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Abstract 20 

Agroforestry systems, which incorporate trees into agricultural land, could contribute to 21 

sustainable agricultural intensification as they have been shown to increase land productivity, 22 

biodiversity and some regulating ecosystem services. However, the effect of temperate 23 

agroforestry systems on pest control and pollination services has not been comprehensively 24 

reviewed, despite the importance of these services for sustainable intensification. We review 25 

and analyse the available evidence for silvoarable agroforestry systems, following which we 26 

propose a predictive framework for future research to explain the observed variation in results, 27 

based on ecological theory and evidence from analogous systems. Of the 12 studies included 28 

in our meta-analysis of natural enemies and pests, the observed increases in natural enemy 29 

abundance (+24%) and decreases in arthropod herbivore/pest abundance (-25%) in 30 

silvoarable systems were both significant, but molluscan pests were more abundant in 31 

silvoarable systems in the two available studies. Only three studies reported effects on 32 

pollinators, but all found higher abundance in silvoarable compared with arable systems. 33 

Measures of pest control or pollination service are scarce, but suggest stronger effect sizes. 34 

Our framework seeks to establish hypotheses for future research through an interpretation of 35 

our findings in the context of the wider literature, including landscape characteristics, 36 

silvoarable system design and management, system maturity, trophic interactions and 37 

experimental design. Our findings suggest that silvoarable systems can contribute to 38 

sustainable intensification by enhancing beneficial invertebrates and suppressing arthropod 39 

pests compared with arable, but future research should include measures of pest control and 40 

pollination and implications for productivity and economic value.  41 

  42 

Keywords: Agroforestry; Alley cropping; Sustainable agriculture; Conservation biological 43 

control; Pollinators; Natural enemies  44 
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1 Introduction 45 

Global crop demand is rising rapidly, and is forecasted to increase by 100-110% from 2005 to 46 

2050 (Tilman et al., 2011). The intensification of arable production in temperate regions has 47 

driven declines in biodiversity and associated ecosystem services, such as pest control and 48 

pollination (Bartomeus et al., 2014; Bianchi et al., 2006). This has in many cases led to a 49 

reliance on management techniques such as pesticide application, genetically modified crops 50 

and maintenance of managed honey bee colonies. The sustainability of such management 51 

practices is threatened by processes such as pesticide resistance (Sparks and Nauen, 2015), 52 

secondary pest outbreaks (Dutcher, 2007; Hill et al., 2017), depletion of non-renewable 53 

sources, environmental and human health risks associated with pesticides (Bernardes et al., 54 

2015; Kim et al., 2017), and honey bee colony collapse or growth deficits (Aizen and Harder, 55 

2009; Neumann and Carreck, 2010).  56 

There is a strong and growing pressure to move towards more sustainable intensification of 57 

production, through harnessing natural processes to sustain productivity rather than relying 58 

on pesticides and managed pollinators (FAO, 2013; Power, 2010). One alternative tactic for 59 

reducing crop damage by pests is to enhance the effectiveness of their natural enemies, such 60 

as predators and parasitoids, by enhancing plant diversity and habitat complexity (Begg et al., 61 

2017). This is the principle of conservation biological control (Barbosa, 1998). Similar 62 

arguments have been proposed to encourage wild pollinators (Kovács‐Hostyánszki et al., 63 

2017; Woodcock et al., 2016), which have the potential to increase the effectiveness of 64 

pollination in flowering crops and mitigate against potential honey bee losses (Garibaldi et al., 65 

2013; Hoehn et al., 2008). 66 

One possible solution to the need for sustainable intensification is agroforestry, essentially ‘the 67 

incorporation of trees into farming systems’ (Gordon et al., 2018). Agroforestry has been 68 

proposed as a ‘win-win’ opportunity for productivity and environmental protection (The 69 

Woodland Trust, 2018). Although more typical of the tropics due to lower constraints posed 70 
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by mechanisation and climatic factors such as light availability, there is growing interest in this 71 

land use system in temperate regions because of its potential contribution towards sustainable 72 

intensification (Newman and Gordon, 2018; Smith et al., 2012). For example, the 73 

‘establishment, regeneration or renovation of agroforestry systems’ is promoted through the 74 

European Union’s Common Agricultural Policy. Agroforestry is perceived as being beneficial 75 

for the environment and land stewardship, which are typically the main drivers for adoption 76 

(García de Jalón et al., 2018; Matthews et al., 1993).  77 

Of particular interest in terms of the potential benefit from natural pest control and pollination 78 

is silvoarable agroforestry, which is the intercropping of trees or shrubs with arable crops (Fig. 79 

1). Different methods of silvoarable production are practiced throughout northern temperate 80 

regions, sometimes being referred to by regional terminologies. These include tree-based 81 

intercropping and alley cropping systems in North America which typically use hardwoods for 82 

nut and timber production, and various agri-silviculture systems in the Himalayas (Newman 83 

and Gordon, 2018). Timber is typically the main tree product produced in silvoarable systems, 84 

although intercropping with fruit trees is widely practised in China (Chang et al., 2018) and its 85 

potential for a quick return on investment is encouraging uptake in the UK (Newman et al., 86 

