity, we next define

C̃t ≡
Ct
Yt
, D̃t ≡

Dt

Yt
,
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and obtain further

C̃t ≡
ε

ε− 1
MCt + αβEt

gΛ
t+1g

Y
t+1

(
Πρ
tΠ

1−ρ
t+1

Πt+1

)−(1+ω)ε

C̃t+1

 (13)

and

D̃t ≡ 1 + αβEt

gΛ
t+1g

Y
t+1

(
Πρ
tΠ

1−ρ
t+1

Πt+1

)1−ε

D̃t+1

 , (14)

where

gΛ
t+1 ≡

Λt+1

Λt
, gYt+1 ≡

Yt+1

Yt
.

Since Πt incorporates a random walk, we define

Π̃t ≡
Πt

Πt

.

Using this, we get

C̃t =
ε

ε− 1
MCt + αβEt

gΛ
t+1g

Y
t+1

(
Π̃ρ
t

Π̃t+1

(
gΠ
t+1

)−ρ)−(1+ω)ε

C̃t+1

 ,

D̃t = 1 + αβEt

gΛ
t+1g

Y
t+1

(
Π̃ρ
t

Π̃t+1

(
gΠ
t+1

)−ρ)1−ε

D̃t+1

 ,
and their ratio,

C̃t

D̃t

=

(
P ∗t
Pt

)1+εω

= (p∗t )
1+εω . (15)

Defining ‘hat’variables to denote log-deviations of stationary variables around the drifting

steady state (as in the main text), i.e., Ĉt ≡ ln C̃t = ln
Ct

Ct
, we further obtain

(1 + εω) p∗t = Ĉt − D̂t,

and using the steady state restriction

C̃t =
1

1− αβgΛgY
ε

ε− 1
M̃Ct

we arrive at

Ĉt =
(
1− αβgΛgY

)
M̂Ct + αβgΛgYEt

[
gΛ
t+1 + gYt+1 + (1 + ω) ε

(
Π̂t+1 − ρΠ̂t + ρĝπt+1

)
+ Ĉt+1

]
.
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Proceeding in an analogous way for D, we begin from the steady state restriction

D̃t =
1

1− αβgΛgY

and arrive at

D̂t = αβgΛgYEt

[
gΛ
t+1 + gYt+1 − (1− ε)

(
Π̂t+1 − ρΠ̂t + ρĝπt+1

)
+ D̂t+1

]
.

Forming the difference,

Ĉt − D̂t =
(
1− αβgΛgY

)
M̂Ct + αβgΛgYEt

[
(1 + ωε)

(
Π̂t+1 − ρΠ̂t + ρĝπt+1

)
+ Ĉt+1 − D̂t+1

]
or equivalently

p̂∗t =
1− αβgΛgY

1 + εω
M̂Ct + αβgΛgYEt

[(
Π̂t+1 − ρΠ̂t + ρĝπt+1

)
+ p̂∗t+1

]
. (16)

B.1.2 Log-Linear Aggregate Price Level and the TVT-NKPC

Following Cogley and Sbordone (2008), we next appropriately transform the price level to

represent it as a log-linear approximation around the drifting steady state. The aggregate price

level obeys

P 1−ε
t =

∫ 1

0
Pt (j)1−ε dj.

Using backward induction, one can obtain

P 1−ε
t = (1− α) (P ∗t )1−ε + α

(
Πρ
t−1Π

1−ρ
t Pt−1

)1−ε
.

Dividing by Pt,

1 = (1− α) (p∗t )
1−ε + α

(
Πρ
t−1Π

1−ρ
t

Πt

)1−ε

,

1 = (1− α) (p∗t )
1−ε + α

(
Πρ
t−1

Π
ρ
t

Πt

Πt

)1−ε
.