2018). Silvoarable systems are far scarcer in southern temperate regions, although research 87 

platforms have been established (Newman and Gordon, 2018). Temperate silvoarable 88 

systems have the potential to increase productivity compared with equivalent monocropped 89 

land, for example Land Equivalent Ratios of between 0.98 and 1.37 have been estimated over 90 

the full tree rotation (Graves et al., 2010; Gruenewald et al., 2007).  91 

Several reviews and meta-analyses have demonstrated that temperate agroforestry systems 92 

generally enhance biodiversity and some ecosystem services compared with arable cropping 93 

(Smith et al., 2013; Stamps and Linit, 1997; Torralba et al., 2016; Tsonkova et al., 2012). 94 

However, the effects of silvoarable systems on pest control and pollination services remain 95 

poorly understood in temperate regions; all but two of 42 studies included in a recent meta-96 

analysis of pest, disease and weed control were conducted in the tropics and sub-tropics, 97 
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which typically have different mechanisation requirements and utilise different tree/crop 98 

combinations to those used in temperate regions (Pumariño et al., 2015).  99 

 100 

 101 

Fig. 1. Illustration of a typical silvoarable alley-cropping system. 102 

The aims of this review are: 1) to collate and analyse studies of pollinators, pests and their 103 

natural enemies in temperate silvoarable systems, specifically in terms of their potential 104 

contribution to pest control and pollination ecosystem services; and 2) to develop a framework 105 

for future research to predict the factors which influence variation in results, with the aspiration 106 

of driving forward a unified research agenda.  107 

 108 

2 Methods 109 

Literature was sourced based on the following criteria (the selection process is summarised 110 

at Supplementary Material 1): 111 

1. A measure of abundance or activity density of invertebrate herbivores/pests, natural 112 

enemies or pollinators, and/or a measure of conservation biological control of animal 113 

pests and/or pollination were recorded; 114 

2. Studies were undertaken in a temperate region, defined as latitude greater than 40º 115 
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north or south; 116 

3. A silvoarable system, for this purpose defined as trees or shrubs incorporated into an 117 

arable field, was compared with an arable control, with the respective arable 118 

components comprising annual crops. 119 

To minimise the risk of publication bias, we sourced both peer-reviewed and non-peer-120 

reviewed literature, including theses and reports. 121 

2.1 Data extraction 122 

A total of 19 datasets were identified (Supplementary Materials 2 and 3). We reviewed the 123 

characteristics of each study and the studied system(s), including sampling duration, alley 124 

width, system age, number of taxonomic orders studied and minimum distance between 125 

silvoarable and arable control plots. Capture or abundance data for natural enemies, pests (or 126 

herbivores where pest species were not specified), pollinators, and pest control proxies was 127 

sourced from each dataset to analyse effect sizes. Where necessary, data was extracted from 128 

figures using GetData Graph Digitizer (version 2.26, http://getdata-graph-digitizer.com). Any 129 

data collected from tree rows was excluded where possible to provide a comparison of 130 

silvoarable alleys versus arable. Where pitfall trap data from tree rows could not be excluded, 131 

the study/site was omitted entirely from the analysis of effect sizes, because the structural 132 

complexity of vegetation in tree rows could reduce capture rates (Melbourne, 1999; Thomas 133 

et al., 2006). One study was completely excluded and one study partially excluded (two of the 134 

three sites) on this basis (Supplementary Material 3). 135 

2.2 Meta-analysis for herbivores/pests and natural enemies 136 

To quantify the magnitude of effects for herbivores/pests and natural enemies, we calculated 137 

effect size as the log response ratio (Hedges et al., 1999) of mean functional group abundance 138 

in the silvoarable system versus the arable control. Hence, the response variables were 139 

herbivore/pest abundance and natural enemy abundance. The single explanatory variable 140 

was presence or absence of a silvoarable system.   141 
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Standard deviations could not be extracted for four of the 12 identified studies (Supplementary 142 

Material 3), so were imputed based on their mean values (Lajeunesse, 2013). Three of the 143 

four studies with missing standard deviations used pitfall trapping, therefore imputed standard 144 

deviations were calculated based on the significant linear relationship between mean and 145 

standard deviation for the two available pitfall trap studies with standard deviation data 146 

(Griffiths et al., 1998; Phillips et al., 1994). The significance of effects for herbivore/pest and 147 

natural enemy abundances were analysed in a mixed-effects meta-analysis model, using the 148 

rma.mv function of the metaphor package version 2.1-0 (Viechtbauer, 2010) within R version 149 

3.5.2 (R Core Team, 2018). As multiple data points were extracted from some individual 150 

studies, study ID was included as a random effect. The results are reported as back-151 

transformed values. 152 

The imputation of standard deviations did not increase the risk of Type 1 errors, as effect sizes 153 

were reduced and p-values increased, compared with models which omitted studies with 154 

missing standard deviations. Outliers and influential observations were quantified using 155 

Cook’s distance. For the pest/herbivores model, Cook’s distance for a slug abundance data 156 

point was 0.30, compared with less than 0.05 for all other data points. Therefore, the results 157 

of a model excluding slug data (i.e. arthropods only) are also presented. For the natural 158 

enemies model, the data-point with the highest Cook’s distance (0.13) was a negative effect 159 

size (i.e. lower abundance in the silvoarable plot than arable control) and was therefore 160 

retained to reduce the likelihood of a Type 1 error. Cook’s distance was below 0.10 for all other 161 

data points. Publication bias was considered unlikely due to the inclusion of unpublished 162 

studies, but funnel plots were visually checked for symmetry. Heterogeneity, in the form of I2 163 

calculated from the models without random effects, ranged from 56% to 75%, lower than the 164 

median of 85% reported for ecological meta-analyses (Senior et al., 2016).  165 

2.3 Review of other effect sizes  166 

Effect sizes were calculated from five studies which reported a proxy for pest control, such as 167 

ratios of natural enemies to herbivores, pest mortality rates or pest parasitism rates, in a 168 



8 

 

silvoarable system versus an arable control. Pollinator effect sizes were derived from three 169 

studies which reported abundances in silvoarable systems and arable controls. To investigate 170 

whether the functional group responses are highly influenced by any specific taxa, effect sizes 171 

were also calculated for taxa which were included in three or more studies (Araneae, 172 

Carabidae, Coccinellidae, Syrphidae and Aphididae). We calculated effect size as the mean 173 

abundance (or for pest control proxies, the mortality/parasitism rate or ratio of natural enemies 174 

to pests) in the silvoarable system, divided by the respective value for the arable control. Due 175 

to the low number of available studies for these measures, pooled effect sizes were not 176 

analysed. Finally, four studies reported some measure of crop damage or yield, which we 177 

describe in the Results.  178 

2.4 Predictive framework 179 

Our findings were used to inform and construct a predictive framework for future research, 180 

which identifies a series of hypotheses to predict the factors which influence variation in the 181 

results. The components of the framework were selected based on a wider review of 182 

ecological theory and analogous systems, such as hedgerows, field margins, flower strips and 183 

beetle banks. 184 

 185 

3 Results 186 

3.1 Characteristics of studies 187 

A total of 19 datasets were extracted from 17 studies undertaken in five countries, comprising 188 

Canada, France, Turkey, UK and USA, with publication dates ranging from 1993 to 2015 189 

(Supplementary Material 2). Data from the majority of the studies included in our analysis were 190 

taken from single sites over less than two years (Fig. 2a). There was a strong bias towards 191 

systems with alley widths of around 12 m (Fig. 2b). Most of the studied systems were relatively 192 

young in age, i.e. less than ten years since planting (Fig 2c). The majority of studies report on 193 
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the abundances of three or fewer taxonomic orders, with only two studies reporting on seven 194 

or more orders (Fig. 2d). Where the minimum distance between the silvoarable and arable 195 

plots is specified, this is typically less than 50 m (Fig 2e, three outliers are not shown).   196 

 197 

 198 

Fig. 2. Characteristics of studies of invertebrate pest control and pollination in temperate silvoarable 199 

systems, where the relevant information is specified (Supplementary Material 2). For studies of multiple 200 

sites, each site is represented individually. Multiple studies reporting on the same data are represented 201 

once collectively. Each ‘box’ represents the first and third quartiles, whilst the ‘whiskers’ extend to the 202 

largest/smallest value no further than 1.5 * inter-quartile range from the box. Three outliers are not 203 

plotted in Fig. 2e (130 m, 210 m and 270 m), but are included in the calculations. 204 

3.2 Herbivores/pests and natural enemies: meta-analysis  205 

Invertebrate herbivore/pest abundances were lower in the silvoarable compared with arable 206 

systems, with a back-transformed mean effect size of 0.89 (Fig. 3), but this was not significant 207 

(z=-0.650, p-value=0.516). However, the abundance of arthropod herbivores/pests was 208 

significantly lower in the silvoarable than arable systems (z=-2.005, p-value=0.045), with a 209 

mean effect size of 0.75 (Fig. 3). This contrasts to slug abundance, which was higher in the 210 

silvoarable than arable systems, with effect sizes of 1.12 to 1.53 across the two studies. 211 
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Natural enemy abundance was significantly higher in silvoarable compared with arable 212 

systems (z=2.528, p-value=0.011), with a mean effect size of 1.24 (Fig. 3). Only one of the 213 

nine natural enemy effect sizes were less than one (Supplementary Material 3). 214 