Using the gross steady-state growth rate,

gπt ≡
Πt

Πt−1

,

we further obtain

1 = (1− α) (p∗t )
1−ε + α

(
Πρ
t−1(

gπt Πt−1

)ρ 1

Π̃t

)1−ε

,

1 = (1− α) (p∗t )
1−ε + α

(
1(
gπt
)ρ Πρ

t−1

Π
ρ
t−1

1

Π̃t

)1−ε

,
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1 = (1− α) (p∗t )
1−ε + α

(
Π̃ρ
t−1

Π̃t

(
gπt
)−ρ)1−ε

. (17)

Transforming (17) to express it in terms of the stationary variables, we get:2

1 = (1− α) (p∗t )
1−ε (p̃∗t )

1−ε + α
(
gπt
)−ρ(1−ε)

Π̃
ρ(1−ε)
t−1 Π̃

−(1−ε)
t . (18)

Thus, in a drifting steady state at t, equation (18) yields:

1 = (1− α) p∗t + α
(
gπt
)−ρ(1−ε) (

gπt
)ρ(1−ε)

,

1 = 1− αp∗t + α,

⇒ p∗t = 1. (19)

Using the ‘hat’variables,

Π̂t ≡ ln Π̃t = ln
(
Πt/Πt

)
= ln Πt − ln Πt,

ĝπt ≡ ln gπt ,

the log-linear approximation of (18) around the (time-varying) steady state p∗t = 1 is:

p̂∗t =
α

1− α

(
Π̂t − ρΠ̂t−1 + ρĝπt

)
. (20)

Employing relation (16), we finally arrive at

Π̂t − ρΠ̂t−1 + ρĝΠ
t =

(1− α)(1− αβgΛgY )

α(1 + εω)
M̂Ct + βgΛgYEt

[
Π̂t+1 − ρΠ̂t + ρĝΠ

t+1

]
,

which is equation (2) in the main text.

B.2 Log-Linear Marginal Cost Condition of McKnight and Mihailov (2015)

Linearizing equation (8) of McKnight and Mihailov (2015):

mct = wt

(
Pt
PH,t

)
,

⇒ m̂ct = ŵt +
(
P̂t − P̂H,t

)
.

(21)

2Which is a generalization of eq. (26) in Appendix A of Cogley and Sbordone (2008) arising from the indexation
(a fraction 1− ρ) to current trend inflation we consider here in addition to the indexation (a fraction ρ) to past
actual inflation as assumed by the latter authors.
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Linearizing the first-order condition (13) of McKnight and Mihailov (2015) but using hereafter

our notation for ω and σ in the present paper,

wt =
vh(ht)

uc(Ct,mt)
,

⇒ ŵt = ωĥt + σĈt − χm̂t,

(22)

where the coeffi cients are defined as

ω ≡ htvhh
vh

> 0, χ ≡ mtucm
uc

, σ ≡ −Ctucc
uc

> 0.

The aggregate version of the production function (7) of McKnight and Mihailov (2015) is

dtYt = ht,

where dt is the measure of price dispersion:

dt ≡
∫ 1

0

(
pH,t(i)

PH,t

)−ϕ
di.

Combining equations (21) and (22) above yields:

m̂ct = ωd̂tYt + σĈt − χm̂t +
(
P̂t − P̂H,t

)
. (23)

Rewriting the price index, equation (2) of McKnight and Mihailov (2015):

P 1−ε
t = aP 1−ε

H,t + (1− a)P 1−ε
F,t ,

⇒
(
Pt
PH,t

)1−ε
= a+ (1− a) (St)

1−ε ,

after using the definition of the terms of trade St. Linearizing the above yields:

(
P̂t − P̂H,t

)
= (1− a)

[ (
St
)1−ε

a+ (1− a)
(
St
)1−ε

]
Ŝt. (24)

Combining equations (23) and (24) gives the definition of m̂ct in a monetary open economy:

m̂ct = ωd̂tYt + σĈt − χm̂t + (1− a)

[ (
St
)1−ε

a+ (1− a)
(
St
)1−ε

]
Ŝt. (25)

Assuming that in the steady state St = 1, equation (25) simplifies to:

m̂ct = ωd̂tYt + σĈt − χm̂t + (1− a)Ŝt. (26)
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Ignoring d̂tYt for the moment, nothing has changed in terms of our definition of m̂ct provided

the linearization is performed assuming St = 1, which we assume as most of the open economy

literature does.

The relative price dispersion measure is:

dt =

∫ 1

0

(
P ∗t
Pt

)−ε
di.

With Calvo (1983) price-setting, the above can be written as:

dt = (1− α)

(
P ∗t
Pt

)−ε
+ α(1− α)

[
P ∗t−1Πρ

t−1Π
1−ρ
t

Pt

]−ε

+α2(1− α)

[
P ∗t−2 (Πt−1Πt−2)ρ

(
ΠtΠt−1

)1−ρ
Pt

]−ε
+ ...

Recalling that Πt ≡ Pt/Pt−1, collecting terms gives:

dt = (1− α)

(
P ∗t
Pt

)−ε
+ α

(
Π−εt−1

)ρ (
Π
−ε
t

)1−ρ

×Πε
t

(1− α)

(
P ∗t−1

Pt−1

)−ε
+ α(1− α)

(
P ∗t−2Πρ

t−2Π
1−ρ
t−1

Pt−1

)−ε
+ ...


︸ ︷︷ ︸

≡ dt−1

.

Recalling that p∗t ≡ P ∗t /Pt, the above expression simplifies to:

dt = (1− α) (p∗t )
−ε + α

(
Π−εt−1

)ρ (
Π
−ε
t

)1−ρ
Πε
tdt−1. (27)

Transforming (27) to express it in terms of stationary variables:

dt · d̃t = (1− α) (p∗t )
−ε · (p̃∗t )

−ε + αdt−1 · d̃t−1

(
Π
−ε
t−1 · Π̃−εt−1

)ρ (
Π
−ε
t

)−ρ
· Π̃ε

t,

dt · d̃t = (1− α) (p∗t )
−ε · (p̃∗t )

−ε + αdt−1 · d̃t−1

(
Π̃−εt−1

)ρ [(
gπt
)−ε]−ρ · Π̃ε

t, (28)

since gπt ≡ Πt/Πt−1.

Now recall that in a time-varying steady state at t,

Π̃t ≡ Πt/Πt = Πt/Πt = 1,

p̃∗t ≡ p∗t /p∗t = p∗t /p
∗
t = 1,

d̃t ≡ dt/dt = dt/dt = 1,

Also recall that in the steady state p∗t = 1. Thus, equation (28) becomes
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dt = (1− α) + αdt−1g
d
t , (29)

and after substituting in (29) by the definition dt ≡ dt−1g
d
t , we obtain dt = 1. Linearizing (28)

around the steady state yields:

d̂t = −ε(1− α)p̂∗t + αd̂t−1 + αε
(

Π̂t − ρΠ̂t−1 + ρĝπt

)
. (30)

Recalling that

p̂∗t =
α

1− α

(
Π̂t − ρΠ̂t−1 + ρĝπt

)
, (31)

equations (30) and (31) imply that d̂t = αd̂t−1. As discussed by Schmitt-Grohé and Uribe

(2007), dt has no real consequences up to first order in the stationary distribution of other

endogenous variables. This means that our linear approximations to the equilibrium conditions

around the steady state are justified in ignoring the variable dt. Consequently equation (26)

above simplifies to

m̂ct = ωŶt + σĈt − χm̂t + (1− a) Ŝt,

which is eq. (7) in the main text.

B.3 Alternative Types of Multistep Univariate Forecasts

Let yt ≡ ∆dXt denote the stationary transformation of a time series in levels or log-levels Xt,

where ∆d is the d-th difference for Xt being integrated of order d, that is, Xt is I (d) and

d = {0, 1, 2}. To forecast Xt at horizon h, one has to forecast first the appropriate stationary

transformation of Xt, yt, at the same horizon. When h > 1, multistep univariate forecasts can

be generated in two ways, namely, by iterated autoregressive (AR) forecasts or by direct AR

forecasts.