 215 

Fig. 3. Means and confidence intervals of the back-transformed response ratios of invertebrate 216 

herbivore/pest and natural enemy abundance in silvoarable alleys (treatment) versus arable fields 217 

(control). A response ratio of greater than 1 indicates a higher abundance in the silvoarable than the 218 

arable system. Numbers in parentheses represent the number of studies and ‘*’ denotes significance 219 

(p-value < 0.05). Data is provided in Supplementary Material 3. 220 

Data from four sites reported in two studies were not included in the effect size analysis 221 

because pitfall trap data from tree rows and alleys could not be separated. In these studies, 222 

natural enemy activity was lower in the silvoarable system than the arable control at three of 223 

the four sites, whilst the study which also sampled slugs found higher captures in the 224 

silvoarable than the arable system at one site but lower captures in the silvoarable system at 225 

the other site (Supplementary Material 3). 226 

3.3 Proxies for pest control  227 

One measure of pest control is the ratio of the number of natural enemies to herbivores/pests. 228 

Two studies found a higher ratio in silvoarable versus arable systems (Table 1), which could 229 

be seen as a proxy for higher pest control. Three datasets included mortality or parasitism 230 
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rates of pests, and all found consistently higher rates in silvoarable systems compared with 231 

arable systems (Table 1), again suggesting a higher level of pest control. 232 

 233 

Table 1  234 

Summary of studies which reported proxies for pest control, i.e. ratios of airborne natural 235 

enemies to herbivores or mortality/parasitism rates. Effect sizes are calculated as the 236 

silvoarable ratio/rate divided by the respective arable control value.  237 

Reference Proxies for pest control Silvoarable Arable Effect 

size 

Tree row 

data 

excluded? 

Ratio % Ratio % 

Peng et al. 

(1993) 

Ratio of airborne 

natural enemies to 

herbivores 

1.46 - 1.15 - 1.27 Yes 

Howell (2001) Ratio of airborne 

predators to herbivores 

1.79 - 1.37 - 1.31 No 

Ratio of airborne 

parasitoids to 

herbivores 

2.94 - 1.08 - 2.72 

Stamps et al. 

(2009a) 

Alfalfa weevil mortality 

rate 

- 33.85 - 28.26 1.20 Yes (not 

sampled) 

Naeem et al. 

(1997); Naeem 

et al. (1994) 

Aphid parasitism rate - 2.81 - 1.66 1.69 Yes 

Muhammad et 

al. (2005) 

Aphid parasitism rate - 12.8 - 7.6 1.68 Yes (not 

sampled) 

 238 

3.4 Pollinator abundance 239 

Only three studies, in the UK and Canada, reported abundances of pollinating insects in 240 

silvoarable systems and arable controls. Effect sizes ranged from 1.17 to 2.55, indicating 241 
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beneficial effects on pollinator populations in silvoarable systems compared with arable 242 

controls (Table 2), but study replication was low. One study also reported higher California 243 

Poppy phytometer seedset by a factor of 4.5 in agroforestry compared with arable systems 244 

(Table 2). 245 

 246 

Table 2 247 

Effect sizes for studies which reported pollinator abundances or pollination service, calculated 248 

as pollinator abundance or seedset in the silvoarable system divided by the respective value 249 

in the arable control. 250 

Reference Taxa / measure of service Effect size Tree row data 

excluded? 

Peng et al. (1993) Syrphidae, Bombus 1.17 Yes 

Howell (2001) Andrenidae, Apidae, Colletidae, Halictidae, 

Megachilidae, 

1.72 No 

Varah (2015): 2 

sites 

Syrphidae, Bombus (solitary bees excluded as 

silvoarable data not separable from silvopasture 

data) 

2.55 No 

Seedset in Eschscholtzia californica phytometers 

(across two silvoarable and one silvopasture site, 

not separable)  

4.5 No 

 251 

 252 

3.5 Taxon-specific effects  253 

The results were also analysed for aphids and four taxa of predators comprising Araneae, 254 

Carabidae, Coccinellidae and Syrphidae. The effect sizes were highly variable, ranging below 255 

and above 1 in four of the five taxa analysed (Table 3). The only taxon represented by at least 256 

three studies which had consistently higher numbers in silvoarable systems compared with 257 
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arable controls was hoverflies (Syrphidae). 258 

 259 

Table 3 260 

Effect sizes for five of the most commonly studied taxa in temperate silvoarable systems, 261 

calculated as total or mean abundance in the silvoarable system divided by the respective 262 

value in the arable control. Syrphidae only include species with predatory larvae. 263 

Reference Effect size 

Natural enemies Herbivores / 

pests 

Araneae Carabidae Coccinellidae Syrphidae Aphidoidea 

Peng et al. (1993) 1.35 

(airborne) 

- 0.25 1.22 1.77 (all 

species) 