B.3.1 Iterated Multistep Univariate Forecasts

The iterated forecast always begins with the 1-step-ahead forecasting AR model for yt, which

can be written as (see Marcellino et al., 2006, pp. 502—503, whose notation we follow here)

yt+1 = α+

p∑
i=1

φiyt+1−i + εt+1. (32)

After estimating recursively by OLS the parameters in (32), the multistep forecasts of yt+h
are obtained iteratively from

ŷIt+h|t = α̂+

p∑
i=1

φ̂iŷ
I
t+1−i|t, where ŷ

I
j|t = yj for j ≤ t. (33)

Iterated forecasts of Xt+h are then computed by accumulating the values of ŷIt+h|t depending

on the order of integration of Xt, as follows:
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X̂I
t+h|t =



ŷIt+h|t if Xt is I (0) ,

Xt +

h∑
i=1

ŷIt+i|t if Xt is I (1) ,

Xt + h∆Xt +
h∑
i=1

i∑
j=1

ŷIt+j|t if Xt is I (2) .

(34)

B.3.2 Direct Multistep Univariate Forecasts

The direct estimates of the parameters are the recursive minimizers of the h-step-ahead cri-

terion function. Accordingly, the parameters are estimated by OLS from the following direct

forecasting AR model (again, we follow Marcellino et al., 2006, p. 503):

yht+h = β +

p∑
i=1

ρiyt+1−i + εt+h, (35)

where now

yht+h =


Xt+h if Xt is I (0) ,

Xt+h −Xt if Xt is I (1) ,
h∑
i=1

i∑
j=1

∆2Xt+j = Xt+h −Xt − h∆Xt if Xt is I (2) .

The direct estimator of the parameters is obtained by recursive OLS estimation of (35)

where data through period t are used, so that the last observation includes yht on the left-hand

side of the regression. Then, the direct multistep forecasts of yht+h are given by

ŷD,ht+h|t = β̂ +

p∑
i=1

ρ̂iyt+1−i. (36)

By analogy with the iterated multistep AR forecasts in (34), direct multistep AR forecasts

of Xt+h are recovered from ŷD,ht+h|t depending on the order of integration of Xt:

X̂D
t+h|t =


ŷD,ht+h|t if Xt is I (0) ,

Xt + ŷD,ht+h|t if Xt is I (1) ,

Xt + h∆Xt + ŷD,ht+h|t if Xt is I (2) .

(37)
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C Additional Results

This Appendix C provides additional results in terms of stationarity tests (as discussed in the

main text) and robustness checks (3 tables) and graphical illustrations (19 figures), some of

which are referred to in the main text, with minimal comments that follow.

C.1 Stationarity Tests and Further Robustness Checks

Table 1 reports the detailed results from the stationarity tests on inflation and its components

and drivers in the EA and the US, most of which were discussed in section 3 of the main text.

As a further check of robustness of our particular —but typical in macroeconomic theory

and empirics —detrending choice, Figure 1 presents alternative estimates for US trend inflation

in the recent literature, such as Stock and Watson (2007) and Chan et al. (2013, 2016, 2017),

all based on the CPI measure of the aggregate price level (for the EA we have not found a

similar comparison). While trend inflation measures differ in time patterns and — especially

volatility and smoothness —we can infer from this figure that our inflation trend measure based

on Hodrick-Prescott (1997) filtering falls quite in the middle of these alternative estimates,

in terms of dynamics and fluctuations. This is reassuring in the sense that our ‘first pass’

here based on one-sided Hodrick-Prescott detrending (to resemble real-time prediction) may

be robust to alternative extraction of trend inflation, although we leave this issue (that could

potentially improve our forecasting procedure) for further investigation.

Tables 2 and 3 in the main text reported the key results in evaluating the predictive per-

formance of our TVT-NKPC forecasting procedure, where the statistical significance in the

Diebold-Mariano (1995) test based on the null of equal predictive accuracy was indicated by

the modified DM statistic, to correct for small sample bias, as proposed by Harvey et al. (1997).

Since our forecasting evaluation period is not that small, in effect, ranging from 44 (if the hori-

zon is 20 quarters ahead) to 64 (if the horizon is 1 quarter ahead) quarters, we here also present

a version of the same results in appendix tables 2 and 3 in this section, but now applying the

original DM statistic in judging about statistical significance.