Phillips et al. (1994) - 0.83 - 2.64 - 

Peng and Sutton (1996) 1.22 1.12 3.2 -  

Naeem et al. (1994, 1997) - - - - 0.53 (one 

species) 

Howell (2001) 0.95 

(airborne) 

9 

(airborne) 

0.5 1.51 0.26 (all 

species) 

Burgess et al. (2003): Leeds site 0.65 0.73 - - - 

Muhammad et al. (2005) - - - - 0.45 (one 

species) 

Smits et al. (2012) - - - - 1.01 (three 

species) 

Sharman (2015) - 1.54 - - - 

 264 

3.6 Implications for crop damage and yield  265 

Evidence of crop damage by invertebrate pests is very limited, and only two studies have 266 

attempted to establish a link between pest control and yield of the arable component. Griffiths 267 

et al. (1998) recorded higher slug damage to a pea crop in a UK silvoarable system compared 268 
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with an arable control, with damage level positively correlated to slug captures. However, yield 269 

was not measured. In Turkey, Akbulut et al. (2003) observed a lower level of crop damage 270 

from invertebrates in silvoarable plots, accompanied by higher yield of beans but lower yield 271 

of maize, relative to arable. Other studies have simultaneously sampled cereal yields and 272 

invertebrates in silvoarable systems, finding lower silvoarable yields compared with arable in 273 

conventional systems (Burgess et al., 2003), and the opposite result in organic systems 274 

(Varah, 2015), but disentangling the effect of pest control or pollination on yield from other 275 

factors, notably tree-crop interactions such as shade, is problematic. 276 

 277 

4 Discussion 278 

4.1 Effects of temperate silvoarable systems on pest control and pollination 279 

4.1.1 Invertebrate herbivores / pests 280 

Our analysis demonstrates a reduced arthropod herbivore abundance in silvoarable alleys 281 

than in arable control conditions. This is consistent with the resource concentration hypothesis, 282 

which predicts that specialist herbivores, i.e. those with a narrow host range, should be less 283 

abundant in a more diverse system than a monoculture of just its host plant, due to the 284 

masking of host chemical cues (Root, 1973). This hypothesis does not however extend to 285 

generalist pests such as slugs, for which we find evidence of higher abundance in silvoarable 286 

systems relative to arable controls, although these results were derived from only two sites. 287 

Similar effects have been reported in and adjacent to flower-rich field margins (Eggenschwiler 288 

et al., 2013; Frank, 1998), which suggests that areas which provide a refuge from tillage could 289 

boost slug populations. 290 

4.1.2 Natural enemies 291 

The findings indicate the natural enemies of pests are more abundant in silvoarable alleys 292 

compared with arable systems, although there are no clear differences in responses among 293 
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natural enemy taxa. The benefit to natural enemies could be explained by the resources 294 

provided by silvoarable systems. For example, undisturbed tree rows could provide 295 

overwintering refugia, which have been shown to be important for the maintenance of ground-296 

based natural enemy populations in other systems (Landis et al., 2000; Öberg et al., 2008; 297 

Varchola and Dunn, 2001). Silvoarable systems could also enhance fine-scale complexity 298 

which has been shown to benefit parasitoids (Chaplin‐Kramer et al., 2011; Thies et al., 2005), 299 

whilst tree rows could provide alternative food sources often required by this functional group 300 

(Dyer and Landis, 1996; Murphy et al., 1998; Pfannenstiel et al., 2010). 301 

4.1.3 Pollinators 302 

Although study replication was low, the observed increase in pollinator abundance in 303 

silvoarable systems compared with arable controls is consistent with the demonstrated 304 

benefits of flowering strips and hedgerows (Garratt et al., 2017; Morandin and Kremen, 2013; 305 

Nicholls and Altieri, 2013). This could be explained by the sheltered microclimate in silvoarable 306 

systems, in addition to the potential for flowering resources in silvoarable tree rows, including 307 

the understorey. The uncultivated tree rows could also provide nesting opportunities for 308 

pollinators, as demonstrated by a previous modelling exercise which predicted that nesting 309 

bee abundance would be increased by adopting silvoarable systems at a landscape scale 310 

(Graham and Nassauer, 2017). 311 

4.1.4 Magnitude of effects 312 

Our reported mean effect sizes of 1.24 and 0.75 on natural enemy and arthropod 313 

herbivore/pest abundances respectively are similar to those reported from meta-analyses of 314 

other field scale enhancements such as polycultures, orchard vegetation management and 315 

global (predominantly tropical) agroforestry, which range from 1.11 to 1.50 for natural 316 

enemies, and 0.68 to 0.78 for pests (Iverson et al., 2014; Pumariño et al., 2015; Winter et al., 317 

2018). These effect sizes are, however, considerably smaller than those typically observed for 318 

complex landscapes with a high proportion of non-crop habitats where, taking natural enemy 319 

abundance as an example, the majority of studies report effect sizes of at least 2 compared 320 
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with simple large-scale landscapes (Bianchi et al., 2006).  321 