It can be seen, comparing the respective significance levels in tables 2 and 3 in this Appendix

C with tables 2 and 3, respectively, already reported in the main text that such an alteration,

which ignores the small sample size correction, results in even more favorable outcomes regarding

the predictive accuracy of our method. More precisely, the final conclusions in the main text

and its abstract can now be slightly modified, in the following sense. Based on the original DM

statistic, we conclude that our TVT-NKPC forecasting procedure significantly outperforms the

conventional random walk benchmark at all horizons (remaining statistically indistinguishable

only at 4 quarters). Moreover, it also outperforms quantitatively, by about 10 percentage points

beyond the short run of 1 and 4 quarters, the agnostic Atkeson-Ohanian (2001) benchmark, and

in a statistically significant fashion in the US at the medium run of 8 and 12 quarters.
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Generalized NKPC component ADF test t-stat pv KPSS test LM stat
1% cv = 0.7390
5% cv = 0.4630
10% cv = 0.3470

EA: full (adjusted) sample 179 to 182 observations 183 to 184 observations
EA inflation 0.6647 0.5998

Cycle of EA inflation 0.0000 0.0191
Cycle of EA MOE real marginal cost 0.0000 0.0201
Cycle of EA real unit labor cost 0.0000 0.0214

EA (log-)trend inflation 0.0558 1.4018
Growth rate of EA trend inflation 0.0402 0.2157

US: full (adjusted) sample 181 to 182 observations 183 to 184 observations
US inflation 0.1956 0.5639

Cycle of US inflation 0.0000 0.0181
Cycle of US real marginal cost 0.0001 0.0204
Cycle of US real unit labor cost 0.0000 0.0214

US (log-)trend inflation 0.2040 1.2243
Growth rate of US trend inflation 0.0474 0.1661

Table 1: Stationarity Tests for the Components and Drivers of the TVT-NKPC

Note: Separation of the cyclical component from the trend component of the respective time series

has been obtained in the whole (adjusted) sample by applying a two-sided Hodrick-Prescott (1997)

filter. The null of the Augmented Dickey-Fuller (ADF) test (Dickey and Fuller, 1979; Said and Dickey,

1984) is nonstationarity (unit root): MacKinnon (1996) one-sided probability values (pv) for the ADF

test t-statistic are provided in the table; the lag length is automatic, based on the Schwarz (1978)

Information Criterion (SIC), with a maximum lag set at 13 quarters; the reported results are for the

ADF specification that includes a constant. The null of the Kwiatkowski-Phillips-Schmidt-Shin (KPSS,

1992) test is stationarity: asymptotic critical values (cv) for the KPSS test LM-statistic at conventional

levels are provided in the table; the reported results are for the KPSS specification that includes a

constant; the bandwidth is selected automatically, based on Andrews (1991) and using Bartlett (1950)

kernel.
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Forecasting evaluation period 2000:1—2015:4
Forecast horizon, quarters 1 4 8 12 16 20

Panel A: Root MSFE
Theory-Based TVT-NKPC Procedures of Inflation Forecasting

MOE RMC (roll) 0.729 0.884 0.912 0.829 0.745 0.883
MOE RMC (rec) 0.706 0.879 0.914 0.842 0.759 0.838
RULC RMC (roll) 0.751 0.873 0.892 0.816 0.739 0.880
RULC RMC (rec) 0.765 0.879 0.892 0.822 0.747 0.833

Agnostic Univariate Benchmarks of Inflation Forecasting
RW Forecast 0.909 0.885 1.038 1.001 0.996 1.092

AO (Pseudo-RW) Forecast 0.669 0.815 0.913 0.894 0.819 0.921
Panel B: Theil U-stat to RW ≡ root MSFE of TVT-NKPC w.r.t. RW forecast

MOE RMC (roll) 0.802*** 1.000 0.879 0.821 0.748** 0.808
MOE RMC (rec) 0.776*** 0.993 0.881 0.834 0.762** 0.767**
RULC RMC (roll) 0.826** 0.987 0.859* 0.809* 0.742** 0.805
RULC RMC (rec) 0.842** 0.993 0.860* 0.814* 0.751** 0.763**