4.1.5 Effects on pest control and pollination services 322 

We find limited evidence of effects on pest control or pollination services, although there is 323 

some evidence for higher ratios of airborne natural enemies to herbivores, pest mortality and 324 

parasitism rates in silvoarable compared with arable systems. This limited evidence does 325 

however support the expectations of Stamps and Linit (1997), who recognised the theoretical 326 

potential for agroforestry systems to benefit pest control through plant diversification. Evidence 327 

for corresponding effects on crop damage or yield is scarcer still, with contradictory evidence, 328 

whilst evidence for pollination service is limited to a finding of higher California Poppy seedset 329 

in silvoarable compared with arable systems across two sites (Varah, 2015). The economic 330 

implications of pest control and pollination in silvoarable systems have yet to be assessed. 331 

 332 

4.2 A proposed framework for future research 333 

Agroforestry research in general is constrained by the suitability of appropriately scaled field 334 

sites designed for experimental vigour with proper controls (Stamps and Linit, 1999), which 335 

poses unique challenges to evaluating the factors which influence variation in effects. We 336 

therefore propose a framework to predict how these factors influence the observed 337 

abundances of natural enemies, pests and pollinators in temperate silvoarable systems (Fig. 338 

4). For each identified factor which could influence variation, we refer to evidence from the 339 

studies included in our analysis and, as these are limited, ecological theory and evidence from 340 

analogous systems, where available, to form a series of hypotheses which can be tested by 341 

future research.   342 

 343 
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 344 

Fig. 4. Illustrative summary of the key factors predicted to influence functional biodiversity in temperate 345 

silvoarable systems, the major interactions between functional groups and their contribution to pest 346 

control and pollination.  347 

 348 

4.2.1 Soil type and tillage 349 

Although direct evidence is lacking, soil type could be critical in the outcome of pest control 350 

based on the evidence for slug problems in silvoarable systems. For example, a major slug 351 

pest, Deroceras reticulatum, favours fine-textured soils with high moisture content (Ondina et 352 

al., 2004), suggesting that silvoarable systems on such soil types could be prone to higher 353 

pest damage. Further research could investigate whether adapting soil cultivation in 354 

silvoarable systems could help mitigate this damage, for example, by modifying tillage depth, 355 

timing and/or frequency (Roger-Estrade et al., 2010). 356 

4.2.2 Inputs  357 

Our findings of enhanced natural enemy activity and reduced pest pressure in silvoarable 358 

alleys compared with arable controls suggest that pesticide inputs in non-organic systems 359 

could potentially be reduced without compromising productivity, as demonstrated for 360 

hedgerow restoration (Morandin et al., 2016). Furthermore, an enhanced level of pest control 361 
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in organic silvoarable systems compared with arable controls could reduce crop loss to pests. 362 

These hypotheses warrant further investigation.  363 

4.2.3 Alley width 364 

Alley width is typically constrained by the size of machinery in temperate regions. Although 365 

there is a strong bias in the literature towards systems with alley widths of around 12 m (Fig. 366 

2b), three studies included in our analysis found that tree rows or the edges of crop alleys 367 

support greater abundances of natural enemies and lower pest abundances than the centre 368 

of crop alleys (Peng et al., 1993; Phillips et al., 1994; Rekany, 2015). Furthermore, stronger 369 

distribution patterns of predators have been observed in 50 m crop alleys compared with 24 m 370 

alleys (Rekany, 2015). This broadly corresponds to studies of woody field boundaries, which 371 

find highest abundances of natural enemies and pollinators at around 2 to 10 m from the 372 

boundary, before rapidly declining (Lewis, 1969; Morandin et al., 2014). Future research could 373 

therefore test whether narrow alley widths have the greatest benefit on pollination and natural 374 

enemy activity.  375 

4.2.4 Understorey management 376 

Two of the studies included in our analysis compared vegetated understoreys with chemically 377 

weeded understoreys. A study of aphid natural enemies found no effect between treatments, 378 

possibly because the vegetated treatment did not properly establish (Smits et al., 2012). 379 

However, Burgess et al. (2003) found fewer slugs and more spiders in alleys adjacent to 380 

vegetated versus bare understoreys, suggesting that understorey vegetation promotes pest 381 

control, although there was little difference in carabid beetle abundance between treatments. 382 

Nevertheless, management of silvoarable tree rows to promote tussock-forming grasses could 383 

replicate the benefits of beetle banks (Collins et al., 2003), which is worthy of further 384 

investigation. 385 

In addition, evidence from  flower strips shows that mixes rich in pollen and nectar are most 386 

beneficial to pollinators, whilst natural enemies appear to be less strongly associated with 387 
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vegetation type (reviewed in Haaland et al. (2011)). Nevertheless, flower strips designed to 388 

benefit natural enemies of wheat pests have been successful in reducing pest pressure 389 