Panel C: Theil U-stat to AO ≡ root MSFE of TVT-NKPC w.r.t. AO forecast
MOE RMC (roll) 1.090** 1.086 0.999 0.927 0.909 0.958
MOE RMC (rec) 1.053 1.078 1.001 0.942 0.926 0.910
RULC RMC (roll) 1.121*** 1.072* 0.977 0.914 0.901 0.955
RULC RMC (rec) 1.143*** 1.079** 0.977 0.920 0.912 0.905

Table 2: Predictive Performance of TVT-NKPC Forecasts in the EA Data - DM Test

Note: See the note below Table 2 in the main text. Differently here, the original Diebold-Mariano

(1995) t-statistic is used, and is again computed with p-values using Newey-West (1987) HAC standard

errors; it tests the null of no significant difference in the forecast accuracy of two compared (non-nested)

models; statistical significance of the (one-sided) test is shown at conventional levels: *** 1%, ** 5%,

and * 10%. These results are robust to applying instead the modified DM t-statistic test of Harvey et

al. (1997) that corrects for small-sample bias —see Table 2 in the main text.
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Forecasting evaluation period 2000:1—2015:4
Forecast horizon, quarters 1 4 8 12 16 20

Panel A: Root MSFE
Theory-Based TVT-NKPC Procedures of Inflation Forecasting

MOE RMC (roll) 0.854 1.156 1.165 1.249 1.255 1.662
MOE RMC (rec) 0.986 1.125 1.438 1.370 1.291 1.144
RULC RMC (roll) 0.914 1.041 1.100 1.229 1.286 1.655
RULC RMC (rec) 0.922 1.036 1.127 1.227 1.261 1.179

Agnostic Univariate Benchmarks of Inflation Forecasting
RW Forecast 0.970 1.127 1.333 1.360 1.470 1.447

AO (Pseudo-RW) Forecast 0.868 1.027 1.222 1.344 1.376 1.251
Panel B: Theil U-stat to RW ≡ root MSFE of TVT-NKPC w.r.t. RW forecast

MOE RMC (roll) 0.881* 1.034 0.874 0.918 0.854 1.149
MOE RMC (rec) 1.016 0.998 1.079 1.007 0.878 0.790�

RULC RMC (roll) 0.942 0.924 0.826* 0.903* 0.875 1.114
RULC RMC (rec) 0.950 0.919 0.845* 0.902* 0.858* 0.812

Panel C: Theil U-stat to AO ≡ root MSFE of TVT-NKPC w.r.t. AO forecast
MOE RMC (roll) 0.984 1.134** 0.953 0.929 0.912 1.329*
MOE RMC (rec) 1.135*** 1.096 1.177* 1.020 0.938 0.914
RULC RMC (roll) 1.053 1.014 0.901** 0.914** 0.935 1.323*
RULC RMC (rec) 1.061 1.001 0.922** 0.913* 0.916 0.943

Table 3: Predictive Performance of TVT-NKPC Forecasts in the US Data - DM Test

Note: See the note below Table 2 in this supplementary online appendix, as well as Table 3 in

the main text for the corresponding US results when applying the modified DM t-statistic instead of

the original DM t-statistic here. �-superscript denotes that the p-value of the DM t-statisitic in the

respective cell of the table above is just marginal at the 10% sigificance level here, 0.1092.
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C.2 Further Graphical Illustrations

The following figures illustrate various aspects and properties of our data set, inflation forecasts