(Tschumi et al., 2015). A similar tailored approach could be investigated in silvoarable 390 

systems.  391 

4.2.5 Maturity 392 

The longest-running study in our analysis found that the slug population increased over the 393 

course of four years in a young silvoarable system compared with a control plot (Griffiths et 394 

al., 1998), whilst the abundance and/or diversity of birds and small mammals has also been 395 

shown to increase with system maturity (Gibbs et al., 2016; Klaa et al., 2005). Conversely, the 396 

abundance and diversity of epigeal invertebrate predators showed no significant response to 397 

field margin and hedgerow age in the UK, suggesting rapid colonisation, although some 398 

species were more closely associated with mature habitat (Pywell et al., 2005). We 399 

recommend that this could be investigated through long-term studies of invertebrate 400 

communities in silvoarable systems. 401 

4.2.6 Vegetation 402 

Two of the studies included in our analysis considered diversity and abundance of vascular 403 

plants in silvoarable versus arable systems, finding higher plant species richness in silvoarable 404 

alleys (Varah, 2015) and greater cover of non-crop plants, especially adjacent to vegetated 405 

understoreys, possibly due to seed-spread during cutting (Burgess et al., 2003). In contrast, 406 

lower numbers of weeds were found in a silvoarable system in France relative to an arable 407 

control early in the season, despite a higher species richness in the silvoarable system 408 

(Meziere et al., 2016). This contrast among studies could be explained by the differing abilities 409 

of weed species to ingress from perennial habitats (Marshall, 2004). Therefore, we would 410 

predict that weed problems in silvoarable systems will be highly context-dependent. Weed 411 

cover could also provide a mechanism for the observed benefits on natural enemies and 412 

pollinators in silvoarable systems, as demonstrated by a positive association of carabid beetle 413 

activity with weed cover in one of the studies in our analysis (Sharman, 2015). 414 



20 

 

The choice of tree species could influence micro-climatic conditions and provide resources 415 

such as nectar for functional groups. Studies of hedgerows and agroecosystems generally 416 

show that plant diversity enhances natural pest control and pollination services (Garratt et al., 417 

2017; Isbell et al., 2017; Letourneau et al., 2011), and we would predict this to apply to 418 

silvoarable systems. On the contrary however, interplanting shrubs within apple tree rows did 419 

not influence pest or natural enemy communities in one silvoarable system (Kranz et al., 420 

2018), although confirmatory evidence is needed from other systems to improve our 421 

understanding of the influence of tree species and diversity on pest control and pollination.  422 

The choice of arable crop may also influence results, for example, the study with the weakest 423 

effect size for pollinators was of a pea crop, possibly because of the attractant effect of the 424 

mass-flowering resource in the control plot compared with studies based on cereal crops. 425 

Long-term and/or multiple-site studies would further test this hypothesis. 426 

4.2.7 Trophic interactions among fauna 427 

In general, the efficacy of conservation biological control is dependent on synergistic or 428 

antagonistic interactions between natural enemies (Straub et al., 2008; Thies et al., 2011), 429 

whilst predation of pollinators could reduce fruit set (Dukas, 2005). Few studies in our analysis 430 

considered these interactions, although positive correlations have been demonstrated 431 

between spiders and carabid beetles in a North American silvoarable system, suggesting 432 

limited interference (Stamps et al., 2009b). 433 

Interactions between vertebrates and invertebrates could also play a role in pest control and 434 

pollination, particularly given the potential benefits of silvoarable systems on vertebrate 435 

populations. A literature search on vertebrates in temperate silvoarable systems yielded four 436 

additional studies (Supplementary Material 2), which reported increased abundance and/or 437 

species richness of small mammals (Klaa et al., 2005; Wright, 1994), bats (Disca, 2003) and 438 

birds (Gibbs et al., 2016; Williams et al., 1995). Vertebrates could benefit pest control through 439 

direct predation of pests (e.g. Kunz et al. (2011); Whelan et al. (2008)). On the other hand, 440 
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vertebrates could directly cause pest problems, for example crop damage arising from roe 441 

deer, rabbits, wild boar and pigeons have been anecdotally reported in silvoarable systems 442 

(Gosme, 2014; Newman et al., 2018; Smith et al., 2016). Vertebrates could also disrupt natural 443 

enemy functionality (Martin et al., 2013), for example, an apparent increase in rats correlated 444 

with a substantial decrease in carabid beetle abundance in a silvoarable system (Stamps et 445 

al., 2009b). Interactions are therefore an important avenue for further research given their 446 

implications for pest control and potentially pollination. 447 

4.2.8 Landscape composition and complexity 448 

Two of the studies included in our analysis identified that proximity to treed landscape features 449 

(forestry plots or boundary hedgerows) outside of the silvoarable system influenced their 450 

results, benefitting pest parasitism and pollinator abundance respectively (Muhammad et al., 451 

2005; Varah, 2015). The study with the second-lowest calculated effect size of natural enemy 452 

abundance noted that the diversity of the surrounding landscape may have masked any 453 

benefit of the silvoarable system (Smits et al., 2012), whilst a well-studied system in an 454 

intensive agricultural landscape had relatively strong effect sizes for natural enemies and 455 

pollinators (Rekany, 2015; Sharman, 2015; Varah, 2015). This is supported by landscape-456 

scale studies of pest control and pollination, which suggest that functionality is high in diverse 457 

landscapes (Holzschuh et al., 2007), such that field-scale enhancements are more likely to be 458 

effective in simple landscapes, defined as 1-20% of non-crop habitat (Tscharntke et al., 2005). 459 

Although this hypothesis would be difficult to vigorously test in silvoarable systems, a 460 

standardised experimental design across a network of sites with similar characteristics but 461 

differing landscape context would help to predict those landscapes in which silvoarable 462 

systems would be most effective in terms of natural pest control and pollination.  463 

4.2.9 Experimental design 464 

Our results show that effect sizes in silvoarable systems tend to be relatively small compared 465 

with landscape-scale studies, and so experiments should be designed to have sufficient power 466 

to detect effect sizes of 10 to 30 % (Fig. 3). Experimental design and analysis should take 467 
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limitations of survey techniques into account, for example, the inclusion of pitfall trap data 468 

collected from tree rows with complex understoreys in comparisons between silvoarable and 469 

arable systems could bias results against silvoarable systems (Thomas et al., 2006), as 470 

indicated by our analysis (Supplementary Material 3). Differences between the silvoarable and 471 

arable control plots could also influence results, particularly differences in historical land use, 472 

environmental conditions (including soil type), crop selection, management, proximity to 473 

landscape features and proximity between treatment and control plots.  474 

 475 

4.3 Study limitations 476 

Our analysis of pests, natural enemies and pollinators focusses on invertebrates, as other 477 

taxa have been scarcely studied in temperate silvoarable systems and predicting their net 478 

effect on pest control and pollination is often more complex than for most invertebrates. 479 

Nevertheless, we consider plants and vertebrates and their potential implications for pest 480 

control and pollination in our predictive framework above. 481 

Pests of the arable crop component of silvoarable systems are the focus of the study, rather 482 

than pests of the tree component which have been scarcely studied. Nevertheless, there is 483 

some evidence that aphid densities are lower in silvoarable tree rows than in forestry controls 484 

(Naeem and Compton, 2000; Naeem et al., 1997). Two studies have referred to pest damage 485 

in silvoarable apple trees compared with orchards, although results are inconclusive and 486 

appear to vary according to pest taxa and fruit stage (Kranz et al., 2018; Smith et al., 2014). 487 

Our analysis pools together numbers of captures/observations for different taxa recorded in 488 

each study, therefore, numerically abundant species are well represented in effect sizes 489 

compared with less abundant species, regardless of their body size or effect on pest control 490 

or pollination. Given that small sized carabid beetles were trapped at higher abundance in 491 

silvoarable compared with arable systems, in contrast to large generalist species (Rekany, 492 

2015), accounting for body size could reduce effect sizes, although the situation is complex 493 
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as larger carabid species could also predate smaller carabids (e.g. Prasad and Snyder 494 

(2006)), thereby antagonising pest control.  495 

The analysis of pooled numbers of captures/observations does not take diversity into account, 496 

as only two of the studies report on diversity of functional groups, finding significantly higher 497 

diversities of invertebrate predators, herbivores and parasitic Hymenoptera in silvoarable 498 

relative to arable systems (Howell, 2001; Stamps et al., 2002).  499 

Whilst our analysis goes some way to comparing pests, natural enemies and pollinators in 500 

silvoarable systems compared with arable, more research is needed to quantify subsequent 501 

effects on pest control and pollination service outcome. 502 

5 Conclusion 503 

We find evidence for significantly enhanced natural enemy populations and significantly 504 

supressed arthropod herbivore populations in silvoarable systems, but molluscan pests were 505 

more numerous in the two available studies, compared with arable. Pollinators were also more 506 

abundant in silvoarable than arable systems, but study replication was low. This suggests a 507 

higher efficacy of pollination and natural pest control in silvoarable crop alleys compared with 508 

arable systems, although crop damage from slugs could cause problems on some farms. Our 509 

findings therefore provide further support for the role of silvoarable systems in sustainable 510 

intensification, in conjunction with the demonstrated benefits to other ecosystem services (e.g. 511 

Smith et al. (2013); Torralba et al. (2016); Tsonkova et al. (2012)). Nevertheless, further well-512 

replicated empirical research or modelling studies are required to test our predictive framework 513 

of the factors which influence pests, natural enemies and pollinators in silvoarable systems, 514 

in addition to measures of pest control and pollination, and their implications for productivity, 515 

economic output and resilience. 516 
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