(for the EA and the US at the examined horizons) or some of their central components, as

implied by our TVT-NKPC inflation forecasting procedure.
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Figure 6: EA — Recursively Re-estimated Persistence (gΠ
t ) of Trend Inflation (fixed rolling

window of 113 quarters), plot (top graph) and histogram (bottom graph); 1999Q4—2015Q3, 64
observations; mean 0.971, median 0.975, max 0.995, min 0.929, SD 0.017
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Figure 7: US — Recursively Re-estimated Persistence (gΠ
t ) of Trend Inflation (fixed rolling

window of 113 quarters), plot (top graph) and histogram (bottom graph); 1999Q4—2015Q3, 64
observations; mean 0.959, median 0.974, max 0.991, min 0.857, SD 0.034
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Figure 8: EA —Recursively Re-estimated Persistence (θ) of Trend Inflation Growth (fixed rolling
window of 113 quarters), plot (top graph) and histogram (bottom graph); 1999Q4—2015Q3, 64
observations; mean 0.146, median 0.202, max 0.341, min —0.361, SD 0.150
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Figure 9: US —Recursively Re-estimated Persistence (θ) of Trend Inflation Growth (fixed rolling
window of 113 quarters), plot (top graph) and histogram (bottom graph); 1999Q4—2015Q3, 64
observations; mean 0.373, median 0.389, max 0.655, min —0.156, SD 0.186
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Figure 10: EA —Recursively Re-estimated Slope (κ) of the TVT-NKPC at Horizon of 1 Quarter
(MOE RMC proxy, fixed rolling window of 113 quarters), plot (top graph) and histogram
(bottom graph); 1999Q4—2015Q3, 64 observations; mean 0.185, median 0.124, max 1.656, min
—0.141, SD 0.273
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Figure 11: US —Recursively Re-estimated Slope (κ) of the TVT-NKPC at Horizon of 1 Quarter
(MOE RMC proxy, fixed rolling window of 113 quarters), plot (top graph) and histogram
(bottom graph); 1999Q4—2015Q3, 64 observations; mean 0.173, median 0.157, max 0.553, min
—0.159, SD 0.120
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Figure 12: EA —Recursively Re-estimated Slope (κ) of the TVT-NKPC at Horizon of 1 Quarter
(RULC RMC proxy, fixed rolling window of 113 quarters), plot (top graph) and histogram
(bottom graph); 1999Q4—2015Q3, 64 observations; mean 0.094, median 0.093, max 0.260, min
—0.100, SD 0.089
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Figure 13: US —Recursively Re-estimated Slope (κ) of the TVT-NKPC at Horizon of 1 Quarter
(RULC RMC proxy, fixed rolling window of 113 quarters), plot (top graph) and histogram
(bottom graph); 1999Q4—2015Q3, 64 observations; mean 0.060, median 0.038, max 0.456, min
0.001, SD 0.072
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Figure 14: EA —Best TVT-NKPC forecasts (blue) against actual inflation (red) in the short
run (as indicated by the bold fonts in Table 2 in the main text and Table 2 in this Appendix
C): top graph —1 quarter ahead; bottom graph —4 quarters ahead; % per annum at annualized
rate
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Figure 15: US —Best TVT-NKPC forecasts (blue) against actual inflation (red) in the short
run (as indicated by the bold fonts in Table 3 in the main text and Table 3 in this Appendix
C): top graph —1 quarter ahead; bottom graph —4 quarters ahead; % per annum at annualized
rate
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Figure 16: EA —Best TVT-NKPC forecasts (blue) against actual inflation (red) in the medium
run (as indicated by the bold fonts in Table 2 in the main text and Table 2 in this Appendix C):
top graph —8 quarters ahead; bottom graph —12 quarters ahead; % per annum at annualized
rate
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Figure 17: US —Best TVT-NKPC forecasts (blue) against actual inflation (red) in the medium
run (as indicated by the bold fonts in Table 3 in the main text and Table 3 in this Appendix C):
top graph —8 quarters ahead; bottom graph —12 quarters ahead; % per annum at annualized
rate
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Figure 18: EA —Best TVT-NKPC forecasts (blue) against actual inflation (red) in the long run
(as indicated by the bold fonts in Table 2 in the main text and Table 2 in this Appendix C):
top graph —16 quarters ahead; bottom graph —20 quarters ahead; % per annum at annualized
rate
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Figure 19: US —Best TVT-NKPC forecasts (blue) against actual inflation (red) in the long run
(as indicated by the bold fonts in Table 3 in the main text and Table 3 in this Appendix C):
top graph —16 quarters ahead; bottom graph —20 quarters ahead; % per annum at annualized
rate
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